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ABSTRACT

We show that with improved training, the standard approach for differentially pri-
vate GANs – updating the discriminator with noisy gradients – achieves or com-
petes with state-of-the-art results for private image synthesis. Existing instantia-
tions of this approach neglect to consider how adding noise only to discriminator
updates disrupts the careful balance between generator and discriminator neces-
sary for successful GAN training. We show that a simple fix – taking more dis-
criminator steps between generator steps – restores parity and improves training.
Furthermore, with the goal of restoring parity between the generator and discrimi-
nator, we experiment with further modifications to improve discriminator training
and see further improvements in generation quality. For MNIST at ε = 10, our
private GANs improve the record FID from 48.4 to 13.0, and record downstream
classifier accuracy from 83.2% to 95.0%.

1 INTRODUCTION

Differential privacy (DP) (Dwork et al., 2006b) has emerged as a compelling approach for training
machine learning models on sensitive data. However, incorporating DP requires significant changes
to the training process. Notably, it prevents the modeller from working directly with private data,
complicating debugging and exploration. Furthermore, the modeller can no longer interact with a
private dataset after exhausting their allocated privacy budget. One approach to alleviate these issues
is by producing differentially private synthetic data, which can be plugged directly into existing
machine learning pipelines, without further concern for privacy.

A recent line of work studies leveraging deep generative models to produce DP synthetic data. Early
efforts focused on privatizing generative adversarial networks (GANs) (Goodfellow et al., 2014) by
using differentially private stochastic gradient descent (DPSGD) (Abadi et al., 2016) to update the
GAN discriminator – an approach referred to as DPGAN (Xie et al., 2018; Beaulieu-Jones et al.,
2019; Torkzadehmahani et al., 2019).

However, follow-up work has significantly departed from this baseline DPGAN approach, either in
terms of: (a) the privatization scheme, in favor of approaches based on subsample-and-aggregate
which divide the data into ≥ 1000 disjoint partitions and train teacher discriminators separately
on each one (Jordon et al., 2019; Long et al., 2021; Chen et al., 2020; Wang et al., 2021); or (b)
the generative modelling framework altogether, opting instead to minimize notions of statistical
distance between real and generated data, such as maximum mean discrepancy (Harder et al., 2021;
Vinaroz et al., 2022), or Sinkhorn divergences (Cao et al., 2021).

For labelled image synthesis, these custom generative models designed specifically for privacy fall
short of GANs when evaluated at their non-private limits (ε → ∞), suggesting limited scalability
to larger, higher-resolution datasets.1 On the other hand, the literature corroborates that under mod-
est privacy budgets, these departures from the baseline DPGAN lead to significant improvements
in generation quality. Proposed explanations attribute these results to inherent limitations of the
DPGAN framework, suggesting that either: (a) privatizing discriminator training is sufficient for
privacy, but may be overkill when only the generator needs to be released (Long et al., 2021); or (b)
adversarial objectives may be unsuited for training under privacy (Cao et al., 2021).

1For example, the record FID for MNIST at ε = 10 is 48.4 (Cao et al., 2021). When evaluated at ε = ∞,
their method achieves an FID of 43.4. Our non-private GANs obtain an FID of 3.2.
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Figure 1: DPGAN results on MNIST synthesis at (10, 10−5)-DP. (a) We find that increasing nD , the number
of discriminator steps taken between generator steps, significantly improves image synthesis results. Using
nD = 50 instead of nD = 1 improves FID from 205.9 → 19.4, which improves over the record FID of 48.4
from Cao et al. (2021). nD = 50 also improves the record downstream classification accuracy to 92.9% (see
Figure 2a), an improvement over the record accuracy of 83.2% from Cao et al. (2021). (b) Corresponding
synthesized images. We observe that large nD improves visual quality, and low nD leads to mode collapse.

Our contributions. We demonstrate that the reported poor results of DPGANs should not be
attributed to inherent limitations of the framework, but rather, training issues. Specifically, we pro-
pose that the asymmetric noise addition in DPGANs (adding noise to discriminator updates only)
weakens the discriminator relative to the generator, disrupting the careful balance necessary for suc-
cessful GAN training. We propose that taking more discriminator steps between generator updates
addresses the imbalance introduced by noise. With this change, DPGANs improve significantly
(see Figure 1), going from non-competitive to achieving or competing with state-of-the-art results
in private image synthesis.

Furthermore, we show this perspective on private GAN training (“restoring parity to a discriminator
weakened by DP noise”) can be applied to improve training. We make other modifications to dis-
criminator training – large batch sizes and adaptive discriminator step frequency – to further improve
upon the aforementioned results.

In summary, we make the following contributions:

1. We find that taking more discriminator steps between generator steps significantly improves
DPGANs. Contrary to the previous results in the literature, DPGANs do compete with
state-of-the-art generative modelling approaches designed with privacy in mind.

2. We present empirical findings towards understanding why more frequent discriminator
steps help. We propose an explanation based on asymmetric noise addition for why vanilla
DPGANs do not perform well, and why taking more steps helps.

3. We put our explanation to the test. We employ it as a principle for designing better private
GAN training recipes, and indeed are able to improve over the aforementioned results.

2 PRELIMINARIES

Our goal is to train a generative model on sensitive data that is safe to release, i.e., it does not leak
the secrets of individuals in the training dataset. We do this by ensuring the training algorithm A –
which takes as input the sensitive dataset D ∈ U and returns the parameters of a trained (generative)
model θ ∈ Θ – satisfies differential privacy.
Definition 1 (Differential Privacy (Dwork et al., 2006b)). A randomized algorithm A : U → Θ is
(ε, δ)-differentially private if for every pair of neighbouring datasets D,D′ ∈ U , we have

P{A(D) ∈ S} ≤ exp(ε) · P{A(D′) ∈ S}+ δ for all S ⊆ Θ.

In this work, we adopt the add/remove definition of DP, and say two datasets D and D′ are neigh-
bouring if they differ in at most one entry, that is, D = D′ ∪ {x} or D′ = D ∪ {x}.
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Algorithm 1 TrainDPGAN(D; ·)
1: Input: Labelled dataset D = {(xj , yj)}nj=1. Discriminator D and generator G initializations ϕ0 and

θ0. Optimizers OptD, OptG. Privacy parameter δ. Hyperparameters: nD (D steps per G step), T (total
number of D steps), B (expected batch size), C (clipping norm), σ (noise multiplier).

2: q ← B/|D| and t, k ← 0 ▷ Calculate sampling rate q, initialize counters.
3: while t < T do ▷ Update D with DPSGD.
4: St ∼ PoissonSample(D, q) ▷ Sample a real batch St by including each (x, y) ∈ D w.p. q.
5: S̃t ∼ G(·; θk)B ▷ Sample fake batch S̃t.
6: gϕt ←

∑
(x,y)∈St

clip (∇ϕt(− log(D(x, y;ϕt)));C)

+
∑

(x̃,ỹ)∈S̃t
clip (∇ϕt(− log(1−D(x̃, ỹ;ϕt)));C) ▷ Clip per-example gradients.

7: ĝϕt ← 1
2B

(gϕt + zt), where zt ∼ N (0, C2σ2I)) ▷ Add Gaussian noise.
8: ϕt+1 ← OptD(ϕt, ĝθt) and t← t+ 1
9: if nD divides t then ▷ Perform G update every nD steps.

10: S̃′
t ∼ G(·; θk)B

11: gθk ←
1
B

∑
(x̃,ỹ)∈S̃′

t
∇θk (− log(D(x̃, ỹ;ϕt)))

12: θk+1 ← OptG(θk, gθk ) and k ← k + 1
13: end if
14: end while
15: ε← PrivacyAccountant(T, σ, q, δ) ▷ Compute privacy budget spent.
16: Output: Final G parameters θk. (ε, δ)-DP guarantee.

We highlight one convenient property of DP, known as closure under post-processing. This says
that interacting with a privatized model (e.g., using it to compute gradients on non-sensitive data,
generate samples) does not lead to any further privacy violation.

Proposition 2 (Post-processing). Let A : U → Θ be a randomized algorithm that is (ε, δ)-DP, and
f : Θ→ Y be an arbitrarily randomized mapping. Then f ◦ A : U → Y is (ε, δ)-DP.

DPSGD. A gradient-based training algorithm can be privatized by employing differentially private
stochastic gradient descent (DPSGD) (Song et al., 2013; Bassily et al., 2014; Abadi et al., 2016) as a
drop-in replacement for SGD. DPSGD involves clipping per-example gradients and adding Gaussian
noise to their sum, which effectively bounds and masks the contribution of any individual point to
the final model parameters. Privacy analysis of DPSGD follows from several classic tools in the
DP toolbox: Gaussian mechanism, privacy amplification by subsampling, and composition (Dwork
et al., 2006a; Dwork & Roth, 2014; Abadi et al., 2016; Wang et al., 2019). Our work employs the
DPSGD analysis of Mironov et al. (2019) implemented in Opacus (Yousefpour et al., 2021).

DPGANs. Algorithm 1 details the training algorithm for DPGANs, which is effectively an in-
stantiation of DPSGD. Note that only gradients for the discriminator D must be privatized (via
clipping and noise), and not those for the generator G. This is a consequence of post-processing
(Proposition 2) – the generator only interacts with the sensitive dataset indirectly via discriminator
parameters, and therefore does not need further privatization.

3 FREQUENT DISCRIMINATOR STEPS IMPROVES PRIVATE GANS

In this section, we discuss our main finding: the number of discriminator steps taken between each
generator step (nD from Algorithm 1) plays a significant role in the success of private GAN training.
For a fixed setting of DPSGD hyperparameters, there is an optimal range of values for nD that
maximizes generation quality, in terms of both visual quality and utility for downstream classifier
training. This value is often quite large (nD ≈ 100 in some cases).

3.1 EXPERIMENTAL DETAILS

Setup. We focus on labelled generation of MNIST (LeCun et al., 1998) and FashionMNIST (Xiao
et al., 2017), both of which are comprised of 60000 28×28 grayscale images divided into 10 classes.
To build a strong baseline, we begin from an open source PyTorch (Paszke et al., 2019) implemen-
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Figure 2: DPGAN results over training runs using different discriminator update frequencies nD , targeting
(10, 10−5)-DP. (a) As a measure of synthetic data utility, we plot the test set accuracy of a CNN trained on
generated data only. Accuracy mirrors FID scores (see Figure 1a). Going from nD = 1 to nD = 50 improves
accuracy from 33.7% → 92.9%. Further increases hurts accuracy. (b) & (c) We obtain similar results for
FashionMNIST. Note that the optimal nD is higher (around nD ≈ 100). At nD = 100, we obtain an FID
of 91.5 and accuracy of 71.1%, which compares favourably to the record FID of 128.3 and record accuracy of
75.5% reported in Cao et al. (2021) for (10, 10−5)-DP generation of FashionMNIST.

tation2 of DCGAN (Radford et al., 2016) that performs well non-privately, and copy their training
recipe. We then adapt their architecture to our purposes: removing BatchNorm layers (which are not
compatible with DPSGD) and adding label embedding layers to enable labelled generation. Train-
ing this configuration non-privately yields labelled generation that achieves FID scores of 3.2 on
MNIST and 15.9 on FashionMNIST. Finally, we note that these models are not small: D and G have
1.72M and 2.27M trainable parameters respectively. Please see Appendix B.1 for more details.

Privacy implementation. To privatize training, we use Opacus (Yousefpour et al., 2021) which
implements per-example gradient computation and the RDP accounting of Mironov et al. (2019).
For our baseline setting, we use the following DPSGD hyperparameters: we keep the non-private
(expected) batch size B = 128, and use a noise scale σ = 1 and clipping norm C = 1. Under these
settings, we have the budget for T = 450000 discriminator steps when targeting (10, 10−5)-DP.

Evaluation. We evaluate our generative models by examining the visual quality and utility for
downstream tasks of generated images. Following prior work, we measure visual quality by com-
puting the Fréchet Inception Distance (FID) (Heusel et al., 2017) between 60000 generated images
and entire test set.3 To measure downstream task utility, we again follow prior work, and train a
CNN classifier on 60000 generated image-label pairs and report its accuracy on the real test set.

3.2 RESULTS

More frequent discriminator steps improves generation. We plot in Figures 1a and 2 the evolu-
tion of FID and downstream accuracy during DPGAN training for both MNIST and FashionMNIST,
under varying discriminator update frequencies nD. The effect of this parameter has outsized impact
on the final results. For MNIST, nD = 50 yields the best results; on FashionMNIST, the best FID is
obtained at nD = 200 and the best accuracy at nD = 100.

Private GANs are on a path to mode collapse. For the MNIST results in Figures 1a and 2a, we
observe that at low discriminator update frequencies (nD = 10), the best FID and accuracy scores
occur early in training, well before the privacy budget we are targeting is exhausted.4 In fact, at
50000 discriminator steps (ε ≈ 2.85), nD = 10 has better FID (30.6) and accuracy (83.3%) than
other settings of nD. However, these results deteriorate with continued training. In Figure 3, we

2Courtesy of Hyeonwoo Kang (https://github.com/znxlwm). Code available at this link.
3We use an open source PyTorch implementation to compute FID: https://github.com/

mseitzer/pytorch-fid.
4This observation has been reported in (Neunhoeffer et al., 2021), serving as motivation for their remedy

of taking a mixture of intermediate models encountered in training. We are not aware of any mentions of this
aspect of DPGAN training in papers reporting DPGAN baselines for labelled image synthesis.
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t = 50K t = 100K t = 150K t = 200K

Figure 3: Evolution of samples drawn during training with nD = 10, when targeting (10, 10−5)-DP. This
setting reports its best FID and downstream accuracy at t = 50K iterations (ε ≈ 2.85). As training progresses,
we observe mode collapse for several classes alongside the deterioration in evaluation metrics.

plot the evolution of generated images for this nD = 10 run over the course of training, and observe
qualitative evidence of mode collapse, co-occurring with the deterioration in FID and accuracy.

An optimal discriminator update frequency. These results suggest that fixing other DPSGD
hyperparameters, there is an optimal setting for the discriminator step frequency nD that strikes a
balance between: (1) being too low, causing the generation quality to peak early in training and then
undergo mode collapse; resulting in all subsequent training to consume additional privacy budget
without improving the model; and (2) being too high, preventing the generator from taking enough
steps to converge before the privacy budget is exhausted (an example of this is the nD = 200 run in
Figure 2a). Striking this balance results in the most effective utilization of privacy budget towards
improving the generator.

4 WHY DOES TAKING MORE STEPS HELP?

In this section, we present empirical findings towards understanding why more frequent discrimina-
tor steps improves DPGAN training. We propose an explanation that is conistent with our findings.

How does DP affect GAN training? Figure 4 compares the accuracy of the GAN discriminator
(on held-out real and fake examples) immediately before each generator step between non-private
training and private training with different settings of nD. We observe that non-privately, discrimi-
nator accuracy stays around 60% throughout training. Naively introducing DP (nD = 1) leads to a
qualitative difference: DP causes discriminator accuracy to drop to 50% immediately at the start of
training, and never recovers.5

For other settings of nD, we make three observations: (1) larger nD corresponds to higher accu-
racy; (2) the generator improves during the periods in which the discriminator stays above 50%
accuracy; and (3) accuracy decreases throughout training as the generator improves, and degrada-
tion/stagnation of the generator (as observed in Figure 3) co-occurs with discriminator accuracy
dropping to 50%.

Based on these observations, we propose the following explanation for why more steps help:

• Generator improvement occurs when the discriminator is capable of distinguishing between
real and fake data.

• The asymmetric noise addition introduced by DP to the discriminator makes such a task
difficult, resulting in limited generator improvement.

• Allowing the discriminator to train longer on a fixed generator improves its accuracy, re-
covering the non-private case where the generator and discriminator are balanced.

Does reducing noise accomplish the same thing? In light of this explanation, we ask if reducing
the noise level σ can offer the same improvement as taking more steps, as reducing σ should also
improve discriminator accuracy before a generator step. To test this: starting from our setting in
Section 3, fixing nD = 1, and targeting MNIST at ε = 10, we search over a grid of noise levels

5Our plot only shows the first 20000 generator steps, but we remark that this persists until the end of training
(450000 steps).
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Figure 4: Discriminator accuracy immediately before each generator step. While non-privately the discrimina-
tor maintains a 60% accuracy, the private discriminator with nD = 1 is effectively a random guess. Increasing
the number of discriminator steps recovers the discriminator’s advantage early on, leading to generator im-
provement. An improved generator makes the discriminator’s task more difficult, driving down accuracy.

σ = {0.4, 0.43, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8}; the lowest of which, σ = 0.4, admits a budget of only
T = 360 discriminator steps. We obtain a best FID of 127.1 and best accuracy of 57.5% at noise
level σ = 0.45. Hence we can conclude that in this setting, incorporating discriminator update
frequency in our design space allows for more effective use of privacy budget for improving the
discriminator, and in turn, generation quality.

Does taking more discriminator steps always help? As we discuss in more detail in Section 5.1,
when we are able to find other means to improve the discriminator beyond taking more steps, tuning
discriminator update frequency may not yield improvements. To illustrate with an extreme case,
consider eliminating the privacy constraint. In non-private GAN training, taking more steps is known
to be unnecessary. We corroborate this result: we run our non-private baseline from Section 3 with
the same number of generator steps, but opt to take 10 discriminator steps between each generator
step instead of 1. FID worsens from 3.2→ 8.3, and accuracy worsens from 96.8%→ 91.3%.

5 BETTER GENERATORS VIA BETTER DISCRIMINATORS

Our proposed explanation in Section 4 provides a concrete suggestion for improving GAN train-
ing: effectively use our privacy budget to maximize the number of generator steps taken when the
discriminator has sufficiently high accuracy. We experiment with modifications to the private GAN
training recipe towards these ends, which translate to improved generation.

5.1 LARGER BATCH SIZES

Several recent works have demonstrated that for classification tasks, DPSGD achieves higher accu-
racy with larger batch sizes, after tuning the noise scale σ accordingly (Tramèr & Boneh, 2021; Anil
et al., 2021; De et al., 2022). GAN training is typically conducted with small batch sizes (for exam-
ple, DCGAN uses B = 128, which we adopt; StyleGAN uses B = 32). Therefore it is interesting
to see if large batch sizes indeed improve private GAN training. We corroborate that larger batch
sizes do not significantly improve our non-private MNIST baseline from Section 3: when we go up
to B = 2048 from B = 128, FID stays at 3.2 and accuracy improves from 96.8%→ 97.5%.

Results. We scale up batch sizes, considering B ∈ {64, 128, 512, 2048}, and search for the opti-
mal noise scale σ and nD (details in Appendix B.2). We target both ε = 1 and ε = 10. We report
the best results from our hyperparameter search in in Table 1. We find that larger batch sizes leads to
improvements: for ε = 10, the best MNIST and FashionMNIST results are achieved at B = 2048.
For ε = 1, the best results are achieved at B = 512. We also note that for large batch sizes, the
optimal number of generator steps can be quite small. For B = 2048, σ = 4.0, targeting MNIST at
ε = 10, nD = 5 is the optimal discriminator update frequency, and improves over our best B = 128
setting employing nD = 50.
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5.2 ADAPTIVE DISCRIMINATOR STEP FREQUENCY

Our observations from Section 3 and 4 motivate us to consider adaptive discriminator step frequen-
cies. As pictured in Figure 4, discriminator accuracy drops during training as the generator improves.
In this scenario, we want to take more steps to improve the discriminator, in order to further improve
the generator. However, using a large discriminator update frequency right from the beginning of
training is wasteful – as evidenced by the fact that low nD achieves the best FID and accuracy early
in training. Hence we propose to start at a low discriminator update frequency (nD = 1), and ramp
up when our discriminator is performing poorly.

Accuracy on real data must be released with DP. While this is feasible, it introduces the additional
problem of having to find the right split of privacy budget for the best performance. We observe that
discriminator accuracy is related to discriminator accuracy on fake samples only (which are free to
evaluate on, by post-processing). Hence we use it as a proxy to assess discriminator performance.

The adaptive step frequency is parameterized by two terms, β and d. β is the decay parameter used
to compute the exponential moving average (EMA) of discriminator accuracy on fake batches before
each generator update. We use β = 0.99 in all settings. d is the accuracy floor that upon reaching,
we move to the next update frequency nD ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500}. We try d = 0.6 and
d = 0.7, finding that 0.7 works better for large batches. Additionally, we promise a grace period of
2/(1 − β) = 200 generator steps before moving on to the next update frequency. This formula is
motivated by the fact that β-EMA’s value is primarily determined by its last 2/(1−β) observations.

The additional benefit of the adaptive step frequency is that it means we do not have to search for the
optimal update frequency. Although the adaptive step frequency introduces the extra hyperparameter
of the threshold d, we found that these two settings (d = 0.6 and d = 0.7) were sufficient to improve
over results of a much more extensive hyperparameter search.

5.3 COMPARISON WITH PREVIOUS RESULTS IN THE LITERATURE

5.3.1 MNIST AND FASHIONMNIST

Table 1 summarizes our best experimental settings for MNIST and FashionMNIST, and situates
them in the context of previously reported results for the task. We provide some example generated
images in Figures 7 and 8 for ε = 10, and Figures 9 and 10 for ε = 1.

Simple DPSGD beats all alternative GAN privatization schemes. Our baseline DPGAN from
Section 3, with the appropriate choice of nD (and without the modifications described in this section
yet), outperforms all other GAN-based approaches proposed in the literature (GS-WGAN, PATE-
GAN, G-PATE, and DataLens) uniformly across both metrics, both datasets, and both privacy levels.

Large batch sizes and adaptive step schedules improve GAN training. Broadly speaking,
across both privacy levels and both datasets, we see an improvement from taking larger batch sizes,
and then another with an adaptive step schedule. The magnitude of improvement varies.

Comparison with state-of-the-art. In the low privacy/high ε regime, most of our results are dra-
matically better than prior work6 – for example, decreasing FID from 48.4 to 13.0 and increasing
accuracy from 83.2% to 95.0% on MNIST. In the high privacy/low ε regime, improvements are not
quite as extreme, but can still be significant (FID for MNIST and FashionMNIST), and only com-
pare negatively to state-of-the-art for accuracy on FashionMNIST. Visual comparison for ε = 10
results in 5

5.3.2 CELEBA-GENDER

We also report results on generating 32 × 32 CelebA, conditioned on gender at (10, 10−6)-DP.
For these experiments, we used slightly larger models (2.64M and 3.16M parameters for D and G

6We do not compare with two recent works on private generative models (Chen et al., 2022; Jiang et al.,
2022), as we believe there are gaps in their privacy analyses. This has been confirmed by the authors of Jiang
et al. (2022), and the sketch of an argument regarding non-privacy of Chen et al. (2022) has been shared with
us by others (Anonymous, 2022).
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MNIST FashionMNIST

Privacy Level Method Reported In FID Acc.(%) FID Acc.(%)

ε =∞ Real data (This work) 1.0 99.2 1.5 92.5
GAN 3.2 96.8 15.9 80.4

ε = 10

DPGAN7 Chen et al. (2020) 179.16 63 243.80 50
Long et al. (2021) 304.86 80.11 433.38 60.98

GS-WGAN Chen et al. (2020) 61.34 80 131.34 65
PATE-GAN Long et al. (2021) 253.55 66.67 229.25 62.18
G-PATE Long et al. (2021) 150.62 80.92 171.90 69.34
DataLens Wang et al. (2021) 173.50 80.66 167.68 70.61
DP-MERF Cao et al. (2021) 116.3 82.1 132.6 75.5
DP-Sinkhorn Cao et al. (2021) 48.4 83.2 128.3 75.1

DPGAN
(This work)

19.4 92.9 91.5 71.1
+ large batches 13.2 94.3 66.7 72.1
+ step schedule 13.0 95.0 56.8 74.8

ε = 1

DPGAN Long et al. (2021) 470.20 40.36 472.03 10.53

GS-WGAN Long et al. (2021) 489.75 14.32 587.31 16.61
PATE-GAN Long et al. (2021) 231.54 41.68 253.19 42.22
G-PATE Long et al. (2021) 153.38 58.80 214.78 58.12
DataLens Wang et al. (2021) 186.06 71.23 194.98 64.78
DP-MERF Vinaroz et al. (2022)8 - 80.7 - 73.9
DP-HP Vinaroz et al. (2022) - 81.5 - 72.3

DPGAN
(This work)

91.7 77.4 151.9 65.0
+ large batches 66.1 73.7 153.2 66.6
+ step schedule 56.2 80.1 121.8 68.0

Table 1: We gather previously reported results in the literature on the performance of various methods for
labelled generation of MNIST and FashionMNIST. Note that Reported In refers to the source of the numerical
result, not the originator of the approach. For downstream accuracy, we report the best accuracy among classi-
fiers they use, and compare against our CNN classifier accuracy.

Privacy Method Reported In FID Acc.(%)

ε =∞ Real data (This work) 1.1 96.6
GAN 31.5 91.6

ε = 10
DP-MERF Cao et al. (2021) 274.0 65
DP-Sinkhorn Cao et al. (2021) 189.5 76.3
DPGAN (This work) 166.8 83.8

Table 2: Comparison to state-of-the-art results on 32× 32 CelebA-Gender, targeting (10, 10−6-DP).

respectively), and employed large batches (B = 1024) and adaptive discriminator step frequency
with threshold d = 0.6. Results are summarized in Table 2, example images are in Figure 11.

6 DISCUSSION AND RELATED WORK

DP generative models. The baseline DPGAN that employs a DPSGD-trained discriminator was
introduced by Xie et al. (2018), and was subsequently studied in several works (Torkzadehmahani
et al., 2019; Beaulieu-Jones et al., 2019). Despite significant interest in the approach and numer-
ous applications to various problems (≈ 300 citations as of November 2022), we were unable to
find studies that explore the modifications we perform or uncover similar principles for improving
training. Perhaps as a consequence, subsequent work has departed from this approach, examining
alternative privatization schemes for GANS (Jordon et al., 2019; Long et al., 2021; Chen et al., 2020;

7We group per-class unconditional GANs together with conditional GANs under the DPGAN umbrella.
8These results are presented graphically in the paper. Exact numbers can be found in their code.
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DP-CGAN

DP-MERF

GS-WGAN

DP-Sinkhorn

Ours

Figure 5: MNIST and FashionMNIST results at (10, 10−5)-DP for different methods. Images of other meth-
ods from (Cao et al., 2021).

Figure 6: 32× 32 CelebA-Gender at (10, 10−6)-DP. Top: DP-Sinkhorn. Bottom: Ours.

Wang et al., 2021). Contrary to their claims, our work shows that these privatization schemes do
not outperform DPSGD. Other generative modelling frameworks have been applied to DP synthetic
data including VAEs (Chen et al., 2018), maximum mean discrepancy (Harder et al., 2021; Vinaroz
et al., 2022), Sinkhorn divergences (Cao et al., 2021), and normalizing flows (Waites & Cummings,
2021). We show that a well-tuned DPGAN competes with or outperforms these approaches.
Custom approaches versus a well-tuned DPSGD. An ongoing debate pertains to the best tech-
niques and architectures for private ML. Roughly speaking, there are two schools of thought. One
investigates novel architectures for privacy, which may be outperformed by more traditional ap-
proaches in the non-private setting. Some examples include Chen et al. (2018); Cao et al. (2021);
Vinaroz et al. (2022), a variety of generative models specifically designed to be compatible with dif-
ferential privacy. The other focuses on searching within the space of tried-and-tested methods that
are understood to work well non-privately. Some examples include the works of De et al. (2022); Li
et al. (2022), who demonstrate that, similar to the non-private setting, large-scale CNN and Trans-
former architectures can achieve state-of-the-art results for image classification and NLP tasks. The
primary modifications to the pipeline are along the lines of changing the batch size, modifying the
type of normalization layers, etc., most of which would be explored in a proper hyperparameter
search in the non-private setting. Our work fits into the latter line: we show that novel generative
models introduced for privacy can be outperformed by GANs trained with well-tuned DPSGD.

Tabular data. Our investigation focused on image datasets, while many important applications of
private data generation involve tabular data. While Tao et al. (2021) find that private GAN-based
approaches fail to preserve even basic statistics in these settings, we believe that our techniques may
yield similar improvements.

7 CONCLUSION

Our most important contribution is to show that private GANs have been underrated by the research
community, and can achieve state-of-the-art results with careful tuning. We hope and anticipate this
will inspire the community to revisit private GANs, and quickly improve upon our results.
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A GENERATED SAMPLES

We provide a few non-cherrypicked samples for MNIST and FashionMNIST at ε = 10 and ε = 1,
as well as 32× 32 CelebA-Gender at ε = 10.

Figure 7: Some non-cherrypicked MNIST samples from our method, ε = 10.

Figure 8: Some non-cherrypicked FashionMNIST samples from our method, ε = 10.

Figure 9: Some non-cherrypicked MNIST samples from our method, ε = 1.

B IMPLEMENTATION DETAILS

B.1 MNIST AND FASHIONMNIST TRAINING RECIPE

For MNIST and FashionMNIST, we begin from an open source PyTorch implementation of DC-
GAN (Radford et al., 2016) (available at this link) that performs well non-privately, and copy their
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Figure 10: Some non-cherrypicked FashionMNIST samples from our method, ε = 1.

Figure 11: Some non-cherrypicked CelebA samples from our method, ε = 10.

training recipe. This includes: batch size B = 128, the Adam optimizer (Kingma & Ba, 2015)
with parameters (α = 0.0002, β1 = 0.5, β2 = 0.999) for both G and D, the non-saturating GAN
loss (Goodfellow et al., 2014), and a 5-layer fully convolutional architecture with width parameter
d = 128.

To adapt it to our purposes, we make three architectural modifications: in both G and D we (1) re-
move all BatchNorm layers (which are not compatible with DPSGD); (2) add label embedding layers
to enable labelled generation; and (3) adjust convolutional/transpose convolutional stride lengths and
kernel sizes as well as remove the last layer, in order to process 1× 28× 28 images without having
to resize. Finally, we remove their custom weight initialization, opting for PyTorch defaults.

Our baseline non-private GANs are trained for 45000 steps. We train our non-private GANs with
poisson sampling as well: for each step of discriminator training, we sample real examples by
including each element of our dataset independently with probability B/n, where n is the size of
our dataset. We then add B fake examples sampled from G to form our fake/real combined batch.

B.2 LARGE BATCH SIZE HYPERPARAMETER SEARCH

We scale up batch sizes, considering B ∈ {64, 128, 512, 2048}, and search for the optimal noise
scale σ and nD. For B = 128 targeting ε = 10, we search over three noise scales, Σε=10

B=128 =
{0.6, 1.0, 1.4}. We choose candidate noise scales for other batch sizes as follows: when considering
a batch size 128k, we search over Σε=10

B=128k := {
√
k · σ : σ ∈ Σε=10

B=128}. We also target the high
privacy (ε = 1) regime. For ε = 1, we multiply all noise scales by 5, Σε=1

B = {5σ : σ ∈ Σε=10
B }.

We search over a grid nD ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500}. Due to compute limitations, we
omit some values that we are confident will fail (e.g., trying nD = 1 when mode collapse occurs for
nD = 5).
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C ADDITIONAL DISCUSSION

GANhacks. Guidance in the non-private setting (tip 14 of Chintala et al. (2016)) prescribes to
train the discriminator for more steps in the presence of noise (a regularization approach used in
non-private GANs). This is the case for DP, and is our core strategy that yields the most significant
gains in utility. We were not aware of this tip when we discovered this phenomenon, but it serves as
validation of our finding. While Chintala et al. (2016) provides little elaboration, looking at further
explorations of this principle in the non-private setting may offer guidance for improving DPGANs.
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