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Abstract

Identifying underlying user goals and intents001
has been recognized as valuable in various set-002
tings, such as personalized agents, improved003
search responses, advertising, user analytics004
and more. In this paper we propose leverag-005
ing an additional signal for identifying user in-006
tents, namely by observing users’ interactions007
within UI environments. To that end, we in-008
troduce the task of goal identification from009
observed UI trajectories, aiming to infer the010
user’s intended task based on their UI interac-011
tions. We propose a novel evaluation metric to012
assess whether two task descriptions are para-013
phrases within a specific UI environment. By014
Leveraging the inverse relation with the UI au-015
tomation task, we utilized Android and web016
datasets for our experiments. Using our met-017
ric and these datasets, we conducted experi-018
ments comparing the performance of humans019
and state-of-the-art models, specifically GPT-4020
and Gemini-1.5 Pro. Our results demonstrate021
that both Gemini and GPT underperform com-022
pared to humans, highlighting significant room023
for improvement.024

1 Introduction025

Autonomous agents that interact with GUIs to com-026

plete tasks for users have drawn increasing interest027

(Hong et al., 2023; Gur et al., 2023; Yang et al.,028

2023b). These agents interpret user-provided in-029

structions and iteratively interact with GUIs to com-030

plete the desired task. In this work, we propose em-031

powering agents with the ability to identify the un-032

derlying goals of users from their observed activity033

within the GUI environment. Such understanding034

has the potential to significantly increase agents’035

utility for users, while providing more personalized036

and effective assistance (Li et al., 2024).037

Consider the scenario in Figure 1 where a user038

books flight tickets for a vacation. An ideal agent039

would observe these actions, understand the un-040

derlying user goal and then proactively suggest041

Figure 1: An example of a user performing a flight
booking task. The agent first observes the UI interac-
tions, comprehends the task’s essence, and then offers
help with related tasks, like booking a hotel and block-
ing calendar dates. We focus on the first part, compre-
hending the task by observing the UI interactions.

booking a hotel for the same dates, and make the 042

dates visible in the calendar. 043

Our work extends a long line of research on 044

recognizing user goals from their observed be- 045

haviour, including intent, activity and plan recogni- 046

tion. However, most prior work addressed settings 047

in which the input consists of natural language user 048

utterances, like search queries, dialog utterances or 049

social media posts, while the task was perceived as 050

structured classification, selecting a category label 051

from a predefined list. Our work, to the best of our 052

knowledge, is the first to identify user goals from 053

UI interactions, while providing a natural language 054

description of the user goal as output. We refer to 055

Appendix A for an extensive overview. 056

In this paper, we first define the task of gener- 057

ating a natural language description of underlying 058

user goals from observed UI trajectories, that is, 059

from multi-modal (text and screen image) traces 060

of user-system interactions. A challenging aspect 061

of the task is its inherent ambiguity, since multiple 062
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user goals can often lead to the same UI activity.063

Second, we observe that our task can be framed064

as the inverse of the known UI automation task,065

where an agent needs to perform a sequence of066

UI actions given a natural language description of067

the user’s goal (Li et al., 2023; Wen et al., 2023).068

We further introduce manual and automatic evalua-069

tion protocols, assessing whether the predicted and070

gold task descriptions are paraphrases within the071

given UI context. Subsequently, we conducted ex-072

periments over both web and Android UI sessions,073

leveraging existing UI automation datasets while074

swapping the input and output roles. Over these075

data, we compared and analyzed the performance076

of humans and state-of-the-art multi-modal models,077

showing that there is substantial room for modeling078

improvements in future work.079

Overall, we offer the following contributions:080

(1) introducing and formalizing the task of goal081

identification from UI trajectories; (2) suggesting082

how existing datasets for UI automation can be083

leveraged for our task, viewing one task as the084

“reversed” of the other; (3) introducing manual and085

automatic evaluation methodologies; (4) evaluating086

both humans and model performances. We propose087

that these contributions would trigger research on088

this timely challenge.089

2 Task Definition090

Given an observed UI trajectory (see below) per-091

formed by a user with the intention to complete a092

certain task, our goal is to recover the user’s origi-093

nal intent from the observable trajectory. As men-094

tioned in § 1, this setting is effectively the inverse095

problem of the known UI Automation task. We096

therefore adopt their input and output definitions,097

swapping their roles, which enables the use of UI098

automation datasets for our task as well.099

Accordingly, our input is a UI trajectory — a100

sequence of individual interaction steps between101

the user and the system along the session. Each102

step consists of a snapshot of the UI content at that103

moment, along with the corresponding action the104

user took at that step (see Appendix B for the spe-105

cific trajectory formats). From this trajectory, our106

goal is to generate a natural language description107

that accurately captures the user’s intended task.108

Within the scope of this paper, we address the core109

setting of the intent identification task and there-110

fore assume that the observed UI trajectory indeed111

successfully fulfills the underlying user intent.112

The intent identification task, similar to other 113

text generation tasks like summarization where 114

multiple valid outputs can exist, is inherently am- 115

biguous, mostly because the same trajectory may 116

fulfill multiple intents, often due to varying speci- 117

ficity levels of the original user intent (as captured 118

in the dataset). For example, when observing a 119

Sushi restaurant booking, the user might have asked 120

for that specific Sushi place, or more broadly for 121

some restaurant in that area, or of that cuisine type. 122

When a model identifies an intent from the given 123

trajectory, we expect it to predict the most likely 124

one, as reflected in the dataset distribution. 125

3 Evaluation Methodology 126

This section outlines our evaluation methodology. 127

Given an input UI trajectory and a corresponding 128

gold task description, we assess whether a pre- 129

dicted task description matches the gold reference. 130

We start with necessary definitions (Section 3.1), 131

followed by a human and automatic evaluation pro- 132

tocols (Sections 3.2 and 3.3). 133

3.1 Definitions 134

Task Fulfillment by a Trajectory As men- 135

tioned in § 2, we assume an observed UI trajec- 136

tory fulfills the underlying user’s intended tasks. 137

Therefore, a predicted task description not fulfilled 138

by the input trajectory is erroneous and does not 139

match the gold task description. 140

Inspired by the taxonomy proposed by Zhou et al. 141

(2023), we differentiate between fulfillment for 142

information-seeking intents and transactional in- 143

tents (e.g. purchasing an item or changing settings). 144

For the latter, fulfillment is achieved upon success- 145

fully completing the specific requirement outlined 146

in the task. For information-seeking intents, fulfill- 147

ment is achieved when the trajectory provides the 148

necessary information sought in the user intent. We 149

note that a fulfilling trajectory may provide some 150

extra information beyond the intent, if such addi- 151

tional information is inherently bundled in the UI 152

environment together with the sought information. 153

Satisfaction Relation between Tasks We next 154

aim to specify a matching criterion between two 155

task descriptions, specifically a predicted one and 156

the corresponding gold-reference. Given two task 157

descriptions A and B and a UI environment, we say 158

that A satisfies B in that environment if every rea- 159

sonable trajectory that fulfills A would also fulfill 160

B. In essence, this means that completing task A 161
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necessarily results in completing task B, making B162

a more general task than A in that UI environment.163

For instance, the task “Purchase the earliest train164

ticket to Edinburgh” satisfies the task “Purchase a165

train ticket to Edinburgh” but not vice versa.166

Building on these definitions, we consider a pre-167

dicted task description to successfully match the168

gold description if the two mutually satisfy each169

other, and partial match when only one satisfies170

the other. Essentially, matching tasks can be con-171

sidered as paraphrases of the same intent within172

the context of the UI environment. For instance,173

the tasks “Find a large dining table” and “Find a174

dining table for 10-12 people” match each other175

if the UI environment considers 10-12 people as176

large. We highlight the relation between match and177

ambiguous trajectory, which fulfills multiple task178

descriptions that do not match each other.179

3.2 Human Evaluation Protocol180

As with many text generation tasks, human evalua-181

tion is essential due to the limited reliability of auto-182

matic evaluation metrics. In our case, the annotator183

observes the gold and predicted task descriptions,184

with the corresponding trajectory, and assesses (1)185

whether the trajectory fulfills the predicted task,186

and (2) whether each of the predicted and gold task187

descriptions satisfies the other. Additionally, anno-188

tators validated the given data instance, excluding189

from the evaluation noisy instances in the original190

datasets (details in Appendix C).191

To assess the quality of our proposed metric, we192

randomly sampled 50 instances from each of our193

datasets (see § 4.1) and generated task descriptions194

using our two baseline models (see § 4.2). We then195

measured the pairwise inter-annotator agreement196

among three of the authors, resulting in an aver-197

age Cohen’s Kappa of 0.79 and 0.77 for fulfillment198

and satisfaction judgments, respectively, in the web199

dataset, and 0.91 and 0.86 in the Android dataset.200

These agreement levels are considered high accord-201

ing to Kappa values, which justified our decision202

to manually evaluate each baseline model in our203

experiments using a single annotator.204

3.3 Automatic Evaluation Metric205

We propose utilizing a Large Multimodal Model206

(LMM) as an automatic evaluator for the satisfac-207

tion criteria. Recent advancements in LMMs, such208

as those demonstrated in (He et al., 2024) and (Pan209

et al., 2024), have shown promising results in em-210

ploying GPT-4 (Achiam et al., 2023) to assess task211

completion by autonomous agents. Building on 212

this, we leverage the latest GPT-4o model as the 213

automatic evaluator, to determine whether two task 214

descriptions are mutually satisfied in the context of 215

the trajectory (prompt details are in Appendix E). 216

Measuring agreement with our human evaluation 217

yielded a Kappa value of 0.48 (moderate agree- 218

ment), suggesting a potential utility of model-based 219

automatic evaluation for development cycles while 220

highlighting the need for manual evaluation. 221

4 Datasets and Baseline Models 222

4.1 Evaluated Datasets 223

Given that our task is the inverse of UI automation 224

task, leveraging the datasets created for UI automa- 225

tion is a natural choice. In these datasets, humans 226

interact with a UI to complete a given task. 227

For our experiments, we explore two UI environ- 228

ments: web and Android. We utilize the Mind2Web 229

dataset (Deng et al., 2023) for the web environment, 230

as it is the most widely used benchmark for au- 231

tonomous web agents. The dataset was created by 232

curating diverse tasks across popular websites, with 233

annotators performing a series of actions to com- 234

plete the goal. For Android, we used the prominent 235

Android in the Wild (AitW) (Rawles et al., 2023) 236

dataset, while focusing on its quality-filtered sub- 237

set Android in the Zoo (AitZ) (Zhang et al., 2024) 238

(details in Appendix B). 239

4.2 Models 240

Given the multimodal nature of UI trajectories, our 241

models must be adept at interpreting both text and 242

images. We selected two state-of-the-art LMMs, 243

Gemini 1.5 Pro (Reid et al., 2024) and GPT-4. 244

These models are at the forefront of handling com- 245

bined text and image inputs and offer a sufficiently 246

large context window for our experiments. 247

In our experiments, the model was guided 248

through a Chain-of-Thought (Wei et al., 2022) pro- 249

Dataset Non Partial Match (↑)
Match Match

Mind2Web H vs. G 0.07 0.13 0.80
H1 vs. H2 0.09 0.10 0.81

AitZ H vs. G 0.02 0.22 0.76
H1 vs. H2 0.02 0.04 0.94

Table 1: Manual evaluation of human generated task
descriptions, at the different levels of match criteria
(determined by the satisfaction relation) between anno-
tators (Hi) and gold task descriptions (G), as well as
among annotators. (H) represents average scores.
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Manual Eval Automatic Eval
Dataset Model Fulfillment Non Match Partial Match Match (↑) Non Match Partial Match Match (↑)

Mind2Web GPT-4 0.86 0.14 0.42 0.44 0.18 0.40 0.42
Gemini-1.5 0.87 0.20 0.22 0.58 0.18 0.28 0.54

AitZ GPT-4 0.78 0.22 0.19 0.59 0.32 0.34 0.34
Gemini-1.5 0.88 0.17 0.26 0.57 0.37 0.27 0.36

Table 2: Manual and automatic evaluation scores of fulfillment relation and the different levels of match criteria
(determined by the satisfaction relation), between model predictions and gold task descriptions.

cess, to analyze the trajectory in a step-by-step250

manner (prompt in Appendix E).251

In web, inspired by SeeAct (Zheng et al., 2024)252

we drew a red bounding box around the element253

that the user interacted with to guide the model’s at-254

tention, as well as to break ambiguity where textual255

action descriptions were not sufficient. To further256

focus models, we also truncated lengthy web im-257

ages based on the bounding box position. (details258

in Appendix C). For Android, no special modifi-259

cations needed, actions are overlaid on the screen-260

shots, and the screenshots are naturally smaller.261

5 Experiments262

5.1 Human Performance Evaluation263

To asses task difficulty and establish a baseline for264

models, two NLP practitioners, unfamiliar with the265

datasets, independently composed 50 task descrip-266

tions from Mind2Web, and 50 from AitZ. An an-267

notator then evaluated1 them as explained in § 3.2.268

The results, summarized in Table 1, reveal more269

matches between the human annotators and the270

gold task descriptions in Mind2Web compared271

to AitZ. Upon analysis of the disagreements, we272

found that the gold descriptions in Android were of-273

ten more specific than those provided by human an-274

notators. In most cases, the gold tasks were already275

fulfilled by the trajectory, resulting in no clear in-276

teractions that indicate the user goal. For example,277

if the task was “Turn WiFi on” and the WiFi was278

already on, the annotators inferred a more general279

task, such as “Show WiFi settings”. Further anal-280

ysis of non-matching records across both datasets281

revealed that ambiguous trajectories caused human282

disagreements. Detailed analysis in Appendix D.283

5.2 Model Performance Evaluation284

Model evaluation included manual assessment of285

100 predictions from each dataset and automatic286

1During the evaluation it was observed that human tasks
were inherently fulfilled by the trajectory.

evaluation using the entire test sets: 1,013 from 287

Mind2Web and 506 from AitZ (see Appendix C). 288

The results, outlined in Table 2, reveal that Gem- 289

ini outperforms GPT on the Mind2Web dataset, 290

achieving higher match scores but still falling short 291

of humans. In AitZ, both models perform com- 292

parably. Gemini tends to be more specific and 293

detailed than the gold references, while GPT often 294

generates more general, abstract goals. Both mod- 295

els, in certain instances, misidentified the actual 296

user intent (e.g. “Watch top rated movie trailer” 297

vs. “Watch The Dark Knight trailer”) and exhibit 298

limitations in visual screen understanding, leading 299

to missing details, incorporating irrelevant informa- 300

tion and hallucinations of non-existent information. 301

Detailed discussion in Appendix D. 302

These results underscore the complexity of ac- 303

curately capturing user intent. Our experiments 304

also concluded few-shot learning. However, in our 305

setting, this is challenging due to multiple images, 306

textual inputs and the thought process within exam- 307

ple. Adding a single example deteriorated results, 308

likely because the large context size and the differ- 309

ence between the exemplar and the test trajectory. 310

6 Conclusion and Future Work 311

In this paper, we introduced the novel task of identi- 312

fying user goals from UI trajectories and proposed 313

a reliable evaluation methodology. Our experi- 314

ments on Android and web datasets reveal a sig- 315

nificant gap between humans and state-of-the-art 316

multi-modal models, which is analyzed in detail. 317

Future work may include fine-tuning experi- 318

ments and enhancing visual understanding for UI 319

environments. We propose testing our task by eval- 320

uating its utility on downstream tasks like agent 321

personalization and suggestions. Additionally, ex- 322

panding the scope to other GUIs like iOS and Win- 323

dows would broaden the impact of our findings. 324
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Limitations325

Our study is subject to several limitations due to326

the nature of the datasets used. First, both datasets327

primarily include English-language websites ac-328

cessed in the U.S., thereby limiting the study to329

English-language interactions only. Second, in real-330

world scenarios, we believe that (1) user trajecto-331

ries may be interleaved between multiple tasks as332

users adjust their objectives in real time or are in-333

terrupted by other tasks, (2) users might have more334

ambiguous goals that evolve during their interac-335

tion with the user interface and (3) users might be336

less proficient with computers or phones, leading337

to noisier trajectories that are more challenging to338

identify and interpret intent from. Moreover, in the339

Mind2Web dataset, all tasks were limited to inter-340

actions within the same website, not encompassing341

multi-website tasks. This constraint may not fully342

represent the complexity of real-world web usage.343

Lastly, this study focuses solely on Android and344

web environments. These environments might ex-345

hibit different task distributions compared to other346

user interface environments such as iOS and Win-347

dows, potentially limiting our findings for Android348

and web environments.349

Ethical Considerations350

The development of autonomous agents, while351

holding great potential for innovation, raises impor-352

tant ethical considerations. Our research focuses on353

understanding user intent from recorded UI trajec-354

tories, and it is crucial to acknowledge the potential355

privacy implications of tracking user activity. En-356

suring the security and protection of this sensitive357

data is of the utmost importance. Employing tech-358

niques like on-device processing, anonymization,359

or other privacy-preserving methods can help miti-360

gate risks and ensure user data remains protected. It361

is essential for researchers and developers to proac-362

tively address these concerns to foster trust and363

responsible innovation in the field of autonomous364

agents.365
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Intent Recognition Intent recognition, also re-533

ferred to as intent classification, is a well-534

established field focused on identifying user inten-535

tions based on specific inputs. Traditionally, most536

research in this domain has concentrated on textual537

inputs, such as individual messages or utterances,538

which are then categorized into predefined intent539

classes. For instance, studies like (Schuurmans and540

Frasincar, 2019; Kuchlous and Kadaba, 2020; Lar-541

son and Leach, 2022) have worked on improving542

intent classification within dialogue systems across543

various domains, focusing on the classification of544

short texts or single utterances into predetermined545

intent categories (e.g. “find a train from Barcelona546

to Madrid” would be classified into a system in-547

tent called ”find_train”). Others, classified social548

media posts to determine whether they express an549

intention to make a purchase (Gupta et al., 2014;550

Haque et al., 2019). To enhance understanding of551

user queries and infer its underlying intent, some552

works leverage external knowledge sources to get553

better results (Hu et al., 2009).554

In addition to text-based inputs, multimodal555

methods have been developed to incorporate var-556

ious types of inputs. For example, (Zhang et al.,557

2021) and (Gonzaga et al., 2021) investigate the558

use of both images and text: the former analyzes559

social news content to identify marketing intents560

and to classify intent topics, while the latter com-561

bines image and textual data to classify social me-562

dia posts, aiming to identify the writers’ intent such563

as provocative, informative, promotive and more.564

Zhang et al. (2022) introduces a multimodal dataset565

for intent recognition in TV series, where inputs566

include visual, auditory, and textual data, while the567

outputs are classified into one of 25 possible intent568

categories.569

Activity Recognition Activity recognition, as570

defined by Sukthankar et al. (2014) and closely571

related to intent recognition, involves identifying572

specific human activities based on a series of ob-573

servations, often through sensor data. While intent574

recognition focuses on understanding user inten-575

tions, activity recognition mostly concerned with576

classifying physical actions. Typically, systems in577

this domain are developed to classify these activi-578

ties using sensory inputs. Khan et al. (2022) uses a579

neural network trained on 2D skeletal data captured580

by a motion sensor to classify human poses; Ijaz581

et al. (2022) integrated accelerometer signals along582

with skeletal data to recognize and categorize nurse583

activities into 12 distinct types. A prominent study 584

(Kwapisz et al., 2011) developed a supervised learn- 585

ing algorithm that uses accelerometer signal from 586

Android smartphones to classify physical activities 587

like walking, jogging, sitting, and standing. More- 588

over, research such as (Liao et al., 2005) utilizes 589

GPS traces to classify human activity and label 590

significant locations, employing relational Markov 591

networks to achieve this. 592

Plan Recognition In a plan recognition problem, 593

a system is given a series of actions performed by 594

an agent and is expected to infer the overall plan 595

or goal which explains those actions (Kautz et al., 596

1991). The distinction between activity recogni- 597

tion and plan recognition is the difference between 598

recognizing a single activity and recognizing the 599

relationships between a set of such activities that 600

result in a complete plan or goal. In this field, 601

foundational works like (Charniak and Goldman, 602

1993; Goldman et al., 2013) rely on structured in- 603

puts and a plan library –— a collection of possible 604

plans and their associated goals — to construct 605

probabilistic models that infer the plan from ob- 606

served actions. Alternative approaches, such as 607

in (Hong, 2001), develop algorithms that do not 608

depend on plan libraries; instead, they utilizing 609

in-domain knowledge and applying this to UNIX 610

system commands to understand broader user goal. 611

A hybrid approach is demonstrated (Granada et al., 612

2017), where the authors combine CNN models to 613

detect human activities from a video stream of meal 614

preparation and apply symbolic reasoning with a 615

plan library to recognize the overall plan (e.g., ac- 616

tions like "breaking eggs" and "mixing ingredients" 617

might be recognized as part of a plan to create an 618

omelet). 619

B Datasets Overview 620

Web We aim to give a brief overview of how 621

Mind2Web was collected, and its format in more 622

depth. The data collection process involved select- 623

ing numerous popular websites across five top-level 624

domains. Annotators, guided by seed tasks from 625

GPT, proposed diverse tasks for each website. They 626

demonstrated and recorded how to complete these 627

tasks, resulting in a trajectory of actions and screen- 628

shots. Each action is defined by a pair consisting 629

of a Target Element and an Operation. The Target 630

Element is an interactable element on the current 631

web page, such as buttons, input fields, or drop 632

down menus. The Operation refers to the specific 633
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Figure 2: An instance from Mind2Web, representing a full trajectory accomplishing the task description above.

Figure 3: An instance from AitW, representing a full trajectory accomplishing the task "Set an alarm". The blue
plus sign indicates the area on the screen where the tap occured.

action to be executed on the Target Element, with634

Mind2Web supporting three primary operations:635

Click (including actions like clicking, hovering,636

and pressing Enter), Type (which involves enter-637

ing text into input fields and requires an additional638

value for the text to be typed), and Select Option639

(which involves selecting an option from a drop640

down menu or similar element and also requires an641

additional value for the option to be selected). No-642

tably, these actions were automatically produced643

during the time users were recorded completing644

the task, eliminating the need for additional man-645

ual labor. Figure 2 demonstrates a single instance646

of the data, where textual action descriptions are647

presented below the corresponding screenshot.648

Android The Android in the Wild (AitW) dataset649

stands out due to its extensive variety of tasks,650

covering 4 domains: Google-Apps, Install, Web-651

Shopping, and General, as well as a single-step652

domain excluded from this paper’s analysis. The 653

dataset consists of a substantial collection of high- 654

level instructions, trajectories of varying lengths, 655

and a notable variety of apps and websites. The 656

Android in the Zoo (AitZ) dataset was sampled 657

from AitW to reduce tasks redundancy and to filter 658

erroneous data points, resulting in more unique and 659

higher-quality task descriptions. 660

The high-level goal instructions in AitW were 661

sourced from various sources, including humans 662

(both crowd-sourced and the authors themselves), 663

LLM-generated prompts, and technical documen- 664

tation such as PixelHelp (Li et al., 2020). The 665

creation process involved human annotators per- 666

forming tasks on Android emulators, with their 667

gestures being recorded. 668

The episodes were recorded on mobile devices 669

running four different versions of Android. Each 670

episode contains natural language instructions and 671

8



observation-action pairs. The observations are672

screenshots, while the actions are one of three673

types: tap, drag, or typing. Gesture actions are674

represented as taps and drags at specific <x,y> co-675

ordinates on the screen.676

In our utilization of this data, we presented the677

models with a series of screenshots with the actions678

drawn on them, as shown in Figure 3.679

C Experiments680

Models Configuration For task description pre-681

diction, we used the most recent version of Gemini,682

namely Gemini 1.5 Pro, updated in Vertex AI2 as of683

May 2024, with a sampling temperature of 1.0, and684

GPT-4-Turbo3 (version gpt-4-turbo-2024-04-09)685

with a sampling temperature of 0.6. For automatic686

evaluation, we utilized the latest release from the687

GPT family, known as GPT-4o.688

Data For the manual evaluation, we randomly689

sampled over 100 data points from the both An-690

droid and Web datasets. We then prompted models691

to predict the user goal. During the evaluation, we692

conducted a thorough verification process to ensure693

that both the gold references and the trajectories694

were of high quality.695

We rejected instances where the trajectory did696

not fulfill the gold reference, which occurred more697

frequently for Android. Additionally, for web-698

based tasks, we excluded cases where the screen-699

shot was not rendered properly, making it difficult700

to interpret the user’s action, as well as instances701

where the bounding box was empty.702

As a result of this verification process, 17% of703

the Android examples and about 5% of the web ex-704

amples were rejected. Ultimately, as a result of this705

process, the samples that were manually evaluated706

in Sections 3.2 and 5 were of high quality and free707

from such issues. For the automatic evaluation, as708

described in 5, we utilized the entire test sets from709

both datasets.710

Web We encountered a technical challenge with711

the Mind2Web data due to the nature of its im-712

age captures. Unlike standard viewport captures,713

which represent the visible area of a web page on714

a typical screen, the images in Mind2Web had a715

median height of 4200 pixels, significantly exceed-716

ing typical web page dimensions, with 20 percent717

2https://cloud.google.com/vertex-ai
3https://platform.openai.com/docs/models/gpt-4-turbo-

and-gpt-4

of the images exceeding 7000 pixels in height. Ini- 718

tial tests showed that these oversized images intro- 719

duced noise and negatively affected model perfor- 720

mance. 721

To address this, we implemented a heuristic trun- 722

cation method, reducing image height while en- 723

suring the interaction element remained visible 724

within the truncated image. This was achieved 725

by utilizing the bounding box metadata provided 726

by Mind2Web. Similar to the approach taken by 727

(Zheng et al., 2024) and introduced by (Yang et al., 728

2023a), we drew the red bounding box around the 729

interaction element to guide the model’s attention. 730

Additionally, adding the bounding box helped re- 731

solve ambiguities at times that the textual action 732

description is not sufficient. For example, some- 733

times action descriptions are simply empty, and 734

does not contain any description about the element 735

itself. While in other cases, action descriptions 736

exist, but the textual description matches multiple 737

element descriptions and thus results in ambiguity 738

that is only resolved by drawing the bounding box. 739

For example, a button labeled "Add to Cart" is typ- 740

ically associated with each item in a web shopping 741

list. Without the bounding box, it is impossible to 742

determine which specific button was clicked. 743

Android In our efforts to replicate experiments 744

from web, we encountered challenges due to dif- 745

ferences in data format. Unlike the web, AitW 746

does not provide textual information associated 747

with clicked elements. Instead, it offers x,y coor- 748

dinates representing the center of the tapped area. 749

This distinction in data structure made it impracti- 750

cal to conduct experiments involving both actions 751

written alongside screenshots. 752

To address these challenges, we utilized the 753

dataset’s utilities to overlay actions on top of the 754

screenshots, as well as bounding box annotations 755

for post-process detected UI elements. However, 756

we found that the added element annotation marks 757

often confused the model added noise and criti- 758

cal information on the screen. As a result, we 759

proceeded with experiments using a sequence of 760

screenshots that had the actions (tap, drag, and 761

type) drawn over them. AitW’s provided visualiza- 762

tion tools to draw the actions, also included labels 763

of special actions such as the back button, home 764

button, and enter. As well as a special "status" 765

action: either Task Complete or Task Impossible. 766

However, we found that the label Task Complete 767

often confused the models. Despite our efforts to 768
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make the models ignore it, we eventually aban-769

doned this specific annotation as it is a technicality770

of data representation.771

D Error Analysis772

Figure 4: An illustration in which the user chose a spe-
cific car primarily for its 12-inch feature, but since it
was also the cheapest, annotators incorrectly assumed
cost was the deciding factor.

In this section, we aim to provide a more detailed773

error analysis with respect to model and humans.774

Web In our error analysis of 30 mismatched task775

descriptions, distinct patterns emerged between776

GPT and Gemini models. GPT frequently wrote777

tasks as navigational procedures, with 12% of gen-778

erated tasks starting with “Navigate” (out of the779

1,000 predicted tasks). Additionally, over 20% of780

the manually inspected errors involved misinter-781

preting the task’s intent, often producing broad782

descriptions lacking crucial details. Conversely,783

Gemini’s errors were typically more fine-grained,784

often capturing the task’s essence but struggling785

with specific details like dates, numbers, or loca-786

tions.787

Both models also occasionally produced task de-788

scriptions that felt artificial, incorporating informa-789

tion a user would be unlikely to know beforehand790

due to the models’ access to the full user trajectory.791

For example, a task like “Read recent news about792

Apple stock” might be predicted as “Read the arti-793

cle ’X’ about Apple stock” if the model observed794

the user clicking on a specific article ’X’.795

With respect to human annotators, we found that796

most disagreements between human-generated task797

descriptions and gold task descriptions resulted798

from humans making more generalized tasks. This799

happened because they choose the most natural or800

probable constraints if no action provides evidence 801

for a less likely constraint. Sometimes, they don’t 802

write the constraint or any other one if nothing 803

seems probable. Figure 4 demonstrates such a case, 804

the truck picked by the user is the only 12-inch 805

wheel truck but also the cheapest truck among the 806

listed options, as no prior action gave evident to 807

the 12-inch constraint, both human generated task 808

labeled it as “Book the cheapest truck...” while the 809

gold task description was “Book a 12-inch wheel 810

truck...”. Additionally, with respect to task ambi- 811

guity, each trajectory in this experiment resulted in 812

three task descriptions, two from the human annota- 813

tors and one from the gold reference. We calculated 814

the number of trajectories where all task descrip- 815

tions matched each other and those where they did 816

not. We found that 72% of trajectories had a match 817

among all tasks, 24% had a match between two 818

tasks, and the rest had no matching tasks. Although 819

not exhaustive, this highlights that most trajectories 820

in Mind2Web are probably non-ambiguous. 821

Figure 5: Comparison of "Match" proportions between
Gemini 1.5 Pro and GPT-4-Turbo models across the dif-
ferent domains

Android Comparing GPT and Gemini’s perfor- 822

mance on the Android dataset revealed notable vari- 823

ations across different domains. Both models were 824

proficient in the “General” domain, but faced chal- 825

lenges in “Web Shopping” and “Install”. This dis- 826

parity is due to the nature of the “General” dataset, 827

which contains search queries that explicitly re- 828

veal the user’s intent. “Google Apps” tasks overlap 829

with PixelHelp, primarily involving settings con- 830

figuration. Some tasks are ambiguous, such as a 831

button toggle, but the trajectory displays only one 832

option. Additionally, specific tasks request actions 833

that have already been completed, e.g Turn On 834

location history, but the trajectory only shows view- 835

ing the Location History setting page, leading to 836
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confusion for models. Additionally, the models837

faced difficulty comprehending the correct order of838

the sequence of actions that occurred, frequently839

mistaking the final state (on or off).840

On the “Web Shopping” domain, Gemini pro-841

vided excessive details about specific products842

(“Add Razer Kraken X for Console Gaming Head-843

set for PC/PS4/PS5/Xbox/Switch - Black/Blue to844

cart on Best Buy Canada”). GPT often missed the845

main purpose of the task and suggested abstract846

tasks such as: “log into an account” or “Decline847

the offer to protect a purchase with an insurance848

plan on a shopping website”.849

The “Install” domain often presents ambiguous850

tasks in the format “open (install if not installed)”851

which confuses both models. Furthermore, in852

some cases the apps were already pre-installed853

which made it impossible to predict (model pre-854

dicts “open”), providing only partial satisfaction in855

one direction. These results indicate that further856

refinement and training may be needed to improve857

the models’ performance in specific domains.858

For human generated tasks, “General” dataset859

presented minimal challenges for human annota-860

tors. This was attributed to their ability to effort-861

lessly comprehend the user’s intended intent based862

solely on the visible search query. However, anal-863

ogous to the model challenges encountered, am-864

biguous tasks within the “Install” dataset proved865

challenging for humans as well. Conversely, unlike866

models, humans exhibited impeccable performance867

in comprehending the final state of the desired set-868

ting configuration within the Google Apps domain,869

if the original goal was specific and not ambiguous.870

Shopping tasks, on the other hand, posed a distinct871

challenge for humans. They struggled to grasp the872

rationale behind selecting an item when the orig-873

inal task was to choose the cheapest or the first874

result. These findings underscore the multifaceted875

nature of goal task prediction and emphasize the876

significance of addressing specific domains.877

E Instructions and Prompts878
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You will be given an observed UI trajectory (a series of actions within a website or app), along with two
task descriptions, labeled A and B. Your goal is to provide four annotations for each pair of task
descriptions based on the observed trajectory:

1. Is A ful�lled by the trajectory ? (Yes / No)
2. Is B ful�lled by the trajectory ? (Yes / No)
3. Does A satisfy B ? (Yes / No)
4. Does B satisfy A ? (Yes / No)

De�nitions:
● Task ful�llment by Trajectory - Task A ful�lled by a trajectory if the trajectory successfully

completes the requested action, or if the trajectory provides the information sought by the user.
● Satis�es relation between two tasks - Task A satis�es Task B if and only if every reasonable

trajectory that ful�lls A would also ful�ll B. This means completing A necessarily leads to
completing B.

Key Assumptions:
● Pro�cient User - Assume the user is pro�cient with UIs and familiar with the general structure and

functionality of the website/app.
● Fixed UI, Dynamic Content - The website's / app layout, information display, input �elds, default

values, and terminology are �xed. However, the speci�c content (e.g., available products, search
results) can change.

● Terminology - Terms used within the website/app are considered synonymous. For example, if a
clothing site lists both size and garment length in centimeters, these are considered
interchangeable.

Instructions:
● Ignore Semantic Equivalents - Disregard di�erences in wording when A and B are semantically

equivalent, including variations in site terminology as mentioned above.
● Ignore Navigation Details - Disregard navigation instructions in the task descriptions like "open

the se�ings menu to increase the screen brightness by 10%". Also, ignore mentions of the
speci�c website or app name.

● Relative Dates/Times are OK - Dates and times can be relative (e.g., "in 2 hours") if the current
date/time can be inferred from the trajectory. For instance, most sites used for scheduling
meetings in a calendar display the current date.

● Pa�ial Actions - Note when one task description asks for a pa�ial action compared to the other
(e.g., one asks to buy a ticket, the other only to �nd information).

● Speci�c vs. General Instructions - Pay a�ention to cases where one description is very speci�c
(e.g., "Reserve a Chevrolet Colorado truck") and the other is more general (e.g., "Reserve a
truck"). Similarly, an instruction to "search for French chansons and play the �rst one" might be
interpreted as an instruction to play a speci�c song.

Generally, neither description satis�es the other in these cases. We assume the site is �xed but the
content may change, and the user doesn't necessarily know which truck is available or what the �rst song
would be. Therefore, the speci�c instruction doesn't usually satisfy the general instruction (and
vice-versa, of course), as giving those instructions at a di�erent time might yield a di�erent result.
However, use your best judgment if it's reasonable to assume the user knows the speci�c context of the
site, and the di�erence might be just a rephrasing. For example, a user asking to "�nd out when is the next
NBA game" might mean the same as "�nd out when is the Celtics-Heats match", as they know what is the
next game. There is a level of subjectivity here in determining what is
reasonable to assume the user knows, and we expect you to use your best judgment in these cases.

Figure 6: Instructions for human-annotators to conclude if a task is fulfilled by a trajectory, and if two task descrip-
tions satisfying each other. These instructions were the core prompt of the automatic evaluator.
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You will be given a trajectory of UI actions pe�ormed by a user, and your task is as follows:

1. Most likely goal - Write the most likely goal that led the user to pe�orm this trajectory.
2. Notes - We ask you to also write notes, with respect to challenges you faced during the writing,

decisions you made, assumptions you take etc…

General Guidelines:
● Standalone goals - Write standalone goals. Do not write goals that are contextualized by the

website or depend on memory or other personalizations (location etc…). Assume no prior
knowledge of the website's content. Keep in mind that the user’s were not familiar with the content
but were familiar with the purpose of the app / website and its functionality.

● Non-time relative goals - For web write goals that are not relative to time and ensure you write full
dates when possible. For example, write 'Reserve restaurant for 1.6.2024' (Or any other date format
you like) instead of 'Reserve restaurant for next week'. For Android you can use relative time ranges
if you �nd it reasonable.

● Imperative goals - Write imperative goals that give commands or requests, not goals that ask
questions or make inquiries.

● Default values - Use your common sense to judge if a default value should be present in the goal
description or not. Generally, here are few additional points that should provoke your thoughts when
considering a default value:
● Think about the inverse task, i.e you have a goal in mind and only then you pe�orm the task on

the web. Which default values are reasonable that you would have in mind ?
For example, dates when booking something / searching for �ight tickets etc.

● Consider default values that are transferable across similar websites. For example, if you book a
�ight on UNITED and they have a default se�ing related to membership, this might not be
applicable to DELTA airlines.

● Assess the impo�ance of the default value in completing the task without additional assistance.
For instance, many registration forms have a pre-checked checkbox to send noti�cations,
which is not essential to the task, so less likely that the original goal included this default.

● Sta�ing Point - For Android assume all trajectories sta� at the homescreen, for web, it is in the
pa�icular website.

● Avoid mentioning explicit apps unless you �nd it necessary - ‘Check calendar’ and not ‘Check
Google calendar’.

● History - In Android, many trajectories have pre-existed history (from previous sessions) . Be aware
of it, and judge when you need to incorporate this in the goal and when not.

Figure 7: Goal identification annotation task instruction to measure human performance.
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 Input Structure: 
 You will receive a series of screenshots and actions representing a user's interactions on a website / application. Each item 
 contains an action pe�ormed by the user and a screenshot depicting the state of the website before action execution. 
 Below is a more detailed description of the action format structure and screenshot. 

 Mind2Web Section 
 Actions are forma�ed to clearly identify the type of user interaction with web page elements. The format speci�es the 
 element type, a detailed description, and the interaction pe�ormed. This setup allows for precise speci�cation of 
 interactions, pa�icularly noting that TYPE and SELECT actions require additional text values: 

 General Format: [element type] element description (usually the text of the element) -> Operation (TYPE / CLICK / 
 SELECT): action-speci�c details (For TYPE / SELECT only). 
 1. TYPE: Inpu�ing text, requires specifying what text is typed (e.g., [combobox] Depa�ure station, London selected. -> 
 TYPE: Edinburgh). 
 2. CLICK: Activating or selecting an element, no additional text required (e.g., [span] Edinburgh (Waverley) -> CLICK). 
 3. SELECT: Choosing from a dropdown or list, requires specifying the selected option (e.g., [listbox] Hour -> SELECT: 17). 

 Each screenshot shows the website state just before the corresponding action occurs. These screenshots o�en include a 
 RED bounding box highlighting the element of interaction. The screenshot serves as a visual context, showing details not 
 captured by the action description.. 

 AitW Section 
 User actions are indicated by blue symbols within the screenshot, marked by a plus sign (+) for tapping and an arrow for 
 scrolling. 

 Your Task  : 
 Analyze the input sequence to deduce the user's underlying objective that prompted these actions. Utilize the screenshots 
 to gain insights into the user's intentions, focusing on elements highlighted or implicated by the actions. 

 General Guidelines  : 
 1. Imperative Format: Sentences must be structured in the imperative form, directly issuing commands without stating the 
 subject pe�orming the action. 
 2. Action-Oriented: Begin the sentence with the verb that denotes the action to be taken, ensuring that it directly 
 addresses the desired outcome. 
 3. Speci�city and Detailed: Include all pe�inent details necessary to complete the action without overloading the sentence 
 with unnecessary information. 
 4. Clarity and Conciseness: Aim for straigh�orwardness and brevity, avoiding any ambiguity. The instruction should be 
 easily understandable at a glance, making it actionable without requiring fu�her clari�cation. 
 5. Ignore adve�isements, pop-ups, and default dialogs (e.g., "Accept cookies," "Take me to Gmail"). 
 6. Do not specify the app/website or pla�orm. 

 Output Format  : 
 "step-by-step description": "Provide a numbered list where each entry corresponds directly to a speci�c screenshot, 
 detailing the user's actions and the visual context provided by the screenshots.", 
 "concise task": "Summarize the user's overall goal that motivated the sequence of actions based on the step by step 
 description." 

Figure 8: Instruction used to guide GPT and Gemini when predicting a task description given a UI trajectory. We
swap AitW section and Mind2Web according to the input.
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You're given two sentences, A and B, representing user goals on a website or app, and a trajectory for
Task A.

Your Task: Determine if A satis�es B.

De�nitions:

● Ful�llment: A trajectory ful�lls a task if it presents information satisfying the user's query
(even with extra info). For transactional tasks, it must complete the requested operation.

● Satisfaction A satis�es B if EVERY trajectory ful�lling A also ful�lls B. This means completing A
logically leads to completing B.

Analysis Steps:

1. Extract Requirements: List requirements and constraints of A and B in a table, noting if A
satis�es each B requirement. Include action verbs (e.g., "�nd," "book"). If any answer is no, A
doesn't satisfy B.

2. Rigorous Comparison: Is each requirement in B met by A? If A has stricter requirements, it
satis�es B. If A is looser, go to step 3.

3. Counter-Example (Optional): Find a case where requirement A is met while requirement B is
not, considering dynamic content changes like prices and availability. Ignore static content like
structure and checkboxes.

4. Chain of Thought: Clearly explain your reasoning, referencing the requirements. Explain how
each requirement in A is logically ful�lled by B or how a counterexample shows it doesn't.

5. Decision:Write your answer as: [SATISFACTION] YES/NO [/SATISFACTION]

Key Considerations:

● User Goals: Focus on the user's underlying goals, not just literal words.
● Default Values: If a requirement is met by a default value that is present in the website/app

interface, it can be omi�ed from the constraint list.
● Prioritize logical reasoning over assumptions.
● Dynamic vs. Static Content: Consider if content changes o�en (e.g., top movies) or stays the

same (e.g., �ltering by user’s rating). If A needs dynamic content and B static, A doesn't satisfy
B.

● Direction:Only answer if A satis�es B (A -> B), not the reverse.
● Relative vs. Speci�c Times:When comparing relative times, such as "tomorrow," and speci�c

times, such as "April 15th," it is acceptable to disregard the relative times or assume that they
are acceptable.

● Time Ranges and Dates Ma�er: Time ranges (e.g., "tomorrow" vs. "the week of April 15th") are
considered distinct. Explicit di�erent dates are considered distinct.

● Default Values: If A misses default values, but the trajectory has them, consider A satisfying B
with respect to this requirement.

● Use the Trajectory: If A and B are unclear, the trajectory may show they refer to the same
action or process.

● General vs. Speci�c: A speci�c task A can satisfy a more general task B if completing A ful�lls
B's requirements. If A is speci�c and B is general, A might satisfy B, but it depends on whether
all conditions in B are ful�lled by A.

● If A is general and B is speci�c, A does not satisfy B.
● In the context of this task, we will treat the terms "buy," "add to cart," and "check out" as

interchangeable.

Determine whether A satis�es B with the given trajectory. Input:

Figure 9: Model instructions for evaluating Satisfaction relation between two task descriptions (A and B), given a
corresponding trajectory. Includes web/mobile data format instructions and few-shot examples for experimentation
(detailed on the next page).
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Example 1: Stricter A Satis�es Looser B
● A: Purchase a one-way ticket from NYC to LAX on Delta Airlines.
● B: Book a �ight from New York to Los Angeles.

Analysis: A: Purchase �ight, one-way, NYC to LAX, Delta Airlines. B: Book �ight, New York to Los 
Angeles. A's requirements are a subset of B's. Purchasing a one-way �ight from NYC to LAX operated 
by Delta Airlines, will ful�ll B requirements: Booking �ight, NY to LA.  [SATISFACTION] YES 
[/SATISFACTION]

Example 2: Default Values & Satisfaction
● A: Order a pepperoni pizza
● B: Order a large pepperoni pizza
● Trajectory: Website defaults are set to large size when ordering a pizza.

Analysis: A: Order, Pizza, pepperoni. B: Order, Pizza, Pepperoni, Large Size. B has stricter restrictions for 
a Large pizza size, but the trajectory shows the default pizza size is Large. A satis�es B because the 
default size ful�lls the requirement. Any reasonable trajectory executing A, ordering a pizza (not 
requiring se�ing a speci�c pizza size) will satisfy B. [SATISFACTION] YES [/SATISFACTION]

Example 3: Dynamic Content & Non-Satisfaction
● A: Buy the cheapest �ight to London.
● B: Book a �ight to London for under $500.
● Trajectory: Shows the cheapest �ight is currently $450.

Analysis: A: Buy, �ight, cheapest, destination: London. B: Book, �ight, under $500, destination: 
London. Executing A doesn't guarantee satisfying  B, as prices can change. Counter-example: The price 
could rise above $500, ful�lling A but not B.  [SATISFACTION] NO [/SATISFACTION]

Example 4: Website Structure and Satisfaction
● A: Find a 5-star hotel in Rome.
● B: Find a highly-rated hotel in Rome.
● Trajectory: Shows a �lter for star ratings, with 5-stars being the highest option.

Analysis: A: Find, 5-star, a hotel, Rome. B: Find, highly-rated, a hotel, Rome.  Since the website 
structure doesn't allow for higher ratings than 5, A satis�es B. [SATISFACTION] YES [/SATISFACTION]

Example 5: Looser A Fails to Satisfy Speci�c B (Counter-Example)
● A: Book a room in a hotel with a pool in Paris.
● B: Reserve a room at the Hotel Ritz in Paris.
● Trajectory: User is booking, Ritz hotel in Paris. Trajectory shows Ritz hotel has a pool.

Analysis:  A: book, room, any hotel, has a pool, Paris. B: Reserve, room, Hotel Ritz, Paris.
A's requirement for a hotel with a pool is looser than B's requirement for Hotel Ritz. Counter-example: 
The user could choose a di�erent hotel in Paris that has a pool, still ful�lling A but it won’t ful�ll B. 
[SATISFACTION] NO [/SATISFACTION]

Example 6: Stricter verb in A Satis�es Looser verb in B
● A: Sign-up for a Fastbreak program.
● B: Find information about the Fastbreak program.

Analysis:  A: Sign-up, Fastbreak program. B: Find information, Fastbreak program. A's requirements 
inherently include B's. Signing-up for something necessitates �nding information beforehand about this 
thing. [SATISFACTION] YES [/SATISFACTION]

Example 7: Looser verb in A Fails to Satisfy a Speci�c verb in B (Counter-Example)
● A: Find information about the Fastbreak program
● B: Sign-up for a Fastbreak program.

Analysis:  A: Find information, Fastbreak program. B: Sign-up, Fastbreak program. A is less strict than B. 
A counterexample is simply �nding the necessary information without enrolling in the program. 
[SATISFACTION] NO [/SATISFACTION]

Figure 10: Few-Shot exemplars demonstrating the Satisfaction Relation Prompt (Figure 9). These simplified
examples highlight the nuances of task satisfaction in real-world scenarios.
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