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Abstract

Identifying underlying user goals and intents
has been recognized as valuable in various set-
tings, such as personalized agents, improved
search responses, advertising, user analytics
and more. In this paper we propose leverag-
ing an additional signal for identifying user in-
tents, namely by observing users’ interactions
within UI environments. To that end, we in-
troduce the task of goal identification from
observed Ul trajectories, aiming to infer the
user’s intended task based on their UI interac-
tions. We propose a novel evaluation metric to
assess whether two task descriptions are para-
phrases within a specific UI environment. By
Leveraging the inverse relation with the UI au-
tomation task, we utilized Android and web
datasets for our experiments. Using our met-
ric and these datasets, we conducted experi-
ments comparing the performance of humans
and state-of-the-art models, specifically GPT-4
and Gemini-1.5 Pro. Our results demonstrate
that both Gemini and GPT underperform com-
pared to humans, highlighting significant room
for improvement.

1 Introduction

Autonomous agents that interact with GUIs to com-
plete tasks for users have drawn increasing interest
(Hong et al., 2023; Gur et al., 2023; Yang et al.,
2023b). These agents interpret user-provided in-
structions and iteratively interact with GUIs to com-
plete the desired task. In this work, we propose em-
powering agents with the ability to identify the un-
derlying goals of users from their observed activity
within the GUI environment. Such understanding
has the potential to significantly increase agents’
utility for users, while providing more personalized
and effective assistance (Li et al., 2024).

Consider the scenario in Figure 1 where a user
books flight tickets for a vacation. An ideal agent
would observe these actions, understand the un-
derlying user goal and then proactively suggest

have a vacation
on July. I need to
book a flight to SFO

Traveler

from July 4th to July 9th. Let's assist them by booking a

It appears the user is booking a flight from NYC to SFO
hotel and blocking their calendar on these dates.

Figure 1: An example of a user performing a flight
booking task. The agent first observes the UI interac-
tions, comprehends the task’s essence, and then offers
help with related tasks, like booking a hotel and block-
ing calendar dates. We focus on the first part, compre-
hending the task by observing the Ul interactions.

booking a hotel for the same dates, and make the
dates visible in the calendar.

Our work extends a long line of research on
recognizing user goals from their observed be-
haviour, including intent, activity and plan recogni-
tion. However, most prior work addressed settings
in which the input consists of natural language user
utterances, like search queries, dialog utterances or
social media posts, while the task was perceived as
structured classification, selecting a category label
from a predefined list. Our work, to the best of our
knowledge, is the first to identify user goals from
Ul interactions, while providing a natural language
description of the user goal as output. We refer to
Appendix A for an extensive overview.

In this paper, we first define the task of gener-
ating a natural language description of underlying
user goals from observed Ul trajectories, that is,
from multi-modal (text and screen image) traces
of user-system interactions. A challenging aspect
of the task is its inherent ambiguity, since multiple



user goals can often lead to the same UI activity.
Second, we observe that our task can be framed
as the inverse of the known UI automation task,
where an agent needs to perform a sequence of
Ul actions given a natural language description of
the user’s goal (Li et al., 2023; Wen et al., 2023).
We further introduce manual and automatic evalua-
tion protocols, assessing whether the predicted and
gold task descriptions are paraphrases within the
given Ul context. Subsequently, we conducted ex-
periments over both web and Android UI sessions,
leveraging existing Ul automation datasets while
swapping the input and output roles. Over these
data, we compared and analyzed the performance
of humans and state-of-the-art multi-modal models,
showing that there is substantial room for modeling
improvements in future work.

Overall, we offer the following contributions:
(1) introducing and formalizing the task of goal
identification from UI trajectories; (2) suggesting
how existing datasets for Ul automation can be
leveraged for our task, viewing one task as the
“reversed” of the other; (3) introducing manual and
automatic evaluation methodologies; (4) evaluating
both humans and model performances. We propose
that these contributions would trigger research on
this timely challenge.

2 Task Definition

Given an observed Ul trajectory (see below) per-
formed by a user with the intention to complete a
certain task, our goal is to recover the user’s origi-
nal intent from the observable trajectory. As men-
tioned in § 1, this setting is effectively the inverse
problem of the known Ul Automation task. We
therefore adopt their input and output definitions,
swapping their roles, which enables the use of UI
automation datasets for our task as well.
Accordingly, our input is a Ul trajectory — a
sequence of individual interaction steps between
the user and the system along the session. Each
step consists of a snapshot of the UI content at that
moment, along with the corresponding action the
user took at that step (see Appendix B for the spe-
cific trajectory formats). From this trajectory, our
goal is to generate a natural language description
that accurately captures the user’s intended task.
Within the scope of this paper, we address the core
setting of the intent identification task and there-
fore assume that the observed Ul trajectory indeed
successfully fulfills the underlying user intent.

The intent identification task, similar to other
text generation tasks like summarization where
multiple valid outputs can exist, is inherently am-
biguous, mostly because the same trajectory may
fulfill multiple intents, often due to varying speci-
ficity levels of the original user intent (as captured
in the dataset). For example, when observing a
Sushi restaurant booking, the user might have asked
for that specific Sushi place, or more broadly for
some restaurant in that area, or of that cuisine type.
When a model identifies an intent from the given
trajectory, we expect it to predict the most likely
one, as reflected in the dataset distribution.

3 Evaluation Methodology

This section outlines our evaluation methodology.
Given an input Ul trajectory and a corresponding
gold task description, we assess whether a pre-
dicted task description matches the gold reference.
We start with necessary definitions (Section 3.1),
followed by a human and automatic evaluation pro-
tocols (Sections 3.2 and 3.3).

3.1 Definitions

Task Fulfillment by a Trajectory As men-
tioned in § 2, we assume an observed UI trajec-
tory fulfills the underlying user’s intended tasks.
Therefore, a predicted task description not fulfilled
by the input trajectory is erroneous and does not
match the gold task description.

Inspired by the taxonomy proposed by Zhou et al.
(2023), we differentiate between fulfillment for
information-seeking intents and transactional in-
tents (e.g. purchasing an item or changing settings).
For the latter, fulfillment is achieved upon success-
fully completing the specific requirement outlined
in the task. For information-seeking intents, fulfill-
ment is achieved when the trajectory provides the
necessary information sought in the user intent. We
note that a fulfilling trajectory may provide some
extra information beyond the intent, if such addi-
tional information is inherently bundled in the UI
environment together with the sought information.

Satisfaction Relation between Tasks We next
aim to specify a matching criterion between two
task descriptions, specifically a predicted one and
the corresponding gold-reference. Given two task
descriptions A and B and a Ul environment, we say
that A satisfies B in that environment if every rea-
sonable trajectory that fulfills A would also fulfill
B. In essence, this means that completing task A



necessarily results in completing task B, making B
a more general task than A in that UI environment.
For instance, the task “Purchase the earliest train
ticket to Edinburgh” satisfies the task “Purchase a
train ticket to Edinburgh” but not vice versa.
Building on these definitions, we consider a pre-
dicted task description to successfully match the
gold description if the two mutually satisfy each
other, and partial match when only one satisfies
the other. Essentially, matching tasks can be con-
sidered as paraphrases of the same intent within
the context of the UI environment. For instance,
the tasks “Find a large dining table” and “Find a
dining table for 10-12 people” match each other
if the UI environment considers 10-12 people as
large. We highlight the relation between match and
ambiguous trajectory, which fulfills multiple task
descriptions that do not match each other.

3.2 Human Evaluation Protocol

As with many text generation tasks, human evalua-
tion is essential due to the limited reliability of auto-
matic evaluation metrics. In our case, the annotator
observes the gold and predicted task descriptions,
with the corresponding trajectory, and assesses (1)
whether the trajectory fulfills the predicted task,
and (2) whether each of the predicted and gold task
descriptions satisfies the other. Additionally, anno-
tators validated the given data instance, excluding
from the evaluation noisy instances in the original
datasets (details in Appendix C).

To assess the quality of our proposed metric, we
randomly sampled 50 instances from each of our
datasets (see § 4.1) and generated task descriptions
using our two baseline models (see § 4.2). We then
measured the pairwise inter-annotator agreement
among three of the authors, resulting in an aver-
age Cohen’s Kappa of 0.79 and 0.77 for fulfillment
and satisfaction judgments, respectively, in the web
dataset, and 0.91 and 0.86 in the Android dataset.
These agreement levels are considered high accord-
ing to Kappa values, which justified our decision
to manually evaluate each baseline model in our
experiments using a single annotator.

3.3 Automatic Evaluation Metric

We propose utilizing a Large Multimodal Model
(LMM) as an automatic evaluator for the satisfac-
tion criteria. Recent advancements in LMMs, such
as those demonstrated in (He et al., 2024) and (Pan
et al., 2024), have shown promising results in em-
ploying GPT-4 (Achiam et al., 2023) to assess task

completion by autonomous agents. Building on
this, we leverage the latest GPT-40 model as the
automatic evaluator, to determine whether two task
descriptions are mutually satisfied in the context of
the trajectory (prompt details are in Appendix E).
Measuring agreement with our human evaluation
yielded a Kappa value of 0.48 (moderate agree-
ment), suggesting a potential utility of model-based
automatic evaluation for development cycles while
highlighting the need for manual evaluation.

4 Datasets and Baseline Models
4.1 Evaluated Datasets

Given that our task is the inverse of UI automation
task, leveraging the datasets created for Ul automa-
tion is a natural choice. In these datasets, humans
interact with a Ul to complete a given task.

For our experiments, we explore two Ul environ-
ments: web and Android. We utilize the Mind2Web
dataset (Deng et al., 2023) for the web environment,
as it is the most widely used benchmark for au-
tonomous web agents. The dataset was created by
curating diverse tasks across popular websites, with
annotators performing a series of actions to com-
plete the goal. For Android, we used the prominent
Android in the Wild (AitW) (Rawles et al., 2023)
dataset, while focusing on its quality-filtered sub-
set Android in the Zoo (AitZ) (Zhang et al., 2024)
(details in Appendix B).

4.2 Models

Given the multimodal nature of UI trajectories, our
models must be adept at interpreting both text and
images. We selected two state-of-the-art LMMs,
Gemini 1.5 Pro (Reid et al., 2024) and GPT-4.
These models are at the forefront of handling com-
bined text and image inputs and offer a sufficiently
large context window for our experiments.

In our experiments, the model was guided
through a Chain-of-Thought (Wei et al., 2022) pro-

Dataset Non Partial Match (1)
Match  Match
Mind2Web  H vs. G 0.07 0.13 0.80
H;vs.Hy  0.09 0.10 0.81
AitZ H vs. G 0.02 0.22 0.76
Hi;vs.Hy  0.02 0.04 0.94

Table 1: Manual evaluation of human generated task
descriptions, at the different levels of match criteria
(determined by the satisfaction relation) between anno-
tators (H;) and gold task descriptions (G), as well as
among annotators. (H) represents average scores.



Manual Eval

Automatic Eval

Dataset Model Fulfillment Non Match Partial Match Match (1) | Non Match Partial Match Match (1)

Mind2Web GPT-4 0.86 0.14 0.42 0.44 0.18 0.40 0.42
Gemini-1.5 0.87 0.20 0.22 0.58 0.18 0.28 0.54
AitZ GPT-4 0.78 0.22 0.19 0.59 0.32 0.34 0.34
Gemini-1.5 0.88 0.17 0.26 0.57 0.37 0.27 0.36

Table 2: Manual and automatic evaluation scores of fulfillment relation and the different levels of match criteria
(determined by the satisfaction relation), between model predictions and gold task descriptions.

cess, to analyze the trajectory in a step-by-step
manner (prompt in Appendix E).

In web, inspired by SeeAct (Zheng et al., 2024)
we drew a red bounding box around the element
that the user interacted with to guide the model’s at-
tention, as well as to break ambiguity where textual
action descriptions were not sufficient. To further
focus models, we also truncated lengthy web im-
ages based on the bounding box position. (details
in Appendix C). For Android, no special modifi-
cations needed, actions are overlaid on the screen-
shots, and the screenshots are naturally smaller.

5 Experiments

5.1 Human Performance Evaluation

To asses task difficulty and establish a baseline for
models, two NLP practitioners, unfamiliar with the
datasets, independently composed 50 task descrip-
tions from Mind2Web, and 50 from AitZ. An an-
notator then evaluated' them as explained in § 3.2.
The results, summarized in Table 1, reveal more
matches between the human annotators and the
gold task descriptions in Mind2Web compared
to AitZ. Upon analysis of the disagreements, we
found that the gold descriptions in Android were of-
ten more specific than those provided by human an-
notators. In most cases, the gold tasks were already
fulfilled by the trajectory, resulting in no clear in-
teractions that indicate the user goal. For example,
if the task was “Turn WiFi on” and the WiFi was
already on, the annotators inferred a more general
task, such as “Show WiFi settings”. Further anal-
ysis of non-matching records across both datasets
revealed that ambiguous trajectories caused human
disagreements. Detailed analysis in Appendix D.

5.2 Model Performance Evaluation

Model evaluation included manual assessment of
100 predictions from each dataset and automatic

"During the evaluation it was observed that human tasks
were inherently fulfilled by the trajectory.

evaluation using the entire test sets: 1,013 from
Mind2Web and 506 from AitZ (see Appendix C).

The results, outlined in Table 2, reveal that Gem-
ini outperforms GPT on the Mind2Web dataset,
achieving higher match scores but still falling short
of humans. In AitZ, both models perform com-
parably. Gemini tends to be more specific and
detailed than the gold references, while GPT often
generates more general, abstract goals. Both mod-
els, in certain instances, misidentified the actual
user intent (e.g. “Watch top rated movie trailer”
vs. “Watch The Dark Knight trailer”’) and exhibit
limitations in visual screen understanding, leading
to missing details, incorporating irrelevant informa-
tion and hallucinations of non-existent information.
Detailed discussion in Appendix D.

These results underscore the complexity of ac-
curately capturing user intent. Our experiments
also concluded few-shot learning. However, in our
setting, this is challenging due to multiple images,
textual inputs and the thought process within exam-
ple. Adding a single example deteriorated results,
likely because the large context size and the differ-
ence between the exemplar and the test trajectory.

6 Conclusion and Future Work

In this paper, we introduced the novel task of identi-
fying user goals from Ul trajectories and proposed
a reliable evaluation methodology. Our experi-
ments on Android and web datasets reveal a sig-
nificant gap between humans and state-of-the-art
multi-modal models, which is analyzed in detail.

Future work may include fine-tuning experi-
ments and enhancing visual understanding for UI
environments. We propose testing our task by eval-
uating its utility on downstream tasks like agent
personalization and suggestions. Additionally, ex-
panding the scope to other GUIs like iOS and Win-
dows would broaden the impact of our findings.



Limitations

Our study is subject to several limitations due to
the nature of the datasets used. First, both datasets
primarily include English-language websites ac-
cessed in the U.S., thereby limiting the study to
English-language interactions only. Second, in real-
world scenarios, we believe that (1) user trajecto-
ries may be interleaved between multiple tasks as
users adjust their objectives in real time or are in-
terrupted by other tasks, (2) users might have more
ambiguous goals that evolve during their interac-
tion with the user interface and (3) users might be
less proficient with computers or phones, leading
to noisier trajectories that are more challenging to
identify and interpret intent from. Moreover, in the
Mind2Web dataset, all tasks were limited to inter-
actions within the same website, not encompassing
multi-website tasks. This constraint may not fully
represent the complexity of real-world web usage.

Lastly, this study focuses solely on Android and
web environments. These environments might ex-
hibit different task distributions compared to other
user interface environments such as i0OS and Win-
dows, potentially limiting our findings for Android
and web environments.

Ethical Considerations

The development of autonomous agents, while
holding great potential for innovation, raises impor-
tant ethical considerations. Our research focuses on
understanding user intent from recorded UI trajec-
tories, and it is crucial to acknowledge the potential
privacy implications of tracking user activity. En-
suring the security and protection of this sensitive
data is of the utmost importance. Employing tech-
niques like on-device processing, anonymization,
or other privacy-preserving methods can help miti-
gate risks and ensure user data remains protected. It
is essential for researchers and developers to proac-
tively address these concerns to foster trust and
responsible innovation in the field of autonomous
agents.
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A Related Work

In this appendix, we provide an overview of key re-
lated research areas, specifically intent recognition,
activity recognition, and plan recognition.



Intent Recognition Intent recognition, also re-
ferred to as intent classification, is a well-
established field focused on identifying user inten-
tions based on specific inputs. Traditionally, most
research in this domain has concentrated on textual
inputs, such as individual messages or utterances,
which are then categorized into predefined intent
classes. For instance, studies like (Schuurmans and
Frasincar, 2019; Kuchlous and Kadaba, 2020; Lar-
son and Leach, 2022) have worked on improving
intent classification within dialogue systems across
various domains, focusing on the classification of
short texts or single utterances into predetermined
intent categories (e.g. “find a train from Barcelona
to Madrid” would be classified into a system in-
tent called find_train”). Others, classified social
media posts to determine whether they express an
intention to make a purchase (Gupta et al., 2014;
Haque et al., 2019). To enhance understanding of
user queries and infer its underlying intent, some
works leverage external knowledge sources to get
better results (Hu et al., 2009).

In addition to text-based inputs, multimodal
methods have been developed to incorporate var-
ious types of inputs. For example, (Zhang et al.,
2021) and (Gonzaga et al., 2021) investigate the
use of both images and text: the former analyzes
social news content to identify marketing intents
and to classify intent topics, while the latter com-
bines image and textual data to classify social me-
dia posts, aiming to identify the writers’ intent such
as provocative, informative, promotive and more.
Zhang et al. (2022) introduces a multimodal dataset
for intent recognition in TV series, where inputs
include visual, auditory, and textual data, while the
outputs are classified into one of 25 possible intent
categories.

Activity Recognition Activity recognition, as
defined by Sukthankar et al. (2014) and closely
related to intent recognition, involves identifying
specific human activities based on a series of ob-
servations, often through sensor data. While intent
recognition focuses on understanding user inten-
tions, activity recognition mostly concerned with
classifying physical actions. Typically, systems in
this domain are developed to classify these activi-
ties using sensory inputs. Khan et al. (2022) uses a
neural network trained on 2D skeletal data captured
by a motion sensor to classify human poses; [jaz
et al. (2022) integrated accelerometer signals along
with skeletal data to recognize and categorize nurse

activities into 12 distinct types. A prominent study
(Kwapisz et al., 2011) developed a supervised learn-
ing algorithm that uses accelerometer signal from
Android smartphones to classify physical activities
like walking, jogging, sitting, and standing. More-
over, research such as (Liao et al., 2005) utilizes
GPS traces to classify human activity and label
significant locations, employing relational Markov
networks to achieve this.

Plan Recognition In a plan recognition problem,
a system is given a series of actions performed by
an agent and is expected to infer the overall plan
or goal which explains those actions (Kautz et al.,
1991). The distinction between activity recogni-
tion and plan recognition is the difference between
recognizing a single activity and recognizing the
relationships between a set of such activities that
result in a complete plan or goal. In this field,
foundational works like (Charniak and Goldman,
1993; Goldman et al., 2013) rely on structured in-
puts and a plan library — a collection of possible
plans and their associated goals — to construct
probabilistic models that infer the plan from ob-
served actions. Alternative approaches, such as
in (Hong, 2001), develop algorithms that do not
depend on plan libraries; instead, they utilizing
in-domain knowledge and applying this to UNIX
system commands to understand broader user goal.
A hybrid approach is demonstrated (Granada et al.,
2017), where the authors combine CNN models to
detect human activities from a video stream of meal
preparation and apply symbolic reasoning with a
plan library to recognize the overall plan (e.g., ac-
tions like "breaking eggs" and "mixing ingredients"
might be recognized as part of a plan to create an
omelet).

B Datasets Overview

Web We aim to give a brief overview of how
Mind2Web was collected, and its format in more
depth. The data collection process involved select-
ing numerous popular websites across five top-level
domains. Annotators, guided by seed tasks from
GPT, proposed diverse tasks for each website. They
demonstrated and recorded how to complete these
tasks, resulting in a trajectory of actions and screen-
shots. Each action is defined by a pair consisting
of a Target Element and an Operation. The Target
Element is an interactable element on the current
web page, such as buttons, input fields, or drop
down menus. The Operation refers to the specific



"Find unique experiences in London of maximum one hour duration which are rated four stars and above"

Operation: Type "London"; Element: textbox <Where to?>

Recently *

Operation: Click; Element: circle
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e of Watner Bros,Studio with -

ivrew
Operation: Click; Element: link <Unique Experiences>

Operation: Click; Element: label <Up to 1 hour>

Operation: Click; Element: label <star-4>

Figure 2: An instance from Mind2Web, representing a full trajectory accomplishing the task description above.
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Figure 3: An instance from AitW, representing a full trajectory accomplishing the task "Set an alarm". The blue
plus sign indicates the area on the screen where the tap occured.

action to be executed on the Target Element, with
Mind2Web supporting three primary operations:
Click (including actions like clicking, hovering,
and pressing Enter), Type (which involves enter-
ing text into input fields and requires an additional
value for the text to be typed), and Select Option
(which involves selecting an option from a drop
down menu or similar element and also requires an
additional value for the option to be selected). No-
tably, these actions were automatically produced
during the time users were recorded completing
the task, eliminating the need for additional man-
ual labor. Figure 2 demonstrates a single instance
of the data, where textual action descriptions are
presented below the corresponding screenshot.

Android The Android in the Wild (AitW) dataset
stands out due to its extensive variety of tasks,
covering 4 domains: Google-Apps, Install, Web-
Shopping, and General, as well as a single-step

domain excluded from this paper’s analysis. The
dataset consists of a substantial collection of high-
level instructions, trajectories of varying lengths,
and a notable variety of apps and websites. The
Android in the Zoo (AitZ) dataset was sampled
from AitW to reduce tasks redundancy and to filter
erroneous data points, resulting in more unique and
higher-quality task descriptions.

The high-level goal instructions in AitW were
sourced from various sources, including humans
(both crowd-sourced and the authors themselves),
LLM-generated prompts, and technical documen-
tation such as PixelHelp (Li et al., 2020). The
creation process involved human annotators per-
forming tasks on Android emulators, with their
gestures being recorded.

The episodes were recorded on mobile devices
running four different versions of Android. Each
episode contains natural language instructions and



observation-action pairs. The observations are
screenshots, while the actions are one of three
types: tap, drag, or typing. Gesture actions are
represented as taps and drags at specific <x,y> co-
ordinates on the screen.

In our utilization of this data, we presented the
models with a series of screenshots with the actions
drawn on them, as shown in Figure 3.

C Experiments

Models Configuration For task description pre-
diction, we used the most recent version of Gemini,
namely Gemini 1.5 Pro, updated in Vertex Al as of
May 2024, with a sampling temperature of 1.0, and
GPT-4-Turbo® (version gpt-4-turbo-2024-04-09)
with a sampling temperature of 0.6. For automatic
evaluation, we utilized the latest release from the
GPT family, known as GPT-4o.

Data For the manual evaluation, we randomly
sampled over 100 data points from the both An-
droid and Web datasets. We then prompted models
to predict the user goal. During the evaluation, we
conducted a thorough verification process to ensure
that both the gold references and the trajectories
were of high quality.

We rejected instances where the trajectory did
not fulfill the gold reference, which occurred more
frequently for Android. Additionally, for web-
based tasks, we excluded cases where the screen-
shot was not rendered properly, making it difficult
to interpret the user’s action, as well as instances
where the bounding box was empty.

As a result of this verification process, 17% of
the Android examples and about 5% of the web ex-
amples were rejected. Ultimately, as a result of this
process, the samples that were manually evaluated
in Sections 3.2 and 5 were of high quality and free
from such issues. For the automatic evaluation, as
described in 5, we utilized the entire test sets from
both datasets.

Web We encountered a technical challenge with
the Mind2Web data due to the nature of its im-
age captures. Unlike standard viewport captures,
which represent the visible area of a web page on
a typical screen, the images in Mind2Web had a
median height of 4200 pixels, significantly exceed-
ing typical web page dimensions, with 20 percent

Zhttps://cloud.google.com/vertex-ai
*https://platform.openai.com/docs/models/gpt-4-turbo-
and-gpt-4

of the images exceeding 7000 pixels in height. Ini-
tial tests showed that these oversized images intro-
duced noise and negatively affected model perfor-
mance.

To address this, we implemented a heuristic trun-
cation method, reducing image height while en-
suring the interaction element remained visible
within the truncated image. This was achieved
by utilizing the bounding box metadata provided
by Mind2Web. Similar to the approach taken by
(Zheng et al., 2024) and introduced by (Yang et al.,
2023a), we drew the red bounding box around the
interaction element to guide the model’s attention.
Additionally, adding the bounding box helped re-
solve ambiguities at times that the textual action
description is not sufficient. For example, some-
times action descriptions are simply empty, and
does not contain any description about the element
itself. While in other cases, action descriptions
exist, but the textual description matches multiple
element descriptions and thus results in ambiguity
that is only resolved by drawing the bounding box.
For example, a button labeled "Add to Cart" is typ-
ically associated with each item in a web shopping
list. Without the bounding box, it is impossible to
determine which specific button was clicked.

Android In our efforts to replicate experiments
from web, we encountered challenges due to dif-
ferences in data format. Unlike the web, AitW
does not provide textual information associated
with clicked elements. Instead, it offers x,y coor-
dinates representing the center of the tapped area.
This distinction in data structure made it impracti-
cal to conduct experiments involving both actions
written alongside screenshots.

To address these challenges, we utilized the
dataset’s utilities to overlay actions on top of the
screenshots, as well as bounding box annotations
for post-process detected Ul elements. However,
we found that the added element annotation marks
often confused the model added noise and criti-
cal information on the screen. As a result, we
proceeded with experiments using a sequence of
screenshots that had the actions (tap, drag, and
type) drawn over them. AitW’s provided visualiza-
tion tools to draw the actions, also included labels
of special actions such as the back button, home
button, and enter. As well as a special "status"
action: either Task Complete or Task Impossible.
However, we found that the label Task Complete
often confused the models. Despite our efforts to



make the models ignore it, we eventually aban-
doned this specific annotation as it is a technicality
of data representation.

D Error Analysis
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Figure 4: An illustration in which the user chose a spe-
cific car primarily for its 12-inch feature, but since it
was also the cheapest, annotators incorrectly assumed
cost was the deciding factor.

In this section, we aim to provide a more detailed
error analysis with respect to model and humans.

Web In our error analysis of 30 mismatched task
descriptions, distinct patterns emerged between
GPT and Gemini models. GPT frequently wrote
tasks as navigational procedures, with 12% of gen-
erated tasks starting with “Navigate” (out of the
1,000 predicted tasks). Additionally, over 20% of
the manually inspected errors involved misinter-
preting the task’s intent, often producing broad
descriptions lacking crucial details. Conversely,
Gemini’s errors were typically more fine-grained,
often capturing the task’s essence but struggling
with specific details like dates, numbers, or loca-
tions.

Both models also occasionally produced task de-
scriptions that felt artificial, incorporating informa-
tion a user would be unlikely to know beforehand
due to the models’ access to the full user trajectory.
For example, a task like “Read recent news about
Apple stock” might be predicted as “Read the arti-
cle ’X’ about Apple stock™ if the model observed
the user clicking on a specific article *X’.

With respect to human annotators, we found that
most disagreements between human-generated task
descriptions and gold task descriptions resulted
from humans making more generalized tasks. This
happened because they choose the most natural or
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probable constraints if no action provides evidence
for a less likely constraint. Sometimes, they don’t
write the constraint or any other one if nothing
seems probable. Figure 4 demonstrates such a case,
the truck picked by the user is the only 12-inch
wheel truck but also the cheapest truck among the
listed options, as no prior action gave evident to
the 12-inch constraint, both human generated task
labeled it as “Book the cheapest truck...” while the
gold task description was “Book a 12-inch wheel
truck...”. Additionally, with respect to task ambi-
guity, each trajectory in this experiment resulted in
three task descriptions, two from the human annota-
tors and one from the gold reference. We calculated
the number of trajectories where all task descrip-
tions matched each other and those where they did
not. We found that 72% of trajectories had a match
among all tasks, 24% had a match between two
tasks, and the rest had no matching tasks. Although
not exhaustive, this highlights that most trajectories
in Mind2Web are probably non-ambiguous.

'Match' proportions in AitZ dataset across domains
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Figure 5: Comparison of "Match" proportions between
Gemini 1.5 Pro and GPT-4-Turbo models across the dif-
ferent domains

Android Comparing GPT and Gemini’s perfor-
mance on the Android dataset revealed notable vari-
ations across different domains. Both models were
proficient in the “General” domain, but faced chal-
lenges in “Web Shopping” and “Install”. This dis-
parity is due to the nature of the “General” dataset,
which contains search queries that explicitly re-
veal the user’s intent. “Google Apps” tasks overlap
with PixelHelp, primarily involving settings con-
figuration. Some tasks are ambiguous, such as a
button toggle, but the trajectory displays only one
option. Additionally, specific tasks request actions
that have already been completed, e.g Turn On
location history, but the trajectory only shows view-
ing the Location History setting page, leading to



confusion for models. Additionally, the models
faced difficulty comprehending the correct order of
the sequence of actions that occurred, frequently
mistaking the final state (on or off).

On the “Web Shopping” domain, Gemini pro-
vided excessive details about specific products
(“Add Razer Kraken X for Console Gaming Head-
set for PC/PS4/PS5/Xbox/Switch - Black/Blue to
cart on Best Buy Canada”). GPT often missed the
main purpose of the task and suggested abstract
tasks such as: “log into an account” or “Decline
the offer to protect a purchase with an insurance
plan on a shopping website”.

The “Install” domain often presents ambiguous
tasks in the format “open (install if not installed)”
which confuses both models. Furthermore, in
some cases the apps were already pre-installed
which made it impossible to predict (model pre-
dicts “open”), providing only partial satisfaction in
one direction. These results indicate that further
refinement and training may be needed to improve
the models’ performance in specific domains.

For human generated tasks, “General” dataset
presented minimal challenges for human annota-
tors. This was attributed to their ability to effort-
lessly comprehend the user’s intended intent based
solely on the visible search query. However, anal-
ogous to the model challenges encountered, am-
biguous tasks within the “Install” dataset proved
challenging for humans as well. Conversely, unlike
models, humans exhibited impeccable performance
in comprehending the final state of the desired set-
ting configuration within the Google Apps domain,
if the original goal was specific and not ambiguous.
Shopping tasks, on the other hand, posed a distinct
challenge for humans. They struggled to grasp the
rationale behind selecting an item when the orig-
inal task was to choose the cheapest or the first
result. These findings underscore the multifaceted
nature of goal task prediction and emphasize the
significance of addressing specific domains.

E Instructions and Prompts
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You will be given an observed Ul trajectory (a series of actions within a website or app), along with two
task descriptions, labeled A and B. Your goal is to provide four annotations for each pair of task
descriptions based on the observed trajectory:

1. Is A fulfilled by the trajectory ? (Yes / No)
2. Is B fulfilled by the trajectory ? (Yes / No)
3. Does A satisfy B ? (Yes / No)
4. Does B satisfy A ? (Yes / No)

Definitions:
e Task fulfillment by Trajectory - Task A fulfilled by a trajectory if the trajectory successfully
completes the requested action, or if the trajectory provides the information sought by the user.
e Satisfies relation between two tasks - Task A satisfies Task B if and only if every reasonable
trajectory that fulfills A would also fulfill B. This means completing A necessarily leads to
completing B.

Key Assumptions:

e Proficient User - Assume the user is proficient with Uls and familiar with the general structure and
functionality of the website/app.

e Fixed Ul, Dynamic Content - The website's / app layout, information display, input fields, default
values, and terminology are fixed. However, the specific content (e.g., available products, search
results) can change.

e Terminology - Terms used within the website/app are considered synonymous. For example, if a
clothing site lists both size and garment length in centimeters, these are considered
interchangeable.

Instructions:

e Ignore Semantic Equivalents - Disregard differences in wording when A and B are semantically
equivalent, including variations in site terminology as mentioned above.

e Ignore Navigation Details - Disregard navigation instructions in the task descriptions like "open
the settings menu to increase the screen brightness by 10%". Also, ignore mentions of the
specific website or app name.

e Relative Dates/Times are OK - Dates and times can be relative (e.g., "in 2 hours") if the current
date/time can be inferred from the trajectory. For instance, most sites used for scheduling
meetings in a calendar display the current date.

e Partial Actions - Note when one task description asks for a partial action compared to the other
(e.g., one asks to buy a ticket, the other only to find information).

e Specific vs. General Instructions - Pay attention to cases where one description is very specific
(e.g., "Reserve a Chevrolet Colorado truck") and the other is more general (e.g., "Reserve a
truck”). Similarly, an instruction to "search for French chansons and play the first one" might be
interpreted as an instruction to play a specific song.

Generally, neither description satisfies the other in these cases. We assume the site is fixed but the
content may change, and the user doesn't necessarily know which truck is available or what the first song
would be. Therefore, the specific instruction doesn't usually satisfy the general instruction (and
vice-versa, of course), as giving those instructions at a different time might yield a different result.
However, use your best judgment if it's reasonable to assume the user knows the specific context of the
site, and the difference might be just a rephrasing. For example, a user asking to "find out when is the next
NBA game" might mean the same as "find out when is the Celtics-Heats match", as they know what is the
next game. There is a level of subjectivity here in determining what is

reasonable to assume the user knows, and we expect you to use your best judgment in these cases.

Figure 6: Instructions for human-annotators to conclude if a task is fulfilled by a trajectory, and if two task descrip-
tions satisfying each other. These instructions were the core prompt of the automatic evaluator.
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You will be given a trajectory of Ul actions performed by a user, and your task is as follows:

1.

2.

Most likely goal - Write the most likely goal that led the user to perform this trajectory.
Notes - We ask you to also write notes, with respect to challenges you faced during the writing,
decisions you made, assumptions you take etc...

General Guidelines:

Standalone goals - Write standalone goals. Do not write goals that are contextualized by the
website or depend on memory or other personalizations (location etc...). Assume no prior
knowledge of the website's content. Keep in mind that the user’s were not familiar with the content
but were familiar with the purpose of the app / website and its functionality.

Non-time relative goals - For web write goals that are not relative to time and ensure you write full
dates when possible. For example, write 'Reserve restaurant for 1.6.2024' (Or any other date format
you like) instead of 'Reserve restaurant for next week'. For Android you can use relative time ranges
if you find it reasonable.

Imperative goals - Write imperative goals that give commands or requests, not goals that ask
questions or make inquiries.

Default values - Use your common sense to judge if a default value should be present in the goal
description or not. Generally, here are few additional points that should provoke your thoughts when
considering a default value:

Think about the inverse task, i.e you have a goal in mind and only then you perform the task on
the web. Which default values are reasonable that you would have in mind ?

For example, dates when booking something / searching for flight tickets etc.

Consider default values that are transferable across similar websites. For example, if you book a
flight on UNITED and they have a default setting related to membership, this might not be
applicable to DELTA airlines.

Assess the importance of the default value in completing the task without additional assistance.
For instance, many registration forms have a pre-checked checkbox to send notifications,
which is not essential to the task, so less likely that the original goal included this default.

Starting Point - For Android assume all trajectories start at the homescreen, for web, it is in the
particular website.

Avoid mentioning explicit apps unless you find it necessary - ‘Check calendar’ and not ‘Check
Google calendar’.

History - In Android, many trajectories have pre-existed history (from previous sessions) . Be aware
of it, and judge when you need to incorporate this in the goal and when not.

Figure 7: Goal identification annotation task instruction to measure human performance.
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Input Structure:

You will receive a series of screenshots and actions representing a user's interactions on a website / application. Each item
contains an action performed by the user and a screenshot depicting the state of the website before action execution.
Below is a more detailed description of the action format structure and screenshot.

Mind2Web Section

Actions are formatted to clearly identify the type of user interaction with web page elements. The format specifies the
element type, a detailed description, and the interaction performed. This setup allows for precise specification of
interactions, particularly noting that TYPE and SELECT actions require additional text values:

General Format: [element type] element description (usually the text of the element) -> Operation (TYPE / CLICK /
SELECT): action-specific details (For TYPE / SELECT only).

1. TYPE: Inputting text, requires specifying what text is typed (e.g., [combobox] Departure station, London selected. ->
TYPE: Edinburgh).

2. CLICK: Activating or selecting an element, no additional text required (e.g., [span] Edinburgh (Waverley) -> CLICK).

3. SELECT: Choosing from a dropdown or list, requires specifying the selected option (e.g., [listbox] Hour -> SELECT: 17).

Each screenshot shows the website state just before the corresponding action occurs. These screenshots often include a
RED bounding box highlighting the element of interaction. The screenshot serves as a visual context, showing details not
captured by the action description..

AitW Section
User actions are indicated by blue symbols within the screenshot, marked by a plus sign (+) for tapping and an arrow for
scrolling.

Your Task:
Analyze the input sequence to deduce the user's underlying objective that prompted these actions. Utilize the screenshots
to gain insights into the user's intentions, focusing on elements highlighted or implicated by the actions.

General Guidelines:

1. Imperative Format: Sentences must be structured in the imperative form, directly issuing commands without stating the
subject performing the action.

2. Action-Oriented: Begin the sentence with the verb that denotes the action to be taken, ensuring that it directly
addresses the desired outcome.

3. Specificity and Detailed: Include all pertinent details necessary to complete the action without overloading the sentence
with unnecessary information.

4. Clarity and Conciseness: Aim for straightforwardness and brevity, avoiding any ambiguity. The instruction should be
easily understandable at a glance, making it actionable without requiring further clarification.

5. Ignore advertisements, pop-ups, and default dialogs (e.g., "Accept cookies," “Take me to Gmail").

6. Do not specify the app/website or platform.

Output Format:

"step-by-step description": “Provide a numbered list where each entry corresponds directly to a specific screenshot,
detailing the user's actions and the visual context provided by the screenshots.",

“concise task": "Summarize the user's overall goal that motivated the sequence of actions based on the step by step
description.”

Figure 8: Instruction used to guide GPT and Gemini when predicting a task description given a Ul trajectory. We
swap AitW section and Mind2Web according to the input.
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You're given two sentences, A and B, representing user goals on a website or app, and a trajectory for
Task A.

Your Task: Determine if A satisfies B.
Definitions:

e Fulfillment: A trajectory fulfills a task if it presents information satisfying the user's query
(even with extra info). For transactional tasks, it must complete the requested operation.

e Satisfaction A satisfies B if EVERY trajectory fulfilling A also fulfills B. This means completing A
logically leads to completing B.

Analysis Steps:

1. Extract Requirements: List requirements and constraints of A and B in a table, noting if A
satisfies each B requirement. Include action verbs (e.g., "find," "book"). If any answer is no, A
doesn't satisfy B.

2. Rigorous Comparison: Is each requirement in B met by A? If A has stricter requirements, it
satisfies B. If A is looser, go to step 3.

3. Counter-Example (Optional): Find a case where requirement A is met while requirement B is
not, considering dynamic content changes like prices and availability. Ignore static content like
structure and checkboxes.

4. Chain of Thought: Clearly explain your reasoning, referencing the requirements. Explain how
each requirement in A is logically fulfilled by B or how a counterexample shows it doesn't.

5. Decision: Write your answer as: [SATISFACTION] YES/NO [/SATISFACTION]

Key Considerations:

e User Goals: Focus on the user's underlying goals, not just literal words.

o Default Values: If a requirement is met by a default value that is present in the website/app
interface, it can be omitted from the constraint list.

e  Prioritize logical reasoning over assumptions.

e Dynamic vs. Static Content: Consider if content changes often (e.g., top movies) or stays the
same (e.g., filtering by user’s rating). If A needs dynamic content and B static, A doesn't satisfy
B.

e Direction: Only answer if A satisfies B (A -> B), not the reverse.

e Relative vs. Specific Times: When comparing relative times, such as "tomorrow," and specific
times, such as "April 15th," it is acceptable to disregard the relative times or assume that they
are acceptable.

e Time Ranges and Dates Matter: Time ranges (e.g., "tomorrow" vs. "the week of April 15th") are
considered distinct. Explicit different dates are considered distinct.

o Default Values: If A misses default values, but the trajectory has them, consider A satisfying B
with respect to this requirement.

e Use the Trajectory: If A and B are unclear, the trajectory may show they refer to the same
action or process.

e General vs. Specific: A specific task A can satisfy a more general task B if completing A fulfills
B's requirements. If A is specific and B is general, A might satisfy B, but it depends on whether
all conditions in B are fulfilled by A.

e If Ais general and B is specific, A does not satisfy B.

e In the context of this task, we will treat the terms "buy," "add to cart," and "check out" as
interchangeable.

Determine whether A satisfies B with the given trajectory. Input:

Figure 9: Model instructions for evaluating Satisfaction relation between two task descriptions (A and B), given a
corresponding trajectory. Includes web/mobile data format instructions and few-shot examples for experimentation
(detailed on the next page).
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Example 1: Stricter A Satisfies Looser B

e A:Purchase a one-way ticket from NYC to LAX on Delta Airlines.

e B:Book a flight from New York to Los Angeles.
Analysis: A: Purchase flight, one-way, NYC to LAX, Delta Airlines. B: Book flight, New York to Los
Angeles. A's requirements are a subset of B's. Purchasing a one-way flight from NYC to LAX operated
by Delta Airlines, will fulfill B requirements: Booking flight, NY to LA. [SATISFACTION] YES
[/SATISFACTION]

Example 2: Default Values & Satisfaction

e A:Order a pepperoni pizza

e B:Order alarge pepperoni pizza

o Trajectory: Website defaults are set to large size when ordering a pizza.
Analysis: A: Order, Pizza, pepperoni. B: Order, Pizza, Pepperoni, Large Size. B has stricter restrictions for
a Large pizza size, but the trajectory shows the default pizza size is Large. A satisfies B because the
default size fulfills the requirement. Any reasonable trajectory executing A, ordering a pizza (not
requiring setting a specific pizza size) will satisfy B. [SATISFACTION] YES [/SATISFACTION]

Example 3: Dynamic Content & Non-Satisfaction

e  A:Buy the cheapest flight to London.

e B:Book a flight to London for under $500.

e Trajectory: Shows the cheapest flight is currently $450.
Analysis: A: Buy, flight, cheapest, destination: London. B: Book, flight, under $500, destination:
London. Executing A doesn't guarantee satisfying B, as prices can change. Counter-example: The price
could rise above $500, fulfilling A but not B. [SATISFACTION] NO [/SATISFACTION]

Example 4: Website Structure and Satisfaction

e A:Find a 5-star hotel in Rome.

e B:Find a highly-rated hotel in Rome.

e Trajectory: Shows a filter for star ratings, with 5-stars being the highest option.
Analysis: A: Find, 5-star, a hotel, Rome. B: Find, highly-rated, a hotel, Rome. Since the website
structure doesn't allow for higher ratings than 5, A satisfies B. [SATISFACTION] YES [/SATISFACTION]

Example 5: Looser A Fails to Satisfy Specific B (Counter-Example)

e A:Bookaroom in a hotel with a pool in Paris.

e B:Reserve aroom at the Hotel Ritz in Paris.

e Trajectory: User is booking, Ritz hotel in Paris. Trajectory shows Ritz hotel has a pool.
Analysis: A: book, room, any hotel, has a pool, Paris. B: Reserve, room, Hotel Ritz, Paris.
A's requirement for a hotel with a pool is looser than B's requirement for Hotel Ritz. Counter-example:
The user could choose a different hotel in Paris that has a pool, still fulfilling A but it won't fulfill B.
[SATISFACTION] NO [/SATISFACTION]

Example 6: Stricter verb in A Satisfies Looser verb in B

e A:Sign-up for a Fastbreak program.

e B: Find information about the Fastbreak program.
Analysis: A: Sign-up, Fastbreak program. B: Find information, Fastbreak program. A's requirements
inherently include B's. Signing-up for something necessitates finding information beforehand about this
thing. [SATISFACTION] YES [/SATISFACTION]

Example 7: Looser verb in A Fails to Satisfy a Specific verb in B (Counter-Example)

e A: Find information about the Fastbreak program

e B: Sign-up for a Fastbreak program.
Analysis: A: Find information, Fastbreak program. B: Sign-up, Fastbreak program. A is less strict than B.
A counterexample is simply finding the necessary information without enrolling in the program.
[SATISFACTION] NO [/SATISFACTION]

Figure 10: Few-Shot exemplars demonstrating the Satisfaction Relation Prompt (Figure 9). These simplified
examples highlight the nuances of task satisfaction in real-world scenarios.
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