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Abstract
Traveling waves of neural activity are widely observed
in the brain, but their precise computational function re-
mains unclear. One prominent hypothesis is that they
enable the transfer and integration of spatial information
across neural populations. However, few computational
models have explored how traveling waves might be har-
nessed to perform such integrative processing. Drawing
inspiration from the famous “Can one hear the shape of
a drum?” problem – which highlights how normal modes
of wave dynamics encode geometric information – we in-
vestigate whether similar principles can be leveraged in
artificial neural networks. Specifically, we introduce con-
volutional recurrent neural networks that learn to produce
traveling waves in their hidden states in response to vi-
sual stimuli, enabling spatial integration. By then treating
these wave-like activation sequences as visual represen-
tations themselves, we obtain a powerful representational
space that outperforms local feed-forward networks on
tasks requiring global spatial context. In particular, we ob-
serve that traveling waves effectively expand the receptive
field of locally connected neurons, supporting long-range
encoding and communication of information. We demon-
strate that models equipped with this mechanism solve
visual semantic segmentation tasks demanding global in-
tegration, significantly outperforming local feed-forward
models and rivaling non-local U-Net models with fewer
parameters. As a first step toward traveling-wave-based
communication and visual representation in artificial net-
works, our findings suggest wave-dynamics may provide
efficiency and training stability benefits, while simultane-
ously offering a new framework for connecting models to
biological recordings of neural activity.
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Introduction
The propagation of traveling waves of neural activity has been
measured on the surface of the brain from the earliest neural
recordings (Adrian & Matthews, 1934; Goldman et al., 1949;
Lilly, 1949; Mickle & Ades, 1953). Such waves have been
measured to travel both locally and globally across cortical
regions with a range of velocities (Reimer et al., 2010; Muller et
al., 2016; Zhang et al., 2018). Stimulus-evoked traveling waves
have been directly measured in visual cortex (Cowey, 1964)
with increasingly sophisticated methodology from penetrating
electrodes (Ebersole & Kaplan, 1981) to voltage-sensitive dye
imaging (Muller et al., 2014), including in awake behaving

Figure 1: Overview of traveling wave-based spatial informa-
tion integration. An input stimulus triggers an initial condition
and sets the response properties of a lattice of neurons with
both local input receptive fields and recurrent connectivity. This
initial condition evolves over time under the recurrent wave dy-
namics, and the resulting timeseries at each neuron becomes
a globally integrated representation of the visual stimuli.

primates (Davis et al., 2020). Driven by these observations,
many theoretical arguments have been put forth to explain the
functional roles of these dynamics. Examples include that they
are relevant to predictive coding (Alamia & VanRullen, 2019),
the representation of symmetries (Keller et al., 2024a), the
consolidation of long-term memories (Muller et al., 2018), and
the encoding of motion (Heitmann & Ermentrout, 2020).

Most relevant to this study, one often hypothesized role is
that traveling waves serve as a mechanism for integration and
transfer of information over long distances – a mechanism
that is believed to play an important role specifically within
visual cortex (Sato et al., 2012). For example, Kitano et al.
(1994) demonstrated early on that local-field potential (LFP)
responses of neurons in primary visual cortex could be elicited
by stimuli far outside their classic retinotopic receptive fields
with increased latency as a function of distance, implying a
long-range distance-delayed integration of information. These
findings were later reinforced by the intracellular subthreshold
membrane potential recordings of Bringuier et al. (1999), denot-
ing this extended receptive field the ‘visually evoked synaptic
integration field’. However, the hypothesized role of informa-
tion transfer and integration extends beyond visual stimuli. For
example, Rubino et al. (2007) found that beta frequency oscil-
lations propagated spatially across the motor cortices of mon-
keys in preparation for movement, and that information about
the visual target was directly encoded in these waves. Similarly,
Besserve et al. (2015) used direction-specific causal informa-
tion transfer metrics to demonstrate that traveling waves in the
gamma frequency band are correlated with information transfer
between different cortical regions; while Bhattacharya et al.
(2022) showed that waves change direction during information



retrieval and processing in a working memory task.
Despite these promising observations however, it remains

challenging to investigate these ideas computationally due to
a lack of task-trainable artificial neural network models which
exhibit traveling wave dynamics. In modern artificial neural
networks, information is integrated and transmitted over spa-
tial distances of an input (e.g. an image) or between ‘tokens’
of a sequence either via extremely deep convolutional neural
networks (He et al., 2015), bottleneck/pooling layers (Ron-
neberger et al., 2015), or all-to-all connectivity as-in Transform-
ers (Vaswani et al., 2023). Each of these approaches comes
with its own computational complexity and expressivity limita-
tions, and it is therefore of great interest to explore alternative
methods to integrate disparate information in neural systems.

In this paper, we aim to make progress towards understand-
ing the causal role of wave dynamics in the transfer of infor-
mation by filling this modeling gap, and exploring the computa-
tional potential of wave-based models in task-relevant settings.
To begin, we take inspiration from the famous mathematical
question “Can one hear the shape of a drum", and explore if
the techniques underlying this problem, namely the representa-
tion of global information through stationary solutions to wave-
based dynamical systems, can be equivalently applied to ex-
tract global information from locally-connected recurrent neural
network hidden states over time. In first part of this paper, we
begin with a review of this problem and the associated formal-
ism, outlining how we may construct trainable recurrent neural
networks to leverage these ideas as a computational principle.
On toy tasks, we demonstrate that these simple models do
indeed match theoretical predictions (Figure 2), and that when
slightly relaxed to allow for more flexible input encoding, they
generate wave dynamics which enable the disentanglement of
simple shapes in frequency space (Figures 3 & 4). In the sec-
ond part of this paper, we use this intuition as motivation to build
a suite of further relaxed, yet more computationally capable,
convolutional recurrent neural networks (conv-RNNs), with in-
herently limited receptive field sizes in both their initial encoders
and recurrent connections, and test them on more complex
global-information processing (semantic segmentation) tasks.
We demonstrate how by using the timeseries of each neuron’s
recurrent neural activity as our primary neural representation
during training (schematized in Figure 1), such models are able
to outperform other locally constrained models, and even rival
the performance of some deeper convolutional models such as
U-Nets, while often converging more consistently to favorable
solutions – ultimately suggesting that traveling wave-based in-
formation integration may be an efficient and stable alternative
to existing deep neural network spatial integration techniques.

Motivation: Hearing the Shape of a Drum

To build intuition for how traveling waves may integrate informa-
tion over space, we take inspiration from the famous mathemat-
ical question ‘Can one hear the shape of a drum?’ posed by
Mark Kac (1966). Simply put, this question asks whether the
boundary conditions of an idealized drum head are uniquely

identified by the frequencies at which the drum head will vi-
brate. Intuitively, when one strikes a drum head, this initial
disturbance will propagate outwards as a transient traveling
wave until it reaches the fixed boundary conditions where it will
reflect with a phase shift. This reflected wave will thus have
collected information about the boundary, and serves to bring
it back towards the center. These waves will eventually collide
with other reflected waves from all edges of the shape, and
combine in a superposition of wavefronts, eventually resulting
in a solution which is a superposition of discrete normal modes
which are constrained by the boundary of the shape itself.

At a high level, Kac’s question investigates one specific
mechanism by which traveling waves may be used to integrate
global information, by evolving a spatially-local dynamical sys-
tem (a wave equation) to a steady-state solution determined by
global conditions (the fixed drum boundary). While there exist
many other mechanisms by which traveling waves can be con-
sidered to transfer and combine information, such as through
delay-line mechanisms (Jeffress, 1948) known to exist in the
brainstems of owls (Carr & Konishi, 1988), or through more
complex mechanisms such as interfering wave fronts (Gong
& Van Leeuwen, 2009; Izhikevich & Hoppensteadt, 2009), the
steady-state solution mechanism yields a powerful and well-
understood starting point for us to begin building models.

Formally, a “drum” in this problem is considered to be a
perfectly elastic two-dimensional membrane whose vertical
displacement over space and time is denoted u(x,y, t). The
drum head is considered to be stretched under uniform tension
to a boundary of shape Ω, such that its dynamics satisfy the
two-dimensional wave equation with constant wave-speed c:

∂2u
∂t2 = c2

∇
2u = c2(

∂2u
∂x2 +

∂2u
∂y2 ). (1)

In the original problem, the drum head is constrained to be
‘clamped’ to 0 displacement on the boundary, known as a
Dirichlet boundary condition. This is often written as u|∂Ω = 0.
Since we are interested in steady-state oscillatory solutions, we
can assert they must take the form of ‘normal modes’ φk(x,y)
with associated oscillation frequencies ωk:

u(x,y, t) = φk(x,y)cos(ωkt). (2)

Plugging this into Equation 1, we see the solutions must satisfy:

∇
2
φk(x,y) =−λ

2
kφk(x,y), where λ

2
k =

ω2
k

c2 . (3)

In this form, it is clear that λk is an eigenvalue of the Lapla-
cian operator acting on the surface u. Succinctly then, the
question posed by Kac (1966), is if full set of eigenvalues
{λ1,λ2, . . .} (called the eigenspectrum) of the Laplacian oper-
ating on a given boundary is sufficient to uniquely identify all
two-dimensional boundaries. At the time of posing the question,
it was known that the area of a drum-head could be deduced
from its eigenspectrum uniquely; however, it took more than
25 years for researchers to find counter examples of drum



heads that could not be distinguished by their eigenspectra
(Gordon et al., 1992), while later work from Zelditch (1999)
was able to precisely characterize a class of shapes which
are uniquely identifiable. Overall, these results demonstrated
that the amount of unique geometric information in spectral
representations is significant, and in most cases, aside from
the pathological examples, most shapes are not ‘isospectral’.

The Solution for Square Drums For a square drum of side
length L, the above boundary value problem has a well-known
simple solution (Bérard & Helffer, 2014). Specifically, the nor-
mal modes and corresponding Laplacian eigenvalues are:

φm,n(x,y) = sin
(

mπ

L x
)

sin
(

nπ

L y
)
, m,n = 1,2,3, . . . (4)

λm,n =

√(
mπ

L

)2
+
(

nπ

L

)2
. (5)

We can quickly verify that indeed, these modes are all zero
at the boundary locations of the square since sin( nπ

L x) = 0
when x = 0, and sin( nπ

L x) = 0 when x = L. From Equation 3,
the oscillation frequencies are ωm,n = cλm,n = c π

L

√
m2 +n2.

Therefore, the lowest resonant frequency of a square drum is
ω1,1 = c π

L

√
2, measured in radians per second, following our

intuition that larger drums (larger L) produce lower pitches (ω).
To validate our main idea that this mechanism for global

information integration may be simulated reasonably in a re-
current neural network, in the following we implement a simple
RNN model which emulates wave dynamics, and measure if
the Fourier transform of the resulting hidden state dynamics
inside the drum exhibits these fundamental frequencies.

Emulation in a Recurrent Neural Network To simulate the
above equation in an RNN, we observe that the wave equation
(Equation 1) can be discretized over space and time to yield
a set of equations which are very reminiscent of an RNN.
This is the same approach taken by Keller et al. (2024b) for
the first order one-way wave equation, and Rusch & Mishra
(2021) for a network of coupled oscillators, but adapted to the
standard 2D wave equation. Explicitly, we construct an RNN
to accurately numerically integrate the wave equation using
Verlet integration, yielding the following set of updates for the
hidden state h and the associated coupled velocity state v:

vt+1/2 = vt +
1
2

∆t ·K∇2 ⋆ht , ht+1 = ht +∆t ·vt+1/2 (6)

vt+1 = vt+1/2 +
1
2

∆t ·K∇2 ⋆ht+1 (7)

Where h ∈ RH×W is defined to have 2 spatial dimensions, ⋆
denotes convolution over these dimensions, and K∇2 is the
five-point stencil for the discrete Laplacian operator in 2D:

K∇2 =
[0 1 0

1 −4 1
0 1 0

]
. (8)

The most straightforward manner to then provide ‘the drum
as input’ to the RNN, is to treat it as existing on a discretized

Figure 2: Waves-RNNs generate theoretical frequencies.
Theoretical fundamental frequencies in Hz ( cycles

sec ) for square
drum heads of different side lengths L, compared with the mea-
sured lowest peak frequencies of a wave-based RNN which
uses the square input to determine it’s recurrent dynamics.

grid (like an image), and map each spatial location (x,y) to
a corresponding neuron hx,y. We then emulate an idealized
learned encoder by clamping the values of neurons at the
boundary of the square (and outside) to zero. Explicitly, hx,y =
0 ∀ {x,y} ∈ Ω. We can then provide an initial condition by
setting the hidden state at the center of the drum (hcx,cy ) to a
displacement of 1 with all other locations set to 0, and allow
the dynamics above to unfold over time.

In Figure 2, we present the results of this experiment. We
vary the square side length L from 13 to 21, and for each L,
we compute the theoretical fundamental frequency (in Hz) as
ω1,1 = c

√
2/(2L). The corresponding lowest peak frequency

is then measured from the Fourier transform of the hidden
state dynamics at hcx,cy over 40,000 timesteps (∆t = 0.025)
and plotted on the y-axis. The wave-based RNN’s results
align almost perfectly with theoretical predictions, with minor
deviations likely due to numerical integration limitations.

Experiments: Semantic Segmentation
In the following, we take the intuition gathered from the pre-
vious theoretical motivation and apply it to study if traveling
waves can be used in locally constrained recurrent neural net-
work architectures to solve a task requiring global information
integration. In particular, on all experiments, the task is seman-
tic segmentation, where each pixel of the original image must
be classified as either background, or one of the classes from
the dataset, and models are trained to minimize a pixel-wise
cross-entropy loss. Crucially, all locally restricted models make
use of shallow convolutional encoders (with 3× 3 kernels),
convolutional recurrent connections, and pixel-local decoders,
ensuring that the spatial receptive field of each neuron in a
single feed-forward pass is limited to be significancy less than
the inherent length scale of features necessary to identify class
labels in each dataset (visualized in Figure 7) – meaning that
if the network solves the task, it must be integrating global
information through recurrent connections. As baselines, we
compare with CNN models of various depths, from 2 to 32 lay-
ers, which thereby have receptive fields which span from local
to global with respect to the image. On the final more complex



Figure 3: Waves propagate differently inside and outside shapes, integrating global shape information to the interior.
Sequence of hidden states of an oscillator model (NWM) trained to classify pixels of polygon images based on the number of sides
using only local encoders and recurrent connections. We see the model has learned to use differing natural frequencies inside
and outside the shape to induce soft boundaries, causing reflection, thereby yielding different internal dynamics based on shape.

datasets, we additionally compare with a more advanced U-Net
architecture (Ronneberger et al., 2015) which uses simulta-
neous depth and a spatial bottleneck to transmit information
globally. We refer readers to the supplementary material for full
training details. The full code and video visualizations for the
results in this paper are available at: https://github.com/
KempnerInstitute/traveling-waves-integrate

Datasets

To validate the core idea that traveling waves can be used to
transmit information over large spatial distances, and that this
global information can be decoded in a task-relevant manner,
we primarily employ four datasets:

Polygons: First, we consider a simple dataset composed
of white polygons on black backgrounds, where the classes
are given by the number of sides of the polygons. The exam-
ples are synthetic 75×75 pixel grayscale images with 1 to 2
polygons, each with 3 to 6 edges roughly circumscribed within
circles with radii of 15 to 20 pixels. On this dataset, the angle
of the corners of the shape are sufficient to correctly classify
those patches, but this information must then be transferred to
the center of the shape for correct segmentation of the interior.

Tetrominoes: As a second slightly more complex dataset
that has been employed in prior segmentation work (Miyato
et al., 2024), we employ own re-implementation of the Tetro-
minoes dataset (Kabra et al., 2019), where each image is
composed of 1 to 5 ‘Tetris’ like blocks of varying shapes and
colors arranged on a black background. In detail, there are
6 distinct classes of objects from 14-28 pixels long. The in-
creased complexity of shapes and number of objects per image
increases the difficulty of this dataset over Polygons.

MNIST: We use the MNIST dataset (LeCun, 1998) but in-
crease the spatial dimensions to 56×56 through interpolation.
The pixels are binarized at a threshold of 0.5, and are assigned
the associated class label of the digit in the image or ‘back-
ground’. This task is significantly harder than those above
since the shapes now differ between instances (i.e. each hand-
written 3 is unique) and thus the model must learn these sets
of invariances when processing the dynamic representations.

Multi-MNIST: Finally, we introduce a variant of the Multi-
MNIST dataset (Sabour et al., 2017), where each image con-
tains between 1 and 4 digits placed at random, non-overlapping
locations on a 128×128 grid. To construct these images, we
first upscale each 28×28 MNIST digit to 42×42 using inter-
polation, and then position them on the larger canvas. The

pixels are binarized at a threshold of 0.5, with each pixel la-
beled according to the digit it belongs to or as ‘background’.
This task is significantly more challenging than previous ones
due to the increased spatial dimensions (and thereby greater
spatial integration distances), combined with the combinatorial
variation in the number and placement of digits. Samples of
this new dataset are visualized in Figure 6.

Models

In the following we detail the local recurrent models and the
associated global baselines that we use in this study. For all
models, given an input image x ∈ RC×H×W , the target output
is y ∈ RN×H×W , a set of N class logits for each pixel.

Locally Coupled Oscillatory RNN (NWM) As a model which
most closely follows the motivational drum analogy introduced
earlier, we implement a recurrent neural network parameter-
ized as a network of locally coupled oscillators. In prior work,
this model has been referred to as the Neural Wave Machine
(NWM) (Keller & Welling, 2023), based on the coRNN (Rusch
& Mishra, 2021), and is known to be biased towards traveling
wave dynamics. In fact, it is known that in the continuum limit
of the number of neurons, such networks of coupled oscillators
reduce exactly to wave dynamics of Equation 1 (Schwartz,
2016). Explicitly, the dynamics of this model are given as:

∂2h
∂t2 = σ(wh ⋆h)− γθ(x)⊙h−αθ(x)⊙

∂h
∂t

. (9)

where σ = tanh is the hyperbolic tangent function. In this work,
in order to make the recurrent dynamics a function of the input
without explicitly clamping hidden states as done in the theoret-
ical section, we modify the original NWM such that the natural
frequencies of each oscillator γ, and the damping term α are a
function of the input image, computed through shallow 3-layer
CNN models (γθ(x),αθ(x)). This crucially allows the way in
which waves propagate over the hidden state (and therefore
the resulting time-dynamics) to be dictated by the input image,
and specifically enables the network to emulate soft boundary
conditions via large differences in natural frequencies (as seen
in Figure 3). The initial state of the model is also set by the
shallow 4-layer CNN encoder h0 = fθ(x), with (3×3) kernels.
Crucially, this yields a receptive field size of (9×9) in the final
layer, significantly smaller than the spatial dimensions of all
shapes in the datasets listed above (see Figure 7).

https://github.com/KempnerInstitute/traveling-waves-integrate
https://github.com/KempnerInstitute/traveling-waves-integrate


Figure 4: Wave-based models learn to separate distinct shapes in frequency space. (Left) Plot of predicted semantic
segmentation and a select set of frequency bins for each pixel of a given test image. (Right) The full frequency spectrum for
each shape in the dataset, averaged over all pixels containing that class label in the dataset. We see that different shapes have
qualitatively different frequency spectra, allowing for > 99% pixel-wise classification accuracy on a test set.

We initialize the recurrent convolutional kernel wh to the
finite difference approximation of the Laplacian operator from
Equation 8 to bias the model towards wave propagation, and
initialize the natural frequency encoder γθ(x) to the identity to
encourage soft boundaries. Finally, we numerically integrate
the second order ODE above using the Implicit-Explicit integra-
tion scheme from (Rusch & Mishra, 2021) with a timestep size
of 0.1 for a fixed amount of time (100 timesteps). All recurrent
convolutions in this paper are performed with circular padding
to avoid boundary effects. We use 2 channels in the recurrent
hidden state on MNIST & Tetrominoes, and 16 on Multi-MNIST.

Convolutional LSTM To explore how other locally-
constrained recurrent architectures may solve these tasks
when not explicitly biased towards wave-dynamics a prioi, we
implement a convolutional variant of the LSTM (Hochreiter &
Schmidhuber, 1997), where all previous dense connections
are now replaced with local convolutions over the spatial
dimensions of the hidden state. Explicitly:

x0 = fθ(x), it = σ
(
wxi ⋆xt−1 +whi ⋆ht−1 +bi

)
, (10)

ft = σ
(
wx f ⋆xt−1 +wh f ⋆ht−1 +b f

)
, (11)

C̃t = tanh
(
wxc ⋆xt−1 +whc ⋆ht−1 +bc

)
, (12)

Ct = ft ⊙Ct−1 + it ⊙ C̃t , ht = ot ⊙ tanh(Ct), (13)

ot = σ
(
wxo ⋆xt−1 +who ⋆ht−1 +bo

)
, (14)

xt = wo2 ⋆σ(wo1 ⋆ht). (15)

σ is a sigmoid, and ⊙ denotes the Hadamard product. As
in the NWM, we use two hidden channels, a 4-layer CNN for
fθ, and two 3-layer CNNs to initialize h0 and C0. We apply
no special initialization, yet as shown in Figure 5, the model
still learns to generate hidden-state waves to integrate spatial
information and solve the task. All LSTMs are trained with 20
timesteps, which was optimal for small datasets. While 100
timesteps may help in complex tasks, training is substantially
slower, so we default to the NWM for larger-scale experiments.

Recurrent Readout For the two recurrent models listed
above, we must decide how to read out the class label from
the sequence of hidden states. The simplest option is to feed
the hidden state at the final timestep to a pixel-wise ‘readout’
network for classification. We denote these models Last in
Table 1. Alternatively, we can take some function of the hidden

states over a greater extent of the time series, and then feed
this output into the readout network. The options for such a
time-projection function include taking the maximum or mean
hidden state values over time (Max and Mean respectively),
computing the Fourier coefficient amplitudes of the time series
(denoted FFT ), or computing a learnable linear projection of
the the full timeseries (denoted Linear ). In all cases, we pa-
rameterize the readout module as a 4-layer MLP for Polygons,
MNIST, and Tetrominoes, and a 6-layer MLP for Multi-MNIST.

Feed-Forward CNN Baselines The CNN baselines are com-
posed of a number (L) of convolutional layers, each with (3×3)
convolutional kernels, and 16 channels. This baseline is in-
tended to demonstrate the inability of neurons with restricted
local receptive fields to perform tasks which require global in-
formation (for small L), and the ability of global receptive fields
to improve this performance (for large L). Explicitly, with wl

denoting layer l’s convolutional kernel and σ denoting a ReLU
(Nair & Hinton, 2010) activation function,

ŷ = σ(wL ⋆σ(wL−1 ⋆ . . .σ(w1 ⋆x+b1) . . .+bL−1)+bL)), (16)

where ŷ is fed channelwise to a linear layer that outputs 100
channels, equivalent to the time-projected output of the RNN
models above. The output of this linear layer is then simi-
larly fed into a ‘readout’ MLP which operates on each pixel’s
channels individually to produce the class logits.

Non-local U-Net Baseline Finally, as a competitive non-local
effective upper bound on the local models’ performance, we
implement a simple U-Net model (Ronneberger et al., 2015)
to perform segmentation. Succinctly, these models contain 4
encoder layers that decrease spatial resolution and 4 decoder
layers that increase spatial resolution, starting with cin chan-
nels, and reaching cin ·24 channels in the bottleneck. Crucially
because of the spatial bottleneck, the receptive fields of pixels
in the output layer of this model cover the entire image, allowing
for simple solutions to the semantic segmentation task. For the
U-Net models, we simply take the final output as logits since
the decoder network can be seen as type of ’readout’. We
evaluate U-Net on the most challenging dataset: Multi-MNIST.



Figure 5: Both wave-biased and standard local recurrent models learn traveling wave dynamics to integrate spatial
information. Visualization of a subset of the LSTM and NWM hidden state evolution after training (top) for a given image (left).
We see waves propagate over the timesteps throughout the shape. On the bottom we plot the associated pixel-wise learned linear
projection of the hidden state time-dynamics and observe individual shapes appear to pop out in different learned dimensions.

Results
Metrics In Tables 1 & 2, we present results using standard
segmentation metrics: cross-entropy loss (“Loss”), accuracy
(“Acc”), and Intersection over Union (“IoU”). IoU measures the
ratio of the overlap between the predicted and ground truth
regions to the total area covered by both. In the main text,
we measure these metrics only on the foreground objects,
eliminating the bias introduced by the dominant background in
each image. See Supplementary Material for more details.

Polygons As an initial proof of concept, in Figure 3 we show
the hidden state evolution for the NWM model of Equation
9, with FFT readout, on a single example of the polygons
dataset. We see that the model initializes the hidden state
such that waves are propagated from the edges of the object
in all directions. From naive inspection of the sequence, we
can see that waves appear to propagate differently within the
object, seemingly changing the spectral representation of each
point on the interior of the hexagon. Figure 4 (left) shows the
magnitudes of a subset of Fourier coefficients for all neurons
in response to a test image, while Figure 4 (right) shows the
frequency representations for each object class averaged over
all pixels in the validation set which are labeled as that class.
We see that there is a clear distinction between the shapes
that the model appears to pick up on, which allows it to identify
all polygons with > 99% accuracy on a held out test set. In
Appendix Figures 9 & 10, we further quantitatively analyze
how the distribution of wavelengths changes during training,
and show that this strongly correlates with model performance
(R2 = 0.961), strongly implicating wave dynamics in model
performance. Additional results are shown in Figures 13 & 14.

Tetrominoes & MNIST As a concrete comparison of local
recurrent models with different readouts and feed-forward mod-
els with different receptive field sizes, in Table 1 we include the

aggregated results of 300 total models trained on Tetrominoes
and MNIST. We observe that CNNs with 2 and 4 layers perform
poorly on both datasets, with performance improving as the
receptive field (RF) increases, as expected. This improvement
is most pronounced in 16-layer CNNs (with an effective RF
size of 33) on MNIST and in 8-layer CNNs (with an effective
RF size of 17) on Tetrominoes. However, mean performance
declines with 32 layers on MNIST and with 16 and 32 layers
on Tetrominoes, though the variance remains high. As deeper
networks contain more parameters, they pose a more challeng-
ing optimization problem, leading to inconsistent convergence.
Nevertheless, peak performance continues to improve as the
number of layers increases, even in the 16- and 32-layer mod-
els, despite a higher number of failed training runs. For the
minimum, maximum, and median performance across different
seeds, refer to Tables 5 and 6 in the supplement.

Among recurrent models, those with linear projections per-
form best, with the NWM outperforming baselines. Recurrent
models that rely solely on the last hidden state for predictions
achieve the weakest results. The NWM models exhibit the
lowest variance, indicating greater training stability. Figure 5
visualizes the recurrent states and linear projections for a sam-
ple image. Interestingly, the LSTM learns to generate wave
dynamics despite lacking an explicit inductive bias for doing so.

Multi-MNIST Most impressively, in Table 2, we see that the
NWM with 54K parameters performs better than U-Net’s with
30K and 68K parameters, despite having only local connec-
tivity and no explicit skip connections. In addition, our NWM
performs only slightly worse than U-Net’s with 122K and 190K
parameters. Interestingly, the NWM has the lowest foreground
loss of all models, possibly due to an increased confidence in
predictions (e.g. predicting background) compared with other
models. Once again, we see NWM models have much lower
variance, suggesting training stability benefits over comparable



U-Net models. These results suggest wave dynamics with lin-
ear readouts over time may be a promising avenue to explore
as an alternative to U-Net style architectures for integrating
spatial information in artificial neural networks.

Related Work
Wave-based Computing While prior work on wave-based
computing in trainable task-oriented neural networks remains
scarce, there is a rich history of using wave-like or other spa-
tiotemporal field dynamics generally for computation. Early
work studied the ability for waves to perform simple logical oper-
ations and thereby compute in a distributed manner (Izhikevich
& Hoppensteadt, 2009; Gong & van Leeuwen, 2009), while
other work has studied the ability for physical water waves
to act as literal instantiations of classic ‘reservoir computers’
(Maksymov, 2023). Classically, the domain of ‘Neural Field
Theory’ has studied the role of spatiotemporal field dynamics
in neural computation from a rigorous mathematical standpoint,
although to-date these models have not been adapted to deep-
neural network task-oriented performance. We refer readers to
Breakspear (2017) for a thorough review of such models.

More recently, Hughes et al. (2019) have noted the analogy
between the wave equation and recurrent neural networks, as
we have done here, and used this to suggest that wave-based
RNNs with learnable wave speeds may perform a type of ana-
log computation. The authors use this to perform acoustic
signal classification in a simplified setting, similar to our study
in spirit, but differing in how waves are used and their computa-
tional purpose. Most related to the present study, Balkenhol et
al. (2024) use an architecture similar to ours, with a Laplacian
recurrent operator, damping, and gating, to show that when
provided with an audio signal at a specific spatial location of
the network, neurons at more distant locations can perfectly
reconstruct the signal. The authors also show that this network
is able to reproduce electrical recordings from macaque mon-
keys in response to simple grating stimuli, hypothesizing that
their detection of high frequency waves is highly related to the
transfer of information over large cortical distances.

In terms of task-oriented wave-based models, recent
work by Effenberger et al. (2025) extensively studies the
computational abilities of oscillatory neural networks, and
specifically notes the emergence of traveling waves in these
models in response to visual stimuli. Similarly, work by Keller
& Welling (2023); Keller et al. (2024b) studies wave-based
RNNs for sequence processing and prediction. Our work
fundamentally differs from these in the precise study of how
these waves may be utilized for the spatial integration of
visual information, as is hypothesized to happen in the visual
cortex. Furthermore, our work uniquely demonstrates that a
timeseries based readout is crucial for performing this type
of integration, inspired by Kac’s question, opening the door
for future novel applications of these models.

Recurrence vs. Depth Another relevant line of research
concerns the ability to trade off depth for recurrence in CNNs.
Early work in this area was performed by Liao & Poggio (2020),

with a more extensive recent study performed by Schwarzschild
et al. (2022). The authors demonstrate how iterating a single
convolutional layer in a deep CNN yields similar performance
to equivalently deep fully untied CNNs. Our work differs from
these in that we demonstrate the advantage of a timeseries
readout mechanism, inspired by Kac’s question, whereas prior
work can be seen as using the ‘last’ hidden state mechanism,
that we see underperforms in this work. Interestingly, our
findings thus suggest a potential novel method to improve the
performance of these recurrent alternatives to deep networks
through the use of our readout, a direction we intend to study
in future work. Other more machine learning focused work has
studied the impact of various weight-sharing schemes in deep
convolutional networks (Eigen et al., 2014; Jastrzębski et al.,
2018; Boulch, 2017), however these share the same distinction
with the present study in terms of their readout mechanism,
while our proposed timeseries readouts appear to be uniquely
linked to the wave dynamics that emerge in our models.

Binding By Synchrony Finally, we believe our work shares
an interesting connection with the “binding by synchrony” con-
cept (Singer, 2007) from early neuroscience research. Specifi-
cally, while our model’s ‘binding’ of parts into wholes does not
rely on precise zero-lag synchrony—where oscillators within
an object are perfectly in phase, as in the original framework;
our method does rely on traveling waves of activity within ob-
jects that can be interpreted as a type of phase-lag synchrony.
The “binding operation” then involves a transformation of the
time signal using a suitable linear projection (our proposed
timeseries readout). We believe this connection is valuable
precisely since it enables a connection with the extensive his-
torical literature on this concept, while simultaneously forming
novel predictions on how such phenomena might manifest in
natural neural systems. On the machine learning side of this
concept, our work shares a strong connection with a class
of object-centric learning methods which leverage a notion of
synchrony of neural activations to define ‘bound’ visual units for
computational purposes. This includes models such as com-
plex autoencoders (Löwe et al., 2022, 2024; Stanić et al., 2024;
Gopalakrishnan et al., 2024) and recent Artificial Kuramoto
Oscillatory Neurons (AKOrN) Miyato et al. (2024). Unlike our
method, the waves in the AKOrN model are not used directly as
a representation themselves, but instead are neglected through
the use of the ‘last hidden state’ readout method. Perhaps most
related to our work, Liboni et al. (2023) use a complex-valued
recurrent neural network designed to generate traveling waves
for image segmentation, with binding information encoded in
the temporal phase sequence of these waves. This method
can indeed be seen as using traveling waves to integrate infor-
mation spatially, but contains no trainable components, offering
a more theoretical exposition to the problem, as opposed to
the task-oriented empirical study presented here.

Limitations & Future Work

While we believe the experiments above are convincing of the
fact that traveling waves are an effective and efficient mecha-



MNIST

Model Arch. #θ FG-Acc FG-IoU FG-Loss

CNN 2 160k 0.14 ± 0.06 0.10 ± 0.04 2.44 ± 0.67
4 165k 0.19 ± 0.11 0.13 ± 0.07 2.49 ± 0.99
8 174k 0.42 ± 0.15 0.30 ± 0.11 1.76 ± 0.90
16 193k 0.57 ± 0.39 0.50 ± 0.35 1.73 ± 1.80
32 230k 0.27 ± 0.43 0.25 ± 0.41 3.12 ± 1.91

LSTM Max 146k 0.42 ± 0.05 0.31 ± 0.04 1.57 ± 0.13
Mean 146k 0.42 ± 0.09 0.31 ± 0.07 1.57 ± 0.22
Last 146k 0.32 ± 0.23 0.24 ± 0.18 2.34 ± 1.38
FFT 151k 0.73 ± 0.27 0.66 ± 0.25 0.93 ± 1.23
Linear 151k 0.79 ± 0.28 0.73 ± 0.26 0.78 ± 1.25

NWM Max 151k 0.48 ± 0.07 0.37 ± 0.07 1.39 ± 0.17
Mean 151k 0.46 ± 0.08 0.35 ± 0.07 1.47 ± 0.21
Last 151k 0.50 ± 0.08 0.39 ± 0.07 1.34 ± 0.19
FFT 177k 0.76 ± 0.05 0.65 ± 0.07 0.72 ± 0.15
Linear 177k 0.90 ± 0.02 0.85 ± 0.04 0.30 ± 0.07

Tetrominoes

Model Arch. #θ FG-Acc FG-IoU FG-Loss

CNN 2 160k 0.24 ± 0.08 0.14 ± 0.05 1.74 ± 0.62
4 164k 0.31 ± 0.16 0.20 ± 0.11 1.76 ± 0.94
8 173k 0.74 ± 0.26 0.64 ± 0.22 0.70 ± 1.00
16 192k 0.40 ± 0.51 0.40 ± 0.51 2.14 ± 1.83
32 229k 0.33 ± 0.47 0.32 ± 0.47 2.26 ± 1.67

LSTM Max 146k 0.62 ± 0.30 0.52 ± 0.31 0.99 ± 0.95
Mean 146k 0.64 ± 0.25 0.53 ± 0.23 0.95 ± 0.96
Last 146k 0.59 ± 0.41 0.52 ± 0.38 1.37 ± 1.51
FFT 151k 0.95 ± 0.04 0.91 ± 0.07 0.18 ± 0.11
Linear 151k 0.97 ± 0.02 0.94 ± 0.03 0.13 ± 0.05

NWM Max 151k 0.88 ± 0.11 0.81 ± 0.15 0.35 ± 0.24
Mean 151k 0.92 ± 0.07 0.87 ± 0.11 0.24 ± 0.14
Last 151k 0.94 ± 0.06 0.90 ± 0.09 0.21 ± 0.14
FFT 176k 0.98 ± 0.01 0.97 ± 0.01 0.07 ± 0.03
Linear 176k 0.99 ± 0.00 0.98 ± 0.01 0.05 ± 0.02

Table 1: Locally constrained recurrent models with timeseries readouts can semantically segment images at the pixel
level, a task requiring global information. Models with the lowest foreground loss are in bold. ‘Arch’ refers to # of CNN layers,
and type of readout for LSTM and NWM. #θ refers to the number of parameters. Results are from 10 random seeds (mean± std).

Model #θ FG-Acc FG-IoU FG-Loss

U-Net 2c 31K 0.66 ± 0.27 0.60 ± 0.28 1.19 ± 0.56
U-Net 3c 69K 0.90 ± 0.10 0.87 ± 0.13 0.56 ± 0.26

NWM 55K 0.96 ± 0.01 0.93 ± 0.01 0.15 ± 0.02

U-Net 4c 122K 0.97 ± 0.00 0.96 ± 0.01 0.24 ± 0.04
U-Net 5c 190K 0.98 ± 0.00 0.97 ± 0.00 0.17 ± 0.05

Table 2: Wave-based models outperform comparably sized
U-Net models on more challenging Multi-MNIST segmen-
tation. U-Net #c refers to the number of feature maps output
by the first layer, doubling each layer thereafter, and #θ refers
to the number of parameters. Rows sorted by #θ. Results are
from 12 random seeds, displayed as mean± std.

nism for integrating spatial information through the time dimen-
sions, they are inherently limited in a number of ways. First,
from the machine learning perspective, while the wave-based
models may be able to outperform U-Net models with an equiv-
alent number of parameters on the Multi-MNIST task presented
here, the amount of computation time is significantly higher to
run these models on our current hardware. This is due to the
fact that the oscillatory wave dynamics must be accurately nu-
merically integrated (with a small ∆t), while U-Net type models
are optimized for parallel GPU hardware. In future work, we
intend to explore the potential of using oscillatory state space
models (Rusch & Rus, 2025) to enable the parallel processing
of the recurrent NWM dynamics over sequence length, which
would significantly lessen this computational bottleneck. From
the neuroscience perspective, our proposed wave-based mod-
els are highly abstract idealizations of a cortical sheet, thereby
allowing for the tractable computation, but also obscuring how

some of the parameters such as the natural frequencies or
damping parameters could be mapped onto neurobiological
components. Despite this limitation, this remains one of the
few models which can be trained to leverage wave dynamics
in a task-oriented manner; and therefore, in future work, we
intend to leverage this uniquely new framework to compare the
learned dynamics with neural recordings in a precise manner.
Finally, although our work is inspired by the ‘hearing the shape
of a drum’ problem, we have no guarantee that our trained
models form image representations in precisely that manner.
We do find the analogy valuable for guiding model develop-
ment, and the success of time-based readouts supports this
intuition. However, we caution readers against overinterpreting
this analogy as a literal account of how the models operate.

Conclusion

In the above, we have presented arguments both theoretical
and empirical supporting the idea that traveling waves may
serve to integrate spatial information through the time dimen-
sion in otherwise locally constrained architectures, achieving
performance comparable with globally connected counterparts.
Furthermore, we have demonstrated empirically that this wave-
encoded information is most directly accessible through lin-
ear projections of the hidden state time-dynamics, contrary
to how most recurrent alternatives to depth have previously
been studied. We showed that even if models are not biased
towards wave dynamics initially, such as the Conv-LSTM, they
will still learn to propagate waves in order to transfer informa-
tion effectively through space, thereby implicating waves and
wave-based representations as an optimal solution to informa-
tion transfer under such constraints. Finally, we demonstrated
that wave-based integration of information may be a stable



and parameter efficient rival to common U-Net architectures.
Notably, these wave-based solutions—naturally spanning both
spatial and frequency domains—could align more directly with
EEG or MEG measurements in neuroscience, while on the
machine learning side we speculate they could someday help
alleviate the computational bottlenecks of global self-attention
mechanisms. We hope that this work draws increased atten-
tion to the idea that wave-based representations may carry
global task-relevant information in both biological and artificial
systems, thereby encouraging their further study.
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Supplementary Material
Experimental Details
This section provides details on the training and evaluation procedures for the models presented in this paper. The full code
for reproducing results and visualizations from the main text is available at: https://github.com/KempnerInstitute/
traveling-waves-integrate.

Each model is trained for 300 epochs on the MNIST, Tetrominoes, and Multi-MNIST datasets. We evaluate the validation loss at
the end of every epoch and retain the model with the lowest validation loss throughout training. The training process employs the
Adam optimizer (Kingma & Ba, 2017) with a learning rate of 0.001 and a batch size of 64.

For dataset partitioning, we use 51,000 images for training, 9,000 for validation, and 10,000 for testing in MNIST. The
Tetrominoes dataset consists of 10,000 images for training, 1,000 for validation, and 1,000 for testing. Similarly, the Multi-MNIST
dataset comprises 10,000 images for training, 1,000 for validation, and 1,000 for testing. Table 3 reports pixel-wise accuracy, IoU,
and loss for both foreground and background.

Each model is trained using multiple random seeds. For MNIST and Tetrominoes, we train each model using 10 different
random seeds, while for Multi-MNIST, we use 12 seeds. For example, the NWM with a linear readout is trained on MNIST
10 times, each with a different random seed. After training, we evaluate each model individually and present the aggregated
results, including the mean and standard deviation, in Tables 1, 2, and 3. In total, we train 150 models on MNIST, 150 models on
Tetrominoes, and 60 models on Multi-MNIST, leading to a total of 360 models.

We train the Conv-LSTMs for 20 timesteps. The NWM model is trained for 100 timesteps on the MNIST, Tetrominoes, and
Multi-MNIST datasets, while for the polygons dataset, the NWM runs for 500 timesteps. In the FFT readout, we use the real
component of the discrete Fourier transform. This results in 50 bins for the NWM on MNIST, Tetrominoes, and Multi-MNIST, and
250 bins for the polygons dataset. The LSTM model outputs 10 Fourier bins for MNIST, Tetrominoes, and Multi-MNIST.

The Conv-LSTMs and NWMs use nearly identical CNN encoders. Both use the same 4-layer CNN to process the input x (to
initialize the input x0 for the LSTM and to initialize the hidden state h0 for the NWM). The LSTM uses two 3-layer CNNs to intialize
the hidden and cell states. The NWM uses two identical (to the LSTM) 3-layer CNNs to initialize the natural frequencies γ and
damping term α, except the NWM 3-layer CNN’s include an extra ReLU function at the end of the CNN to support waves.

All convolutional models are trained with 16 channels. To ensure a fair comparison with the NWM, a linear layer operating
channelwise outputs 100 channels. The readout MLP used for MNIST and Tetrominoes consists of four layers. Its input size is
given by the number of Fourier bins multiplied by 2, followed by two hidden layers of 256 neurons each, with ReLU activation
between layers, and a final output layer producing logits for classification. On Multi-MNIST, the NWM employs a six-layer readout
with 32 neurons in each hidden layer.

For the U-Net architecture, the Arch parameter in Tables 2 and 3 refers to the number of feature maps output by the first
convolutional layer. Each U-Net begins with stacked convolutions that maintain spatial resolution, producing Arch feature maps
(e.g., 3). The following four layers apply multiple convolutional operations per layer, each reducing spatial resolution by half while
doubling the number of feature maps. If the initial layer outputs 3 feature maps, the subsequent layers modify the number as
follows:

3 → 6 → 12 → 24 → 48.

The final number of feature maps, determined by Arch, follows:

2 → 32, 3 → 48, 4 → 64, 5 → 80.

The U-Net decoder progressively upsamples the spatial resolution over four layers while simultaneously reducing the number of
feature maps by half. By the fourth layer, it restores the feature map count to the value specified by Arch. Finally, 1×1 convolutions
are used to project the feature maps into logits for pixel-wise classification.

https://github.com/KempnerInstitute/traveling-waves-integrate
https://github.com/KempnerInstitute/traveling-waves-integrate


Metrics
In the main text, we present results using pixel-wise cross-entropy loss, accuracy, and IoU. Suppose we have N classes. Below,
we define exactly how each is computed. Suppose we have predicted segmentation mask ŷ ∈ {0,1, ...,N}H×W , ground truth
segmentation mask y ∈ {0,1, ...,N}H×W , and foreground mask M ∈ {0,1}H×W (where Mi j = 1 if and only if Xi j is a foreground
pixel, i.e. yi j ̸= 0). We also have FG_count = ∑

H
i=1 ∑

W
j=1 Mi j, i.e. the number of foreground pixels. For a given image, suppose

we have l̂ ∈ RH×W×N , where l̂i j is the predicted probability of each of the N classes, such that ŷi j = argmaxn(l̂i j).

Cross-Entropy(l̂, l) =− 1
HW

H

∑
i=1

W

∑
j=1

N

∑
n=1

1{yi j=n} log
(
l̂i jn

)
. (17)

Accuracy(ŷ,y) =
1

HW

H

∑
i=1

W

∑
j=1

1{ŷi j=yi j}. (18)

IoU(ŷ,y) =
1

HW

H

∑
i=1

W

∑
j=1

Intersection(ŷi j,yi j)

Union(ŷi j,yi j)

FG-Cross-Entropy(l̂,y) =− 1
FG_count

H

∑
i=1

W

∑
j=1

Mi j

N

∑
n=1

1{yi j=n} log
(
l̂i jn

)
. (19)

FG-Accuracy(ŷ,y) =
1

FG_count

H

∑
i=1

W

∑
j=1

Mi j 1{ŷi j=yi j}, (20)

FG-IoU(ŷ,y) =
1

FG_count

H

∑
i=1

W

∑
j=1

Mi j ×
Intersection(ŷi j, yi j)

Union(ŷi j, yi j)
. (21)

Where Intersection(ŷi j,yi j) = 1 if ŷi j = yi j and 0 otherwise; and Union(ŷi j,yi j) = 1 if ŷi j = yi j and 2 otherwise.

Multi-MNIST Dataset

Figure 6: Samples from the newly generated Multi-MNIST dataset.



Example of Receptive Field

Figure 7: Example of receptive field overlayed with objects. We see that the dataset and model architectures have been
intentionally designed such that the receptive field size is smaller than the size required to fully capture the shape information
necessary to classify the shape.

NWM Recurrent Kernel Before and After Training

Figure 8: NWM recurrent kernel weights before (top) and after (bottom) training on Tetrominoes. We see that after training, the
weights have not significantly deviated from their Laplacian initialization, maintaining wave-like recurrent dynamics.



Extended Quantitative Analysis of Wave Dynamics
In order to demonstrate the importance of wave dynamics in the trained models presented in the main text, in this section
we include additional quantitative analysis of the emergence of wave dynamics during training and the correlation with model
performance.

First, to compute a metric for the degree of wave propagation during training, we leverage a method from the neuroscience
literature (Davis et al., 2020, 2021) which computes an estimated instantaneous wavelength at each spatial location. In prior work,
the detection of long wavelengths above baseline length has proven an accurate measure of the existence of structured wave-like
dynamics in otherwise highly noisy dynamics.

In detail, the method transforms the initial real-valued signal x(t) (e.g. the hidden state of our RNNs) to a corresponding analytic
complex valued signal xa(t) through the Hilbert Transform H . Explicitly: xa(t) = x(t)+ iH [x(t)]. The instantaneous phase of the
signal can then be computed at each point in space through the complex argument of this analytic signal: φ(t) = Arg[xa(t)]. The
wavelength at each location is then given simply as the spatial gradient of this phase: ν(t) =−∇φ(t).

In Figure 9, we plot the distribution of these estimated wavelengths over training iterations for an NWM model trained on
the polygons dataset, and observe that there is a significant trend towards the development of longer wavelengths as training
progresses. In otherwords, the wavelength distribution gets significantly more heavy-tailed through training.

To get a single summary statistic to quantify the development of this distribution, we compute the percentage of spatial locations
where the wavelength exceeds a minimal threshold (in this case we pick a threshold of 1.5, large enough to ignore the peak at 1
due to discretization, but we find similar results for a wide range of thresholds). In Figure 10, we plot this wavelength percentage
for each training iteration, along with the corresponding (negative) loss of the model at the same iteration. Indeed, we see that
these two values are highly correlated with the loss decreasing at the same rate as long wavelengths emerge. Quantitatively,
these two values, averaged over 5 random seeds, reach a correlation coefficient of 0.961.

Figure 9: Distribution of estimated wavelengths over training for
the NWM model trained on the polygons dataset. We see that,
with training, significantly more structured dynamics emerge,
evidenced by longer estimated wavelengths, i.e. the distribution
gets significantly more heavy-tailed with training.

Figure 10: Comparison of the emergence of long-wavelengths
detected in the NWM neural dynamics, and the associated
loss of the model over training. We see that there is a strong
correlation between the emergence of waves and the improved
performance of the model.



Extended Visualizations of Table 1

Below, we include visualizations of the MNIST and Tetrominoes results from Table 1 in an alternative format to highlight our
key findings. In Figure 11, we analyze the effect of the readout mechanism for both the MNIST dataset (top 6 plots) and the
Tetronimoes dataset (bottom 6 plots). We include a dashed red line in the Acc / IoU metrics to indicate the performance of a
baseline predictor which only predicts background for each pixel. For the FG-ACC and FG-IoU metrics, this predictor would
achieve 0.0, and is thus omitted.

We see that the NWM and LSTM perform comparably on all metrics across both datasets. Most interestingly, we see that the
linear readout mechanism performs the best for both models, followed by the FFT. We additionally see the results on Tetronimoes
are significantly less varied than on MNIST, likely owing to the increased simplicity of the shapes int he dataset.

Figure 11: Comparing readout types on MNIST and Tetrominoes. Dashed red line indicates performance of a (baseline) predictor
that predicts the background for every pixel.

In Figure 12, we visualize the performance of the recurrent neural networks with the best identified readout mechanism from
the prior plot (linear) and compare this to the performance of CNN models of varying depths on both the MNIST dataset (top
6 plots) and the Tetronimoes dataset (bottom 6 plots). We again include a dashed red line in the Acc / IoU metrics to indicate
the performance of a baseline predictor which only predicts background for each pixel. We see that the CNNs have significantly
higher variance and thus consistently underperform the recurrent alternatives on average.



Figure 12: Comparing depth (CNNs) vs recurrence (LSTM and NWM) on MNIST and Tetrominoes. Dashed red line indicates
performance of a (baseline) predictor that predicts the background for every pixel.

Extended Semantic Segmentation Tabular Results
In Tables 3 and 4 we include the accuracies, IoU, and Loss values computed over the full set of classes (including the background
class) for all models presented in the main text. While these numbers are artificially inflated from the inclusion of the background
class (which dominates the majority of pixels) we include them here for completeness.

In Tables 5 and 6, we include the minimum, maximum, and median accuracies, IoU, and loss values for MNIST and Tetrominoes
to provide a better intuition for the full distribution of each model’s performance over different random seeds. We see that the
variance implied by these values is in-line with the standard deviations reported in the main text.



Dataset Model Architecture Acc IOU Loss

MNIST CNN 2 0.89 ± 0.01 0.80 ± 0.01 0.34 ± 0.13
4 0.89 ± 0.01 0.81 ± 0.02 0.35 ± 0.18
8 0.92 ± 0.02 0.86 ± 0.03 0.25 ± 0.16
16 0.94 ± 0.05 0.90 ± 0.09 0.27 ± 0.29
32 0.90 ± 0.06 0.83 ± 0.10 0.50 ± 0.31

LSTM Max 0.92 ± 0.01 0.86 ± 0.01 0.21 ± 0.02
Mean 0.92 ± 0.01 0.86 ± 0.02 0.21 ± 0.03
Last 0.91 ± 0.03 0.83 ± 0.05 0.35 ± 0.24
FFT 0.96 ± 0.04 0.93 ± 0.06 0.14 ± 0.20
Linear 0.97 ± 0.04 0.95 ± 0.06 0.12 ± 0.20

NWM Max 0.93 ± 0.01 0.87 ± 0.02 0.19 ± 0.02
Mean 0.93 ± 0.01 0.87 ± 0.02 0.20 ± 0.03
Last 0.93 ± 0.01 0.88 ± 0.02 0.18 ± 0.03
FFT 0.97 ± 0.01 0.94 ± 0.01 0.10 ± 0.02
Linear 0.99 ± 0.00 0.97 ± 0.01 0.04 ± 0.01

Tetrominoes CNN 2 0.89 ± 0.01 0.81 ± 0.02 0.27 ± 0.13
4 0.90 ± 0.02 0.82 ± 0.04 0.28 ± 0.19
8 0.96 ± 0.04 0.93 ± 0.06 0.11 ± 0.19
16 0.91 ± 0.07 0.85 ± 0.13 0.39 ± 0.33
32 0.90 ± 0.07 0.83 ± 0.12 0.41 ± 0.31

LSTM Max 0.94 ± 0.04 0.90 ± 0.07 0.16 ± 0.18
Mean 0.95 ± 0.04 0.90 ± 0.06 0.15 ± 0.18
Last 0.94 ± 0.06 0.89 ± 0.10 0.24 ± 0.28
FFT 0.99 ± 0.01 0.98 ± 0.01 0.03 ± 0.02
Linear 0.99 ± 0.00 0.99 ± 0.01 0.02 ± 0.01

NWM Max 0.98 ± 0.02 0.96 ± 0.03 0.05 ± 0.03
Mean 0.99 ± 0.01 0.98 ± 0.02 0.04 ± 0.02
Last 0.99 ± 0.01 0.98 ± 0.02 0.03 ± 0.02
FFT 1.00 ± 0.00 0.99 ± 0.00 0.01 ± 0.00
Linear 1.00 ± 0.00 0.99 ± 0.00 0.01 ± 0.00

Table 3: Supervised segmentation performance of various models and spectral methods. Models with the lowest foreground loss
are in bold. Arch (architecture) for the CNN refers to the number of layers, while for the LSTM and NWM refers to the type of
recurrent readout used. Each model is trained with 10 random seeds, and the results are displayed as mean± standard deviation
over the 10 seeds.

Model Arch. Parameters Acc IoU Loss

U-Net 2 30745 0.98 ± 0.01 0.97 ± 0.02 0.06 ± 0.03
3 68834 1.00 ± 0.00 0.99 ± 0.01 0.03 ± 0.01
4 122071 1.00 ± 0.00 1.00 ± 0.00 0.01 ± 0.00
5 190456 1.00 ± 0.00 1.00 ± 0.00 0.01 ± 0.00

NWM Linear 54855 1.00 ± 0.00 1.00 ± 0.00 0.01 ± 0.00

Table 4: Supervised segmentation performance of UNet and NWM with Linear Time Projection on Multi-MNIST. Arch for the U-Net
refers to the number of feature maps output by the first layer. The number of feature maps doubles between each layer (e.g. 3
means 3 → 6 → 12 → 24 → 48 by the final layer). For the NWM, Arch (architecture) refers to the type of recurrent readout used.
Each model is trained with 12 random seeds, and the results are displayed as mean± standard deviation over the 12 seeds.



Acc IoU Loss

MNIST

CNN

2 0.89 / 0.89 / 0.87 0.80 / 0.80 / 0.77 0.70 / 0.29 / 0.29
4 0.90 / 0.90 / 0.87 0.83 / 0.82 / 0.77 0.70 / 0.27 / 0.26
8 0.93 / 0.93 / 0.87 0.87 / 0.87 / 0.77 0.70 / 0.20 / 0.19
16 0.98 / 0.97 / 0.87 0.96 / 0.95 / 0.77 0.70 / 0.09 / 0.07
32 0.99 / 0.87 / 0.87 0.98 / 0.77 / 0.77 0.70 / 0.69 / 0.05

LSTM

Linear 0.99 / 0.98 / 0.87 0.98 / 0.97 / 0.77 0.70 / 0.05 / 0.03
FFT 0.98 / 0.97 / 0.87 0.97 / 0.95 / 0.77 0.70 / 0.07 / 0.05
Last 0.94 / 0.92 / 0.87 0.89 / 0.85 / 0.77 0.70 / 0.21 / 0.16
Mean 0.94 / 0.92 / 0.90 0.88 / 0.86 / 0.82 0.26 / 0.20 / 0.17
Max 0.93 / 0.92 / 0.91 0.87 / 0.86 / 0.84 0.24 / 0.20 / 0.19

NWM

Linear 0.99 / 0.99 / 0.98 0.98 / 0.97 / 0.96 0.06 / 0.04 / 0.03
FFT 0.98 / 0.97 / 0.95 0.96 / 0.94 / 0.91 0.14 / 0.09 / 0.07
Last 0.95 / 0.94 / 0.91 0.90 / 0.88 / 0.84 0.23 / 0.17 / 0.14
Mean 0.94 / 0.93 / 0.91 0.89 / 0.87 / 0.84 0.24 / 0.20 / 0.16
Max 0.94 / 0.93 / 0.92 0.90 / 0.87 / 0.85 0.21 / 0.20 / 0.15

Tetrominoes

CNN

2 0.89 / 0.89 / 0.86 0.81 / 0.81 / 0.75 0.65 / 0.22 / 0.22
4 0.91 / 0.91 / 0.86 0.84 / 0.84 / 0.75 0.65 / 0.19 / 0.18
8 0.97 / 0.97 / 0.86 0.95 / 0.95 / 0.75 0.65 / 0.06 / 0.05
16 1.00 / 0.86 / 0.86 1.00 / 0.75 / 0.75 0.65 / 0.65 / 0.00
32 1.00 / 0.86 / 0.86 1.00 / 0.75 / 0.75 0.65 / 0.63 / 0.00

LSTM

Linear 1.00 / 1.00 / 0.99 0.99 / 0.99 / 0.97 0.04 / 0.02 / 0.01
FFT 1.00 / 0.99 / 0.98 0.99 / 0.99 / 0.95 0.06 / 0.02 / 0.01
Last 0.99 / 0.98 / 0.86 0.97 / 0.95 / 0.75 0.65 / 0.06 / 0.04
Mean 0.99 / 0.95 / 0.86 0.99 / 0.91 / 0.75 0.65 / 0.10 / 0.03
Max 0.99 / 0.94 / 0.86 0.98 / 0.88 / 0.75 0.65 / 0.13 / 0.03

NWM

Linear 1.00 / 1.00 / 1.00 1.00 / 0.99 / 0.99 0.01 / 0.01 / 0.00
FFT 1.00 / 1.00 / 0.99 1.00 / 0.99 / 0.99 0.02 / 0.01 / 0.01
Last 1.00 / 0.99 / 0.97 0.99 / 0.99 / 0.94 0.08 / 0.02 / 0.01
Mean 1.00 / 0.99 / 0.97 1.00 / 0.98 / 0.94 0.07 / 0.03 / 0.01
Max 1.00 / 0.99 / 0.95 0.99 / 0.97 / 0.91 0.12 / 0.04 / 0.01

Table 5: Segmentation performance (only Acc, IoU, and Loss). Values are max / median / min over 10 seeds.



FG-Acc FG-IoU FG-Loss

MNIST

CNN

2 0.18 / 0.17 / 0.00 0.12 / 0.10 / 0.00 4.35 / 2.21 / 2.20
4 0.28 / 0.25 / 0.00 0.18 / 0.17 / 0.00 4.37 / 2.00 / 1.93
8 0.49 / 0.47 / 0.00 0.36 / 0.33 / 0.00 4.31 / 1.47 / 1.42
16 0.83 / 0.81 / 0.00 0.75 / 0.72 / 0.00 4.35 / 0.63 / 0.55
32 0.91 / 0.00 / 0.00 0.86 / 0.00 / 0.00 4.37 / 4.29 / 0.33

LSTM

Linear 0.93 / 0.88 / 0.00 0.88 / 0.82 / 0.00 4.33 / 0.35 / 0.24
FFT 0.89 / 0.81 / 0.00 0.83 / 0.72 / 0.00 4.39 / 0.56 / 0.35
Last 0.58 / 0.40 / 0.00 0.46 / 0.28 / 0.00 4.34 / 1.58 / 1.18
Mean 0.53 / 0.43 / 0.27 0.41 / 0.32 / 0.20 1.97 / 1.53 / 1.30
Max 0.47 / 0.44 / 0.32 0.36 / 0.32 / 0.22 1.83 / 1.52 / 1.42

NWM

Linear 0.94 / 0.90 / 0.86 0.91 / 0.85 / 0.78 0.42 / 0.31 / 0.20
FFT 0.84 / 0.78 / 0.65 0.76 / 0.67 / 0.52 1.04 / 0.68 / 0.51
Last 0.61 / 0.52 / 0.35 0.49 / 0.41 / 0.25 1.74 / 1.30 / 1.07
Mean 0.57 / 0.46 / 0.34 0.46 / 0.34 / 0.24 1.78 / 1.48 / 1.16
Max 0.59 / 0.46 / 0.41 0.47 / 0.34 / 0.31 1.55 / 1.47 / 1.11

Tetrominoes

CNN

2 0.26 / 0.26 / 0.00 0.16 / 0.16 / 0.00 3.50 / 1.55 / 1.54
4 0.40 / 0.39 / 0.00 0.27 / 0.25 / 0.00 3.55 / 1.30 / 1.28
8 0.83 / 0.82 / 0.00 0.72 / 0.70 / 0.00 3.55 / 0.38 / 0.33
16 1.00 / 0.00 / 0.00 1.00 / 0.00 / 0.00 3.61 / 3.50 / 0.01
32 1.00 / 0.00 / 0.00 1.00 / 0.00 / 0.00 3.60 / 3.40 / 0.01

LSTM

Linear 0.98 / 0.98 / 0.92 0.97 / 0.96 / 0.87 0.25 / 0.10 / 0.08
FFT 0.98 / 0.97 / 0.84 0.96 / 0.94 / 0.74 0.45 / 0.14 / 0.09
Last 0.92 / 0.84 / 0.00 0.86 / 0.73 / 0.00 3.55 / 0.43 / 0.29
Mean 0.96 / 0.68 / 0.00 0.93 / 0.53 / 0.00 3.61 / 0.72 / 0.20
Max 0.96 / 0.57 / 0.00 0.92 / 0.42 / 0.00 3.44 / 0.93 / 0.21

NWM

Linear 0.99 / 0.99 / 0.98 0.99 / 0.98 / 0.96 0.09 / 0.05 / 0.03
FFT 0.99 / 0.98 / 0.97 0.98 / 0.97 / 0.95 0.11 / 0.06 / 0.04
Last 0.98 / 0.97 / 0.81 0.97 / 0.95 / 0.70 0.53 / 0.15 / 0.10
Mean 0.99 / 0.94 / 0.78 0.98 / 0.89 / 0.65 0.50 / 0.23 / 0.06
Max 0.99 / 0.92 / 0.69 0.98 / 0.86 / 0.54 0.82 / 0.27 / 0.09

Table 6: Segmentation performance (only FG-Acc, FG-IoU, and FG-Loss). Values are max / median / min over 10 seeds.



Figure 13: Visualization of all frequency bins for an example of the Polygons dataset. We see that the background and different
shapes appear in separate frequency bins, allowing the model to easily segment the shapes semantically in frequency space.



Figure 14: Visualization of the impact of different combinations of shapes in the same image on the frequency space representation
of the other shape for the Polygons dataset. We see that while there is a minor impact on the frequency space representation of
each shape when another shape appears nearby, the overall frequency spectrum is relatively invariant. This implies that each
neuron indeed has global information about all shapes present in the image, but mainly represents the shape which it is currently
‘located within’.
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