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Abstract

In this paper we study offline Reinforcement
Learning with Human Feedback (RLHF) where
we aim to learn the human’s underlying re-
ward and the MDP’s optimal policy from a
set of trajectories induced by human choices.
We focus on the Dynamic Discrete Choice
(DDC) model for modeling and understand-
ing human choices, which is widely used to
model a human decision-making process with
forward-looking and bounded rationality. We
propose a Dynamic-Choice-Pessimistic-Policy-
Optimization (DCPPO) method and prove that the
suboptimality of DCPPO almost matches the clas-
sical pessimistic offline RL algorithm in terms of
suboptimality’s dependency on distribution shift
and dimension. To the best of our knowledge, this
paper presents the first theoretical guarantees for
off-policy offline RLHF with dynamic discrete
choice model.

1. Introduction

Reinforcement Learning with Human Feedback (RLHF) is
an area in machine learning research that incorporates hu-
man guidance or feedback to learn an optimal policy. In
recent years, RLHF has achieved significant success in large
language models, clinical trials, auto-driving, robotics, etc.
(Ouyang et al., 2022; Gao et al., 2022; Glaese et al., 2022;
Hussein et al., 2017; Jain et al., 2013; Kupcsik et al., 2018;
Menick et al., 2022; Nakano et al., 2021; Novoseller et al.,
2020). Unlike conventional offline reinforcement learn-
ing, where the learner aims to determine the optimal policy
using observable reward data, in RLHF, the learner does
not have direct access to the reward signal but instead can
only observe a historical record of visited states and human-
preferred actions. In such cases, the acquisition of reward
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knowledge becomes pivotal.

Dynamic Discrete Choice (DDC) model is a framework for
studying learning for human choices from data, which has
been extensively studied in econometrics literature. (Rust,
1987; Hotz & Miller, 1993; Hotz et al., 1994; Aguirre-
gabiria & Mira, 2002; Kalouptsidi et al., 2021; Bajari et al.,
2015; Chernozhukov et al., 2022). In a DDC model, the
agent make decisions under unobservable perturbation, i.e.
mr(an | sp) = argmax, {Qn(sh,a) + €n(a)}, where e, is
an unobservable random noise and ()}, is the agent’s action
value function.

In this work, we focus on RLHF within the context of a
dynamic discrete choice model. Our challenges are three-
folded: (i) The agent must first learn the human behavior
policies from the feedback data. (ii) As the agent’s objective
is to maximize cumulative reward, the reward itself is not
directly observable. We need to estimate the reward from the
behavior policies. (iii) We face the challenge of insufficient
dataset coverage and large state space.

With these coupled challenges, we ask the following ques-
tion:

Without access to the reward function, can one learn the
optimal pessimistic policy from merely human choices
under the dynamic choice model?

Our Results. In this work, we propose the Dynamic-
Choice-Pessimistic-Policy-Optimization (DCPPO) algo-
rithm. By addressing challenges (i)-(iii), our contributions
are three folds: (i) For learning behavior policies in large
state spaces, we employ maximum likelihood estimation to
estimate state/action value functions with function approx-
imation. We establish estimation error bounds for general
model class with low covering number. (ii) Leveraging the
learned value functions, we minimize the Bellman mean
squared error (BMSE) through linear regression. This al-
lows us to recover the unobservable reward from the learned
policy. Additionally, we demonstrate that the error of our
estimated reward can be efficiently controlled by an uncer-
tainty quantifier. (iii) To tackle the challenge of insufficient
coverage, we follow the principle of pessimism, by incorpo-
rating a penalty into the value function during value iteration.



We establish the suboptimality of our algorithm with high
probability with only single-policy coverage.

Our result matches existing pessimistic offline RL algo-
rithms in terms of suboptimality’s dependence on distribu-
tion shift and dimension, even in the absence of an observ-
able reward.To the best of our knowledge, our results offer
the first theoretical guarantee for pessimistic RL under the
human dynamic choice model.

1.1. Related Work

Reinforcement Learning with Human Feedback. In
recent years RLHF and inverse reinforcement learning
(IRL) has been widely applied to robotics, recommendation
system, and large language model (Ouyang et al., 2022;
Lindner et al., 2022; Menick et al., 2022; Jaques et al., 2020;
Lee et al., 2021; Nakano et al., 2021). However, there are
various ways to incorporate human preferences or expertise
into the decision-making process of an agent. (Shah
et al., 2015; Ouyang et al., 2022; Saha & Krishnamurthy,
2022) learn reward from pairwise comparison and ranking.
(Pacchiano et al., 2021) study pairwise comparison with
function approximation in pairwise comparison. (Zhu
et al.,, 2023) study various cases of preference-based-
comparison in contextual bandit problem with linear
function approximation, however convergence of their
algorithm relies on the implicit assumption of sufficient
coverage. The majority of prior researches in RLHF only
consider bandit cases and have not studied MDP case with
transition dynamics. (Wang et al., 2018) study how to learn
a uniformly better policy of an MDP from an offline dataset
by learning the advantage function. However, they cannot
guarantee the learned policy converges to the optimal policy.

Dynamic Discrete Choice Model. Dynamic Discrete
Choice (DDC) model is a widely studied choice model in
econometrics and is closely related to reward learning in
IRL and RLHF. In the DDC model, the human agent is
assumed to make decisions under the presence of Gumbel
noise (Type I Extreme Error)(Aguirregabiria & Mira, 2002;
Chernozhukov et al., 2022; Bajari et al., 2015; Kalouptsidi
et al., 2021; Adusumilli & Eckardt, 2019), i.e. under
bounded rationality, and the task is to infer the underlying
utility. Most work in econometrics cares for asymptotic
\/n-convergence of estimated utility, and does not study
finite sample estimation error. Moreover, their methods
suffer from significant computation burdens from large
or high dimensional state space (Zeng et al., 2022). In
recent years, there has been work combining the dynamic
discrete choice model and IRL. (Zeng et al., 2022) prove
the equivalence between DDC estimation problem and
maximum likelihood IRL problem and propose an online
gradient method for reward estimation under ergodic

dynamics assumption. (Zeng et al., 2023) reformulate
the reward estimation in the DDC model into a bilevel
optimization and propose a model-based approach by
assuming an environment simulator.

Offline Reinforcement Learning and Pessimism. The
idea of introducing pessimism for offline RL to deal with
distribution shift has been studied in recent years (Jin et al.,
2021; Uehara et al., 2021). (Jin et al., 2021) show that pes-
simism is sufficient to eliminate spurious correlation and
intrinsic uncertainty when doing value iteration. (Uehara
et al., 2021) show that with single-policy coverage, i.e. cov-
erage over the optimal policy, pessimism is sufficient to
guarantee a O(n~'/2) suboptimality. In this paper, we con-
nect RLHF with offline RL and show our algorithm achieves
pessimism by designing an uncertainty quantifier that can
tackle error from estimating reward functions, which is cru-
cial in pessimistic value iteration.

1.2. Notations and Preliminaries

For a positive-semidefinitematrix A € R%*? and vector
r € R? we use ||z]|4 to denote VxT Az. For an arbi-
trary space X, we use A(X) to denote the set of all prob-
ability distribution on X. For two vectors z,y € R4,
we denote = -y = Zf z;1y; as the inner product of z,y.
We denote the set of all probability measures on X as
A(X). We use [n] to represent the set of integers from
0 to n — 1. For two matrices A and B, we write A = B
if A— B > 0. We define a finite horizon MDP model
M = (S, A, H,{Pr}ne[n] {Th }ner)), H is the horizon
length, in each step h € [H], the agent starts from state sy,
in the state space S, chooses an action a;, € A with probabil-
ity mn(ap, | sp) , receives a reward of 7, (sp, ap) and transits
to the next state s’ with probability Py (s’ | sp,ap). Here
A is a finite action set with |.A| actions and P}, (-|sp, ap) €
A(sp, ap) is the transition kernel condition on state action
pair (s,a). For convenience we assume that rp,(s,a) €
[0,1] for all (s,a,h) € S x A x [H]. Without loss of gen-
erality, we assume that the initial state of each episode s¢
is fixed. Note that this will not add difficulty to our analy-
sis. For any policy ™ = {m, } e[z the state value function
is Vi(s) = Ex[ X1, re(seoar) | sn = s], and the ac-
tion value function is QF (s,a) = Eﬂ[Zih ri(se,ae) |
sy = S, a}, here the expectation E is taken with respect
to the randomness of the trajectory induced by 7, i.e. is
obtained by taking action a; ~ m(- | s¢) and observing
St41 ~ Pn(- | st,a¢). For any function f : § — R, we
define the transition operator P, f(s,a) = E[f(spt1) |
sp = 8,ap, = a]. We also define the Bellman equation for
any policy 7, V7 (s) = (a(a | ), Q' (s, 0)), Qf (s.a) =
rn(s,a) + PRV)T 1 (s,a). For an MDP we denote its opti-
mal policy as 7*, and define the performance metric for any



policy 7 as SubOpt(r) = V{7 — V7.

2. Problem Formulation

In this paper, we aim to learn from a dataset of human
choices under dynamic discrete choice model. Suppose we
are provided with dataset D = {Dy, = {s},, a}, }ic[n] tne(m)s
containing n trajectories collected by observing a single
human behavior in a dynamic discrete choice model. Our
goal is to learn the optimal policy 7* of the underlying MDP.
We assume that the agent is bounded-rational and makes
decisions according to the dynamic discrete choice model
(Rust, 1987; Hotz & Miller, 1993; Chernozhukov et al.,
2022; Zeng et al., 2023). In dynamic discrete choice model,
the agent’s policy has the following characterization (Rust,
1987; Aguirregabiria & Mira, 2002; Chernozhukov et al.,
2022),

@)
mon(a | s) = Yweaexp(Qp (s, a"))’

ey

here Q7" (-,-) works as the solution of the discounted
Bellman equation,

Ve (s) = (mpn(a | 5), Q1 (s, a)), 2)
pl (s a) =rn(s,a) + - PaViiy(s,a) ()

for all (s,a) € S x A. Note that (2) differs from the
original Bellman equation due to the presence of -, which
is a discount factor in [0, 1], and measures the myopia of the
agent. The case of v = 0 corresponds to a myopic human
agent. Such choice model comes from the perturbation of
noises,

(- | sn) =

argmax,c 4 {rh(sh, a) + ena) + v - PuV, 1 (sn, a)},

where {€;,(a)}qe4 are i.i.d Gumbel noises that is observed
by the agent but not the learner, {V,”"™ }, ¢y is the value
function of the agent, and is widely used to model human de-
cision. We also remark that the state value function defined
in (2) corresponds to the ex-ante value function in econo-
metric studies (Aguirregabiria & Mira, 2010; Arcidiacono
& Ellickson, 2011; Bajari et al., 2015). When considering
Gumbel noise as part of the reward, the value function may
have a different form. However, such a difference does not
add complexity to our analysis.

3. Reward Learning from Human Dynamic
Choices

In this section, we present a general framework of an offline
algorithm for learning the reward of the underlying MDP.

Our algorithm consists of two steps: (i) The first step is to
estimate the agent behavior policy from the pre-collected
dataset D by maximum likelihood estimation (MLE). We
recover the action value functions {Q}"" };c(p from (1)
and the state value functions {V,"*""},c(g] from (2) using
function approximation. In Section 3.1, we analyze the error
of our estimation and prove that for any model class with
a small covering number, the error from MLE estimation
is of scale O(1/n) in dataset distribution. We also remark
that our result does not need the dataset to be well-explored,
which is implicitly assumed in previous works (Zhu et al.,
2023; Chen et al., 2020). (ii) We recover the underlying
reward from the model class by minimizing a penalized
Bellman MSE with plugged-in value functions learned in
step (i). In Section 3.2, we study linear model MDP as
a concrete example. Theorem 3.5 shows that the error of
estimated reward can be bounded by an elliptical potential
term for all (s, a) € S x A in both settings. First, we make
the following assumption for function approximation.

Assumption 3.1 (Function Approximation Model Class).
We assume the existence of a model class M =
{Mun}he(m containing functions f : S x A — [0, H]
for every h € [H], and is rich enough to capture rp, and Qp,
ie. rp € My, Qp € My,

In practice, M}, can be a (pre-trained) neural network or a
random forest. We now present our algorithm for reward
learning in RLHF.

Algorithm 1 DCPPO: Reward Learning for General Model

Class

Require: Dataset {D), = {s},al}icin) }hE[H],
A > 0, penalty function p(-), parameter 3.

1: forsteph=H,...,1do

2:  Set @p, by maximizing (4).

3:  Set wx(ap|sn) by (5).

4 Set Vh(Sh) = <Qh(8h7 ~),§T\h(~ | Sh)>_,4.

5: Set ?h(sh, ah) by (6).

6:

7:

constant

end for
Output: {?h}he[H] .

3.1. First Step: Recovering Human Policy and Human
State-Action Values

For every step h, we use maximum liklihood estimaton
(MLE) to estimate the behaviour policy 7y, ,, corresponds
to Q3" (s, a) in a general model class M,. For each step
h € [H], we have the log-likelihood function

exp(Q(s},, aj,))

1 n
1@ = 3w (PO ) @




for ) € My, and we estimate @5, by maximizing (4). Then
we recover the policy 7, by

n(an | sn) = exp(Qn(sn an))/ Y, exp(Qn(sn, a).

a’€eA
)
Note that by Equation (1), adding a constant on ¢),*"" will
produce the same policy under dynamic discrete model, and
thus the real behavior value function is unidentifiable in gen-
eral. For identification, we have the following assumption.
Assumption 3.2 (Model Identification). We assume that

there exists one ag € A, such that Q(s, ag) = 0 for every
s€S.

ured

Note that this assumption does not affect our further analy-
sis. Other identifications includes parameter constraint (Zhu
et al., 2023) or utility constraints (Bajari et al., 2015). We
can ensure the estimation of the underlying policy and cor-
responding value function is accurate in the states the agent
has encountered. Formally, we have the following theorem,

Theorem 3.3 (Policy and Value Functions Recovery from
Choice Model). With Algorithm I, we have

Ep, [I7n(- | sn) = mon(- | sn)ll]
< O(log (N (M, ||n' ||0071/n)/5)>
and
Ep, [||Qn(sn. ) — Q7 (sn, )13
< O<H2 -efl log (N (/\:h, [ - oo,l/n)/5)>

with probability at least 1 — . Here Ep, | means the
expectation is taken on collected dataset Dy, i.e. the mean
value taken with respect to {s}, }ic[n]-

Theorem 3.3 shows that we can efficiently learn 7, ;, from
the dataset under identification assumption. As a result, we
can provably recover the value functions by definition in
Equation 1.

3.2. Reward Learning from Dynamic Choices

Bellman equation motivates the following estimate of the
reward function:

7h(sn, an) = ©)
n
argmin,. oy, { Z (Th(SZ, ap) + 7 Vat1(Shi1)
i=1

PEIY:
_Qh(sﬁuaﬁz)) —|—)\p(7“)},
i.e. we can recover the reward with previously learned

Vh, Qh by minimizing Bellman MSE. As a concrete exam-
ple, we study the instantiation of Algorithm 1 for the linear

model class. We define the function class M, = {f(:) =
#()T0:S x A— R,0 € O} for h € [H], where ¢ € R?
is the feature defined on S x A, © is a subset of R¢ which
parameterizes the model class, and d > 0 is the dimension
of the feature. Corresponding to Assumption 3.2, We also
assume that ¢(s,ap) = 0 for every s € S. Note that this
model class contains the reward r;, and state action value
function @), in tabular MDP where ¢(s, a) is the one-hot
vector of (s, a). The linear model class also contains linear
MDP, which assumes both the transition P(spt1 | Sp,an)
and the reward 7y, (sp, ap) are linear functions of feature
@(sn,ap) (Jin et al., 2020; Duan et al., 2020; Jin et al.,
2021). In linear model case, our first step MLE in (4) turns
into a logistic regression,

0 = argmax;cq — Z¢ (s}, ay,)-0—log ( Z exp(
i=1 a’€A
(7
which can be efficiently solved by existing state-of-art op-
timization methods. We now have {Qh}he[ ), {Th b he(m)
and {Vh}he in Algorithm 1 to be our estimations for
Q7 Ty n and V7" correspondingly.

Note that in linear case, Line 5 has a closed form solution,

wh = (Ap+ M) <Z¢ $hrah) (Qn(sh a}) —

=1

®)

where A}, = Z o(s},, ap)o(sh, ap) ",

i=1

and we set 7(sp, ap) = ¢(sp,an) - Wy. We also make the
following assumption on the model class © and the feature
function.

Assumption 3.4 (Regular Conditions). We assume that: (i)
For all § € ©, we have ||0]|> < V/d; (ii) For all (s, ay) €
Sx A, ||d(sh,an)|l2 < Vd. (iii)For all n. > 0,log N (O, || -
oo, 1/m) < ¢ - dlogn for some absolute constant c.

We are now prepared to highlight our main result:

Theorem 3.5 (Reward Estimation for Linear Model
MDP). With probability at least 1 — 6, we have the follow-
ing estimation of our reward function for all (s,a) € S x A
and X > 0,

|rr(s,a) — Th(s,a)l ©)
< llo(s,a)llan+an)—
<\/7+(1+7) ~dy/log (”H/5))'

Note that the error can be bounded by the product of two
terms, the elliptical potential term || (s, a)||(a4x.7)—1 and
the norm of a self normalizing term of scale O(He!!

o(s5a)) ).

~ thszﬂ))) ,



d+/log(n/6)). Here the exponential dependency O(efl)

comes from estimating ;""" with logistic regression and
also occurs in logistic bandit (Zhu et al., 2023; Fei et al.,
2020). It remains an open question if this additional factor

can be improved, and we leave it for future work.

Remark 3.6. We remark that except for the exponential term
in H, Theorem 3.5 almost matches the result when doing
linear regression on an observable reward dataset, in which
case error of estimation is of scale O(||¢(s, a) l(agar)-1
dH) (Ding et al., 2021; Jin et al., 2021). When the human
behavior policy has sufficient coverage, i.e. the minimal
eigenvalue of E,[¢pd "], omin(Ex,[¢6T]) > 0, we have
(s, a)ll(ap+rn)-1 = O(n~'/?) holds for all (s, a) € S x
A (Duan et al., 2020) and ||, — 7 [|ec = O(n~1/2).

4. Policy Learning from Dynamic Choices via
Pessimistic Value Iteration

In this section, we describe the pessimistic value iteration
algorithm, which minus a penalty functionI';, : S x A —
R from the value function when choosing the best ac-
tion. Pessimism is achieved when I';, is a uncertainty
quantifier for our learned value functions {f/h} helH] » 1.€.
| (7 + PuVas1) (s, a) = (rn 4+ PuVag1) (s, a)| < Ta(s,a)
for all (s,a) € S x A with high probability. Then we
use {I's, } ne[m as the penalty function for pessimistic plan-
ning, which leads to a conservative estimation of the value
function. We formally describe our planning method in Al-
gorithm 2. However, when doing pessimistic value iteration
with {7, },c(m) learned from human feedback, it is more
difficult to design uncertainty quantifiers, since the estima-
tion error from reward learning is inherited in pessimistic
planning. In Section 4.1, we propose an efficient uncertainty
quantifier and prove that with pessimistic value iteration,
Algorithm 2 can achieve a O(n~'/?) suboptimality gap.

Algorithm 2 DCPPO: Pessimistic Value iteration
Require: Surrogate reward {7,(-,-)}neqm], collected
dataset {(s},, aj,) }ic[n),he[H]> Parameter 3, penalty .
1: Set ‘7H+1(') =0.
2: forsteph = H,...,1do
31 Set PyVis1 (s, an) by (10).

4:  Construct I'y,(sp, ap,) based on D.
5 Set @h(sh,ah) = min {?},,(Sh,ah) +
PyVisi(snsan) = Tn(sn,an), H—h+1} .

6 Set7n(- | -) = argmax(Qn (-, ), mu(- | -)).
7: Set V), = <Qh(~, ~),’ﬁ'h(~ ‘ )>

8: end for

9: Output: {7y, } hep-

4.1. Suboptimality Gap of Pessimitic Optimal Policy

In Line (3) of Algorithm 2, we update Py, Vh+1 by solving
the following minimization:

P), Vi1 (sn, ap) = argmin ;¢ Z (f(shs al)—Vagi(snir)) ™.

i€ [n]

(10)
For linear model class defined in Section 3.2, we assume that
we can capture the conditional expectation of value function
in the next step with the known feature ¢. In formal words,
we make the following assumption.
Assumption 4.1 (Linear MDP). For the underlying MDP,
we assume that for every Vy41 : S — [0, H — hj, there
exists uj, € RY such that

Ph‘/’1+1(57 a) = ¢(Sv a) *Up

for all (s,a) € S x A. We also assume that |lup| < (H —
h+1)-+dforall h € [H].

Note that this assumption is directly satisfied by linear MDP
class (Jin et al., 2021; 2020; Yang & Wang, 2019). For
linear model MDP defined in Section 3.2, it suffices to have
the parameter set © being closed under subtraction, i.e. if
x,y € O then x — y € ©. Meanwhile, we construct I'y, in
Algorithm 2 based on dataset D as

Fh(sﬂ a) = B . (¢(Sv a)T(Ah + AI)ilﬁb(S? CL))

1/2

(11

for every h € [H]. Here that Ay is defined in (8). To
establish suboptimality for Algorithm 2, we assume that
the trajectory induced by 7* is “covered” by D sufficiently
well.

Assumption 4.2 (Single-Policy Coverage). Suppose there
exists an absolute constant ¢! > 0 such that

Ay > CT “n B [d) (Sha Clh) o] (Sha ah)T
holds with probability at least 1 — §/2.

We remark that Assumption 4.2 only assumes the human
behavior policy can cover the optimal policy and is therefore
weaker than assuming well-explored dataset, or sufficient
coverage(Duan et al., 2020; Jin et al., 2021). With this
assumption, we prove the following theorem.

Theorem 4.3 (Suboptimality Gap for DCPPO). Suppose
Assumption 3.2, 3.4, 4.1,4.2 holds. With A = 1 and 8 =

O(He™ - dy/log (nH/$)), we have (i) T'j, defined in (11)
being uncertainty quantifiers, and (ii)
SubOpt ({71 b hemy) <c- (1+ 7)d2H? M n 12\ /¢

holds with probability at least 1 — § , here £ = log(dHn/).
In particular, if rank(Xy,) < r at each step h € [H], then

SubOpt ({ﬁh}he[H]) <ec-(1+ ’7)7"1/2dH26Hn_1/2\/g,
here X, = Ex, [$(sh, an)(sn, an) .



Remark. It is worth highlighting that Theorem 4.3 nearly
matches the standard result for pessimistic offline RL with
observable rewards in terms of the dependence on data size
and distribution, up to a constant factor of O(He') (Jin
etal., 2020; Uehara & Sun, 2021), where their suboptimality
is of O(dH?n~'/?). Therefore, Algorithm 1 and 2 almost
matches the suboptimality gap of standard pessimism plan-
ning with an observable reward, except for a O(ef!) factor
inherited from reward estimation.

5. Conclusion

In this paper, we have developed a provably effi-
cient online algorithm, Dynamic-Choice-Pessimistic-Policy-
Optimization (DCPPO) for RLHF under dynamic discrete
choice model. By maximizing log-likelihood function of the
Q-value function and minimizing mean squared Bellman
error for the reward, our algorithm learns the unobservable
reward, and the optimal policy following the principle of
pessimism. We prove that our algorithm is efficient in sam-
ple complexity for linear model MDP.
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