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Abstract

Text summarization and simplification are001
widely used applications of AI. However, such002
models are often prone to hallucination, which003
can result from training models on unaligned004
data. One of the prominent approaches to ad-005
dress this issue has been Loss Truncation (LT)006
(Kang and Hashimoto, 2020), an approach to007
modify the standard log loss to adaptively re-008
move noisy examples during training. However,009
we find that LT alone yields a considerable num-010
ber of hallucinated entities on various datasets.011
We study the behavior of the underlying losses012
between factual and non-factual examples, to013
understand and refine the performance of LT.014
We demonstrate that LT’s performance is lim-015
ited when the underlying assumption that noisy016
targets have higher NLL loss is not satisfied,017
and find that word-level NLL among entities018
provides better signal for distinguishing fac-019
tuality. We then leverage this to propose a020
fine-grained NLL loss and fine-grained data021
cleaning strategies, and observe improvements022
in hallucination reduction across some datasets.023

1 Introduction024

Text summarization and simplification are widely025

used NLP applications. However, such models026

are prone to generating hallucinations (Cao et al.,027

2022a; Zhao et al., 2020; Maynez et al., 2020; Tang028

et al., 2023); this may have harmful real-world029

impact and hinder the adoption of such models.030

To mitigate hallucinations, previous work stud-031

ied aspects of training (Choubey et al., 2023), de-032

coding (van der Poel et al., 2022; King et al.,033

2022; Sridhar and Visser, 2022), or post-processing034

(Chen et al., 2021). In this paper however, we focus035

on another large source of hallucination: the data.036

When training data is misaligned (i.e. targets037

contain data unsupported by the input), models038

learn these patterns and hallucinate (Ji et al., 2023;039

Dziri et al., 2022). This can stem from data collec-040

tion errors, or scraping web-based data (Ji et al.,041

2023). While there have been efforts to identify 042

and clean the misaligned examples (Goyal and 043

Durrett, 2021; Ladhak et al., 2023; Zhou et al., 044

2021; Adams et al., 2022; Filippova, 2020; Wan 045

and Bansal, 2022), a limitation, however, is that 046

these methods require rewriting targets or training 047

models to detect hallucination. 048

To this end, other methods automatically detect 049

and remove noisy examples. One widely adopted 050

approach is Loss Truncation (LT) (Kang and 051

Hashimoto, 2020), which filters out noisy exam- 052

ples based on the observation that they have higher 053

negative log-likelihood (NLL) loss. This enables 054

an easy-to-adapt and highly efficient training pro- 055

cedure: if NLL loss is high (e.g. >80th quantile 056

of observed losses), do not backpropagate the loss. 057

Previous work adopted this method to improve fac- 058

tuality in summarization (Guo et al., 2021; Ladhak 059

et al., 2022; Cao et al., 2022b; Goyal et al., 2022; 060

Hewitt et al., 2022). However, applying LT to five 061

datasets, we find that models still hallucinate. 062

In this paper, we study the behavior of NLL at 063

a coarse (i.e. sentence) and fine-grained level (i.e. 064

token) to understand and refine the performance 065

of LT. At the time of writing, the paper is the first 066

to analyze LT on text simplification datasets like 067

Cochrane, MedEasi, and ASSET; moreover, it ana- 068

lyzes the performance of LT from the perspective of 069

factuality, and delves deeper into training dynamics 070

at the token and entity level. Ultimately, the paper 071

aims to contribute a better understanding of the un- 072

derlying dynamics of LT, that can provide guidance 073

for considerations when using LT in future work, 074

in the context of reducing hallucination. 075

We make the following contributions: (1) We 076

demonstrate that LT’s performance is hindered 077

when the underlying assumption that noisy targets 078

have higher NLL loss is not satisfied, (2) we find 079

that word-level NLL among entities provides bet- 080

ter signal for distinguishing factuality, and (3) we 081

use this to propose a fine-grained NLL loss which 082
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reduces entity-level hallucination on some datasets083

(-22% on Cochrane, -7.2% on ASSET), and fine-084

grained data cleaning strategies which achieve up085

to 26.8% hallucination reduction (CNN-DM), high-086

lighting the potential of this approach.087

2 Methodology088

Loss Truncation Loss Truncation (Kang and089

Hashimoto, 2020; Goyal et al., 2022; Cao et al.,090

2022b) is a widely used method for improving lan-091

guage generation by modifying the standard log092

loss to adaptively disregard examples with high093

loss, reducing potential hallucinations. It continu-094

ously updates a list of example-level NLL losses,095

and zeros out losses above a set quantile.1096

Datasets We study five datasets for two popular097

conditional NLG tasks, summarization and simpli-098

fication: Cochrane (Devaraj et al., 2021): Medi-099

cal abstracts from Cochrane Database of System-100

atic Reviews and expert-written summaries (4,459101

pairs), MedEasi (Basu et al., 2023): Sentences102

from Merck Manuals (Cao et al., 2020) and Sim-103

pWiki (van den Bercken et al., 2019) and anno-104

tated simplifications (1,697 pairs), ASSET (Alva-105

Manchego et al., 2020): Sentences from TurkCor-106

pus dataset (Xu et al., 2016) and simplified versions107

by 10 annotators (23,590 pairs), CNN/DailyMail108

(Nallapati et al., 2016): Articles and their highlight109

summaries from CNN and DailyMail (311,971110

pairs), XSum (Narayan et al., 2018): BBC news ar-111

ticles and their corresponding one-line summaries112

(226,711 pairs).113

Models We finetuned BART-Large-XSUM114

(Lewis et al., 2020) on five datasets; we chose115

BART-XSUM to match previous work on116

Cochrane (Lu et al., 2023; Devaraj et al., 2021),117

ASSET (Martin et al., 2022), and XSum (Cao et al.,118

2022b), and isolate the impact of LT (Appendix B).119

We finetune FlanT5 (Chung et al., 2022) with LT120

for comparison, and find that it yields similar or121

better performance (Appendix E).122

Metrics We propose a simple definition as our123

metric of factuality, Hallucination Rate (HR):124

the % of outputs containing an unsupported en-125

tity. We identify entities in outputs using SpaCy126

en_core_web_lg and en_core_sci_lg127

NER models (Honnibal and Montani, 2017; Neu-128

mann et al., 2019), then check if any of the entities129

1We use the official LT package by (Kang and Hashimoto,
2020): https://github.com/ddkang/loss_dropper

do not appear in the input. We also use SARI 130

(Xu et al., 2016), an edit-based text simplification 131

metric, and ROUGE-LSum (Lin, 2004) for over- 132

all fluency, to benchmark against previous work, 133

computed using EASSE to align our work with 134

previous methods (Alva-Manchego et al., 2019). 135

Experimental Set-Up We compare the preva- 136

lence of hallucination (i.e. Hallucination Rate) of 137

“coarse” LT (Kang and Hashimoto, 2020) against 138

previous work (Table 1). We then study whether 139

datasets satisfy the assumption of LT by comparing 140

the NLL Loss of non-factual (i.e. containing unsup- 141

ported entities) vs factual examples (Table 2). We 142

analyze this at a finer granularity, by studying NLL 143

at the token level, both for factual and non-factual 144

sentences (Tables 3, 6). We then propose a “fine- 145

grained LT” and heuristic data cleaning strategies, 146

and compare them to previous work (Table 1). 147

3 Findings 148

Noise in summarization can come from adding 149

unsupported information in the reference Our 150

experiments are motivated by the observation that 151

some reference outputs (i.e., gold summaries) con- 152

tained unsupported information (see Appendix F). 153

E.g., some references in Cochrane had the phrase 154

“The evidence is current to [date]”, although the 155

date was not mentioned in the input. Upon fine- 156

tuning, models learn to reproduce this pattern with 157

incorrect dates (Appendix G). Hence, datasets are 158

noisy; a key observation is noise in the reference of- 159

ten involves the addition of irrelevant information 160

(Ji et al., 2023). Hence, we limit our definition of 161

“noisy” targets and “hallucination” as containing 162

unsupported data; we then deem references con- 163

taining entities unsupported by the input as noisy. 164

LT reduces entity-level hallucination from noisy 165

targets, but not completely We finetune BART- 166

XSum using LT (Appendix B), expecting LT to 167

filter out noisy examples and reduce hallucinations. 168

Comparing Loss Truncation (LT) to previous SOTA 169

in Table 1, LT reduces the proportion of examples 170

containing unsupported (i.e. hallucinated) entities. 171

However, a considerable proportion of examples 172

still contain hallucinations. 173

We hypothesize LT’s performance suffers be- 174

cause the underlying assumption that noisy data 175

has higher NLL is not satisfied We study why 176

LT is unable to weed out many hallucinated enti- 177

ties by comparing models’ NLL loss at Epoch 0 178
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Data Model HR ↓ SR ↑ RL ↑
C

oc
hr

an
e

Pr
ev

io
us BART XSum FT 69.3% 35.6 44.7

BART-UL (2021) 69.6% 40.0 39.2
NAPSS (2023) 73.8% 32.9 45.4
LT (Coarse) (2020) 42.7% 36.2 37.6

O
ur

s LT (Fine) 20.6% 36.1 21.8
Drop Sentence 42.1% 38.6 33.7
Drop Example 37.1% 38.5 31.9

M
ed

E
as

i

Pr
ev

io
us BART XSum FT 35.7% 40.5 45.7

Both-UL (2021)* 13.7% 35.3 47.9
NAPSS (2023)* 42.3% 34.0 24.3
LT (Coarse) (2020) 4.6% 32.6 47.3

O
ur

s LT (Fine) 7.0% 37.9 45.1
Drop Sentence 7.0% 31.8 47.5
Drop Example 9.7% 38.9 44.4

A
SS

E
T

Pr
ev

io
us BART XSum FT 17.0% 38.9 86.0

MUSS NMd (2022) 23.4% 43.6 81.4
MUSS Md (2022) 31.5% 44.1 79.4
LT (Coarse) (2020) 14.2% 36.7 77.7

O
ur

s LT (Fine) 6.9% 37.9 45.1
Drop Sentence 12.8% 40.0 81.7
Drop Example 22.3% 38.9 85.1

C
N

N Pr
ev

io
us BART XSum FT 68.1% 41.4 29.9

BRIO (2022) 51.9% 44.9 38.3
LT (Coarse) (2020) 58.8% 40.7 29.0

O
ur

s LT (Fine) 61.3% 41.3 29.7
Drop Sentence 32.0% 42.3 34.5
Drop Example 66.7% 41.8 30.4

X
Su

m

Pr
ev

io
us BART XSum FT 76.9% 47.6 35.2

BRIO (2022) 77.1% 50.6 40.1
LT (Coarse) (2020) 72.6% 48.1 36.4

O
ur

s LT (Fine) 75.5% 47.1 34.5
Drop Sentence 70.0% 47.2 34.9
Drop Example 69.3% 47.0 34.8

Table 1: Performance on Hallucination Rate (HR),
SARI (SR), and ROUGE-LSum (RL), computed us-
ing EASSE (Alva-Manchego et al., 2019) from one run;
* We finetune these results ourselves on MedEasi; FT:
Finetuned, NMd: Not Mined, Md: Mined

(no finetuning), and at Epoch 1 when most mod-179

els converge (See Appendix C). At Epoch 0, there180

is no significant difference in the NLL Loss be-181

tween factual (NLL (+)) and non-factual (NLL (-))182

sentences (Table 2, top). At Epoch 1, non-factual183

sentences have a higher NLL than factual sentences184

(Table 2, bottom). In practice however, the differ-185

ence in NLL is not large enough to cleanly separate186

factual (orange) from non-factual (blue) examples,187

as shown in Figure 1. This explains LT’s limited188

performance: the summarization datasets do not189

meet the assumption that noisy examples’ NLL is190

higher than non-noisy examples, which prevents191

LT from identifying and removing noisy examples.192

Dataset NLL (-) NLL (+) ∆

Cochrane 8.438 9.077 -0.639
MedEasi 11.114 11.173 -0.058
Asset 11.197 11.196 0.002
XSum 19.187 19.190 -0.003
CNN 10.813 10.830 -0.017

Cochrane 0.651 0.437 0.214*
MedEasi 0.080 0.032 0.048*
Asset 0.055 0.034 0.021*
XSum 0.049 0.043 0.006*
CNN 0.134 0.112 0.022*

Table 2: Average NLL Loss for Non-Factual (-) and
Factual (+) Examples at Epoch 0 (top) and 1 (bottom),
* Indicates the significant difference (One-Way Mann-
Whitney Test, α = 0.05)

Word-level NLL may better distinguish between 193

factual vs non-factual entities To study the im- 194

pact of individual words on the overall NLL, we 195

analyze the token-level NLL of targets contain- 196

ing both factual and non-factual entities (i.e. non- 197

factual targets). We make two observations: 198

First, we find that in non-factual sentences, 199

their non-factual entities (NLL (-)) generally have 200

higher NLL than factual entities (NLL (+)) (Ta- 201

ble 3). Moreover, the difference in NLL (∆) is 202

larger at the entity level than the sentence level (i.e. 203

compared to the ∆ column in Table 2). 204

Dataset NLL (0) NLL (-) NLL (+) ∆

Cochrane 8.621 2.445 0.601 1.844*
MedEasi 11.161 2.231 0.772 1.458*
Asset 11.192 2.550 0.664 1.886*
XSum 19.045 1.865 1.934 -0.068*
CNN 10.852 2.910 2.083 0.827*

Cochrane 0.669 1.592 0.331 1.261*
MedEasi 0.078 2.070 0.443 1.626*
Asset 0.051 3.392 0.300 3.092*
XSum 0.048 0.946 1.354 -0.409
CNN 0.128 1.842 1.447 0.395*

Table 3: Average NLL Loss for Non-Entity (0), Non-
Factual Entity (-) and Factual Entity (+) Tokens at Epoch
0 (top) and 1 (bottom), * Indicates the significant differ-
ence (One-Way Mann-Whitney Test, α = 0.05)

Upon comparing factual versus non-factual sen- 205

tences (Table 6), it still holds that the NLL of fac- 206

tual entities is lower the NLL of non-factual entities 207

(Table 3). In short, non-factual tokens have higher 208

NLL than factual tokens, regardless of which sen- 209

tences those factual tokens appear in. 210

Second, the NLL of non-entity tokens signifi- 211

cantly impacts the overall sentence NLL, and ob- 212

scures the signal between factual and non-factual 213

entities. This is shown by the fact that non-entity 214
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Figure 1: NLL distribution of factual (Orange) and non-factual (Blue) targets shows that there no difference at epoch
0, and a slight difference at epoch 1, with non-factual entities having slightly higher NLL (shifted to the right)

NLL values closely mirror the sentence-level NLLs215

(Table 2, NLL (-)). Intuitively it makes sense: there216

are more non-entities than entities, so they have a217

larger impact on sentence-level NLL.218

Considering this, it may be beneficial to focus on219

the word-level NLL as it may offer a more nuanced220

view of factual versus non-factual entities, while221

also not giving too much weight to non-entities.222

We aim to reduce hallucination with two meth-223

ods: (1) a fine-grained LT, and (2) data cleaning224

strategies using fine-grained information We225

first propose a fine-grained LT: instead of using226

sentence-level NLL in LT, we sum the NLL only227

for entity tokens (Appendix B for details). This228

leverages the fact that entity tokens provide better229

signal for factuality than non-entity tokens, and230

that non-factual entities have higher NLL.231

Fine-grained LT reduces HR on Cochrane (-232

22%) and ASSET (-7.2%) compared to coarse LT233

(Table 1). However, its performance is not as com-234

petitive on MedEasi, CNN, and XSum. We observe235

that unlike Cochrane and ASSET which are human236

annotated, the three datasets are web-scraped, and237

more noisy. We confirm this by measuring HR238

on the labels; labels from the three web-scraped239

dataset contained more hallucinated entities than240

the human annotated ones (Table 5, Appendix F for241

examples). Therefore, we suspect these datasets re-242

quire a more aggressive strategy to eliminate noise.243

To this end, we propose to directly clean the244

dataset, filtering out noisy targets. We identify245

all unsupported entities in a target (i.e. the entity246

is not in the input); then we either (1) drop only247

the sentence containing the entity (Drop Sentence),248

or (2) drop the entire example (Drop Example)249

(See Appendix A for stats). Table 1 shows that at250

least one of the strategies results in lower halluci- 251

nation rate for CNN (-26.8%, Drop Sentence) and 252

XSum (-3.3%, Drop Example). While MedEasi 253

is the only dataset where our methods do not out- 254

perform the baselines, the hallucination reduction 255

rate is still competitive when dropping noisy exam- 256

ples. Overall, with the exception of the MedEasi 257

dataset, our results show strong improvements over 258

the baseline methods, suggesting the potential of 259

the fine-grained LT and fine-grained data cleaning 260

in reducing hallucinations. 261

4 Conclusion 262

We analyzed the effect of loss truncation (LT) on 263

improving factuality in text summarization. We 264

found that LT struggles to reduce entity-level hal- 265

lucination when the underlying assumption that 266

non-factual sentences have higher NLL than fac- 267

tual sentences is not met. To this end, we explore 268

a token-level loss truncation (i.e. fine-grained LT) 269

and simple entity-level dataset cleaning strategies, 270

which reduce the prevalence of hallucination across 271

various summarization and simplification datasets. 272

Future work may explore other signals for noise 273

in training data. Moreover, future work can explore 274

contradictory information (i.e. targets with similar 275

topics as input but different meaning). This re- 276

quires the use of natural language inference (NLI), 277

which we qualitatively find is difficult in practice 278

using off-the-shelf NLI models (Wu et al., 2022) 279

or GPT (Liu et al., 2023), as we observe they are 280

currently unable to detect contradictory or unsup- 281

ported information in some cases. Ultimately, re- 282

ducing such hallucinations is key to improving the 283

overall performance of summarization models. 284
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Limitations285

One limitation of our paper is that we limit the286

definition of hallucination to the addition of unsup-287

ported entities, while the detection of contradictory288

or omitted information are equally important to de-289

tect. A key challenge with such definitions of hallu-290

cination is that they require human annotations or291

good models to identify targets in the dataset which292

contain contradictory or omitted information. We293

previously experimented with using GPT-4 follow-294

ing the GPT-Eval framework (Liu et al., 2023), but295

found that GPT was sometimes unable to detect296

unsupported information. For example, GPT was297

unable to identify that the date in the Cochrane298

dataset targets were unsupported.299

Another limitation is that loss truncation at the300

token level does not always achieve the best re-301

sults. While it reduced entity-level hallucination302

for Cochrane and ASSET compared to other meth-303

ods, it fails to achieve substantial improvements304

on MedEasi, CNN, and XSum. Overall, the paper305

aims to show that the method has potential in some306

cases, but future work can explore other ways to307

improve its performance.308

Finally, it should be noted that our work has309

been tested on a limited number of general domain310

summarization datasets; hence more work can ex-311

plore a wider set of datasets in various niches, to312

examine if larger patterns across datasets impact313

the performance of loss truncation.314

Risks It should be noted that even data cleaning315

and LT (both coarse and fine-grained) does not316

fully reduce entity-level hallucination. Moreover,317

we have not studied other types of hallucination in318

this work. Therefore, these models are not ready-319

to-use, and should not be deployed readily.320
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Table 4: Number of training examples from data clean-
ing methods; Drop Sentence results in minor reductions
whereas Drop Example results in larger reductions
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Licenses The Cochrane dataset uses the C.C. BY606

4.0 License; MedEasi and XSum use the MIT Li-607

cense; ASSET uses the CC BY-NC 4.0 License,608

and CNN/DailyMail uses the Apache 2.0 License.609

Quantifying Noisiness of Datasets We run the610

Hallucination Rate computation on 100 labels in611

each of the datasets, to quantify how noisy these612

labels are in reference to their inputs. Note that613

for Cochrane, we manually reclassified examples614

as the medical NER models used for this dataset615

identified common words as entities (e.g. disease,616

operation), which were correct based on the input.617

In cases when we were unsure whether a term was618

an abbreviation or synonym of another term, we619

marked it as a hallucination, to provide a conserva-620

tive estimate. Hence, Cochrane’s HR may actually621

be lower (i.e. better) than reported.622

Dataset HR ↓

Cochrane 68/100
ASSET 14/100

MedEasi 80/100
CNN 74/100

XSum 83/100

Table 5: Noisiness of datasets measured using 100
examples’ hallucination rate (HR)

B Training Details623

Implementation Details We run our experi-624

ments on 1 NVIDIA RTX 6000 GPU. Finetun-625

ing each model on Cochrane, MedEasi, and AS-626

SET, for base, coarse and fine-grained LT, and627

with cleaned datasets, takes roughly 40 minutes,628

whereas CNN/DailyMail and XSum take 4 hours.629

Finetuning All models use 1 epoch, a learning630

rate of 5e-5, Adam epsilon of 1e-8, and batch size631

of 1 for Cochrane/MedEasi and 64 for ASSET,632

XSum, CNN/DailyMail).633

Loss Truncation (Coarse-Grained) All datasets634

are trained using a 80% truncate rate, with a cutoff635

recomputed every 1000 examples.636

Loss Truncation (Fine-Grained) Cochrane and637

MedEasi use an 80% truncate rate, whereas ASSET,638

XSum, and CNN/DailyMail use a 40% truncate639

rate, all recomputing every 500 examples.640

The score used in the fine-grained LT is given by641

score(ŷ) =
|y|∑
t=1

1[yt ∈ entities] · ytlog(ŷt)

where 1[yt ∈ entities] is scored by NER mod- 642

els en_core_web_lg and en_core_sci_lg 643

(Honnibal and Montani, 2017; Neumann et al., 644

2019) and ŷt = p(yt|y<t, X). 645

C Training Loss Curves 646

We plot loss curves generated from finetuning 647

BART-XSum in Figure 2 throughout one epoch 648

which demonstrates convergence across datasets. 649

Figure 2: Loss curves from finetuned BART-XSum; 0.8
smoothing used in top row

D NLL of Factual/Non-Factual Tokens 650

We compare the NLL of factual and non-factual 651

tokens in factual and non-factual sentences in Ta- 652

ble 6. This demonstrates that non-factual tokens 653

have higher NLL than factual tokens, regardless of 654

which sentences the tokens appear in. 655

Dataset NLL (+, NF) NLL (+, F) NLL (-)

Cochrane 0.601 0.522 2.445
MedEasi 0.772 0.510 2.231
Asset 0.664 0.752 2.550
XSum 1.934 2.579 1.865
CNN 2.083 2.199 2.910

Cochrane 0.331 0.265 1.592
MedEasi 0.443 0.228 2.070
Asset 0.300 0.825 3.392
XSum 1.354 1.776 0.946
CNN 1.447 1.488 1.842

Table 6: Token-Level NLL Loss for Factual Entities in
both Non-Factual Targets (+, NF) and Factual Targets
(+, F), and Non-Factual Entities in Non-Factual Targets
(-)

E Results on Flan-T5 656

We report the details of finetuning the standard 657

loss truncation (Kang and Hashimoto, 2020) using 658

Flan-T5 (Chung et al., 2022) in Table 7. 659
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Data HR (Entity) ↓ SARI ↑ RL ↑

Cochrane 190/480 (39.6%) 33.720 37.163
MedEasi 14/300 (46.7%) 24.405 48.248
ASSET 19/359 (5.3%) 35.003 91.116
CNN 2948/11490 (25.7%) 41.486 32.133
XSum 6897/11334 (60.9%) 43.767 29.130

Table 7: Finetuning Flan-T5 (Chung et al., 2022) with
Loss Truncation results in even better performance than
BART, demonstrating opportunity for further progress

F Examples of Noisy Targets660

See Table 8 for examples of noisy targets from661

various datasets.662

G Example Output663

See Table 9 for a comparison of outputs of various664

models from an example in the Cochrane dataset.665

Loss truncation and the example-level data clean-666

ing are the only methods which correctly avoid667

generating a hallucinated date.668
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Dataset Input Target

MedEasi Baker cysts may form and rupture. Cysts may develop and rupture behind the
knees, suddenly increasing the pain.

Sullivan apparently had no idea who Mc-
Cartney was.

Sullivan thought that his illness was be-
cause of ulcers.

The linear combination of atomic orbitals
or LCAO approximation for molecular or-
bitals was introduced in 1929 by Sir John
Lennard-Jones.

The LCMO (Linear combination of
atomic orbitals molecular orbital)
method gives a rough but good description
of the MOs

Cochrane We included six trials, involving a total of
636 women with a twin or triplet pregnancy
(total of 1298 babies). We assessed all of
the included trials as having a low risk of
bias for random sequence generation. ...
There is a need for large-scale, multicenter
randomised controlled trials to evaluate the
benefits, adverse effects and costs of bed
rest before definitive conclusions can be
drawn.

We searched for evidence on 30 May
2016. We identified six randomised con-
trolled trials involving a total of 636 women
and 1298 babies ... We did not find suffi-
cient evidence to support or refute bed rest
for women with a multiple pregnancy as a
way of preventing preterm birth and other
pregnancy complications.

This update identified one additional study
for inclusion, adding data for 2305 partic-
ipants. This addition more than doubled
the overall number of patients eligible for
the review. ... Also, there were no data
from RCTs on the utility of non-vitamin
K antagonist oral anticoagulants compared
to antiplatelet agents in heart failure with
sinus rhythm.

This is an update of an earlier review. The
evidence is current to September 2015.
We only identified one new study with 2305
participants. ... It is unlikely that further
studies will change these conclusions un-
less new, more effective and safe drugs be-
come available.

XSum The full cost of damage in Newton Stewart,
one of the areas worst affected, is still being
assessed. Repair work is ongoing in Haw-
ick and many roads in Peeblesshire remain
badly affected by standing water.... Have
you been affected by flooding in Dumfries
and Galloway or the Borders?

Clean-up operations are continuing across
the Scottish Borders and Dumfries and
Galloway after flooding caused by Storm
Frank.

A fire alarm went off at the Holiday Inn
in Hope Street at about 04:20 BST on Sat-
urday and guests were asked to leave the
hotel. As they gathered outside they saw
the two buses, parked side-by-side in the
car park, engulfed by flames.... While the
exact cause is still under investigation, it
is thought that the fire was started deliber-
ately.

Two tourist buses have been destroyed by
fire in a suspected arson attack in Belfast
city centre.

Table 8: Examples of noisy targets from datasets, with the unsupported entities presented in bold
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Model Example

BART (Lewis et al.,
2020)

We found one small randomised controlled trial (with data from 34 women)
that compared transcervical amnioinfusion with no treatment. The trial was
considered to be at a high risk of bias overall. . . The evidence is up-to-date
as of February 2019.

Both-UL (Devaraj
et al., 2021)

We found one small randomised controlled trial with 34 women. . . The evi-
dence is current up-to-date to September 2016. . . The numbers included
were too small for meaningful assessment of substantive outcomes, where
they were reported.

NAPSS (Lu et al.,
2023)

The evidence is current to May 2017. We included one small study that
reported on a limited number of outcomes of interest in this review. ... and
inconsistency in how the trial was conducted and reported. The evidence is
up to date as of March 2017. There is insufficient evidence to . . .

LT (Sentence
Level) (Kang and
Hashimoto, 2020)

This review did not identify any trials that used transabdominal amnioinfu-
sion outside of clinical trials. The evidence in this review can neither support
nor refute the use of transcervical amnion infusions for chorioamnionitis
and to assess the safety of this intervention or women’s satisfaction.

LT (Token Level) We included one small trial (with data from 34 women) comparing transcer-
vical amnioinfusion with no amnioticinfusion. The trial was considered to be
at a high risk of bias overall, inconsistency in the reporting and lack of infor-
mation on blinding. We did not identify any trials that used transabdominal
amniotics (low-quality evidence). We assessed using GRADE (postpartum
endometritis, neonatal encephalopathy, admission to intensive/high care)
was not reported in the included trial.

Drop Sentence We searched for evidence from randomised controlled trials on 31 May
2017. The evidence in this review is up-to-date at 31 December 2017. . . .
The overall quality of the evidence was low, with small numbers of women
in the trial and a lack of information on blinding.

Drop Example We found one trial of transcervical amnioinfusion, with data from 34 women
who matched our question. The trial was considered to be at a high risk of
bias overall, due to small numbers, inconsistency in the reporting and lack
of information on blinding. Meta-analysis of the evidence was not possible.
The majority of trials in this review were of low quality. For these outcomes,
we downgraded the evidence to low - with downgrading decisions based on
small numbers and a lack of instructions on how to be sure of whether they
were in the intervention group.

Table 9: Sample Report from the Cochrane Test Set
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