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ABSTRACT

The one-epoch overfitting problem has drawn widespread attention, especially in
CTR and CVR estimation models in search, advertising, and recommendation do-
mains. These models which rely heavily on large-scale sparse categorical features,
often suffer a significant decline in performance when trained for multiple epochs.
Although recent studies have proposed heuristic solutions, the fundamental cause
of this phenomenon remains unclear. In this work, we present a theoretical expla-
nation grounded in Rademacher complexity, supported by empirical experiments,
to explain why overfitting occurs in models with large-scale sparse categorical
features. Based on this analysis, we propose a regularization method that con-
strains the norm budget of embedding layers adaptively. Our approach not only
prevents the severe performance degradation observed during multi-epoch train-
ing, but also improves model performance within a single epoch. This method has
already been deployed in online production systems.

1 INTRODUCTION

Click-through rate (CTR) and conversion rate (CVR) estimation are critical for advertising, search
and recommendation (ASR) applications. E-commerce platforms like Amazon and Taobao rely on
optimizing CTR and CVR estimation to boost gross merchandise volume (GMV), while advertis-
ing platforms at Google and Meta depend on it to drive revenue growth. In the past decade, as
deep learning has been widely adopted in ASR applications, most estimation models have been
built on deep learning frameworks and rely on large-scale, sparse categorical features (Cheng et al.
(2016); Guo et al. (2017); Lian et al. (2018)). Recent work (Zhang et al. (2022b)) demonstrates,
through extensive experiments, that such models commonly suffer from the one-epoch overfitting
phenomenon, where model performance drops sharply after the first epoch of training. It empiri-
cally suggests that the optimal practice is to train the models for only one epoch. At the same time,
their empirical analysis also reveals a strong connection between feature sparsity and the one-epoch
phenomenon. In ASR scenarios, categorical features can easily reach the scale of billions, and most
feature values occur extremely infrequently (Xie et al. (2020); Zhang et al. (2022a)), which makes
models especially susceptible to overfitting after the first epoch. Additionally, Ouyang et al. (2022)
reported a similar one-epoch phenomenon during supervised fine-tuning (SFT) of large language
model (LLM), though they argue that moderate overfitting can actually be beneficial. We leave it in
future work. In this paper, we focus on addressing the multi-epoch overfitting problem for models
with large-scale sparse features in ASR applications.

Liu et al. (2023) was the first to address the one-epoch problem using a heuristic approach. They
introduced a multi-epoch data augmentation method (MEDA) that can be easily applied to esti-
mation models with large-scale sparse categorical features. Later, they extended it to a continual
learning paradigm (Fan et al. (2024)). To mitigate overfitting during multi-epoch training, MEDA
reinitializes the embeddings of categorical features and their corresponding optimizer states at the
beginning of each epoch. Although this approach effectively alleviates multi-epoch overfitting, it is
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fundamentally heuristic because the embedding parameters are only reinitialized at epoch bound-
aries. It neither ensures optimal convergence nor explains the root cause of overfitting. Moreover,
this embedding reinitialization approach may result in the loss of substantial information, potentially
resulting in suboptimal model performance. Nevertheless, it provides important inspiration for sub-
sequent research. Another method, proposed by Wang et al. (2025), adopts an LLM-style paradigm.
In this approach, generative pretraining is used to obtain embeddings for categorical features, which
remain frozen during subsequent training. This strategy also helps to mitigate overfitting. However,
it requires significant training resources to obtain the pretrained embeddings, and the performance
cannot be fairly compared to single-epoch training because the parameter budget used during the
pretraining phase is not included. Therefore, it cannot be regarded as a solution to the one-epoch
problem, although it does highlight the pivotal role of the embedding layer in this phenomenon.

There are several well-established and general-purpose methods to mitigate overfitting, such as
dropout (Srivastava et al. (2014)), L1 and L2 regularization (Schmidt et al. (2009); Moore & DeNero
(2011)), and weight decay (Hanson & Pratt (1988)). However, in real-world industrial applications,
data is typically high-dimensional and sparse, with different features exhibiting varying degrees of
sparsity. Consequently, methods like AdamW (Loshchilov & Hutter (2017)), which apply the same
weight decay across all parameters, tend to be suboptimal for addressing overfitting. Specifically,
such approaches may reduce the fitting accuracy for relatively dense features while failing to effec-
tively control overfitting in sparse features.

This paper presents a foundational theoretical analysis of the root cause of one-epoch overfitting, and
proposes a method that adaptively determines regularization coefficients according to the effective
update interval of each categorical feature value, and integrates these coefficients into the optimizers
update rules. The proposed approach is particularly well-suited for models with large-scale sparse
features. It reduces regularization for relatively dense features and neural network parameters, while
assigning appropriate regularization strengths to individual categorical features. As a result, this
method not only prevents the sharp performance degradation observed in multi-epoch training, but
also enhances performance within a single epoch.

2 PRELIMINARY

In the industrial ASR domain, mainstream estimation models typically combine embedding layers
with a variety of dense multi-layer perceptron (MLP) backbones, such as Gu et al. (2022). Taking
an e-commerce platform estimation model as an example, these models process large-scale sparse
inputs, including item IDs, brand IDs, and seller IDs, where the scale of categorical features can
range from millions to billions. Before being processed by the estimation model, these sparse fea-
tures are first mapped to low-dimensional dense representations via embedding layers. The one-hot
categorical feature xi(t) ∈ RNi is defined as xi(t) = [0, 0, . . . , 1, . . . , 0]

⊤
, i ∈ [S], t ∈ [T ], which

can be represented by an embedding vector ei (t) ∈ Rdi shown below

ei (t) = E⊤
i xi(t) (1)

where Ei ∈ RNi×di is the embedding matrix for feature i and di is the embedding size. T ∈ N is the
number of training samples. S ∈ N denotes the number of categorical features. Ni ∈ N, ∀i ∈ [S]
denotes the number of distinct values for feature i. At each update step, an embedding lookup is
performed to retrieve the dense representations for the sparse features via equation 1, which are
then fed into the MLP layers. For simplicity, we separate the model into the embedding component
and the MLP component denoted as f . In our theoretical analysis, we use a basic DNN backbone
and provide experiments in section 4 to demonstrate the generalizability of our method with other
backbone architectures.

2.1 NEURAL NETWORK DEF INITION

The general form of basic DNN function can be defined as

f (·) = WLσL−1 (WL−1σL−2 (. . .σ1 (W1·))) (2)

where L denotes the number of MLP layers, σ(·) is the ReLU function (Agarap (2018)), Wl is the
linear projection matrix of layer l, l ∈ [L]. In this paper, we only discuss the impact of embedding
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layer so we can define the t-th sample output of DNN as

y(t) = f
󰀃󰀅
E⊤

1 x1(t);E
⊤
2 x2(t); . . . ;E

⊤
S xS(t)

󰀆󰀄
(3)

where y(t) is the logit output for CTR or CVR estimation model.

2.2 RADEMACHER COMPLEXITY BOUND

Rademacher complexity is a standard tool to control the uniform convergence of given classes of
predictors (Koltchinskii & Panchenko (2002),Zhang et al. (2016)). Formally, given a real-valued
function class H with the input z, we define the empirical Rademacher complexity 󰁥RT (H) as

󰁥RT (H) = E󰂃

󰀥
sup
h∈H

1

T

T󰁛

t=1

󰂃t h(zt)

󰀦
(4)

where 󰂃 = (󰂃1, . . . , 󰂃T ) is a vector whose entries 󰂃t are independent and uniformly distributed in
{−1,+1}. Using standard arguments, such bounds, as long as the norm of zt is bounded, can be
converted to bounds on the generalization error, assuming access to a sample of T i.i.d. training
samples.

Based on Theorem 1 of Golowich et al. (2018), and noting that the embedding layer can be regarded
as a linear projection, we can obtain the following upper bound on the Rademacher complexity of
equation 3 as

󰁥RT (HL) ≤
1

T

󰀣
L󰁜

l=1

MF (l)

󰀤󰀳

󰁃

󰁹󰁸󰁸󰁷
S󰁛

i=1

M2
Ei

󰀴

󰁄
󰀓󰁳

2 log(2)L+ 1
󰀔
󰁹󰁸󰁸󰁷

T󰁛

t=1

S󰁛

i=1

󰀂xi(t)󰀂2 (5)

where 󰀂 · 󰀂 denotes ℓ2 norm, and each matrix Wl in function f has Frobenius norm at most
MF (l), l ∈ [L]. MEi is the Frobenius norm of embedding matrix Ei and the activation functions
are assumed to be 1-Lipschitz and positive-homogeneous. Furthermore, because ∀i, 󰀂xi(t)󰀂2 = 1
this upper bound can be rewritten as

󰁥RT (HL) ≤
󰁵

S

T

󰀣
L󰁜

l=1

MF (l)

󰀤󰀳

󰁃

󰁹󰁸󰁸󰁷
S󰁛

i=1

Ni󰁛

j=1

τij

󰀴

󰁄
󰀓󰁳

2 log(2)L+ 1
󰀔

(6)

where τij is the squared ℓ2 norm of j-th row of embedding matrix Ei. In ASR applications, the ma-
jority of parameters are concentrated in the embedding layers. Thus, we can see that

󰁓S
i=1

󰁓Ni

j=1 τij
has a significant impact on the upper bound of Rademacher complexity, and consequently, on the
generalization error bound. In appendix D, we provide an upper bound on the Rademacher com-
plexity for an FM-like model, which indicates that the embedding layers also have a significantly
impact on the bound.

3 THE PROPOSED APPROACH

As discussed in section 2, high-dimensional embedding matrices lead to increased generalization
error bounds if the training loss remains constant. On the other hand, strictly constraining the norms
of the embedding vectors to reduce Rademacher complexity may increase the training error, thus po-
tentially degrading overall performance. To identify the optimal regularization factor, we formulate
this trade-off as a constrained optimization problem, described as follows.

min
τij>0

S󰁛

i=1

Ni󰁛

j=1

mijϕ(τij) s.t.
S󰁛

i=1

Ni󰁛

j=1

τij ≤ C (7)

where ϕ(τij) = min󰀂eij󰀂2≤τij L(eij) with i ∈ [S] and j ∈ [Ni]. Here, eij denotes the j-th row of
embedding matrix Ei, and L(eij) represents the average cross-entropy (CE) loss evaluated on the
DNN output when the training sample activates eij . For the CE loss function, L(eij) is lower semi-
continuous and bounded below on bounded sets (Goodfellow et al. (2016)). Consequently, ϕ(τij)
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is well-defined (Ok (2011)) and monotonically non-increasing in τij , since the feasible set expands
with τij . Here, τij is the squared norm budget of embedding vector eij . According to DiBenedetto
(2016), ϕ(τij) is differentiable almost everywhere, and we assume that ϕ(τij) is differentiable1 at
the optimal points τ∗ij for analysis. The coefficient mij denotes the sample frequency with which
embedding vector eij appears in the training dataset and C is a constant that defines the global norm
upper bound for embedding layers. As shown in equation 6, the value of C directly determines the
Rademacher complexity upper bound.

Proposition 1 A necessary condition for the optimal regularization multiplier λ∗
ij associated with

the 󰀂eij󰀂2 ≤ τ∗ij is given by λ∗
ij = µ0/mij , where µ0 is the Lagrange multiplier corresponding to

󰁓S
i=1

󰁓Ni

j=1 τ
∗
ij ≤ C.

Proof. Based on the above assumption, at points of differentiability where a standard constraint qual-
ification holds for the inner optimal solution, the envelope theorem and Lagrangian decomposition
(Shapiro (1979)) yield

ϕ′(τ∗ij) = −λ∗
ij (8)

where λ∗
ij ≥ 0 is the Lagrange multiplier corresponding to 󰀂eij󰀂2 ≤ τ∗ij , and τ∗ij is the optimal

solution of equation 7. Here, ϕ′(τ∗ij) denotes the derivative of ϕ(τ∗ij) with respect to τ∗ij . We re-
formulate the optimization problem defined in equation 7 with the Lagrange multipliers µij and µ0,
corresponding to the nonnegativity constraints of τij ≥ 0 and

󰁓S
i=1

󰁓Ni

j=1 τij ≤ C respectively,
where µij and µ0 are restricted to be non-negative.

min
τij>0

󰀳

󰁃
S󰁛

i=1

Ni󰁛

j=1

mijϕ(τij) + µ0

󰀳

󰁃
S󰁛

i=1

Ni󰁛

j=1

τij − C

󰀴

󰁄−
S󰁛

i=1

Ni󰁛

j=1

µijτij

󰀴

󰁄

s.t. µ0 ≥ 0, µij ≥ 0, ∀i ∈ [S], ∀j ∈ [Ni]

(9)

Based on the KKT condition (Boyd & Vandenberghe (2004)), we have mijϕ
′(τ∗ij) + µ0 − µij = 0.

Applying the complementary slackness condition, we obtain µijτ
∗
ij = 0. This implies the optimality

condition for τij > 0 can be simplified as

mijϕ
′(τ∗ij) + µ0 = 0 (10)

By substituting equation 8 into equation 10, we obtain a necessary condition for the optimal regu-
larization multiplier λ∗

ij = µ0/mij .

3.1 ADAPTIVE REGULARIZATION METHOD

As shown in equation 6, embedding layers in ASR applications typically take the majority of the
model parameters and have a substantial impact on the generalization error bound. Proposition 1
suggests that the norm budget for each embedding vector should be allocated according to its sample
frequency. However, it is not easy to use the frequency directly during the training process. We can
estimate mij via the stochastic occurrence interval Iij of eij for i ∈ [S] and j ∈ [Ni]. Specifically,
given that xi(t) is sampled from an i.i.d. distribution (a common assumption in deep learning), we
have E[mij ] = T/E[Iij ] (Papoulis (1965)). It enables us to incorporate frequency estimation into
the norm budget allocation strategy during training.

Based on the analysis above, we propose an adaptive method that assigns the regularization strength
based on the occurrence interval of each embedding vector. Specifically, at each training step k,
we define last valid update step (LVS) for the embedding vector eij as skij . If the gradient norm of
eij satisfies 󰀂gij󰀂 > 0, we update the LVS by setting skij = k. Otherwise, skij retains its previous
value. Therefore, skij serves as a lazy-update variable. We define the update interval of step k as
Ikij = k − sk−1

ij − 1. The adaptive regularization coefficient λk
ij is then dynamically computed as

below
λk
ij = min

󰀃
1,αIkij

󰀄
, i ∈ [S], j ∈ [Ni] (11)

1In appendix C, we give a discussion for the non-smooth case.
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Here, α ∈ [0, 1) denotes the base regularization coefficient. Following the decoupled weight de-
cay approach in AdamW (Loshchilov & Hutter (2017)), we incorporate the dynamically computed
regularization into each optimizer update step. Algorithm 1 outlines the procedure of Adam with
adaptive regularization (AdamAR).

For clarity and practical implementation, we use θp to denote parameters in the estimation model,
where p ∈ [P ] and P is the total number of parameters. At each update step k, we first compute the
adaptive regularization λk

p according to equation 11 and use it to update the corresponding model
parameter θkp . We then identify the parameters whose gradient norm 󰀂gkp󰀂 is greater than zero in
current step and update their last update step state skp for use in the next iteration.

In fact, our method is not only suitable for Adam, but also compatible with various gradient-based
optimizers which have weight decay factor, such as Adagrad (Duchi et al. (2011)). We have imple-
mented an adaptive version for Adagrad in algorithm 2 of the appendix G. In section 4, we conducted
comparative experiments evaluating performance across both Adam and Adagrad.

Moreover, the AdamAR algorithm requires additional storage to record the last valid update step.
Further details of the computation and memory analysis are provided in appendix F.

Algorithm 1 Adam with Adaptive Regularization (AdamAR)
1: given β1 = 0.9, β2 = 0.999, ε = 10−8, α, learning rate η
2: initialize time step k ← 0, parameter θk=0

p , first moment mk=0
p ← 0, second moment vk=0

p ← 0,
last update step state sk=0

p ← 0
3: repeat
4: k ← k + 1
5: gkp ← ∇θpf

󰀃
θk−1
p

󰀄
(Get gradients w.r.t. stochastic objective at timestep t)

6: mk
p ← β1m

k−1
p + (1− β1) g

k
p (Update biased first moment estimate)

7: vkp ← β2v
k−1
p + (1− β2)

󰀃
gkp

󰀄2
(Update biased second raw moment estimate)

8: m̂k
p ← mk

p/
󰀃
1− βk

1

󰀄
(Compute bias-corrected first moment estimate)

9: v̂kp ← vkp/
󰀃
1− βk

2

󰀄
(Compute bias-corrected second raw moment estimate)

10: λk
p ← min

󰀃
1,
󰀃
k − sk−1

p − 1
󰀄
α
󰀄

(Compute adaptive regularization through equation 11)
11: skp ← k if ||gkp || > 0 else sk−1

p (Update the last update step when the gradient norm is greater
than zero)

12: θkp ← θk−1
p − λk

pθ
k−1
p − η · m̂k

p/
󰀓󰁴

v̂kp + ε
󰀔

(Update parameters)
13: until stopping criterion is met
14: return optimized parameters θtp

3.2 DISCUSSION ON THE MECHANISM OF REGULARIZATION

As shown in equation 7, if we do not constrain the embedding norm, the global norm will continue
to grow until further increases no longer yield improvements in the objective value since ϕ(τij)
is non-increasing. In other words, the embedding norms will continue to grow during training,
resulting in a looser upper bound on the Rademacher complexity. The sharper drop in performance
during multi-epoch training can be attributable to the increased Rademacher complexity resulting
from unconstrained norm growth as demonstrated in the experimental section 4.4.

Then we discuss how the adaptive regularization takes effect, and also provides guidance for select-
ing the regularization coefficient α.

Proposition 2 When adaptive regularization is applied according to equation 11, the update rule
for parameters satisfy 󰀂θkp󰀂 ≤ (1− α)

Ik
p 󰀂θk−1

p 󰀂+ 󰀂η · m̂k
p/(

󰁴
v̂kp + ε)󰀂

Proof. Let Ikp ∈ Z≥0 ∩ [0, 1/α), and α is typically chosen such that α ∈ [0, 1). By applying

Bernoulli’s inequality to (1− α)
Ik
p , we obtain (1− α)

Ik
p ≥ 1 − αIkp . In the case where Ikp ∈

Z≥0 ∩ [1/α,∞), it follows that (1− α)
Ik
p > 0 since α < 1 and Ikp ≥ 0. Combining both cases, we
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have
(1− α)

Ik
p ≥ 1−min

󰀃
1,αIkp

󰀄
(12)

We substitute equation 12 into θk−1
p − λk

pθ
k−1
p − η · m̂k

p/
󰀓󰁴

v̂kp + ε
󰀔

, then we can have

󰀂θkp󰀂 ≤ (1− α)
Ik
p 󰀂θk−1

p 󰀂+ 󰀂η · m̂k
p/(

󰁴
v̂kp + ε)󰀂 (13)

From proposition 2, the update rule for θkp can be interpreted intuitively. If the interval Ikp is large for

the corresponding sparse categorical features, the term (1− α)
Ik
p 󰀂θk−1

p 󰀂 becomes negligible, and
θkp is effectively determined by the latest gradient. In the ASR domain, certain categorical feature
values may not appear in every mini-batch, resulting in their embedding parameters being updated
infrequently, while the MLP parameters are updated in every batch. After the MLP component has
nearly converged, the embedding parameters associated with sparse features will have received far
fewer updates and may become misaligned with the current state of the MLP parameters, making
the previous value θk−1

p less informative. Proposition 2 demonstrates that the factor (1− α)
Ik
p ex-

ponentially attenuates the previous value θk−1
p , making the embedding parameters of sparse features

depend more heavily on the current gradient. Meanwhile, since the update interval Ikp for MLP
parameters is identically zero (as they are updated in every batch), the regularization primarily af-
fects the embedding parameters corresponding to very low-frequency feature values. Moreover, we
observe that the method proposed in Liu et al. (2023) is a special case of our approach when zero
reinitialization is applied to the embedding and Ikp is specified as

Ikp =

󰀝
1/α, if kB mod T = 0

0, otherwise
(14)

Where B is the batch size. It can be seen that this heuristic is primarily effective at epoch boundaries.
However, for features that have already become overfitted within a single epoch, its performance
remains suboptimal.

3.3 MINIMUM CONVERGENCE

We analyze the convergence of adaptive regularization methods in the non-convex setting using the
minimum convergence rules proposed by Khaled & Richtárik (2020). The assumptions underlying
our convergence analysis are listed below.

Assumptions 1. The function f is differentiable and its gradient is Lipschitz continuous, i.e., there
exists L0 > 0 such that 󰀂∇f(θk+1)−∇f(θk)󰀂 ≤ L0󰀂θk+1−θk󰀂, ∀k ≥ 1, and f is lower bounded
at the optimal solution, i.e., f∗ > −∞.

Assumptions 2. gk is an unbiased estimator of the full gradient, i.e., E
󰀅
gk

󰀆
= ∇f(θk) with

M > 0, and the algorithm accesses a bounded stochastic gradient, i.e., 󰀂gk󰀂 ≤ M a.s.

Proposition 3 The adaptive regularization method preserves the minimum convergence bound of
the Adam optimizer with stochastic conditions, which can be expressed as

min
1≤k≤K

E
󰁫󰀐󰀐∇f

󰀃
θk

󰀄󰀐󰀐2
󰁬
≤ C1 + C2

󰁓K
k=1 ηk + C3

󰁓K
k=1 η

2
k󰁓K

k=1 ηk
(15)

where C1, C2 and C3 are constants, ηk denotes the step size at iteration k out of K total iterations.

The proof, along with the definitions of the constants C1, C2, and C3, can be found in appendix B.1.
Proposition 3 shows that neither the random noise nor the deterministic regularization parameter
affects the minimum convergence of Adam, and it only changes the constant term in equation 15.

4 EXPERIMENTAL VALIDATION

To evaluate the effectiveness of our proposed method, we conduct several experiments on different
public datasets and our industrial dataset. The experimental setup is described in section 4.1. The
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training framework proposed by Zhu et al. (2022) is used for training on public datasets, while XDL
(Jiang et al. (2019)) is employed for training our proprietary industrial dataset. We show the learning
curve on the Avazu dataset in section 4.2 to demonstrate the better generalization of our methods
over multi-epoch training. In section 4.3, we compare multiple backbones and datasets to prove
the generalization of our method. We give a detailed example to show that the low-frequency em-
beddings are the primary contributors of the one-epoch problem in section 4.4, which demonstrates
we should allocate a smaller norm budget to embeddings with lower sample frequency. Finally,
in section 4.5, we conduct an ablation study to further clarify the contribution of occurrence in-
terval estimation. For reproduction, the code2 is available, and we use the same seed for identical
experimental settings.

4.1 EXPERIMENTAL SETUP

Datasets. In our experiments, we use three public datasets iPinYou3, Amazon4, Avazu5 along with
LZD, a proprietary online business dataset from sponsored search. Dataset details are provided in
appendix L.

MLP Backbones. We evaluate our method using four MLP backbones, namely DNN, WDL (Cheng
et al. (2016)), xDeepFM (Lian et al. (2018)) and WuKong (Zhang et al. (2024))

Methods. To evaluate the one-epoch overfitting phenomenon, we train the models for 4 epochs and
compare 4 benchmarks. 1) Baseline optimizer: Adam and Adagrad serve as the baseline optimizers.
2) MEDA: MEDA is applied using the same optimizer settings as in baseline. 3) AdamW and
AdagradW: The baseline optimizers are enhanced with weight decay only on embedding layers.
4) SAM: The baseline optimizers are combined with SAM (Foret et al. (2020)). 5) AdamAR and
AdagradAR: The baseline optimizers are combined with our method.

Hyperparameters. The embedding dimension is set to 32, with zero initialization. The learning
rate is set to 0.001 for Adam and 0.01 for Adagrad, respectively. The batch size is 2048. Both
α and the weight decay parameter are selected via grid search over values of the form 10n where
n ranges from −6.5 to −1 with step size of 0.5. The optimal hyperparameters are selected based
on validation performance (see appendix I for details). Network architectures are configured with
minor adjustments across datasets. For detailed configurations, please refer to table 6 in appendix
H. All other hyperparameters are set to their default values. Area under the curve (AUC) and binary
cross-entropy loss are used as evaluation metrics. Experiments are conducted on a single machine
with an NVIDIA L20 GPU.

4.2 LEARNING CURVE AND GENERALIZATION RESULTS

In this section, we present the training loss and test AUC across multiple epochs on the Avazu
dataset, using a DNN backbone and the Adam optimizer. The learning curves in figure 1 compare
our method with several baselines. For the native optimizer, training loss decreases rapidly after the
first epoch. However, test AUC drops sharply with additional epochs, indicating clear overfitting. In
contrast, MEDA and weight decay alleviate this problem, yielding more stable test AUC throughout
training. Our method achieves the best overall performance. Figures 1(b) and 1(c) reveal an inverse
correlation between the ℓ2 norm of the embedding vectors and test AUC. It demonstrates that con-
straining the embedding norm improves generalization ability of models. Among all methods, our
proposed AdamAR achieves the lowest cumulative ℓ2 norm for the embedding vectors, highlighting
its effectiveness in controlling regularization strength.

4.3 PERFORMANCE OVER DIF FERENT DATASETS AND MLP BACKBONES

In this section, we compare test AUC across different datasets and MLP backbones to demonstrate
the generalization capability of our method. Each experiment is repeated three times with different
seed. We report the average test AUC using Adam and Adagrad optimizers in table 1 and table

2https://github.com/alibaba-aidc/adaptive-regularization.git
3https://huggingface.co/datasets/reczoo/iPinYou_x1
4https://huggingface.co/datasets/reczoo/AmazonElectronics_x1
5https://huggingface.co/datasets/reczoo/Avazu_x1
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Figure 1: Performance of four methods on Avazu dataset with DNN backbone. (a) shows the training
loss curves. (b) presents the test AUC. (c) illustrates the cumulative ℓ2 norm of embedding vectors.

2, while the standard deviation and detailed scalability comparison are presented in appendix J.
The results show that our methods consistently outperform MEDA and weight decay method on all
datasets and architectures in single-epoch training, except for the Amazon dataset which has less
features and samples where SAM achieves superior performance. Notably, in multi-epoch training,
our method achieves the highest AUC, surpassing all other approaches across every dataset and ar-
chitecture. Furthermore, the gains are consistent across diverse model architectures, ranging from
basic DNN to more sophisticated designs like WuKong, which capture complex feature interac-
tions. Overall, these results demonstrate the robustness and versatility of our adaptive regularization
approach across various settings.

Table 1: Comparison of average test AUC across different datasets and models using Adam op-
timizer. E1-E4 denote results after 1-4 epochs, respectively. The best results are highlighted in
bold.

Dataset Method
DNN WDL xDeepFM WuKong

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

iPinYou

Adam 0.7515 0.7304 0.7061 0.7014 0.7619 0.7320 0.7028 0.6987 0.7590 0.7391 0.6969 0.6844 0.7611 0.7442 0.7082 0.6915

MEDA 0.7515 0.7644 0.7684 0.7717 0.7619 0.7589 0.7565 0.7551 0.7590 0.7584 0.7575 0.7597 0.7611 0.7663 0.7662 0.7706

SAM 0.7510 0.7593 0.7445 0.7256 0.7610 0.7581 0.7404 0.7248 0.7565 0.7517 0.7413 0.7274 0.7033 0.7485 0.7465 0.7306

AdamW 0.7475 0.7592 0.7623 0.7568 0.7551 0.7656 0.7646 0.7634 0.7607 0.7660 0.7651 0.7574 0.7579 0.7634 0.7605 0.7511

AdamAR 0.7566 0.7692 0.7688 0.7724 0.7655 0.7729 0.7670 0.7668 0.7725 0.7733 0.7711 0.7678 0.7653 0.7736 0.7748 0.7736

Amazon

Adam 0.8482 0.8548 0.8335 0.8180 0.8474 0.8510 0.8261 0.8156 0.8460 0.8535 0.8287 0.8163 0.8580 0.8600 0.8348 0.8232

MEDA 0.8482 0.8544 0.8556 0.8573 0.8474 0.8506 0.8566 0.8566 0.8460 0.8519 0.8551 0.8562 0.8580 0.8611 0.8621 0.8626

SAM 0.8507 0.8587 0.8417 0.8249 0.8516 0.8567 0.8396 0.8213 0.8505 0.8587 0.8390 0.8232 0.8588 0.8639 0.8404 0.8225

AdamW 0.8476 0.8571 0.8426 0.8276 0.8461 0.8533 0.8380 0.8223 0.8446 0.8557 0.8381 0.8240 0.8564 0.8632 0.8478 0.8349

AdamAR 0.8507 0.8683 0.8708 0.8686 0.8496 0.8654 0.8689 0.8659 0.8483 0.8676 0.8687 0.8675 0.8582 0.8696 0.8693 0.8664

Avazu

Adam 0.7461 0.7205 0.7014 0.6883 0.7483 0.7221 0.6982 0.6886 0.7488 0.7217 0.7019 0.6869 0.7514 0.7360 0.7141 0.7079

MEDA 0.7461 0.7498 0.7489 0.7485 0.7483 0.7488 0.7480 0.7494 0.7488 0.7489 0.7505 0.7506 0.7514 0.7548 0.7553 0.7571

SAM 0.7451 0.7194 0.7013 0.6899 0.7477 0.7205 0.6993 0.6902 0.7484 0.7190 0.7010 0.6902 0.7513 0.7333 0.7155 0.7156

AdamW 0.7572 0.7582 0.7582 0.7583 0.7585 0.7581 0.7563 0.7570 0.7583 0.7582 0.7589 0.7593 0.7542 0.7547 0.7558 0.7564

AdamAR 0.7617 0.7631 0.7629 0.7629 0.7629 0.7629 0.7627 0.7626 0.7628 0.7633 0.7638 0.7636 0.7624 0.7612 0.7623 0.7624

LZD

Adam 0.7118 0.6613 0.6252 0.6065 0.7155 0.6726 0.6308 0.6079 0.7164 0.6787 0.6321 0.6050 0.7101 0.6645 0.6102 0.6044

MEDA 0.7118 0.7105 0.7081 0.7176 0.7155 0.7162 0.7177 0.7162 0.7164 0.7170 0.7152 0.7139 0.7101 0.7170 0.7129 0.7128

SAM 0.7130 0.6696 0.6341 0.6155 0.7161 0.6795 0.6360 0.6111 0.7166 0.6750 0.6344 0.6134 0.7146 0.6713 0.6443 0.6212

AdamW 0.7132 0.7135 0.7140 0.7139 0.7143 0.7138 0.7142 0.7131 0.7142 0.7151 0.7139 0.7139 0.7115 0.7135 0.7152 0.7142

AdamAR 0.7229 0.7235 0.7241 0.7234 0.7233 0.7240 0.7246 0.7240 0.7244 0.7256 0.7242 0.7238 0.7227 0.7215 0.7208 0.7202

4.4 EXAMPLE OF THE ROOT CAUSE OF OVERF ITTING

In this section, we give an example to show the root cause of multi-epoch overfitting. We use the
iPinYou dataset with DNN backbone and Adam to illustrate this issue by single experiment. The
detailed feature statistics are listed in table 7 in appendix K. We can observe that most features
on iPinYou dataset are relatively dense. To investigate the root cause of overfitting, we select the
feature ”IP”, which is the most sparse feature in iPinYou dataset with 704,966 unique IDs. We apply
a filtering procedure to reduce its feature sparsity. Given a ratio r, we only retain the top-r fraction
(by frequency) of IDs and replace other IDs with a default ID.
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Table 2: Comparison of average test AUC across different datasets and models using Adagrad op-
timizer. E1-E4 denote results after 1-4 epochs, respectively. The best results are highlighted in
bold.

Dataset Method
DNN WDL xDeepFM WuKong

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

iPinYou

Adagrad 0.7593 0.6507 0.6231 0.6095 0.7646 0.6653 0.6321 0.6241 0.7674 0.6843 0.6505 0.6527 0.7661 0.6900 0.6497 0.6320

MEDA 0.7593 0.7686 0.7710 0.7729 0.7646 0.7681 0.7685 0.7715 0.7674 0.7722 0.7728 0.7740 0.7661 0.7705 0.7729 0.7695

SAM 0.7576 0.7661 0.7487 0.7303 0.7624 0.7676 0.7518 0.7369 0.7637 0.7661 0.7499 0.7363 0.7409 0.7678 0.7525 0.7427

AdagradW 0.7558 0.7651 0.7667 0.7595 0.7593 0.7675 0.7635 0.7593 0.7665 0.7673 0.7666 0.7652 0.7578 0.7661 0.7649 0.7600

AdagradAR 0.7681 0.7754 0.7760 0.7744 0.7731 0.7772 0.7748 0.7720 0.7760 0.7768 0.7762 0.7745 0.7718 0.7776 0.7782 0.7774

Amazon

Adagrad 0.8438 0.8402 0.8141 0.8042 0.8406 0.8345 0.8085 0.7982 0.8405 0.8374 0.8103 0.7996 0.8491 0.8472 0.8156 0.8046

MEDA 0.8438 0.8481 0.8495 0.8505 0.8406 0.8470 0.8497 0.8510 0.8405 0.8463 0.8476 0.8500 0.8491 0.8569 0.8587 0.8609

SAM 0.8500 0.8527 0.8361 0.8193 0.8490 0.7995 0.8325 0.8155 0.8483 0.8521 0.8325 0.8170 0.8556 0.8567 0.8356 0.8174

AdagradW 0.8428 0.8578 0.8563 0.8535 0.8424 0.8553 0.8531 0.8498 0.8410 0.8565 0.8522 0.8508 0.8513 0.8630 0.8617 0.8606

AdagradAR 0.8479 0.8659 0.8711 0.8712 0.8453 0.8631 0.8687 0.8707 0.8444 0.8641 0.8681 0.8703 0.8538 0.8690 0.8708 0.8700

Avazu

Adagrad 0.7541 0.7323 0.7164 0.7074 0.7543 0.7305 0.7158 0.7073 0.7550 0.7319 0.7160 0.7069 0.7548 0.7311 0.7160 0.7041

MEDA 0.7541 0.7549 0.7544 0.7545 0.7543 0.7547 0.7540 0.7551 0.7550 0.7538 0.7550 0.7553 0.7548 0.7551 0.7556 0.7564

SAM 0.7553 0.7333 0.7199 0.7094 0.7557 0.7328 0.7178 0.7079 0.7564 0.7332 0.7198 0.7094 0.7558 0.7353 0.7211 0.7110

AdagradW 0.7578 0.7580 0.7575 0.7566 0.7584 0.7581 0.7567 0.7585 0.7583 0.7581 0.7580 0.7585 0.7524 0.7555 0.7555 0.7563

AdagradAR 0.7628 0.7629 0.7630 0.7624 0.7631 0.7634 0.7623 0.7626 0.7636 0.7633 0.7635 0.7633 0.7628 0.7626 0.7627 0.7620

LZD

Adagrad 0.7226 0.6658 0.6433 0.6376 0.7244 0.6695 0.6389 0.6386 0.7222 0.6675 0.6400 0.6382 0.7247 0.6726 0.6412 0.6339

MEDA 0.7226 0.7183 0.7150 0.7236 0.7244 0.7241 0.7239 0.7219 0.7222 0.7237 0.7253 0.7256 0.7247 0.7237 0.7234 0.7239

SAM 0.7213 0.6761 0.6446 0.6222 0.7229 0.6839 0.6481 0.6266 0.7229 0.6854 0.6480 0.6268 0.7248 0.6802 0.6479 0.6299

AdagradW 0.7145 0.7132 0.7135 0.7154 0.7138 0.7149 0.7137 0.7145 0.7155 0.7135 0.7117 0.7150 0.7127 0.7111 0.7147 0.7136

AdagradAR 0.7253 0.7247 0.7234 0.7241 0.7269 0.7258 0.7251 0.7257 0.7273 0.7268 0.7264 0.7263 0.7269 0.7260 0.7252 0.7239

Figure 2(a) demonstrates that as r decreases, the test AUC remains stable across multiple epochs,
indicating that the one-epoch overfitting phenomenon is effectively alleviated. It suggests that low-
frequency IDs in the ”IP” feature are the primary cause of one-epoch overfitting in the iPinYou
dataset. However, as shown by the case r = 0, removing the ”IP” feature results in a substantial test
AUC drop (from 0.7498 to 0.7429) at the end of the first epoch.

Although removing sparse features can mitigate the one-epoch overfitting issue, it often leads to
diminished model performance. In contrast, our proposed method dynamically adjusts the regular-
ization strength, effectively preventing overfitting while maintaining strong predictive performance.
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Figure 2: Performance comparison using various filter ratios for the ”IP” feature on the iPinYou
dataset. (a) shows the test AUC results. (b) presents the cumulative ℓ2 norm of embedding vectors.

4.5 ABLATION STUDY AND BUCKET ANALYSIS

We use the iPinYou dataset for analysis because it contains a single feature causing the one-epoch
issue as described in section 4.4. Since ”IP” can be interpreted as a proxy for a user, we create 5
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buckets based on the frequency of the ”IP” feature to perform user-based bucket analysis, examining
AUC gains, regularization strength, and ℓ2 norm of our method. A smaller bucket index indicates
a lower occurrence frequency. Figure 3 shows that the bucket norms can be controlled via adaptive
regularization strength while preserving the AUC gains across all buckets, and our method achieves
particularly strong performance in the high-frequency bucket due to the larger norm budget avail-
able. Then, we conduct an ablation study on occurrence interval estimation with a DNN backbone.
In the AdamW baseline, we apply a constant weight decay to the embedding layers only. We then
gradually apply our method to different buckets from 1 to 5. Table 3 shows that, compared with
using a constant weight decay, decreasing the weight decay for high-frequency features and increas-
ing it for low-frequency features can further improve performance while alleviating the one-epoch
issue.
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Figure 3: Bucket analysis of ”IP” feature on the iPinYou dataset with DNN backbone and Adam
optimizer. (a) shows the test AUC results over different feature frequency buckets at the end of
epoch 2. (b) presents the regularization strength. (c) shows the cumulative ℓ2 norm of ”IP” feature
at the end of epoch 2.

Table 3: Comparison of test AUC for ablation study using Adam optimizer.
Experiment Setting E1 E2 E3 E4

AdamW 0.7486 0.7595 0.7628 0.7500
AdamAR-Bucket 1 & AdamW-Bucket 2-5 0.7457 0.7607 0.7646 0.7520
AdamAR-Bucket 1-2 & AdamW-Bucket 3-5 0.7496 0.7622 0.7655 0.7556
AdamAR-Bucket 1-3 & AdamW-Bucket 4-5 0.7510 0.7646 0.7657 0.7614
AdamAR-Bucket 1-4 & AdamW-Bucket 5 0.7470 0.7656 0.7660 0.7635
AdamAR 0.7549 0.7728 0.7730 0.7725

5 CONCLUSION

We propose an adaptive regularization method to address the one-epoch problem in estimation mod-
els for the ASR domain. Experimental results demonstrate that our approach effectively mitigates
the one-epoch issue and improves estimation performance. Additionally, we provide a theoretical
explanation for the one-epoch phenomenon and illustrate how the proposed method takes effect
through analytical derivations and experiments. This approach has already been fully deployed in
the production environment of sponsored search in our company.
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APPENDIX

A GENAI USAGE DISCLOSURE

During the preparation of this work, the author used ChatGPT to improve the language. After using
this tool, the author reviewed and edited the content as necessary and takes full responsibility for the
final publication.

B MINIMUM CONVERGENCE ANALYSIS

B.1 PROOF OF MINIMUM CONVERGENCE

Based on the assumptions outlined in section 3.3, and following the analytical framework of He
et al. (2023), we apply the descent lemma (Nesterov (2013)) to derive
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and η can be specified either as a constant or according to a schedule.

Let λk
0 = min(1,αIk)/ηk, we can then construct λk = ηkλ

k
0 so that (a) is satisfied. Based

on proposition 2 and Lemma 16 in He et al. (2023), we can derive E
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mathematical induction, where W ∈ R is a constant. Furthermore, according to appendix B.2,
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Let α
󰀃
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/ηmin = ν0, and applying the Cauchy-Schwarz inequality yields
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Then we invoke the equation 23 in He et al. (2023), under the conditions 0 < β1 < 1 and 0 < β2 < 1

E
󰀅
f
󰀃
θk+1

󰀄󰀆
≤ E

󰀅
f
󰀃
θk

󰀄󰀆
− 1− β1√

M2 + ε
ηkE

󰁫󰀐󰀐∇f
󰀃
θk

󰀄󰀐󰀐2
󰁬

+
β1L0M

2

ε
ηk

k󰁛

i=1

βk−i
1 ηi−1 +

√
PM4

ε3/2
ηk

k󰁛

i=1

βk−i
1 (1− β2)

+
M2L0

ε
η2k +Mν0Wηk + L0ν

2
0W

2η2k.

(19)

Upon rearranging the above equation and summing both sides over k from 1 to T , we have

1− β1√
M2 + ε

K󰁛

k=1

ηk E
󰁫󰀐󰀐∇f

󰀃
θk

󰀄󰀐󰀐2
󰁬
≤ f(θ1)− f∗ +

β1L0M
2

ε

K󰁛

k=1

ηk

k󰁛

i=1

βk−i
1 ηi−1

+

√
PM4

ε3/2

K󰁛

k=1

ηk

k󰁛

i=1

βk−i
1 (1− β2) +

M2L0

ε

K󰁛

k=1

η2k +Mν0W

K󰁛

k=1

ηk + L0ν
2
0W

2
K󰁛

k=1

η2k.

(20)
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Suppose that {γk}k≥1 is a non-increasing real sequence. Assume that there exist positive constants
C0 and C̃0 such that C0γk ≤ ηk ≤ C̃0γk. By applying the equation 25 and 26 in He et al. (2023),
we obtain

1− β1√
M2 + ε

K󰁛

k=1

ηkE
󰁫󰀐󰀐∇f

󰀃
θk

󰀄󰀐󰀐2
󰁬
≤ f

󰀃
θ1

󰀄
− f∗ +

C̃2
0β1L0M

2

εC2
0 (1− β1)

K󰁛

k=1

η2k

+
C̃0

√
P M4(1− β2)

ε3/2C0(1− β1)

K󰁛

k=1

ηk +
M2L0

ε

K󰁛

k=1

η2k +Mν0W

K󰁛

k=1

ηk + L0ν
2
0W

2
K󰁛

k=1

η2k.

(21)

multiplying both sides of the above equation by
√
M2+ε
1−β1

, we finally obtain

K󰁛

k=1

ηkE
󰁫󰀐󰀐∇f

󰀃
θk

󰀄󰀐󰀐2
󰁬
≤ C1 + C2

K󰁛

k=1

ηk + C3

K󰁛

k=1

η2k (22)

where C1, C2 and C3 in equation 22 are given by

C1 =

√
M2 + ε (f(θ1)− f∗)

1− β1
,

C2 =
C̃0M

4(1− β2)
󰁳
P (M2 + ε)

ε3/2C0(1− β1)2
+

Mν0W
󰁳
(M2 + ε)

1− β1
,

C3 =
C̃2

0β1M
2L0

√
M2 + ε

εC2
0 (1− β1)2

+
M2L0

√
M2 + ε

ε(1− β1)
+

L0ν
2
0W

2
√
M2 + ε

1− β1
.

(23)

because of

min
1≤k≤K

E
󰁫󰀐󰀐∇f

󰀃
θk

󰀄󰀐󰀐2
󰁬 K󰁛

k=1

ηk ≤
K󰁛

k=1

ηk E
󰁫󰀐󰀐∇f

󰀃
θk

󰀄󰀐󰀐2
󰁬

(24)

we can derive that

min
1≤k≤K

E
󰁫󰀐󰀐∇f

󰀃
θk

󰀄󰀐󰀐2
󰁬
≤ C1 + C2

󰁓K
k=1 ηk + C3

󰁓K
k=1 η

2
k󰁓K

k=1 ηk
(25)

It can be observed that the incorporation of adaptive regularization modifies only the constant term
in the upper bound of the minimum convergence rate, while leaving the inherent convergence prop-
erties of the Adam algorithm unaffected.

B.2 BOUND OF OCCURRENCE INTERVAL NOISE

We assume the occurrence interval Ik is subject to additive random noise δk, and it holds that
E[Ik] = Ī + ν1, where E

󰀅
δk

󰀆
= ν1, Ī ∈ RP is finite constants vector. Let Ik = Ī + δk. Since

Ik ≥ 0, the random noise δk has a lower bound of −Ī . We rewrite the vector form of equation 11
as

λk = min
󰀃
1,α

󰀃
Ī + δk

󰀄󰀄
= α(Ī +min

󰀃
δk, 1/α− Ī

󰀄
) (26)

Let δ′k = min
󰀃
δk, 1/α− Ī

󰀄
, then it is straightforward to show that the actual occurrence interval

noise is bounded, i.e., δ′k ∈ [−Ī, 1/α − Ī]. So we can see that the actual noise which impact λk

has been bounded, i.e., E
󰀅
󰀂δ′k󰀂2

󰀆
≤ ν22 and ν2 is finite constant.

C NON-SMOOTH CONDITION DISCUSSION

We analyze the non-smooth condition under the assumption that the function ϕ(τij) is locally Lips-
chitz continuous. Based on the Clarke subdifferential (Clarke (1975)) and the generalized stationar-
ity condition for the optimal solution of the inner problem, we obtain

− λ∗
ij ∈ ∂φ(τ∗) (27)
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where ∂φ(τ∗) denotes the set of subgradients at τ∗. Based on generalized KKT framework, there
exists ρij ∈ ∂φ(τ∗) such that

mijρij + µ0 = 0 (28)
Assuming that ∂φ(τ∗) ∩ {ρ |mijρ+ µ0 = 0} ∕= ∅, we can select a consistent subgradient from
∂φ(τ∗) such that ρij = −λ∗

ij . Substituting this choice into equation 28 yields λ∗
ij = µ0/mij .

Therefore, the necessary condition remains valid in the non-smooth case.

D RADEMACHER COMPLEXITY BOUND OF FM MODEL

We analyze the Rademacher complexity of a bias-free factorization machine (FM) model. Let
fFM ∈ F be defined as

fFM ([e1(t); e2(t); . . . ; eS(t)]) =

S󰁛

i=1

w⊤
i ei(t) +

S󰁛

i=1

S󰁛

j=i+1

ei(t)
⊤ej(t) (29)

where F denotes the class of real-valued FM like functions, Let wi ∈ Rdi , ∀i ∈ S denote the
linear weight vector and let ei(t) be the embedding vector for feature i at t. We decompose the
Rademacher complexity into linear part 󰁥RT (Fl) and interaction part 󰁥RT (Fq), where Fl define the
linear function class and Fq define the interaction function class. Therefore, the overall upper bound
of 󰁥RT (F) satisfy

󰁥RT (F) ≤ 󰁥RT (Fl) + 󰁥RT (Fq) (30)

For the linear part, the upper bound of 󰁥RT (Fl) can be obtained as

󰁥RT (Fl) ≤
1

T

S󰁛

i=1

󰀂wi󰀂

󰁹󰁸󰁸󰁷
T󰁛

t=1

󰀂ei(t)󰀂2 ≤ 1√
T

S󰁛

i=1

󰀂wi󰀂MEi (31)

According to Bartlett & Mendelson (2002), the upper bound of 󰁥RT (Fq) is given by

󰁥RT (Fq) ≤
1√
T

S󰁛

i=1

S󰁛

j=i+1

MEiMEj (32)

Finally, we obtain the upper bound of the Rademacher complexity for the FM-like function class as
follows

󰁥RT (F) ≤ 1√
T

󰀳

󰁃
S󰁛

i=1

󰀂wi󰀂MEi +

S󰁛

i=1

S󰁛

j=i+1

MEiMEj

󰀴

󰁄 (33)

From equation 33, we observe that the embedding norm plays the most important role in determining
the upper bound of the Rademacher complexity and ultimately affects the generalization error.

E ANALYSIS OF EMBEDDING SIZE

We examine the impact of varying embedding sizes on the xDeepFM backbone using the iPinYou
dataset. The embedding size is ranged from 16 to 128, and the multi-epoch performance is compared
across five methods. As shown in table 4, our method performs consistently well across all embed-
ding sizes. Furthermore, we examine the singular spectrum of the embedding matrix for the ”IP”
feature. As shown in figure 4(a), training with the basic Adam optimizer leads to a rapid increase
in the sum of singular values (SS) across multiple epochs. In contrast, figure 4(b) demonstrates
that the information abundance (IA), as defined in Guo et al. (2023), decreases correspondingly.
This inverse relationship reveals the occurrence of an embedding-collapse phenomenon. Notably,
our method effectively controls SS growth and enhances IA, which may explain its superior perfor-
mance in mitigating overfitting.

F COMPUTAIONT AND MEMORY ANALYSIS

We compare the computation and memory costs of AdamAR and Adam, excluding gradient com-
putation. P is number of parameters. The total costs are summarized in the table below.
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Table 4: Comparison of test AUC with xDeepFM backbone and iPinYou dataset using Adam opti-
mizer across different embedding sizes. The best results are highlighted in bold.

Method
Embedding Size = 16 Embedding Size = 32 Embedding Size = 64 Embedding Size = 128

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

Adam 0.7593 0.7373 0.6914 0.6980 0.7607 0.7379 0.6928 0.6831 0.7579 0.7396 0.7158 0.6867 0.7630 0.7430 0.7076 0.6815

MEDA 0.7593 0.7603 0.7548 0.7628 0.7607 0.7592 0.7544 0.7595 0.7579 0.7596 0.7624 0.7594 0.7630 0.7580 0.7603 0.7627

SAM 0.7602 0.7567 0.7408 0.7396 0.7644 0.7514 0.7401 0.7265 0.7582 0.7516 0.7385 0.7197 0.7680 0.7526 0.7394 0.7200

AdamW 0.7622 0.7683 0.7653 0.7632 0.7611 0.7655 0.7652 0.7588 0.7615 0.7663 0.7638 0.7274 0.7701 0.7691 0.7691 0.7475

AdamAR 0.7688 0.7757 0.7710 0.7700 0.7744 0.7732 0.7708 0.7681 0.7668 0.7733 0.7698 0.7653 0.7770 0.7719 0.7721 0.7646
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Figure 4: Singular spectrum analysis of ”IP” feature embedding on the iPinYou dataset. (a) shows
the sum of singular values. (b) presents the information abundance.

G ADAGRAD WITH ADAPTIVE REGULARIZATION

Adagrad, like Adam, is widely used in the ASR domain. Our method extends readily to Adagrad, as
detailed in Algorithm 2.

Algorithm 2 Adagrad with Adaptive Regularization (AdagradAR)
1: given ε = 10−8, α, learning rate η
2: initialize time step t ← 0, parameter θt=0

p , squared gradient accumulator vt=0
p ← 0, last update

step state st=0
p ← 0

3: repeat
4: t ← t+ 1
5: gtp ← ∇θpf

󰀃
θt−1
p

󰀄

6: vtp ← vt−1
p +

󰀃
gtp
󰀄2

7: λt
p ← min

󰀃
1,
󰀃
t− st−1

p − 1
󰀄
α
󰀄

8: stp ← t if ||gtp|| > 0 else st−1
p

9: θtp ← θt−1
p − λt

pθ
t−1
p − η · gtp/

󰀃󰁳
vtp + ε

󰀄

10: until stopping criterion is met
11: return optimized parameters θtp

H NETWORK ARCHITECTURE CONF IGURATIONS

We adjust the network architectures based on the feature and sample sizes of each dataset. As
summarized in table 6, larger and deeper networks are utilized for datasets with more features and
samples, such as iPinYou, Avazu, and LZD. In contrast, smaller and shallower networks are adopted
for the Amazon dataset to mitigate the risk of overfitting.
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Table 5: Comparison of per-iteration computation and memory costs between Adam and AdamAR.
Optimizer Mul. / iter Add. / iter Memory cost

Adam ≈ 9P ≈ 3P 3P
AdamAR ≈ 11P ≈ 5P 4P

Table 6: Network architecture configurations for different datasets
Dataset

DNN WDL xDeepFM WuKong

MLP Hiddens MLP Hiddens CIN Hiddens MLP Hiddens Layers LCB&FMB Embs FMB Hiddens MLP Hiddens

iPinYou [512, 256, 128] [512, 256, 128] [16, 16, 16] [512, 256, 128] 5 12 [64, 32] [512, 256, 128]

Amazon [512, 256, 128] [512, 256] [8, 8] [512, 256] 1 8 [32, 32] [512, 256]

Avazu [512, 256, 128] [512, 256, 128] [16, 16, 16] [512, 256, 128] 5 12 [64, 32] [512, 256, 128]

LZD [512, 256, 128] [512, 256, 128] [16, 16, 16] [512, 256, 128] 5 12 [64, 32] [512, 256, 128]

I GRID SEARCH FOR THE WEIGHT DECAY COEF F ICIENT

The weight decay coefficient is a crucial hyperparameter that can significantly impact model perfor-
mance. In our adaptive regularization method, this coefficient is denoted by α in equation 11. To
ensure fair comparisons across different methods, we perform a grid search to identify the optimal
weight decay value for each dataset. Figures 5, 6, 7, and 8 illustrate the effect of varying the weight
decay coefficient on test AUC across all datasets using a DNN backbone at the end of epoch 2. Al-
though test AUC varies across weight decay coefficient settings, our proposed method consistently
surpasses the performance of AdamW and AdagradW. Moreover, whereas AdamW and AdagradW
exhibit high sensitivity to the weight decay coefficient, our method maintains stable performance,
thereby reducing the complexity of hyperparameter tuning in practice. Notably, the Avazu and LZD
datasets, which contain a larger number of sparse features and samples, require a smaller optimal
weight decay coefficient than the iPinYou and Amazon datasets. This observation offers practical
guidance for coefficient selection in real-world industrial scenarios.
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(a) iPinYou dataset with Adam
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(b) iPinYou dataset with Adagrad

Figure 5: Performance of different weight decay coefficient on iPinYou dataset with DNN backbone
at the end of epoch 2. (a) shows the performance with Adam. (b) shows the performance with
Adagrad.

J DETAILED EXPERIMENTAL RESULTS

Here we present detailed experimental results with estimated standard deviation in section 4.3.
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(a) Amazon dataset with Adam
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(b) Amazon dataset with Adagrad

Figure 6: Performance of different weight decay coefficient on Amazon dataset with DNN backbone
at the end of epoch 2. (a) shows the performance with Adam. (b) shows the performance with
Adagrad.
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(a) Avazu dataset with Adam
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(b) Avazu dataset with Adagrad

Figure 7: Performance of different weight decay coefficient on Avazu dataset with DNN backbone
at the end of epoch 2. (a) shows the performance with Adam. (b) shows the performance with
Adagrad.

K FEATURE STATISTICS ON IPINYOU DATASET

The iPinYou dataset contains a total of 16 features, among which only a few are sparse. Table 7 lists
the top six sparse features along with their statistical indicators.

L DATASET DETAILS

iPinYou. The training dataset includes processed bidding, impression, click, and conversion logs
from iPinYou DSP. It contains 19.5 million records and 16 categorical features, providing a suitable
context for exemplifying the overfitting phenomenon.

Amazon. This is a widely used dataset from Amazon for evaluating CTR estimation models. In
our study, we use the electronics category of the Amazon dataset, which contains approximately 3
million records and 3 categorical features.

Avazu. This dataset comprises approximately 10 days of labeled click-through data from mobile
advertisements, consisting of 40 million records and 22 categorical features spanning both user
attributes and advertisement characteristics.
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(a) LZD dataset with Adam
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Figure 8: Performance of different weight decay coefficient on LZD dataset with DNN backbone
at the end of epoch 2. (a) shows the performance with Adam. (b) shows the performance with
Adagrad.

Table 7: For the top six sparse features in the iPinYou dataset, the table below presents the number
of unique IDs, the average occurrences of each ID, and the mean update interval for each ID with a
batch size of 2048.

Feature IP slotid domain city creative useragent
Unique IDs 704,966 180,696 51,322 372 133 42

Mean Occurrences 27.7 107.9 379.9 52,408.5 146,586.3 464,189.9
Mean Update Intervals 344.222 88.230 25.060 0.182 0.065 0.021

LZD. The dataset is sampled from our production environment and consists of real-time bidding
logs from sponsored search. The dataset contains 25 million records and 13 categorical features.
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Table 8: Comparison of average test AUC with DNN and WDL models using Adam optimizer.

Dataset Method
DNN WDL

E1 E2 E3 E4 E1 E2 E3 E4

iPinYou

Adam 0.7515±0.0023 0.7304±0.0050 0.7061±0.0109 0.7014±0.0026 0.7619±0.0006 0.7320±0.0028 0.7028±0.0101 0.6987±0.0041

MEDA 0.7515±0.0023 0.7644±0.0051 0.7684±0.0043 0.7717±0.0022 0.7619±0.0006 0.7589±0.0013 0.7565±0.0017 0.7551±0.0045

SAM 0.7510±0.0078 0.7593±0.0072 0.7445±0.0099 0.7256±0.0058 0.7610±0.0047 0.7581±0.0010 0.7404±0.0019 0.7248±0.0036

AdamW 0.7475±0.0014 0.7592±0.0087 0.7623±0.0030 0.7568±0.0061 0.7551±0.0111 0.7656±0.0049 0.7646±0.0056 0.7634±0.0019

AdamAR 0.7566±0.0019 0.7692±0.0076 0.7688±0.0079 0.7724±0.0002 0.7655±0.0063 0.7729±0.0026 0.7670±0.0040 0.7668±0.0016

Amazon

Adam 0.8482±0.0007 0.8548±0.0014 0.8335±0.0019 0.8180±0.0011 0.8474±0.0016 0.8510±0.0017 0.8261±0.0009 0.8156±0.0029

MEDA 0.8482±0.0007 0.8544±0.0011 0.8556±0.0008 0.8573±0.0003 0.8474±0.0016 0.8506±0.0017 0.8566±0.0002 0.8566±0.0007

SAM 0.8507±0.0021 0.8587±0.0025 0.8417±0.0018 0.8249±0.0012 0.8516±0.0016 0.8567±0.0006 0.8396±0.0010 0.8213±0.0023

AdamW 0.8476±0.0008 0.8571±0.0017 0.8426±0.0018 0.8276±0.0010 0.8461±0.0013 0.8533±0.0015 0.8380±0.0003 0.8223±0.0024

AdamAR 0.8507±0.0010 0.8683±0.0015 0.8708±0.0005 0.8686±0.0008 0.8496±0.0017 0.8654±0.0011 0.8689±0.0002 0.8659±0.0014

Avazu

Adam 0.7461±0.0031 0.7205±0.0022 0.7014±0.0035 0.6883±0.0018 0.7483±0.0013 0.7221±0.0012 0.6982±0.0029 0.6886±0.0022

MEDA 0.7461±0.0031 0.7498±0.0010 0.7489±0.0009 0.7485±0.0012 0.7483±0.0013 0.7488±0.0012 0.7480±0.0008 0.7494±0.0021

SAM 0.7451±0.0019 0.7194±0.0028 0.7013±0.0031 0.6899±0.0030 0.7477±0.0013 0.7205±0.0026 0.6993±0.0004 0.6902±0.0005

AdamW 0.7572±0.0011 0.7582±0.0011 0.7582±0.0006 0.7583±0.0007 0.7585±0.0008 0.7581±0.0014 0.7563±0.0017 0.7570±0.0011

AdamAR 0.7617±0.0004 0.7631±0.0010 0.7629±0.0006 0.7629±0.0007 0.7629±0.0002 0.7629±0.0007 0.7627±0.0012 0.7626±0.0005

LZD

Adam 0.7118±0.0030 0.6613±0.0060 0.6252±0.0011 0.6065±0.0034 0.7155±0.0018 0.6726±0.0011 0.6308±0.0014 0.6079±0.0068

MEDA 0.7118±0.0030 0.7105±0.0052 0.7081±0.0033 0.7176±0.0010 0.7155±0.0018 0.7162±0.0021 0.7177±0.0007 0.7162±0.0005

SAM 0.7130±0.0028 0.6696±0.0024 0.6341±0.0033 0.6155±0.0067 0.7161±0.0019 0.6795±0.0042 0.6360±0.0024 0.6111±0.0023

AdamW 0.7132±0.0015 0.7135±0.0008 0.7140±0.0029 0.7139±0.0006 0.7143±0.0004 0.7138±0.0016 0.7142±0.0009 0.7131±0.0002

AdamAR 0.7229±0.0008 0.7235±0.0022 0.7241±0.0010 0.7234±0.0012 0.7233±0.0008 0.7240±0.0007 0.7246±0.0013 0.7240±0.0010

Table 9: Comparison of average test AUC with xDeepFM and WuKong models using Adam opti-
mizer.

Dataset Method
xDeepFM WuKong

E1 E2 E3 E4 E1 E2 E3 E4

iPinYou

Adam 0.7590±0.0026 0.7391±0.0017 0.6969±0.0081 0.6844±0.0083 0.7611±0.0035 0.7442±0.0079 0.7082±0.0075 0.6915±0.0035

MEDA 0.7590±0.0026 0.7584±0.0014 0.7575±0.0027 0.7597±0.0005 0.7611±0.0035 0.7663±0.0010 0.7662±0.0021 0.7706±0.0028

SAM 0.7565±0.0091 0.7517±0.0019 0.7413±0.0010 0.7274±0.0007 0.7033±0.0301 0.7485±0.0187 0.7465±0.0084 0.7306±0.0185

AdamW 0.7607±0.0043 0.7660±0.0019 0.7651±0.0022 0.7574±0.0028 0.7579±0.0012 0.7634±0.0056 0.7605±0.0018 0.7511±0.0086

AdamAR 0.7725±0.0026 0.7733±0.0008 0.7711±0.0003 0.7678±0.0015 0.7653±0.0021 0.7736±0.0029 0.7748±0.0025 0.7736±0.0027

Amazon

Adam 0.8460±0.0010 0.8535±0.0019 0.8287±0.0001 0.8163±0.0028 0.8580±0.0008 0.8600±0.0022 0.8348±0.0027 0.8232±0.0039

MEDA 0.8460±0.0010 0.8519±0.0009 0.8551±0.0017 0.8562±0.0004 0.8580±0.0008 0.8611±0.0031 0.8621±0.0018 0.8626±0.0005

SAM 0.8505±0.0020 0.8587±0.0017 0.8390±0.0010 0.8232±0.0018 0.8588±0.0011 0.8639±0.0005 0.8404±0.0062 0.8225±0.0062

AdamW 0.8446±0.0011 0.8557±0.0020 0.8381±0.0014 0.8240±0.0013 0.8564±0.0017 0.8632±0.0015 0.8478±0.0047 0.8349±0.0051

AdamAR 0.8483±0.0004 0.8676±0.0019 0.8687±0.0015 0.8675±0.0011 0.8582±0.0008 0.8696±0.0014 0.8693±0.0010 0.8664±0.0013

Avazu

Adam 0.7488±0.0007 0.7217±0.0038 0.7019±0.0052 0.6869±0.0045 0.7514±0.0037 0.7360±0.0048 0.7141±0.0126 0.7079±0.0076

MEDA 0.7488±0.0007 0.7489±0.0028 0.7505±0.0006 0.7506±0.0016 0.7514±0.0037 0.7548±0.0014 0.7553±0.0004 0.7571±0.0013

SAM 0.7484±0.0017 0.7190±0.0065 0.7010±0.0046 0.6902±0.0017 0.7513±0.0022 0.7333±0.0039 0.7155±0.0038 0.7156±0.0036

AdamW 0.7583±0.0015 0.7582±0.0006 0.7589±0.0010 0.7593±0.0015 0.7542±0.0029 0.7547±0.0019 0.7558±0.0006 0.7564±0.0022

AdamAR 0.7628±0.0008 0.7633±0.0006 0.7638±0.0005 0.7636±0.0006 0.7624±0.0005 0.7612±0.0005 0.7623±0.0008 0.7624±0.0011

LZD

Adam 0.7164±0.0017 0.6787±0.0025 0.6321±0.0050 0.6050±0.0096 0.7101±0.0054 0.6645±0.0112 0.6102±0.0074 0.6044±0.0035

MEDA 0.7164±0.0017 0.7170±0.0033 0.7152±0.0011 0.7139±0.0050 0.7101±0.0054 0.7170±0.0010 0.7129±0.0046 0.7128±0.0067

SAM 0.7166±0.0023 0.6750±0.0083 0.6344±0.0097 0.6134±0.0070 0.7146±0.0038 0.6713±0.0034 0.6443±0.0062 0.6212±0.0120

AdamW 0.7142±0.0016 0.7151±0.0006 0.7139±0.0032 0.7139±0.0005 0.7115±0.0022 0.7135±0.0013 0.7152±0.0015 0.7142±0.0029

AdamAR 0.7244±0.0008 0.7256±0.0003 0.7242±0.0013 0.7238±0.0009 0.7227±0.0010 0.7215±0.0023 0.7208±0.0006 0.7202±0.0019
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Table 10: Comparison of average test AUC with DNN and WDL models using Adagrad optimizer.

Dataset Method
DNN WDL

E1 E2 E3 E4 E1 E2 E3 E4

iPinYou

Adagrad 0.7593±0.0032 0.6507±0.0040 0.6231±0.0183 0.6095±0.0054 0.7646±0.0021 0.6653±0.0116 0.6321±0.0092 0.6241±0.0107

MEDA 0.7593±0.0032 0.7686±0.0026 0.7710±0.0020 0.7729±0.0035 0.7646±0.0021 0.7681±0.0053 0.7685±0.0032 0.7715±0.0013

SAM 0.7576±0.0052 0.7661±0.0007 0.7487±0.0036 0.7303±0.0054 0.7624±0.0028 0.7676±0.0028 0.7518±0.0022 0.7369±0.0038

AdagradW 0.7558±0.0029 0.7651±0.0034 0.7667±0.0014 0.7595±0.0050 0.7593±0.0051 0.7675±0.0020 0.7635±0.0038 0.7593±0.0006

AdagradAR 0.7681±0.0034 0.7754±0.0042 0.7760±0.0001 0.7744±0.0033 0.7731±0.0022 0.7772±0.0010 0.7748±0.0016 0.7720±0.0012

Amazon

Adagrad 0.8438±0.0004 0.8402±0.0015 0.8141±0.0013 0.8042±0.0035 0.8406±0.0019 0.8345±0.0012 0.8085±0.0024 0.7982±0.0010

MEDA 0.8438±0.0004 0.8481±0.0013 0.8495±0.0018 0.8505±0.0018 0.8406±0.0019 0.8470±0.0012 0.8497±0.0015 0.8510±0.0018

SAM 0.8500±0.0017 0.8527±0.0018 0.8361±0.0005 0.8193±0.0019 0.8490±0.0008 0.7995±0.0905 0.8325±0.0031 0.8155±0.0017

AdagradW 0.8428±0.0003 0.8578±0.0016 0.8563±0.0009 0.8535±0.0003 0.8424±0.0009 0.8553±0.0009 0.8531±0.0006 0.8498±0.0010

AdagradAR 0.8479±0.0006 0.8659±0.0013 0.8711±0.0002 0.8712±0.0007 0.8453±0.0008 0.8631±0.0009 0.8687±0.0015 0.8707±0.0009

Avazu

Adagrad 0.7541±0.0012 0.7323±0.0016 0.7164±0.0010 0.7074±0.0011 0.7543±0.0013 0.7305±0.0019 0.7158±0.0026 0.7073±0.0016

MEDA 0.7541±0.0012 0.7549±0.0007 0.7544±0.0015 0.7545±0.0010 0.7543±0.0013 0.7547±0.0012 0.7540±0.0009 0.7551±0.0007

SAM 0.7553±0.0006 0.7333±0.0010 0.7199±0.0019 0.7094±0.0016 0.7557±0.0013 0.7328±0.0008 0.7178±0.0003 0.7079±0.0003

AdagradW 0.7578±0.0005 0.7580±0.0006 0.7575±0.0005 0.7566±0.0016 0.7584±0.0005 0.7581±0.0014 0.7567±0.0014 0.7585±0.0010

AdagradAR 0.7628±0.0005 0.7629±0.0003 0.7630±0.0009 0.7624±0.0005 0.7631±0.0006 0.7634±0.0008 0.7623±0.0009 0.7626±0.0008

LZD

Adagrad 0.7226±0.0018 0.6658±0.0018 0.6433±0.0014 0.6376±0.0038 0.7244±0.0007 0.6695±0.0001 0.6389±0.0017 0.6386±0.0001

MEDA 0.7226±0.0018 0.7183±0.0025 0.7150±0.0014 0.7236±0.0036 0.7244±0.0007 0.7241±0.0016 0.7239±0.0013 0.7219±0.0025

SAM 0.7213±0.0011 0.6761±0.0048 0.6446±0.0105 0.6222±0.0092 0.7229±0.0015 0.6839±0.0053 0.6481±0.0058 0.6266±0.0026

AdagradW 0.7145±0.0017 0.7132±0.0019 0.7135±0.0019 0.7154±0.0012 0.7138±0.0022 0.7149±0.0006 0.7137±0.0012 0.7145±0.0012

AdagradAR 0.7253±0.0022 0.7247±0.0014 0.7234±0.0020 0.7241±0.0013 0.7269±0.0001 0.7258±0.0013 0.7251±0.0023 0.7257±0.0010

Table 11: Comparison of average test AUC with xDeepFM and WuKong models using Adagrad
optimizer.

Dataset Method
xDeepFM WuKong

E1 E2 E3 E4 E1 E2 E3 E4

iPinYou

Adagrad 0.7674±0.0016 0.6843±0.0083 0.6505±0.0187 0.6527±0.0032 0.7661±0.0012 0.6900±0.0071 0.6497±0.0022 0.6320±0.0290

MEDA 0.7674±0.0016 0.7722±0.0014 0.7728±0.0019 0.7740±0.0015 0.7661±0.0012 0.7705±0.0050 0.7729±0.0013 0.7695±0.0016

SAM 0.7637±0.0022 0.7661±0.0054 0.7499±0.0043 0.7363±0.0017 0.7409±0.0081 0.7678±0.0015 0.7525±0.0029 0.7427±0.0032

AdagradW 0.7665±0.0002 0.7673±0.0025 0.7666±0.0018 0.7652±0.0008 0.7578±0.0040 0.7661±0.0047 0.7649±0.0012 0.7600±0.0061

AdagradAR 0.7760±0.0025 0.7768±0.0023 0.7762±0.0019 0.7745±0.0005 0.7718±0.0025 0.7776±0.0027 0.7782±0.0036 0.7774±0.0029

Amazon

Adagrad 0.8405±0.0014 0.8374±0.0016 0.8103±0.0018 0.7996±0.0034 0.8491±0.0022 0.8472±0.0020 0.8156±0.0050 0.8046±0.0039

MEDA 0.8405±0.0014 0.8463±0.0023 0.8476±0.0015 0.8500±0.0001 0.8491±0.0022 0.8569±0.0011 0.8587±0.0018 0.8609±0.0010

SAM 0.8483±0.0003 0.8521±0.0005 0.8325±0.0009 0.8170±0.0024 0.8556±0.0029 0.8567±0.0029 0.8356±0.0058 0.8174±0.0084

AdagradW 0.8410±0.0013 0.8565±0.0011 0.8522±0.0009 0.8508±0.0014 0.8513±0.0019 0.8630±0.0015 0.8617±0.0025 0.8606±0.0031

AdagradAR 0.8444±0.0014 0.8641±0.0008 0.8681±0.0007 0.8703±0.0004 0.8538±0.0010 0.8690±0.0018 0.8708±0.0005 0.8700±0.0007

Avazu

Adagrad 0.7550±0.0002 0.7319±0.0021 0.7160±0.0006 0.7069±0.0011 0.7548±0.0015 0.7311±0.0024 0.7160±0.0024 0.7041±0.0059

MEDA 0.7550±0.0002 0.7538±0.0032 0.7550±0.0009 0.7553±0.0003 0.7548±0.0015 0.7551±0.0008 0.7556±0.0012 0.7564±0.0015

SAM 0.7564±0.0007 0.7332±0.0021 0.7198±0.0023 0.7094±0.0007 0.7558±0.0021 0.7353±0.0016 0.7211±0.0027 0.7110±0.0033

AdagradW 0.7583±0.0013 0.7581±0.0020 0.7580±0.0004 0.7585±0.0009 0.7524±0.0038 0.7555±0.0004 0.7555±0.0005 0.7563±0.0011

AdagradAR 0.7636±0.0001 0.7633±0.0013 0.7635±0.0008 0.7633±0.0007 0.7628±0.0006 0.7626±0.0008 0.7627±0.0006 0.7620±0.0007

LZD

Adagrad 0.7222±0.0003 0.6675±0.0022 0.6400±0.0044 0.6382±0.0031 0.7247±0.0047 0.6726±0.0038 0.6412±0.0052 0.6339±0.0036

MEDA 0.7222±0.0003 0.7237±0.0028 0.7253±0.0022 0.7256±0.0006 0.7247±0.0047 0.7237±0.0024 0.7234±0.0026 0.7239±0.0036

SAM 0.7229±0.0019 0.6854±0.0052 0.6480±0.0066 0.6268±0.0041 0.7248±0.0018 0.6802±0.0094 0.6479±0.0184 0.6299±0.0195

AdagradW 0.7155±0.0008 0.7135±0.0004 0.7117±0.0035 0.7150±0.0007 0.7127±0.0005 0.7111±0.0012 0.7147±0.0003 0.7136±0.0012

AdagradAR 0.7273±0.0004 0.7268±0.0016 0.7264±0.0016 0.7263±0.0011 0.7269±0.0026 0.7260±0.0003 0.7252±0.0001 0.7239±0.0029
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