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Abstract

Testing whether data breaks symmetries of interest can be important to many fields. This
paper describes a simple way that machine learning algorithms (whose outputs have been
appropriately symmetrised) can be used to detect symmetry breaking. The original motiva-
tion for the paper was an important question in Particle Physics: “Is parity violated at the
LHC in some way that no-one has anticipated?” and so we illustrate the main idea with an
example strongly related to that question. However, in order that the key ideas be accessible
to readers who are not particle physicists but who are interesting in symmetry breaking,
we choose to illustrate the method/approach with a ‘toy’ example which places a simple
discrete source of symmetry breaking (the handedness of human handwriting) within a ide-
alised particle-physics-like context. Readers interested in seeing extensions to continuous
symmetries, non-ideal environments or more realistic particle-physics contexts are provided
with links to separate papers which delve into such details.

1 Introduction

On the 18th June 2021, after more than a decade studying collision data from the Large Hadron Collider
(LHC), the ATLAS Collaboration (The ATLAS Collaboration, 2008) submitted for publication its 1000th

paper. Despite that huge body of work, not a single one of those papers (and not a single one of the papers
of any other LHC collaboration then or since) has yet looked for new mechanisms of overt1 parity violation.

The main reason for this omission is that there are few theoretical models which predict forms of overt parity
violation that the LHC could see given its unpolarised collisions, and so without a steer from theory to guide
the construction of specific analysis strategies, a view seems to have formed that progress in this area is
either a waste of time or simply impossible to perform in an efficient manner.

The purpose of this paper is to dispel that myth – but to do so in a toy/idealised environment so that the
paper is more accessible to readers in other fields who might also be looking to detect symmetry violation.
By using the handedness of human handwriting as our source of symmetry breaking we intend to emphasise
that the method does not require potential sources of symmetry violation to have be known about in advance
and simulated — the method processes only recorded data without additional simulation input. Readers who
would like to see the framework put into use in ‘real’ particle physics context are encouraged to read a more
detailed sister paper Lester et al. (2022b). Extensions to continuous symmetries and non-ideal environments
can be found in a different sister paper Tombs & Lester (2022). Eschewing such details, the present paper
hopes that its decision to motivate the key idea via a test for a discrete broken symmetry (parity) in an
idealised environment will enlarge the potential readership.

1The Standard Model of Particle Physics has been known to violate parity since the 1950s. The discovery by Wu et al. (1957)
relied on the observation that beta particles emitted from certain nuclei were found to be preferentially emitted anti-parallel to
the initial state nuclear spins of those nuclei – an observation which only admits explanations which violate parity. It was not
necessary for the underlying (parity violating) mechanism leading to those observations to have been known or understood for
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Figure 1: This figure aims to show how transformations of a ‘real’ three-dimensional collider calorimeter
(top row) correspond to induced transformations in the unrolled two-dimensional (η, ϕ)-space in which those
deposits are often represented. The first column shows deposits that would be typical of a five jet event. The
second column shows an easier-to-visualise set of deposits resembling a letter ‘R’. The other three columns
show how the deposits of the first ‘R’ would move around if affected by (i) an arbitrary rotation about the
z-axis, (ii) a rotation of 180 degrees about the x-axis and (iii) a parity inversion.

2 Method and Principles

The symmetry we use to illustrate the method is ‘parity’2 – the symmetry which is its own inverse and which
interchanges any object x with its mirror image Px. In physics and chemistry parity is usually thought of
as a spatial operation acting on three dimensional structures x such as collider events or molecules. Parities
can, however, act on many other things.3 In our illustration each object x will be a small image containing
information about a collision. A function f mapping the input space to one on which a concept of negation
exists will be termed ‘parity odd’ if and only if f(x) = −f(Px) for all x.

The core principles underlying the method which this paper proposes for making for general parity-violation
detections are: (i) that (by definition!) a parity-odd function f(x) can only have an asymmetric distribution
under parity if the dataset on which it has been evaluated contains some elements x1, x2, . . . which differ
in frequency from their parity-flipped partners Px1, Px2, . . .; and that therefore (ii) the observation of
any statistically significant asymmetry in any parity-odd variable when evaluated on a real dataset is bona
fide evidence for parity violation in that dataset; and so (iii) the goal of the LHC collaborations [glossing
over some important real-world considerations which are mentioned later] should be to create parity-odd
functions f(x) which, after optimisation for asymmetry on a ‘training’ part of a real dataset, are then tested
for asymmetry on other independent portions of the same dataset.

Any function g(x) can be trivially made into a parity-odd function f(x) by antisymmetrisation: f(x) ≡
g(x) − g(Px), and every parity-odd function f(x) can be so-constructed. Thus goal of ‘principle (iii)’ above
can be met by using any of the latest tools of machine learning to provide diverse functions g(x) which can
be optimised for the asymmetries they evoke in f(x) on the training portion of a dataset of interest. The
power in the method comes from the marriage between (a) the capacity of machine learning algorithms to
eke-out the best g(x) for a given domain or dataset, and (b) the symmetry used to build f(x) from g(x)
(imposed by hand rather than learned!) which guarantees that any asymmetry seen in a test-set evaluation
is interesting.

that discovery of parity violation to have been declared. It is signs such as those – signs which can only be explained away as
parity violating (as opposed to being effects which could be parity violating but which could also, in principle, be accounted
for by alternative parity conserving explanations) – which we call signs of ‘overt’ parity violation.

2More general symmetries (including continuous and non-binary symmetries) are dealt with in a more complex sister paper
Tombs & Lester (2022).

3Arithmetic negation on the real line is perhaps one of the simplest parities imaginable.
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For tests of parity in particle physics this process is general4, avoids all first-order use of Monte Carlo,
and (like the original discovery of parity violation by Wu et al. (1957)) requires no knowledge of the parity
violation mechanism to reach its conclusion.

We later choose to illustrate the above principle in the simplest way we can imagine:

• by creating a neural-net5 g(x) which acts on collisions x,

• by (anti)symmetrising the output of g(x) into a parity-odd function f(x) using f(x) = g(x)−g(Px),
and then

• training the net g(x) to maximise the significance of the distance between the mean of f(x) (when
evaluated on test dataset) and zero.6

This illustration relies on the fact that a symmetric distribution with a mean will have a mean of zero, and
so statistically significant non-zeroness in the mean is a measure of asymmetry.7

Unusual features of this core idea (as distinct from its implementation in our particular illustration)

It must be emphasised how different this proposed use of machine learning is to that most frequently seen in
particle physics. There are many ways one could illustrate this, but perhaps the most easy one to highlight
is that the training step is (technically, though not in any practical sense!) optional. If the training step were
entirely omitted, the net g(x) would be in a random state but the resulting f(x) would still be parity-odd.
If the evaluation of this f(x) on the test set were to yield a statistically significant asymmetry by a measure
fixed in advance (e.g. a non-zero mean) then that asymmetry would be valid evidence for parity violation!
In practice, of course, the training step is very important. Training cannot be ignored. Without training
there is almost no chance that the net g(x) will have the right structure to generate an asymmetry in f(x),
even on a parity-violating dataset. But the point we wish to stress is that the training process exists not
to make the discovery of parity-violation possible, but only to make it much more likely that a discovery of
parity-violation can be made rather than missed.

For related reasons ‘over-training’8 does not have the same negative overtones it would normally have9, at
least for experimental physicists whose greatest concern is avoiding a false positive (a claimed discovery of a
symmetry violation when it does not really exist). The possibility of over-training still exists but it cannot
lead to an accidental mis-discovery of parity-violation as there is simply no concept of ‘training that can
mislead’, only of ‘more useful’ or ‘less useful’ training. For a discovery of parity violation all that matters
is that the appropriate net symmetrisation (f(x)) manages to show a statistically significant asymmetry on
the test data. If it does, it’s a good net, however it got there. The worst that can happen is that in training
the net attends to entirely the wrong things (all unrelated to parity) and so does not know how to generate
an asymmetry in the test-set (or a mean away from zero in our illustrative example) even if a better-trained
net could have done so. For example: if the training resulted in g(x) evaluating to a constant ‘s’ on every
element of the training set, and ended up evaluating to the constant ‘t’ on everything else, then the possible
output of f(x) would be in the set S = {t − s, 0, s − t}. In the case that s = t, this set would contain only a
single element (S = {0}) and so f(x) would be incapable of showing an asymmetry on any dataset, making
false positives impossible. In the case that s ̸= t, the set S would contain three elements: t − s, 0 and s − t.

4A lengthy proof of sufficiency regarding the use of parity-odd variables is presented in a sister paper (Lester, 2021a).
5It is a shame that we have not used a generative adversarial network, for if we had we could have called our paper a tabloid

newspaper title ‘Stressed GANs snag desserts’. Such a title would have been ideal given its symmetry properties.
6As will be seen later, this is a mean which has been suitably normalised so as to prevent the network gaining by (say)

simply multiplying the net final output by a number greater than one.
7Note that our decision to use a neural-net rather than some other function approximator, or our decision to optimise for

deviations of the mean of that parity-odd variable from zero rather than to optimise for some fancier loss function, are all
unashamedly likely to be non-optimal. The sole aim of the paper is not to show which fancy loss function or network is best,
but is rather to demonstrate that general searches for parity violation can be accomplished at all and with relative ease.

8During review it was suggested that ‘over-fitting’ may have be a more standard term in the ML field for what we have
referred to as ‘over-training’. As non-specialists we would happily use either term.

9A common reaction the authors have experienced when describing their proposal to newcomers is ‘My gosh! Are you not
proposing a mechanism for maximising over-training problems!?’
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In such a case f(x) could show an asymmetry on a test set – and (as mentioned already) any statistically
significant asymmetry in the test set is valid evidence for symmetry-violation.

We note that the proposal is also unusual in that the test and training datasets are identically distributed,
consist entirely of data (no Monte Carlo), and are unlabelled — and so are immediately usable in high
luminosity and intense environments where simulation can be both complex and costly.

Benefits for particle physicists, even if nature does not violate parity in a new way

No detector is perfectly aligned or calibrated or without regions where acceptance can vary. Consequently
evidence of what we have called ‘parity violation’ cannot be pinned immediately at nature’s door. On the
contrary, it is quite possible that the biggest sources of parity violation could be mis-alignments and mis-
calibrations in the detectors used. This is not really a disadvantage of the method, though. Instead it is a
sign that if you can get a significant asymmetry on the test-sample, then you know immediately that either
you don’t understand something about your detector, or you have an interesting discovery. Both are equally
important things to know, so a signal is a win-win outcome even if the source of the parity-violation is not
immediately obvious. Whether the same win-win situation occurs in other fields is less clear. For example, a
biologist using a net to detect parity violation in pictures of snails (shells are handed) may not be pleased if
the parity violation which has been detected in those images is later found to have been caused by things in
the background of each image (e.g. road signs, leaves, cars) rather than being due to the snails themselves.

Removing real-world complications

Real detectors and experiments are, of course, imperfect. Not all parts work with perfect efficiency, and
acceptance does not extend uniformly into all directions. A more complex sister paper (Tombs & Lester,
2022) address issues arising from those concerns, including: how to spot symmetry violation in a detector
which itself violates that symmetry, and how to generalise the symmetry-violation discovery process to general
symmetries (including continuous symmetries) rather than the narrow case of parity discussed herein. The
current paper, however, deliberately eschews those details as the intention here is to provide a simple and
pedagogically useful illustration of the key message, free from other distractions.

3 Data for an illustrative example

Visualising deposits in the ‘MNIST Calorimeter’

Calorimetric deposits in idealised versions of detectors like ATLAS or CMS are commonly represented as
functions on a cylinder about the beam axis as depicted in the upper left corner of Figure 1. This cylinder
may be opened out into a rectangle with pseudorapidity η on one axis and azimuthal angle ϕ on the other
as depicted in the lower left corner of the same figure. In this flattened view the upper and lower edges are
identified with each other.

Real calorimetric deposits are blotchy and messy, and this makes it hard for humans to picture what they
might look like when rotated or mirrored. Since the goals of this paper are pedagogical, we choose to
imagine a strange world in which calorimetric deposits look just like hand-written letters of the alphabet.
For example, the second column of Figure 1 imagines what would happen if calorimeter deposits happened
to have landed in locations which (once unfolded) would resemble the capital letter ‘R’. Making use of this
visual simplification, the other columns of Figure 1 illustrate the effect that different transformations would
have on the first ‘R’.

The LHC datasets

A real analysis would use real data not Monte Carlo simulations. Unfortunately, as there is no real detector
that produces energy deposits which look like letters, we must generate some toy data of our own for our
pedagogical purposes. There is a ready supply of hand-written numerals in the MNIST dataset (LeCun &
Cortes, 2010) so we implement a generator that draws its calorimeter deposits from there. We call these
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(a) A mode-1-chiral LHC dataset (b) A mode-1-achiral LHC dataset

(c) A mode-2-chiral LHC dataset (d) A mode-2-achiral LHC dataset

Figure 2: Four types of LHC dataset are shown. Further descriptions can be found in the body-text.

Large datasets of Handwritten Calorimeter digits – or ‘LHC datasets’ for short. We produce LHC datasets
in four modes as shown in Figure 2 and defined as follows:

• mode-1-chiral : These are normal MNIST digits. These samples are chiral because humans write
hand-written digits with handed-appendages called hands. The word chiral even come from the
ancient Greek word for hand: χϵιρ;

• mode-1-achiral : These are MNIST digits which have been reversed left-to-right with probability
50%; The symmetrisation process makes these samples achiral.

• mode-2-chiral : These are random pairs of normal MNIST digits superimposed on each other.
They inherit their chirality from their constituent digits.

• mode-2-achiral : These are random pairs of normal MNIST superimposed on each other with one
member of the pair forwards and one reversed. The symmetrisation process makes these samples
achiral.

Mode-1-achiral acts as a control for mode-1-chiral, and mode-2-achiral acts as a control for mode-2-chiral.
The only purpose of mode-2 is to illustrate that the analysis is not dependent on there being only a small
number of ‘types’ of deposit — in this case ten as there are ten sorts of digits. Both types of Mode-2 therefore
act as a form of control against the possibility that mode-1 is too simple to be a good proxy for real and
highly variable calorimeter data.

Removing remaining differences between real calorimeter data and MNIST derived calorimeter
analogues

MNIST digits are ‘oriented’ because the humans who originally generated them were instructed to write
them in boxes the conventional way up.
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Real jet data, in contrast, is not oriented: if energy deposits were to appear in a configuration resembling
a capital ‘R’ then the deposits would be as likely to arrive in any of the configurations shown in columns
two, three and four of Figure 1, provided that the collider has symmetric beams and no reason to choose
any ϕ-orientation more than any other.

To avoid the MNIST-based dataset having an unfair handle (orientability) not possessed by real jet data,
this discrepancy needs to be removed. One way of removing it would be to augment our dataset by adding
y-translations of uniformly random magnitude to every image in an LHC dataset (being sure to wrap pixels
lost from the top back onto the bottom) before then giving every image a 180 degree rotation with probability
50%.

Although one could augment the dataset in that way, it is more efficient to simply make the neural net
invariant with respect to those transformations. Doing so is as easy as making the net parity-odd, the
only difference being that one seeks symmetry rather than antisymmetry and so one must combine sub-
nets with symmetric operations (like maxpooling or summing) rather than antisymmetric operations (like
subtractions).

4 An example parity-odd axisymmetric network

Recall that the necessary axisymmetry comes from establishing (i) an invariance with respect to y-translations
of 28x28-pixel images corresponding to ϕ-invariance in the real world, and (ii) invariance with respect to 180
degree rotations of the 28x28 images corresponding to interchange of beams and isotropy.

Our final network f(x) gains its parity-oddness and one-half of its axisymmetry (the part requiring invariance
with respect to 180 degree rotations) by being defined in terms of a sub-network g(x) as follows:

f(x) = g(x) + g(R180x) − g(Px) − g(R180Px). (1)

The sub-network g(x) (implemented in pytorch by Paszke et al. (2019)) therefore only needs to respect
the ϕ-rotation (or y-translation) invariance. The g(x) sub-network starts by having two 2D-convolutional
network layers (one with kernel size 4 × 4 in η × ϕ, and the other with size 14 × 6 in η × ϕ, always stride 1)
to provided basic image processing of the 28x28 pixel images fed to it. These two layers bring the number
of features up to 32 and then to 64, and have the appropriate over-run regions to allow them to implement
the required periodic boundary conditions. They are then followed by a max-pooling over the ϕ direction
to finally achieve the desired ϕ-invariance. g(x) then concludes with two fully connected layers reducing 640
features to 128 and thence to a single feature so that f(x) can then make used of g(x) in the manner outlined
in (1). To describe the structure of our network, we annotate its printout (as a pytorch Module) as follows:

Net(
# phi-cyclic pad
(conv1): Conv2d(1, 32, kernel_size=(4, 4), stride=(1, 1))
# relu
# phi-cyclic pad
(conv2): Conv2d(32, 64, kernel_size=(14, 6), stride=(1, 1))
# relu
(max_pool): MaxPool2d(kernel_size=(28, 2), stride=(28, 2), ...)
# flatten
(fc1): Linear(in_features=640, out_features=128, bias=True)
# relu
(fc2): Linear(in_features=128, out_features=1, bias=True)

)

The network is trained on images provided in batches. Each batch

B = {x1, x2, . . . , x|B|}
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contains |B| = 64 images. For each batch the mean net score µB is calculated:

µB = 1
|B|

∑
x∈B

f(x).

The standard deviation of the scores of the images in the batch is also recorded as σB . The net is trained
to maximise µB/σB . This process encourages the net to do its best to give every image a common constant
positive value, and to eschew negative values if possible. The net is trained to maximise µB/σB rather than
µB alone since the former (unlike the latter) cannot be trivially made larger by replacing f(x) with λf(x)
for some constant λ > 1. The complete code for the network may be found in Lester (2021b).

Though it has already been emphasised, we repeat the message that the model chosen above for g(x) and the
choice made for the loss function µB are almost certainly non-optimal. Indeed, that is one reason why the
more detailed paper exploring realistic particle physics events (Lester et al. (2022b)) tests a variety of very
different models and very different loss functions. None of that lack of optimality matters for the purposes
of the current paper, however, whose role is pedagogical. The only things that matters in this paper are
the way that g(x) has been (anti)symmetrised into f(x), and (as will be seen quantitatively in the results
section) that the mechanism works despite its simplicity.

5 Results

Quantitative results are presented in Table 1 and confirm that parity violation is not detected where it should
be absent (the most important result) and yet is discovered where it is present (the bonus).

The same results are presented qualitatively and graphically in Figure 3 in which the preponderance of green
in plots (a) and (c) within Figure 3 shows that the networks trained on the chiral modes are able to label
the majority of their inputs with positive scores according to f , meaning that they have identified that these
datasets are chiral (i.e. violate parity). In contrast the nets have not managed to achieve this for the achiral
controls ((b) and (d) in the same figure), despite having been trained on achiral control data. It is notable
and pleasing that the networks are not flummoxed by the differences between mode-1 and mode-2.

Mode ρ+
chiral ρ+

achiral
mode–1 90±1 % 51±2 %
mode–2 89±4 % 42±6 %

Table 1: When tested on groups of 1024 images in the relevant test dataset, the above numbers show the
typical fraction ρ+ of images per batch which were assigned a positive value by the function f after training.
As desired, the chiral LHC datasets are flagged as chiral at a statistically significant level, while those LHC
datasets which are achiral are not, with their fractions remaining consistent with the 50% expected by chance
alone.

Figure 4 demonstrates that our network function is indeed parity-odd and axisymmetric as desired.

6 Discussion.

The strategy has achieved its goals. What is perhaps more interesting to reflect on is what this buys in
comparison to other methods for analysing multi-jet events for evidence of parity violation in colliders (such
as the Large Hadron Collider) without polarised beams.

Only one work (Lester et al., 2022a) has previously tried to tackle this task in a systematic way. To give
a chastening example: when that work considered collisions of the form Sab→jjj+X (three important jets,
and perhaps some other stuff X in the final state, resulting from the collision of an ‘a’ with a ‘b’) it was
found that 19-dimensional continuous ideal vector parity (to use the nomenclature of Lester (2021a)) would,
in principle, detect any parity-violating signature. However: (i) over 60 pages of algebra were necessary to
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(a) A mode-1-chiral LHC dataset (b) A mode-1-achiral LHC dataset

(c) A mode-2-chiral LHC dataset (d) A mode-2-achiral LHC dataset

Figure 3: Four types of LHC dataset from the test dataset are shown after having been coloured according to
the output of the net. Bright green represents increasingly positive numbers. Shades of increasingly vibrant
red represent increasingly negative numbers. Yellow represents zero.

generate that result, and (ii) there seems little prospect of generalising that result to four final-state particles
(due to factorial increases in computation complexity) let alone to n final-state particles.

Why do we mention these limitations of Lester et al. (2022a)? The reason is that the present work can be
considered to be doing a very similar job to Lester et al. (2022a) but for events with ‘up to’ 784 = 28x28
jets in the final state, yet in a way that scales much better.10

10The intensity of each pixel can, in principle, represent a very narrow jet, and so an image with (say) only three black pixels
could represent a three-jet event. Moreover, the permutation symmetry modelled between jets in Lester et al. (2022a) carries
over to our images, since the pixels to not somehow list jets in a particular order. The one major difference between Lester
et al. (2022a) and the present work is, however, that Lester et al. (2022a) provides guarantees of ideality (see definition of this
term in Lester (2021a)) which the present work never can.
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Figure 4: Here the same 64 letters from a mode-1-chiral LHC dataset are evaluated by the same symmetrised
network f(x) in six different ways. In the first pair of rows (the control rows) the images are evaluated without
any changes at all. Most of the controls are coloured green (as one might expect) but the fact that this
happens is irrelevant for the purposes of the check being performed here. What matters is how the colours in
those two rows relate to the colours in the remaining rows. In the next pair of rows the nets are re-evaluated
but after a shift (or roll) down of each image by 10 pixels. In the next two rows the transformation prior to
evaluation is instead a 180 degree rotation. The key take home message from these first six rows is that (as
the colours do not change!) all of these transformations do not affect the network score, and so the network
is axisymmetric as desired. This property is not learned, it is guaranteed by construction. Nonetheless, it is
nice to see a graphical check that the implementation does what was expected. The lower six rows repeat
the upper six rows, but after an initial left-right parity flip of each image. In this case we see that there is
(as desired) an immediate flip in the output from positive to negative (or in rare cases vice versa) because
the network is, by construction, parity-odd.

7 Conclusion

This paper has proposed a framework for conducting tests of symmetry violation at the LHC. A key feature
of our proposed methodology is that it can be applied to recorded data: a discovery would be made by
comparing collision events to themselves rather than to theoretical predictions (of which there are few). The
proposal therefore plugs a gap in the literature by making discoveries possible which hitherto could easily
have been missed on account of the lack of theoretical models resulting in a lack of dedicated searches. This
is important: the LHC is exploring centre of mass energies which are orders of magnitude higher than those
in which parity violation was first discovered, and there is therefore no knowing what mysterious signals
could be hiding in LHC datasets created in the last decade. Important signals could be hiding in plain sight.

This paper is intended to serve a primarily pedagogical and awareness-raising purposes. It is also intended to
approachable to readers outside of particle physics. Accordingly it was decided to demonstrate the viability
of proposed methodology by applying it to a toy problem wherein the hidden parity violating signature was
the handedness of human handwriting. This is a simple target symmetry (parity) in an idealised detector
possessing equally simple ‘unimportant’ intrinsic symmetries (axisymmetry and beam interchange symmetry)
which are reminiscent of symmetries found in detectors at particle physics colliders.

A more complex sister paper (Tombs & Lester, 2022) describes how the framework presented here could
easily be extended to consider continuous symmetries and shows how to deal with important issues (notably
acceptance and inefficiency) which were ignored here for reasons of accessibility. A more ‘realistic’ particle
physics demonstration is developed in a sister paper Lester et al. (2022b).
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