# EGOTWIN: DREAMING BODY AND VIEW IN FIRST PERSON

## Anonymous authors

000

001

002003004

006 007 008

013

015

016

017 018 019

021

023

025

026 027

028

031

032

034

038

039

040

041

042

043

044

045

046 047

048

051

052

Paper under double-blind review

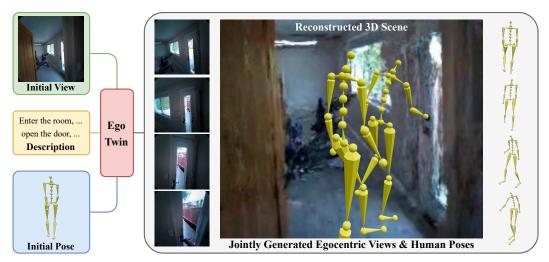


Figure 1: We propose EgoTwin, a diffusion-based framework that jointly generates egocentric video and human motion in a viewpoint consistent and causally coherent manner. Generated videos can be lifted into 3D scenes using camera poses derived from human motion via 3D Gaussian Splatting.

## **ABSTRACT**

While exocentric video synthesis has achieved great progress, egocentric video generation remains largely underexplored, which requires modeling first-person view content along with camera motion patterns induced by the wearer's body movements. To bridge this gap, we introduce a novel task of joint egocentric video and human motion generation, characterized by two key challenges: 1) Viewpoint Alignment: the camera trajectory in the generated video must accurately align with the head trajectory derived from human motion; 2) Causal Interplay: the synthesized human motion must causally align with the observed visual dynamics across adjacent video frames. To address these challenges, we propose EgoTwin, a joint video-motion generation framework built on the diffusion transformer architecture. Specifically, EgoTwin introduces a head-centric motion representation that anchors the human motion to the head joint and incorporates a cyberneticsinspired interaction mechanism that explicitly captures the causal interplay between video and motion within attention operations. For comprehensive evaluation, we curate a large-scale real-world dataset of synchronized text-video-motion triplets and design novel metrics to assess video-motion consistency. Extensive experiments demonstrate the effectiveness of the EgoTwin framework. Qualitative results are available on our project page: https://egotwin.pages.dev/.

## 1 Introduction

Recent advances in deep generative models have delivered remarkable progress in exocentric (third-person) video generation (Blattmann et al., 2023a; Xing et al., 2024; Brooks et al., 2024; Yang et al., 2025), demonstrating the ability to produce photorealistic and temporally consistent videos from natural language or other conditioning signals. However, egocentric (first-person) video synthesis remains largely underexplored, despite its increasing importance for wearable computing (Fiannaca et al., 2014), augmented reality (Ashtari et al., 2020), and embodied agents (Nair et al.,

055

056

057

058

060 061

062

063

064

065

066

067

068

069

071

072

073

074

075

076

077

079

081

082

083

084

085

087

880

089

091

092

093

094

096

098

100

101

102

103

104 105

106

107

2022). In contrast to exocentric setups, where the camera is static or externally controlled (Wang et al., 2024b; He et al., 2025), egocentric video captures the perspective of a moving individual, with the footage inherently entangled with the camera wearer's motion. In particular, head movements influence the camera's position and orientation, while full-body actions affect the wearer's body pose and the surrounding scene, collectively shaping the egocentric recording. Therefore, to model body-driven dynamics in egocentric views, we argue that the visual stream must be generated in lockstep with the motion stream that drives it.

In this paper, we introduce a novel task of joint video-motion generation that explicitly models egocentric video together with the motion of the camera wearer. As illustrated in Figure 1, given a static human pose and an initial scene observation, our goal is to generate synchronized sequences of egocentric video and human motion, guided by the textual description. This task introduces two fundamental challenges beyond prior works: (1) Viewpoint Alignment. Throughout the sequence, the camera trajectory captured in egocentric video must precisely align with the head trajectory derived from human motion. This requirement naturally stems from the fact that the camera is rigidly mounted on the wearer's head (Engel et al., 2023; Apple Inc., 2023), causing head movement and camera motion to be tightly coupled. However, existing exocentric video generation methods typically employ a unidirectional viewpoint-conditioning strategy that synthesizes video based on predefined camera poses (Wang et al., 2024b; He et al., 2025). Such approaches are unsuitable for our setting, as the camera poses in egocentric video are not externally provided but are inherently determined by the wearer's head motion. As a result, the camera poses must be generated concurrently with the human motion, necessitating a bidirectional interaction to ensure viewpoint alignment. (2) Causal Interplay. At each time step, the current visual frame provides spatial context that shapes human motion synthesis; conversely, the newly generated motion influences subsequent video frames. Take the "opening door" scenario in Figure 1 as an example: egocentric observation informs the wearer of the door's location, which guides the wearer's action. In turn, the performed action can alter the body pose (e.g., reaching for the doorknob), the camera pose (e.g., orienting toward the door), and the surrounding scene (e.g., the door gradually opening). These changes must be accurately reflected in subsequent video frames, thereby affecting future motion generation. This recursive dependency forms a closed observation-action loop between video and motion, highlighting the necessity of modeling their causal interplay over time.

To address these challenges, we propose EgoTwin, a joint video-motion generation framework that generates egocentric videos with body-induced camera motion patterns while capturing the causal interplay between visual observations and human actions. Specifically, EgoTwin adopts a diffusion transformer backbone (Peebles & Xie, 2023; Esser et al., 2024), with three modality-specific branches for text, video, and motion, respectively. To model the joint distribution, EgoTwin employs asynchronous diffusion in video and motion branches, which allows each modality to evolve on its timestep while maintaining cross-modal interaction. To facilitate accurate viewpoint alignment, we depart from the commonly used root-centric motion representation (Guo et al., 2022a), which obscures head pose within full-body motion and thus fails to expose the egocentric perspective to the video branch. Instead, we introduce a head-centric motion representation that anchors the human motion to the head joint, allowing for direct alignment between the camera viewpoint of the generated video and the head pose in the synthesized motion. To faithfully capture the causal interplay, we draw inspiration from the observation-action feedback loop in cybernetic systems (Agrawal et al., 2016; Pathak et al., 2017), where observations shape actions and actions alter future observations. We implement this principle through a structured interaction mechanism: each video token attends to preceding motion tokens, capturing how current observations arise from past actions, while each motion token attends to current and upcoming video tokens, enabling the inference of actions based on perceived scene transitions. This bidirectional design allows motion-driven video synthesis and video-informed motion synthesis to evolve in synchrony.

To foster research in this field, we curate a large-scale dataset of real-world egocentric videos with human pose annotations from Nymeria (Ma et al., 2024). For evaluation, we extend beyond the individual quality of video and motion, and propose video-motion consistency metrics that quantify their cross-modal alignment. Extensive experiments demonstrate the effectiveness of EgoTwin.

In summary, our contributions are fourfold:

• To the best of our knowledge, we are the first to explore the joint generation of egocentric video and human motion in a viewpoint consistent and causally coherent manner.

- We identify the limitations of conventional root-centric motion representations in egocentric contexts and reformulate a head-centric approach that facilitates video-motion alignment.
- We design a triple-branch diffusion transformer featuring a video-motion interaction mechanism, supported by an efficient three-stage training paradigm and versatile sampling strategies.
- We propose video-motion consistency metrics and build a benchmark for evaluating joint videomotion generation, where our EgoTwin demonstrates strong performance.

## 2 RELATED WORK

108

109

110 111

112

113 114

115116117

118 119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153 154

155

156

157

158

159

160

161

**Video Generation.** Video generation has witnessed significant advancements with the emergence of video diffusion models (Ho et al., 2020; Karras et al., 2022; Ho et al., 2022). A central research focus has been on text-to-video (T2V) generation and image-to-video (I2V) generation, where models synthesize coherent video sequences from textual prompts or static images. Early approaches (Blattmann et al., 2023a;b) augment UNet-based text-to-image (T2I) models (Rombach et al., 2022) with temporal modeling layers to efficiently transform them to video generation models. Recent works (Brooks et al., 2024; Yang et al., 2025) adopt transformer-based architectures (Peebles & Xie, 2023), achieving improved temporal consistency and generation quality. To incorporate camera control, representative methods (Wang et al., 2024b; He et al., 2025) inject camera parameters (e.g., extrinsic matrices or Plücker embeddings (Sitzmann et al., 2021)) into pretrained video diffusion models (Xing et al., 2024; Guo et al., 2024b). These approaches rely on known camera trajectories and encode them as input conditions. In contrast, our work considers a fundamentally different setting where the camera trajectory is not available beforehand, yet the generated video must maintain consistency with other synthesized content that is strongly correlated to the underlying camera motion. This key distinction renders existing methods inapplicable, necessitating a framework for controllable video generation that operates without predefined camera guidance.

Motion Generation. Generating realistic and diverse human motions from text remains a longstanding challenge in computer vision and graphics, offering intuitive control of motion synthesis through natural language. Early works (Guo et al., 2020; Petrovich et al., 2021; Guo et al., 2022a; Petrovich et al., 2022) employ temporal VAEs (Kingma et al., 2014) to capture temporal dependencies and learn probabilistic mappings between language and motion. Recent advances have introduced powerful generative modeling techniques to this field, including diffusion models (Tevet et al., 2023; Zhang et al., 2024; Chen et al., 2023), autoregressive models (Guo et al., 2022b; Zhang et al., 2023; Jiang et al., 2023), and generative masked models (Guo et al., 2024a; Pinyoanuntapong et al., 2024; Meng et al., 2025). To comply with these frameworks, motion data is represented in different forms. Diffusion-based methods typically operate on continuous vectors, either in the latent space of a VAE or directly from raw motion sequences. Autoregressive models, by contrast, often discretize motion into tokens using vector quantization techniques such as VQ-VAE (Van Den Oord et al., 2017) or RVQ-VAE (Lee et al., 2022). Generative masked models are flexible in this regard, accommodating both discrete and continuous representations depending on the loss function and model architecture. Furthermore, several researchers (Hassan et al., 2021; Wang et al., 2021; Huang et al., 2023; Zhao et al., 2023) have investigated human motion generation within 3D scenes represented as RGB point clouds. Others combine the above two tasks by simultaneously incorporating textual and scene information (Wang et al., 2022; Cen et al., 2024; Wang et al., 2024a; Yi et al., 2024). Our work differs from this line of research in how scene information is provided: instead of granting full scene access during motion synthesis, we observe the scene only once from the initial human pose and rely on a generative model to hallucinate scene observations as the human moves.

**Multimodal Generation.** Recent advances have expanded generative models from unimodal to multimodal generation. Specifically for diffusion models, Ruan et al. (2023) introduces the first multimodal diffusion framework for synchronized audio-video generation. Other studies (Xu et al., 2023; Bao et al., 2023) design unified models capable of jointly generating text and images. In the domain of human motion, Li et al. (2024) pioneers the simultaneous generation of motion and frame-level language descriptions that explain the generated motions. Despite these developments, the joint modeling of human motion and its corresponding egocentric views remains largely unexplored. To the best of our knowledge, we take the first step in this direction, uncovering the tight coupling between these two modalities.

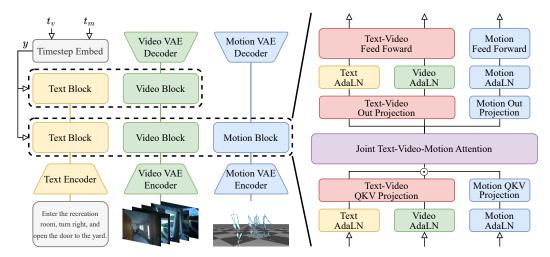


Figure 2: EgoTwin features a triple-branch architecture (**left**), where the motion branch spans only the lower half of the layers used by text and video branches. Each branch has its own tokenizer and transformer blocks (**right**), with shared weights across branches indicated by matching colors.

## 3 METHODOLOGY

**Problem Definition.** Given an initial human pose  $P^0 \in \mathbb{R}^{J \times 3}$  in a scene, an egocentric observation  $I^0 \in \mathbb{R}^{H \times W \times 3}$  from that pose, and a textual description of intended human actions in the scene, our goal is to generate two synchronized sequences: (1) a human pose sequence  $P^{1:N_m} \in \mathbb{R}^{N_m \times J \times 3}$  and (2) an egocentric view sequence  $I^{1:N_v} \in \mathbb{R}^{N_v \times H \times W \times 3}$  spanning the same duration. Here, J is the number of human joints, H and H are the image height and width, H and H are the number of frames in the pose and view sequences, respectively. This forms a closed-loop generation paradigm where video and motion mutually and continuously influence each other over time.

**Framework Overview.** An overview of EgoTwin is shown in Figure 2. Text, video, and motion inputs are first encoded using a text encoder, a video VAE encoder, and a motion VAE encoder, respectively. These embeddings are then processed through the corresponding branches of a diffusion transformer. Finally, the video and motion outputs are decoded by respective VAE decoders.

## 3.1 Modality Tokenization

For the text and video modalities, we adopt T5-XXL (Raffel et al., 2020) as the text tokenizer and encoder, and a 3D causal VAE (Yang et al., 2025) as the video tokenizer. Specifically, the input text is first tokenized and adjusted to a fixed length  $L_t$  via truncation or padding, then encoded into text embeddings  $c \in \mathbb{R}^{L_t \times D_t}$ . The video frames are temporally and spatially compressed into latent representations  $z_v \in \mathbb{R}^{\left(\frac{N_v}{4}+1\right) \times \frac{H}{8} \times \frac{W}{8} \times C_v}$  with a compression ratio of  $4 \times 8 \times 8$  and  $C_v$  latent channels, which are subsequently patchified and unfolded into video embeddings  $X_v \in \mathbb{R}^{L_v \times D_v}$  of sequence length  $L_v$ .  $D_t$  and  $D_v$  denote the embedding dimension of text and video, respectively.

**Motion Representation.** Unlike the uniform representation for text and video, motion representation exhibits a great degree of diversity. Currently, the most widely adopted format in human motion generation is the overparameterized canonical pose representation (Guo et al., 2022a), which has become the default standard for popular datasets, including KIT-ML (Plappert et al., 2016) and HumanML3D (Guo et al., 2022a). Formally, the human pose at each frame is defined as a tuple of  $(\dot{r}^a, \dot{r}^{xz}, r^y, j^p, j^v, j^r, c^f)$ , comprising seven groups of features: root angular velocity along Y-axis  $\dot{r}^a$ , root linear velocities on XZ-plane  $\dot{r}^{xz}$ , root height  $\dot{r}^y$ , local joint positions  $j^p \in \mathbb{R}^{3(J-1)}$  and velocities  $j^v \in \mathbb{R}^{3(J-1)}$  in root space, joint rotations  $j^r \in \mathbb{R}^{6(J-1)}$  in local space, and binary footground contacts  $c^f \in \mathbb{R}^4$ . Motions are retargeted to a default human skeletal template and initially rotated to face the positive Z-axis.

However, the above root-centric representation is not suitable for our task, as the critical information for alignment with the egocentric video, such as the pose of the head joint, is deeply buried in a multi-step kinematic calculation. Mathematically, recovering the head joint pose requires integrating root velocities to obtain the root pose, then applying forward kinematics (FK) to propagate transformations through the kinematic chain to the head joint. Intuitively, this computation is too complex to be precisely modeled by neural networks, as experimentally substantiated in Section C.

To address this issue, we propose a head-centric motion representation that explicitly exposes egocentric information. Specifically, we define the representation as a tuple  $(h^r, \dot{h}^r, h^p, \dot{h}^p, j^p, j^v, j^r)$ , where  $h^r \in \mathbb{R}^6$  and  $\dot{h}^r \in \mathbb{R}^6$  are the absolute and relative rotation of the head joint,  $h^p \in \mathbb{R}^3$  and  $\dot{h}^p \in \mathbb{R}^3$  are the absolute and relative position of the head joint. The terms  $j^p$  and  $j^v$  are now expressed in head space, while  $j^r$  retains its original meaning. Additionally, we normalize the initial head pose to zero translation and identity rotation, and set all first-order kinematic features to zero in the initial frame. Our representation naturally resonates with egocentric video in at least two novel ways: 1) It offers more accurate access to the head trajectory, which closely correlates with camera movement; 2) It more clearly informs the egocentric video how the body is observed egocentrically.

**Motion Tokenization.** Inspired by the Causal 3D CNN (Yu et al., 2024), we build the motion VAE using 1D causal convolutions, where all padding is applied at the beginning of the convolutional axis. The encoder and decoder are symmetrically structured, each comprising two stages of  $2\times$  downsampling or upsampling, interleaved with ResNet blocks (He et al., 2016). The motion VAE is trained using a combination of reconstruction loss  $\mathcal{L}_{rec}$  and Kullback–Leibler (KL) divergence regularization  $\mathcal{L}_{KL}$  weighted by  $\lambda_{KL}$ . To ensure that loss contributions are balanced across different groups regardless of their dimensions, we compute the VAE loss  $\mathcal{L}_{VAE}$  separately for the 3D head  $(h^p, \dot{h}^p)$ , 6D head  $(h^r, \dot{h}^r)$ , 3D joint  $(j^p, j^v)$ , and 6D joint  $(j^r)$  components. The final loss averages these four items:

$$\mathcal{L}_{\text{VAE}} = \frac{1}{4} \sum_{c} \left( \mathcal{L}_{rec}^{(c)} + \lambda_{\text{KL}} \mathcal{L}_{\text{KL}}^{(c)} \right), \text{where } c \in \{\text{head}_{3D}, \text{head}_{6D}, \text{joint}_{3D}, \text{joint}_{6D} \}. \tag{1}$$

Using the trained VAE, motion representations are tokenized into latents  $Z_m \in \mathbb{R}^{\left(\frac{N_m}{4}+1\right) \times C_m}$  with a  $4\times$  downsampling rate and  $C_m$  channels, and subsequently transformed into motion embeddings  $X_m \in \mathbb{R}^{L_m \times D_m}$ , with  $L_m$  as the sequence length and  $D_m$  as the embedding dimension.

#### 3.2 DIFFUSION TRANSFORMER

Our diffusion transformer extends MM-DiT (Esser et al., 2024), initially designed for text-to-image generation, to support text, video, and motion modalities. As illustrated in Figure 2, each branch consists of a sequence of MLPs and applies adaptive layer normalization (AdaLN) in conjunction with a gating mechanism (Peebles & Xie, 2023) to incorporate timestep information. The text and video branches are initialized from CogVideoX (Yang et al., 2025), with shared weights except for the AdaLNs. The motion branch corresponds to only the lower half of the layers in other branches, as essential visual cues for video-motion interaction, such as camera pose and scene structure, are primarily captured in the early layers of the video diffusion backbone. In contrast, the higher layers specialize in appearance details, which are less relevant to motion. To further improve efficiency, the motion branch employs reduced channel dimensions, consistent with the lower representational complexity of motion relative to video. The embedding sequences from different modalities are projected to a common dimensionality *D* and concatenated for joint attention operations (Vaswani et al., 2017). This triple-branch architecture allows each modality to work in its own representational space while still attending to and interacting with the others.

**Interaction Mechanism.** The original MM-DiT framework includes only text and image modalities, where cross-modal consistency is enforced only at the global level, i.e., matching the entire image with the entire text suffices. However, our task demands fine-grained temporal synchronization between video and motion: each video frame must be temporally aligned with the corresponding motion frame. Although we incorporate sinusoidal positional encodings (Vaswani et al., 2017) for both video and motion tokens, along with 3D rotary position embeddings (RoPE) (Su et al., 2024) for video tokens to provide absolute and relative position information, these mechanisms primarily capture intra-modal structure. Consequently, the inter-modal correspondence at each time step remains implicit to the diffusion transformer, which may lead to globally consistent outputs that nevertheless lack frame-wise synchronization.

To address this challenge, we explicitly encode the causal interplay between video and motion by introducing a structured joint attention mask to the diffusion transformer. Given that human motion is typically captured at a higher temporal resolution than egocentric video, we set the number of motion tokens to be twice the number of video tokens (i.e.,  $N_m = 2N_v$ ), without loss of generality.

Formally, we follow the notations in Cybernetics (Agrawal et al., 2016; Pathak et al., 2017) to rewrite  $I^i$ as the observation  $O^i$ , and  $(P^{2i+1}, P^{2i+2})$  as the (chunked) action  $A^i$ , where  $i \in [0, N_v - 1]$ . According to the principles of forward dynamics:  $\{O^i,A^i\} \rightarrow O^{i+1}$  and inverse dynamics:  $\{O^i,O^{i+1}\} \rightarrow A^i$ , video tokens corresponding to  $O^i$  can attend to motion tokens that correspond to  $A^{i-1}$ , capturing how  $O^i$  arise from  $A^{i-1}$ , while motion tokens corresponding to  $A^i$  can attend to video tokens that correspond to both  $O^i$  and  $O^{i+1}$ , enabling the inference of  $A^i$  based on scene transitions from  $O^i$ to  $O^{i+1}$ . A special case is given to  $P^0$ , which is allowed bilateral attention with  $I^0$ . As demonstrated in Figure 3, apart from the aforementioned relationship, the remaining attention between video and motion is blocked, while all intra-modal attention, as well as inter-modal attention related to text, are preserved.

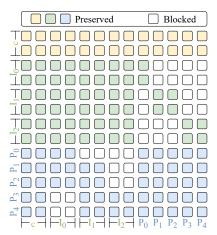


Figure 3: Interaction mechanism.

Asynchronous Diffusion. We independently sample two timesteps,  $t_v$  and  $t_m$ , between 0 and T (maximum timestep), and add Gaussian noises  $\epsilon_v$  and  $\epsilon_m$  associated with these timesteps to the latents  $z_v$  and  $z_m$ , respectively. Each timestep is first encoded via a sinusoidal embedding, and an MLP then processes two concatenated embeddings to produce a unified timestep embedding y, which serves as input to the AdaLN layers. Our model consists of a video denoiser  $\epsilon_\theta^v(z_v^{t_v}, z_m^{t_m}, c, t_v, t_m)$  and a motion denoiser  $\epsilon_\theta^m(z_m^{t_m}, z_v^{t_v}, c, t_m, t_v)$ , which are jointly optimized to simultaneously predict the noises added to the video and motion latents using the following objective:

$$\mathcal{L}_{\text{DiT}} = \mathbb{E}_{\epsilon_v, \epsilon_m, c, t_v, t_m} \left[ \left\| \epsilon_v - \epsilon_\theta^v(z_v^{t_v}, z_m^{t_m}, c, t_v, t_m) \right\|_2^2 + \left\| \epsilon_m - \epsilon_\theta^m(z_m^{t_m}, z_v^{t_v}, c, t_m, t_v) \right\|_2^2 \right]. \tag{2}$$

## 3.3 TRAINING AND SAMPLING

**Training Paradigm.** Our training schema comprises three stages: 1) *Motion VAE Training*, as described in Equation (1). 2) *Text-to-Motion Pretraining*. Since the motion branch lacks pretrained weights for initialization, we pretrain it on the text-to-motion task using only text and motion embeddings as input, while keeping the text branch frozen. Following classifier-free guidance (CFG) (Ho & Salimans, 2022), we randomly discard the text embeddings with a probability of 10% to model unconditional motion generation. By omitting the much longer video embeddings, we can leverage greater parallelism, which accelerates the training process. Critically, freezing the text branch not only preserves the pretrained text-to-video weights but also facilitates the integration of motion embeddings into the pretrained text-video embedding space. 3) *Joint Text-Video-Motion Training*, as formulated in Equation (2). Video embeddings are incorporated in this final stage, and the model learns the joint distribution of video and motion conditioned on text. Again, text embeddings are randomly dropped with a probability of 10% to model the unconditional video-motion generation.

**Sampling Strategy.** Benefiting from the joint distribution modeling, our framework supports not only joint video-motion generation conditioned on text (T2VM), but also unimodal generation, including video generation conditioned on text and motion (TM2V), and motion generation conditioned on text and video (TV2M). The CFG for TM2V sampling is defined as follows:

$$\hat{\epsilon}_{\theta}^{v}(z_{v}^{t}, z_{m}^{0}, c, t, 0) = \epsilon_{\theta}^{v}(z_{v}^{t}, z_{m}^{T}, \phi, t, T) + w_{t} \left( \epsilon_{\theta}^{v}(z_{v}^{t}, z_{m}^{T}, c, t, T) - \epsilon_{\theta}^{v}(z_{v}^{t}, z_{m}^{T}, \phi, t, T) \right) + w_{m} \left( \epsilon_{\theta}^{v}(z_{v}^{t}, z_{m}^{0}, c, t, 0) - \epsilon_{\theta}^{v}(z_{v}^{t}, z_{m}^{T}, c, t, T) \right).$$
(3)

The CFG formula for TV2M sampling can be derived by exchanging the roles of v and m in Equation (3). Here,  $w_t$ ,  $w_v$ , and  $w_m$  denote the guidance scales for text, video, and motion conditions, respectively. For T2VM sampling, taking the motion branch as an example (with the video branch being analogous), its CFG formula is expressed as:

$$\hat{\epsilon}_{\theta}^{m}(z_{m}^{t}, z_{v}^{t}, c, t, t) = \epsilon_{\theta}^{m}(z_{m}^{t}, z_{v}^{T}, \phi, t, T) + w_{t} \left( \epsilon_{\theta}^{m}(z_{m}^{t}, z_{v}^{T}, c, t, T) - \epsilon_{\theta}^{m}(z_{m}^{t}, z_{v}^{T}, \phi, t, T) \right) + w_{v} \left( \epsilon_{\theta}^{m}(z_{m}^{t}, z_{v}^{t}, c, t, t) - \epsilon_{\theta}^{m}(z_{m}^{t}, z_{v}^{T}, c, t, T) \right). \tag{4}$$

After sampling, latents from the video branch are unpatchified to recover their original shape and then decoded by the 3D causal VAE decoder (Yang et al., 2025) to reconstruct the video, while latents from the motion branch are passed through the motion VAE decoder to reconstruct the motion.

## 4 EXPERIMENTS

#### 4.1 EVALUATION METRICS

**Video Quality.** We adopt Image Fréchet Inception Distance (**I-FID**) (Heusel et al., 2017) to evaluate the visual fidelity and realism of individual frames by measuring the distributional distance between the features of generated frames and those of real images. At the video level, we employ Fréchet Video Distance (**FVD**) (Unterthiner et al., 2018) to quantify temporal coherence and consistency across generated video sequences compared to real ones. Additionally, CLIP Similarity (**CLIP-SIM**) (Wu et al., 2021) is utilized to assess the semantic alignment and contextual relevance between generated video clips and textual prompts.

Motion Quality. We choose Motion Fréchet Inception Distance (M-FID) (Heusel et al., 2017) to assess the statistical similarity between the high-level features of generated motions and real motions. To evaluate the alignment between text and motion, we train a GRU-based text feature extractor and a GRU-based motion feature extractor, both sharing the same architecture as the evaluator in (Guo et al., 2022a). These models are optimized using a contrastive loss on GloVe (Pennington et al., 2014) text embeddings and our motion representation described in Section 3.1, ensuring that matched text-motion pairs yield geometrically close feature vectors. Within this learned feature space, the text-to-motion Retrieval Precision (R-Prec) is measured in terms of Top-3 retrieval accuracy. Meanwhile, the Multimodal Distance (MM-Dist) captures the average Euclidean distance between corresponding motion and text features.

**Video-Motion Consistency.** We propose to evaluate the consistency between generated egocentric videos and human motions from two aspects: 1) View Consistency: We first estimate the frame-wise camera poses of the generated egocentric videos using DROID-SLAM (Teed & Deng, 2021) and extract the head joint poses from the generated human motions. Then, we align both trajectories at the first frame and apply Procrustes Analysis to determine the optimal scale factor that aligns the estimated camera trajectory with the extracted head trajectory. Finally, we compute the Translation Error (TransErr) as the average Euclidean distance between the corresponding camera and head positions, and the Rotation Error (RotErr) as the average angular difference between the corresponding camera and head orientations, using the same formulas as (He et al., 2025). 2) Hand Consistency: We detect the presence of the left and right hands, equipped with the motion capture device, in the generated egocentric videos. For the generated human motions, we compute the hand visibility from the perspective of a virtual camera mounted on the corresponding head joint with known intrinsics. Based on the presence and visibility analysis, we define the Hand F-Score (HandScore) as the average F-Score of left and right hands, where a *True Positive* means the hand is present in the video and visible from the head in motion, a False Positive means the hand is present in the video but invisible from the head in motion, and a False Negative means the hand is absent in the video but visible from the head in motion.

## 4.2 EXPERIMENTAL SETUP

**Dataset.** To overcome the limitations of using synthetic or small-scale real-world datasets for evaluation, we train and evaluate our model on Nymeria (Ma et al., 2024), a large-scale, real-device dataset that captures diverse people engaged in a wide range of daily activities across various indoor and outdoor locations. The dataset provides paired text-video-motion data, including egocentric videos recorded with Project Aria glasses (Engel et al., 2023), full-body motions captured using the Xsens inertial motion capture system (Paulich et al., 2018), and motion narrations written by human annotators. All data are segmented into 5-second clips, yielding approximately 170K samples after filtering, which are split into training, validation, and test sets for the joint training stage. We ensure that both the individuals and environments in the test split remain unseen during joint training.

**Baseline.** Since no prior methods are capable of addressing our task, we propose a simple yet effective baseline, VidMLD, that retains the architecture of EgoTwin while removing all dedicated designs introduced in Section 3.1 and Section 3.2. In other words, VidMLD combines the state-of-the-art video diffusion model CogVideoX (Yang et al., 2025) and the latent-space motion diffusion model MLD (Chen et al., 2023), both of which excel in unimodal generation, and connects them through the multimodal diffusion architecture MM-DiT (Esser et al., 2024) to enable joint generation. We adopt the same three-stage training recipe described in Section 3.3, and employ the original classifier-free guidance (Ho & Salimans, 2022) for sampling.

Table 1: Quantitative results of joint video and motion generation, evaluated by metrics covering video quality, motion quality, and video-motion consistency.

| Method  | Video Quality |         |            | <b>Motion Quality</b> |          |           | Video-Motion Consistency |         |             |
|---------|---------------|---------|------------|-----------------------|----------|-----------|--------------------------|---------|-------------|
|         | I-FID ↓       | FVD↓    | CLIP-SIM ↑ | M-FID↓                | R-Prec ↑ | MM-Dist ↓ | TransErr ↓               | RotErr↓ | HandScore ↑ |
| VidMLD  | 157.86        | 1547.28 | 25.58      | 45.09                 | 0.47     | 19.12     | 1.28                     | 1.53    | 0.36        |
| EgoTwin | 98.17         | 1033.52 | 27.34      | 41.80                 | 0.62     | 15.05     | 0.67                     | 0.46    | 0.81        |

**Prompt:** Enter the recreation room, turn right, and open the door to the yard.

**Prompt:** Turn left to walk into the kitchen, then turn towards the living area.



Figure 4: Qualitative results of joint video and motion generation, based on a textual prompt and initial frames of both video and motion.

Implementation Details. In our experiments, videos are undistorted and resized to a resolution of H=W=480, with each segment containing  $N_v+1=41$  frames at 8 FPS. The motion data adopts the Xsens skeleton with J=23 joints and consists of  $N_m+1=81$  frames per segment at 16 FPS. The video and motion latents have  $C_v=16$  and  $C_m=64$  channels, respectively. The embedding lengths for text, video, and motion are  $L_t=226$ ,  $L_v=9900$ , and  $L_m=21$ , with corresponding dimensions  $D_t=D_v=D=3072$ , and  $D_m=768$ . The hyperparameter  $\lambda_{KL}$  in Equation (1) is set to 1e-4. CFG scales are set to  $w_t=6$  for text and  $w_v=w_m=4$  for video and motion. The text and video branches have 42 layers, totaling approximately 5B parameters, with most shared across both branches. The motion branch comprises 21 layers, corresponding to the lower halves of the other two branches, and contains roughly 300M parameters.

#### 4.3 MAIN RESULTS

Quantitative Results. As shown in Table 1, EgoTwin significantly outperforms the baseline method across all evaluation metrics, with especially pronounced improvements in video-motion consistency scores. The brute-force joint training of the video and motion generation models leads to poor alignment between the two modalities, resulting in notably lower video-motion consistency performance. In contrast, EgoTwin effectively captures the intrinsic correlation between the two modalities, achieving not only excellent cross-modal consistency but also enhanced single-modal generation quality through the mutually beneficial interaction between video and motion modalities. Furthermore, we provide an in-depth discussion of the advantages of joint modeling in Section D.

**Qualitative Results.** We visualize several examples generated by EgoTwin in Figure 4. These samples illustrate that the video and motion streams not only adhere to the textual descriptions for single-modal generation but also evolve in strict cross-modal synchrony, particularly in terms of camera viewpoint and head pose, as well as in scene content and human action. We encourage readers to visit our project page (https://egotwin.pages.dev/) for richer generation examples.

#### 4.4 ABLATION STUDIES

We present the extensive ablation studies in Table 2, where each row corresponds to a specific ablation setting. All variants exhibit a consistent performance decline across all metrics compared to our full model (listed at the bottom), confirming the effectiveness of each design. First, we replace our Motion Reformulation with the standard representation (Guo et al., 2022a) commonly used in human motion generation research ("w/o MR"). The resulting performance drop highlights the importance of our reformulation in exposing egocentric motion cues to the video, which fundamentally facilitates the alignment between egocentric video and human motion. Next, we remove the Interac-

Table 2: Ablation results on three designs: Motion Reformulation (MR), Interaction Mechanism (IM), and Asynchronous Diffusion (AD).

| Variant | Video Quality |         |            | Motion Quality |          |           | Video-Motion Consistency |         |             |
|---------|---------------|---------|------------|----------------|----------|-----------|--------------------------|---------|-------------|
|         | I-FID ↓       | FVD↓    | CLIP-SIM ↑ | M-FID↓         | R-Prec ↑ | MM-Dist ↓ | TransErr ↓               | RotErr↓ | HandScore ↑ |
| w/o MR  | 134.27        | 1356.81 | 26.36      | 43.65          | 0.56     | 17.31     | 0.96                     | 1.22    | 0.44        |
| w/o IM  | 117.54        | 1237.58 | 27.10      | 44.01          | 0.59     | 15.87     | 0.85                     | 0.89    | 0.57        |
| w/o AD  | 109.73        | 1124.19 | 26.91      | 42.58          | 0.53     | 16.48     | 0.74                     | 0.62    | 0.73        |
| EgoTwin | 98.17         | 1033.52 | 27.34      | 41.80          | 0.62     | 15.05     | 0.67                     | 0.46    | 0.81        |

**Prompt:** Open and close the kitchen cabinet.

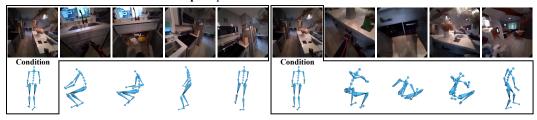


Figure 5: Results of conditional generation. **Left:** motion generation conditioned on text and video; **Right:** video generation conditioned on text and motion.

tion Mechanism from the joint attention operations and instead apply full attention without masking ("w/o IM"). The observed degradation underscores its critical role in capturing causal relationships between video and motion, as well as ensuring fine-grained temporal synchronization. Finally, we substitute the Asynchronous Diffusion with a synchronous counterpart for video and motion latents, and accordingly simplify the sampling algorithm to vanilla CFG ("w/o AD"). The performance decline validates its value for modeling comprehensive and diverse dependencies between video and motion modalities, and enabling precise textual control over the joint generation process.

#### 4.5 Broader Applications

Conditional Generation. Our joint distribution enables conditional sampling of one modality given another, using the CFG algorithm described in Equation (3). As shown in Figure 5, we can generate human motion conditioned on text and egocentric video (left), as well as generate egocentric video conditioned on text and human motion (right). Interestingly, textual descriptions are often ambiguous (e.g., they may refer to cabinets on the left or right side of the scene in Figure 5), the ability to additionally condition on either motion or video provides greater control over the generation process, which further substantiates the strong coupling between video and motion in our model.

**Scene Reconstruction.** With jointly generated video and motion, we can effortlessly extract camera poses from human motion and directly integrate both modalities into a 3D Gaussian Splatting (Kerbl et al., 2023) pipeline. As illustrated in Figure 1, we reconstruct the 3D scene from the generated video and seamlessly position the synthesized human into it by aligning head poses with camera trajectories. The realistic spatial interactions exhibited, such as the feet on the ground and the right hand near the door handle, demonstrate strong spatiotemporal coherence between the generated egocentric videos and human motion.

## 5 CONCLUSION

We propose EgoTwin, a diffusion-based framework that jointly generates egocentric video and human motion in a viewpoint consistent and causally coherent manner. Our method introduces a head-centric motion representation and a cybernetics-inspired interaction mechanism, supported by an efficient three-stage training paradigm and versatile sampling strategies. To evaluate our approach, we establish a comprehensive benchmark that includes a large-scale dataset of text-video-motion triplets and novel video-motion consistency metrics. Experiments demonstrate that EgoTwin delivers promising results. We hope our work encourages further exploration of joint generative modeling for egocentric video and human motion, and lays a solid foundation for future research in this area.

## REFERENCES

- Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by poking: Experiential learning of intuitive physics. *Advances in Neural Information Processing Systems*, 29, 2016.
- Apple Inc. Apple vision pro, 2023. URL https://www.apple.com/apple-vision-pro/.
- Narges Ashtari, Andrea Bunt, Joanna McGrenere, Michael Nebeling, and Parmit K Chilana. Creating augmented and virtual reality applications: Current practices, challenges, and opportunities. In *ACM CHI Conference on Human Factors in Computing Systems*, pp. 1–13, 2020.
- Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang Su, and Jun Zhu. One transformer fits all distributions in multi-modal diffusion at scale. In *International Conference on Machine Learning*, pp. 1692–1717, 2023.
- Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023a.
- Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22563–22575, 2023b.
- Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video generation models as world simulators. 2024. URL https://openai.com/research/video-generation-models-as-world-simulators.
- Zhi Cen, Huaijin Pi, Sida Peng, Zehong Shen, Minghui Yang, Shuai Zhu, Hujun Bao, and Xiaowei Zhou. Generating human motion in 3d scenes from text descriptions. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1855–1866, 2024.
- Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, and Gang Yu. Executing your commands via motion diffusion in latent space. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18000–18010, 2023.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2021.
- Jakob Engel, Kiran Somasundaram, Michael Goesele, Albert Sun, Alexander Gamino, Andrew Turner, Arjang Talattof, Arnie Yuan, Bilal Souti, Brighid Meredith, et al. Project aria: A new tool for egocentric multi-modal ai research. *arXiv preprint arXiv:2308.13561*, 2023.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *International Conference on Machine Learning*, 2024.
- Alexander Fiannaca, Ilias Apostolopoulous, and Eelke Folmer. Headlock: A wearable navigation aid that helps blind cane users traverse large open spaces. In *International ACM SIGACCESS Conference on Computers and Accessibility*, pp. 19–26, 2014.
- Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao Sun, Annan Deng, Minglun Gong, and Li Cheng. Action2motion: Conditioned generation of 3d human motions. In *ACM International Conference on Multimedia*, pp. 2021–2029, 2020.
- Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating diverse and natural 3d human motions from text. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5152–5161, 2022a.

- Chuan Guo, Xinxin Zuo, Sen Wang, and Li Cheng. Tm2t: Stochastic and tokenized modeling for the reciprocal generation of 3d human motions and texts. In *European Conference on Computer Vision*, pp. 580–597. Springer, 2022b.
  - Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Sen Wang, and Li Cheng. Momask: Generative masked modeling of 3d human motions. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1900–1910, 2024a.
  - Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models without specific tuning. In *International Conference on Learning Representations*, 2024b.
  - Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito, Jimei Yang, Yi Zhou, and Michael J Black. Stochastic scene-aware motion prediction. In *IEEE/CVF International Conference on Computer Vision*, pp. 11374–11384, 2021.
  - Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan Yang. Cameractrl: Enabling camera control for text-to-video generation. In *International Conference on Learning Representations*, 2025.
  - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 770–778, 2016.
  - Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in Neural Information Processing Systems*, 30, 2017.
  - Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv*:2207.12598, 2022.
  - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
  - Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–8646, 2022.
  - Siyuan Huang, Zan Wang, Puhao Li, Baoxiong Jia, Tengyu Liu, Yixin Zhu, Wei Liang, and Song-Chun Zhu. Diffusion-based generation, optimization, and planning in 3d scenes. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16750–16761, 2023.
  - Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. Motiongpt: Human motion as a foreign language. *Advances in Neural Information Processing Systems*, 36:20067–20079, 2023.
  - Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. *Advances in Neural Information Processing Systems*, 35:26565–26577, 2022.
  - Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4):139–1, 2023.
  - Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes. In *International Conference on Learning Representations*, 2014.
  - Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image generation using residual quantization. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11523–11532, 2022.
  - Chuqiao Li, Julian Chibane, Yannan He, Naama Pearl, Andreas Geiger, and Gerard Pons-Moll. Unimotion: Unifying 3d human motion synthesis and understanding. In *International Conference on 3D Vision*, 2024.

- Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In *IEEE International Conference on Computer Vision*, pp. 2980–2988, 2017.
  - Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, et al. Mediapipe: A framework for building perception pipelines. *arXiv preprint arXiv:1906.08172*, 2019.
  - Lingni Ma, Yuting Ye, Fangzhou Hong, Vladimir Guzov, Yifeng Jiang, Rowan Postyeni, Luis Pesqueira, Alexander Gamino, Vijay Baiyya, Hyo Jin Kim, et al. Nymeria: A massive collection of multimodal egocentric daily motion in the wild. In *European Conference on Computer Vision*, pp. 445–465. Springer, 2024.
  - Zichong Meng, Yiming Xie, Xiaogang Peng, Zeyu Han, and Huaizu Jiang. Rethinking diffusion for text-driven human motion generation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2025.
  - Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal visual representation for robot manipulation. In *Conference on Robot Learning*, 2022.
  - Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-supervised prediction. In *International Conference on Machine Learning*, pp. 2778–2787, 2017.
  - Monique Paulich, Martin Schepers, Nina Rudigkeit, and Giovanni Bellusci. Xsens mtw awinda: Miniature wireless inertial-magnetic motion tracker for highly accurate 3d kinematic applications. *Xsens: Enschede, The Netherlands*, pp. 1–9, 2018.
  - Georgios Pavlakos, Dandan Shan, Ilija Radosavovic, Angjoo Kanazawa, David Fouhey, and Jitendra Malik. Reconstructing hands in 3d with transformers. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9826–9836, 2024.
  - William Peebles and Saining Xie. Scalable diffusion models with transformers. In *IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.
  - Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representation. In Conference on Empirical Methods in Natural Language Processing, pp. 1532– 1543, 2014.
  - Mathis Petrovich, Michael J Black, and Gül Varol. Action-conditioned 3d human motion synthesis with transformer vae. In *IEEE/CVF International Conference on Computer Vision*, pp. 10985–10995, 2021.
  - Mathis Petrovich, Michael J Black, and Gül Varol. Temos: Generating diverse human motions from textual descriptions. In *European Conference on Computer Vision*, pp. 480–497, 2022.
  - Ekkasit Pinyoanuntapong, Pu Wang, Minwoo Lee, and Chen Chen. Mmm: Generative masked motion model. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1546–1555, 2024.
  - Matthias Plappert, Christian Mandery, and Tamim Asfour. The kit motion-language dataset. *Big Data*, 4(4):236–252, 2016.
  - Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020.
  - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.
  - Ludan Ruan, Yiyang Ma, Huan Yang, Huiguo He, Bei Liu, Jianlong Fu, Nicholas Jing Yuan, Qin Jin, and Baining Guo. Mm-diffusion: Learning multi-modal diffusion models for joint audio and video generation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10219–10228, 2023.

- Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh Tenenbaum, and Fredo Durand. Light field networks: Neural scene representations with single-evaluation rendering. *Advances in Neural Information Processing Systems*, 34:19313–19325, 2021.
  - Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
  - Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras. *Advances in Neural Information Processing Systems*, 34:16558–16569, 2021.
  - Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano. Human motion diffusion model. In *International Conference on Learning Representations*, 2023.
  - Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. arXiv preprint arXiv:1812.01717, 2018.
  - Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in Neural Information Processing Systems*, 30, 2017.
  - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing Systems*, 30, 2017.
  - Jiashun Wang, Huazhe Xu, Jingwei Xu, Sifei Liu, and Xiaolong Wang. Synthesizing long-term 3d human motion and interaction in 3d scenes. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9401–9411, 2021.
  - Zan Wang, Yixin Chen, Tengyu Liu, Yixin Zhu, Wei Liang, and Siyuan Huang. Humanise: Language-conditioned human motion generation in 3d scenes. Advances in Neural Information Processing Systems, 35:14959–14971, 2022.
  - Zan Wang, Yixin Chen, Baoxiong Jia, Puhao Li, Jinlu Zhang, Jingze Zhang, Tengyu Liu, Yixin Zhu, Wei Liang, and Siyuan Huang. Move as you say interact as you can: Language-guided human motion generation with scene affordance. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 433–444, 2024a.
  - Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo, and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In *ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference*, pp. 1–11, 2024b.
  - Chenfei Wu, Lun Huang, Qianxi Zhang, Binyang Li, Lei Ji, Fan Yang, Guillermo Sapiro, and Nan Duan. Godiva: Generating open-domain videos from natural descriptions. *arXiv* preprint *arXiv*:2104.14806, 2021.
  - Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Gongye Liu, Xintao Wang, Ying Shan, and Tien-Tsin Wong. Dynamicrafter: Animating open-domain images with video diffusion priors. In *European Conference on Computer Vision*, pp. 399–417. Springer, 2024.
  - Xingqian Xu, Zhangyang Wang, Gong Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion: Text, images and variations all in one diffusion model. In *IEEE/CVF International Conference on Computer Vision*, pp. 7754–7765, 2023.
  - Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert transformer. In *International Conference on Learning Representations*, 2025.
  - Hongwei Yi, Justus Thies, Michael J Black, Xue Bin Peng, and Davis Rempe. Generating human interaction motions in scenes with text control. In *European Conference on Computer Vision*, pp. 246–263. Springer, 2024.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion–tokenizer is key to visual generation. In *International Conference on Learning Representations*, 2024.

- Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Yong Zhang, Hongwei Zhao, Hongtao Lu, Xi Shen, and Ying Shan. Generating human motion from textual descriptions with discrete representations. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14730–14740, 2023.
- Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei Liu. Motiondiffuse: Text-driven human motion generation with diffusion model. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(6):4115–4128, 2024.
- Kaifeng Zhao, Yan Zhang, Shaofei Wang, Thabo Beeler, and Siyu Tang. Synthesizing diverse human motions in 3d indoor scenes. In *IEEE/CVF International Conference on Computer Vision*, pp. 14738–14749, 2023.

## **APPENDIX**

#### A DETAILS OF MOTION VAE

VAE Encoder. The encoder begins with a 1D causal convolution (kernel size 3) that projects the 288-channel motion input to 512 channels, followed by four DownBlocks that progressively expand the channel dimension to 2048. The first two DownBlocks each downsample the temporal dimension by a factor of 2 using 1D causal convolutions with a kernel size of 4 and a stride of 2. Each DownBlock comprises four ResNet layers, with each layer including two 1D causal convolutions (kernel size 3), GroupNorm, SiLU activation, and optional shortcut connections for channel alignment. A MidBlock comprising two 2048-channel ResNet layers further processes the features. The encoder ends with a 1D causal convolution (kernel size 3) that outputs 128 channels, representing the mean and log-variance of a 64-dimensional motion latent space.

**VAE Decoder.** The decoder mirrors the encoder in reverse. It starts with a 1D causal convolution (kernel size 3) that maps the 64-dimensional motion latent vector to 2048 channels, followed by a MidBlock with two 2048-channel ResNet layers. Four UpBlocks then progressively reduce the channel dimension to 512. The first two UpBlocks each upsample the temporal dimension by a factor of 2 using 1D nearest neighbor interpolation and 1D causal convolution (kernel size 3). Each UpBlock includes five ResNet layers, structurally identical to those in the encoder. The decoder ends with a 1D causal convolution (kernel size 3) that reconstructs the original 288-channel motion representation. Both the encoder and decoder contain approximately 200M parameters.

## B DETAILS OF CONSISTENCY METRICS

Since the generated motion sequence has twice the temporal resolution of the video sequence, we downsample it by selecting every other frame to match the length of the video sequence,  $N_v$ , before evaluating the consistency metrics described below.

**View Consistency.** We denote the canonicalized egocentric camera trajectory and head joint trajectory (i.e., with each frame expressed relative to the first frame) as sequences of rotation matrices and translation vectors:  $[R_v \mid T_v] \in \mathbb{R}^{N_v \times 3 \times 4}$  and  $[R_m \mid T_m] \in \mathbb{R}^{N_v \times 3 \times 4}$ , respectively. Let s denote the optimal scale factor for scene scale alignment. The Translation Error (TransErr) is calculated as the scale-invariant  $L_2$  distance between the translation vector sequences  $T_v$  and  $T_m$ :

$$TransErr = \|sT_v - T_m\|_2^2.$$
 (5)

The Rotation Error (RotErr) is computed by comparing the rotation matrix sequences  $R_v$  and  $R_m$ :

$$RotErr = \arccos\left(\frac{\operatorname{tr}(R_v R_m^T) - 1}{2}\right),\tag{6}$$

where  $tr(\cdot)$  denotes the trace of a matrix. Since each sequence is normalized with respect to the first frame, errors are computed as the average frame-wise error over the remaining frames.

Hand Consistency. Because the camera wearer's hands are covered by motion capture gloves rather than bare skin, state-of-the-art hand landmark detection tools, such as MediaPipe (Lugaresi et al., 2019) and HaMeR (Pavlakos et al., 2024), fail to detect the wearer's hands in video frames. To overcome this limitation, we formulate the problem as two independent binary classification tasks: one for detecting the presence of the left hand and the other for the right hand in each frame. Our hand classifier is built upon a pretrained Vision Transformer (ViT) (Dosovitskiy et al., 2021) backbone and is trained using supervision signals derived from human poses and camera intrinsics. To mitigate the issue of class imbalance between positive and negative samples, we adopt Focal Loss (Lin et al., 2017) as our classification objective, which is defined as:

$$\mathcal{L}_{\text{CLS}} = \sum_{c=1}^{2} -\alpha_{t}^{c} (1 - p_{t}^{c})^{\gamma} \log (p_{t}^{c}), \qquad (7)$$

where  $\gamma$  is the focusing parameter,  $c \in \{0,1\}$  indicates the hand side,  $p_t^c$  is the predicted probability for the target class t, and  $\alpha_t^c$  is a weighting factor associated with the target class t. Given the

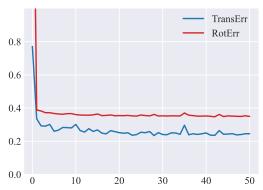


Figure 6: Head pose regression errors over epochs.

predicted probability  $p = \operatorname{sigmoid}(x)$  obtained from the output logits of the model  $x \in \mathbb{R}^2$ , and the ground-truth labels  $y \in \{0, 1\}^2$ , the values of  $p_t^c$  and  $\alpha_t^c$  are calculated as:

$$p_t^c = \begin{cases} p^c & \text{if } y^c = 1\\ 1 - p^c & \text{if } y^c = 0 \end{cases}, \quad \alpha_t^c = \begin{cases} \alpha^c & \text{if } y^c = 1\\ 1 - \alpha^c & \text{if } y^c = 0 \end{cases}.$$
 (8)

In our experiments, we set  $\alpha^c=0.80$  for the left hand and  $\alpha^c=0.75$  for the right hand, and use a focusing parameter of  $\gamma=2$ .

## C DETAILS OF REGRESSION EXPERIMENT

To validate our insights in Section 3.1, we train a GRU-based regression model that takes the root-centric motion representation sequences as input, supervised by an MSE loss against the ground-truth head pose sequences. As shown in Figure 6, both translation and rotation errors (TransErr and RotErr, see Section 4.1 for details) plateau at high levels, due to insufficient explicit cues for accurately modeling head pose.

#### D ADVANTAGES OF JOINT MODELING

We compare EgoTwin's joint generation (Text-to-Video-Motion) with separate generation approaches (Text-to-Video and Text-to-Motion), and report the results in Table 3. We further implement a camera-controlled video generation method based on CogVideoX. The substantial performance gains highlight that joint modeling significantly enhances the generation quality of each modality. This is corroborated by Table 1, which shows that EgoTwin's stronger joint generation capability yields notable improvements in both video and motion metrics compared to VidMLD, whose joint modeling is relatively weak.

Beyond quantitative evaluation, we also provide a qualitative analysis using the door-opening example in Figure 1. Without modeling the state of the door at each timestep and its temporal evolution, the generated human motion often appears unrealistic, as it lacks awareness of the door. On the other hand, without modeling the underlying human motion that drives the egocentric video, the resulting viewpoint shifts and scene dynamics tend to be physically implausible. Moreover, relying solely on camera poses as external control signals fails to capture the underlying human motion in egocentric video, underscoring the necessity for internal motion modeling in egocentric video generation.

## E ADDITIONAL QUALITATIVE RESULTS

**Joint Generation.** Figure 7 presents additional examples generated by EgoTwin. Together with those in Figure 4, these results demonstrate the model's capacity to synthesize a variety of motion types (e.g., walking, opening, closing, grabbing) across diverse environments (e.g., bedrooms, kitchens, living areas, outdoor yards) and involving a wide range of objects of interaction (e.g., cabinets, clothing, doors, drawers). Video demonstrations can be found on our project page: https://egotwin.pages.dev/.

Table 3: Comparisons between joint video-motion modeling and separate video/motion modeling.

| Method     |        | Video Qua | ality     | Motion Quality |          |          |  |
|------------|--------|-----------|-----------|----------------|----------|----------|--|
| Method     | I-FID↓ | FVD↓      | CLIP-SIM↑ | M-FID↓         | R-Prec ↑ | MM-Dist↓ |  |
| CogVideoX  | 182.97 | 1793.79   | 24.90     | _              | _        | _        |  |
| CameraCtrl | 120.48 | 1263.90   | 27.01     | _              | _        | _        |  |
| MLD        | _      | _         | _         | 47.25          | 0.39     | 21.47    |  |
| EgoTwin    | 98.17  | 1033.52   | 27.34     | 41.80          | 0.62     | 15.05    |  |

Conditional Generation. Recall that in Figure 5, we demonstrate that when the textual description is ambiguous concerning the referent objects involved in the interaction, conditional sampling strategies (i.e., TV2M or TM2V) allow for fine-grained control over the generation process. Another salient source of linguistic ambiguity arises from human interaction behaviors. For instance, while the prompt in Figure 8 clearly specifies the target object of interaction (i.e., the pillow located on the right side of the sofa in Figure 8), it leaves the manner of the human action unconstrained (e.g., whether the individual uses the left hand or right hand). In such cases, incorporating additional conditioning signals can help disambiguate these subtleties.

**Failure Cases.** The failure cases primarily stem from the physical implausibility of the generated videos. For instance, in the first example of Figure 7, the cup displays abnormal deformation. This issue reflects a broader challenge in current video generation models and is difficult to address through joint modeling with human motion, as the motion signal typically captures only the global displacement of the object. Nevertheless, we generally observe strong correspondence between the generated video and motion.

## F LIMITATIONS AND FUTURE WORKS

One major limitation of EgoTwin is its focus on full-body motion representation without incorporating hand joints. This stems from the absence of hand motion capture data in our dataset, which restricts our model's ability to generate hand movements. While our model achieves reasonable consistency between generated video and motion, the synthesized videos may still exhibit artifacts that violate physical laws or lack 3D coherence, posing challenges for downstream applications.

Our future work could involve finetuning on datasets that include hand motion to enable the generation of coordinated body and hand motions alongside egocentric videos. Additionally, integrating 3D priors and physical constraints may enhance the realism of generated videos, thereby improving the fidelity of the corresponding motion synthesis. Other avenues for improvement include increasing video resolution and extending the temporal context to support longer sequences.

## G LLM USAGE STATEMENT

Large language models (LLMs) were used exclusively to refine the writing and improve readability. They played no role in the research design or the generation of original scientific content.



Figure 7: Additional qualitative results of joint generation, based on a textual prompt and initial frames of both video and motion.

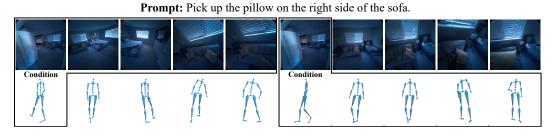


Figure 8: Additional qualitative results of conditional generation. **Left:** motion generation conditioned on text and video; **Right:** video generation conditioned on text and motion.