

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 EGOTWIN: DREAMING BODY AND VIEW IN FIRST PERSON

005 **Anonymous authors**

006 Paper under double-blind review

024 Figure 1: We propose EgoTwin, a diffusion-based framework that jointly generates egocentric video
025 and human motion in a viewpoint consistent and causally coherent manner. Generated videos can
026 be lifted into 3D scenes using camera poses derived from human motion via 3D Gaussian Splatting.

027 028 ABSTRACT

029 While exocentric video synthesis has achieved great progress, egocentric video
030 generation remains largely underexplored, which requires modeling first-person
031 view content along with camera motion patterns induced by the wearer’s body
032 movements. To bridge this gap, we introduce a novel task of joint egocentric video
033 and human motion generation, characterized by two key challenges: 1) Viewpoint
034 Alignment: the camera trajectory in the generated video must accurately align
035 with the head trajectory derived from human motion; 2) Causal Interplay: the
036 synthesized human motion must causally align with the observed visual dynamics
037 across adjacent video frames. To address these challenges, we propose EgoTwin,
038 a joint video-motion generation framework built on the diffusion transformer ar-
039 chitecture. Specifically, EgoTwin introduces a head-centric motion representation
040 that anchors the human motion to the head joint and incorporates a cybernetics-
041 inspired interaction mechanism that explicitly captures the causal interplay be-
042 tween video and motion within attention operations. For comprehensive evalua-
043 tion, we curate a large-scale real-world dataset of synchronized text-video-motion
044 triplets and design novel metrics to assess video-motion consistency. Extensive
045 experiments demonstrate the effectiveness of the EgoTwin framework. Qualitative
046 results are available on our project page: <https://egotwin.pages.dev/>.

047 1 INTRODUCTION

048 Recent advances in deep generative models have delivered remarkable progress in exocentric
049 (third-person) video generation (Blattmann et al., 2023a; Xing et al., 2024; Brooks et al., 2024;
050 Yang et al., 2025), demonstrating the ability to produce photorealistic and temporally consistent
051 videos from natural language or other conditioning signals. However, egocentric (first-person) video
052 synthesis remains largely underexplored, despite its increasing importance for wearable computing
053 (Fiannaca et al., 2014), augmented reality (Ashtari et al., 2020), and embodied agents (Nair et al.,

054 2022). In contrast to exocentric setups, where the camera is static or externally controlled (Wang
 055 et al., 2024b; He et al., 2025), egocentric video captures the perspective of a moving individual, with
 056 the footage inherently entangled with the camera wearer’s motion. In particular, head movements
 057 influence the camera’s position and orientation, while full-body actions affect the wearer’s body
 058 pose and the surrounding scene, collectively shaping the egocentric recording. Therefore, to model
 059 body-driven dynamics in egocentric views, we argue that the visual stream must be generated in
 060 lockstep with the motion stream that drives it.

061 In this paper, we introduce a novel task of joint video-motion generation that explicitly models ego-
 062 centric video together with the motion of the camera wearer. As illustrated in Figure 1, given a
 063 static human pose and an initial scene observation, our goal is to generate synchronized sequences
 064 of egocentric video and human motion, guided by the textual description. This task introduces two
 065 fundamental challenges beyond prior works: **(1) Viewpoint Alignment.** Throughout the sequence,
 066 the camera trajectory captured in egocentric video must precisely align with the head trajectory
 067 derived from human motion. This requirement naturally stems from the fact that the camera is
 068 rigidly mounted on the wearer’s head (Engel et al., 2023; Apple Inc., 2023), causing head movement
 069 and camera motion to be tightly coupled. However, existing exocentric video generation methods
 070 typically employ a unidirectional viewpoint-conditioning strategy that synthesizes video based on
 071 predefined camera poses (Wang et al., 2024b; He et al., 2025). Such approaches are unsuitable
 072 for our setting, as the camera poses in egocentric video are not externally provided but are inher-
 073 ently determined by the wearer’s head motion. As a result, the camera poses must be generated
 074 concurrently with the human motion, necessitating a bidirectional interaction to ensure viewpoint
 075 alignment. **(2) Causal Interplay.** At each time step, the current visual frame provides spatial context
 076 that shapes human motion synthesis; conversely, the newly generated motion influences subsequent
 077 video frames. Take the “opening door” scenario in Figure 1 as an example: egocentric observation
 078 informs the wearer of the door’s location, which guides the wearer’s action. In turn, the performed
 079 action can alter the body pose (e.g., reaching for the doorknob), the camera pose (e.g., orienting to-
 080 ward the door), and the surrounding scene (e.g., the door gradually opening). These changes must be
 081 accurately reflected in subsequent video frames, thereby affecting future motion generation. This re-
 082 cursive dependency forms a closed observation–action loop between video and motion, highlighting
 the necessity of modeling their causal interplay over time.

083 To address these challenges, we propose EgoTwin, a joint video-motion generation framework that
 084 generates egocentric videos with body-induced camera motion patterns while capturing the causal
 085 interplay between visual observations and human actions. Specifically, EgoTwin adopts a diffu-
 086 sion transformer backbone (Peebles & Xie, 2023; Esser et al., 2024), with three modality-specific
 087 branches for text, video, and motion, respectively. To model the joint distribution, EgoTwin employs
 088 asynchronous diffusion in video and motion branches, which allows each modality to evolve on its
 089 timestep while maintaining cross-modal interaction. To facilitate accurate viewpoint alignment, we
 090 depart from the commonly used root-centric motion representation (Guo et al., 2022a), which ob-
 091 scures head pose within full-body motion and thus fails to expose the egocentric perspective to the
 092 video branch. Instead, we introduce a head-centric motion representation that anchors the human
 093 motion to the head joint, allowing for direct alignment between the camera viewpoint of the gener-
 094 ated video and the head pose in the synthesized motion. To faithfully capture the causal interplay, we
 095 draw inspiration from the observation-action feedback loop in cybernetic systems (Agrawal et al.,
 096 2016; Pathak et al., 2017), where observations shape actions and actions alter future observations.
 097 We implement this principle through a structured interaction mechanism: each video token attends
 098 to preceding motion tokens, capturing how current observations arise from past actions, while each
 099 motion token attends to current and upcoming video tokens, enabling the inference of actions based
 100 on perceived scene transitions. This bidirectional design allows motion-driven video synthesis and
 video-informed motion synthesis to evolve in synchrony.

101 To foster research in this field, we curate a large-scale dataset of real-world egocentric videos with
 102 human pose annotations from Nymeria (Ma et al., 2024). For evaluation, we extend beyond the
 103 individual quality of video and motion, and propose video-motion consistency metrics that quantify
 104 their cross-modal alignment. Extensive experiments demonstrate the effectiveness of EgoTwin.

105 In summary, our contributions are fourfold:

106 • To the best of our knowledge, we are the first to explore the joint generation of egocentric video
 107 and human motion in a viewpoint consistent and causally coherent manner.

- 108 • We identify the limitations of conventional root-centric motion representations in egocentric con-
109 texts and reformulate a head-centric approach that facilitates video-motion alignment.
- 110
- 111 • We design a triple-branch diffusion transformer featuring a video-motion interaction mechanism,
112 supported by an efficient three-stage training paradigm and versatile sampling strategies.
- 113
- 114 • We propose video-motion consistency metrics and build a benchmark for evaluating joint video-
115 motion generation, where our EgoTwin demonstrates strong performance.

116 2 RELATED WORK

117 **Video Generation.** Video generation has witnessed significant advancements with the emergence
118 of video diffusion models (Ho et al., 2020; Karras et al., 2022; Ho et al., 2022). A central research
119 focus has been on text-to-video (T2V) generation and image-to-video (I2V) generation, where mod-
120 els synthesize coherent video sequences from textual prompts or static images. Early approaches
121 (Blattmann et al., 2023a;b) augment UNet-based text-to-image (T2I) models (Rombach et al., 2022)
122 with temporal modeling layers to efficiently transform them to video generation models. Recent
123 works (Brooks et al., 2024; Yang et al., 2025) adopt transformer-based architectures (Peebles & Xie,
124 2023), achieving improved temporal consistency and generation quality. To incorporate camera
125 control, representative methods (Wang et al., 2024b; He et al., 2025) inject camera parameters (e.g.,
126 extrinsic matrices or Plücker embeddings (Sitzmann et al., 2021)) into pretrained video diffusion
127 models (Xing et al., 2024; Guo et al., 2024b). These approaches rely on known camera trajec-
128 tories and encode them as input conditions. In contrast, our work considers a fundamentally different
129 setting where the camera trajectory is not available beforehand, yet the generated video must main-
130 tain consistency with other synthesized content that is strongly correlated to the underlying camera
131 motion. This key distinction renders existing methods inapplicable, necessitating a framework for
132 controllable video generation that operates without predefined camera guidance.

133 **Motion Generation.** Generating realistic and diverse human motions from text remains a longstand-
134 ing challenge in computer vision and graphics, offering intuitive control of motion synthesis through
135 natural language. Early works (Guo et al., 2020; Petrovich et al., 2021; Guo et al., 2022a; Petrovich
136 et al., 2022) employ temporal VAEs (Kingma et al., 2014) to capture temporal dependencies and
137 learn probabilistic mappings between language and motion. Recent advances have introduced pow-
138 erful generative modeling techniques to this field, including diffusion models (Tevet et al., 2023;
139 Zhang et al., 2024; Chen et al., 2023), autoregressive models (Guo et al., 2022b; Zhang et al., 2023;
140 Jiang et al., 2023), and generative masked models (Guo et al., 2024a; Pinyoanuntapong et al., 2024;
141 Meng et al., 2025). To comply with these frameworks, motion data is represented in different forms.
142 Diffusion-based methods typically operate on continuous vectors, either in the latent space of a VAE
143 or directly from raw motion sequences. Autoregressive models, by contrast, often discretize motion
144 into tokens using vector quantization techniques such as VQ-VAE (Van Den Oord et al., 2017) or
145 RVQ-VAE (Lee et al., 2022). Generative masked models are flexible in this regard, accommodating
146 both discrete and continuous representations depending on the loss function and model architecture.
147 Furthermore, several researchers (Hassan et al., 2021; Wang et al., 2021; Huang et al., 2023; Zhao
148 et al., 2023) have investigated human motion generation within 3D scenes represented as RGB point
149 clouds. Others combine the above two tasks by simultaneously incorporating textual and scene in-
150 formation (Wang et al., 2022; Cen et al., 2024; Wang et al., 2024a; Yi et al., 2024). Our work differs
151 from this line of research in how scene information is provided: instead of granting full scene access
152 during motion synthesis, we observe the scene only once from the initial human pose and rely on a
153 generative model to hallucinate scene observations as the human moves. [In egocentric vision, studies](#) (Li et al., 2023; Yi et al., 2025; Hong et al., 2025) [focus on estimating the human motion from the egocentric video](#), while we explore this close relationship through joint generative modeling.

154 **Multimodal Generation.** Recent advances have expanded generative models from unimodal to
155 multimodal generation. Specifically for diffusion models, Ruan et al. (2023) introduces the first
156 multimodal diffusion framework for synchronized audio-video generation. Other studies (Xu et al.,
157 2023; Bao et al., 2023) design unified models capable of jointly generating text and images. In the
158 domain of human motion, Li et al. (2024) pioneers the simultaneous generation of motion and frame-
159 level language descriptions that explain the generated motions. Despite these developments, the joint
160 modeling of human motion and its corresponding egocentric views remains largely unexplored. To
161 the best of our knowledge, we take the first step in this direction, uncovering the tight coupling
between these two modalities.

Figure 2: EgoTwin features a triple-branch architecture (**left**), where the motion branch spans only the lower half of the layers used by text and video branches. Each branch has its own tokenizer and transformer blocks (**right**), with shared weights across branches indicated by matching colors.

3 METHODOLOGY

Problem Definition. Given an initial human pose $P^0 \in \mathbb{R}^{J \times 3}$ in a scene, an egocentric observation $I^0 \in \mathbb{R}^{H \times W \times 3}$ from that pose, and a textual description of intended human actions in the scene, our goal is to generate two synchronized sequences: (1) a human pose sequence $P^{1:N_m} \in \mathbb{R}^{N_m \times J \times 3}$ and (2) an egocentric view sequence $I^{1:N_v} \in \mathbb{R}^{N_v \times H \times W \times 3}$ spanning the same duration. Here, J is the number of human joints, H and W are the image height and width, N_m and N_v are the number of frames in the pose and view sequences, respectively. This forms a closed-loop generation paradigm where video and motion mutually and continuously influence each other over time.

Framework Overview. An overview of EgoTwin is shown in Figure 2. Text, video, and motion inputs are first encoded using a text encoder, a video VAE encoder, and a motion VAE encoder, respectively. These embeddings are then processed through the corresponding branches of a diffusion transformer. Finally, the video and motion outputs are decoded by respective VAE decoders.

3.1 MODALITY TOKENIZATION

For the text and video modalities, we adopt T5-XXL (Raffel et al., 2020) as the text tokenizer and encoder, and a 3D causal VAE (Yang et al., 2025) as the video tokenizer. Specifically, the input text is first tokenized and adjusted to a fixed length L_t via truncation or padding, then encoded into text embeddings $c \in \mathbb{R}^{L_t \times D_t}$. The video frames are temporally and spatially compressed into latent representations $z_v \in \mathbb{R}^{(\frac{N_v}{4}+1) \times \frac{H}{8} \times \frac{W}{8} \times C_v}$ with a compression ratio of $4 \times 8 \times 8$ and C_v latent channels, which are subsequently patchified and unfolded into video embeddings $X_v \in \mathbb{R}^{L_v \times D_v}$ of sequence length L_v . D_t and D_v denote the embedding dimension of text and video, respectively.

Motion Representation. Unlike the uniform representation for text and video, motion representation exhibits a great degree of diversity. Currently, the most widely adopted format in human motion generation is the overparameterized canonical pose representation (Guo et al., 2022a), which has become the default standard for popular datasets, including KIT-ML (Plappert et al., 2016) and HumanML3D (Guo et al., 2022a). Formally, the human pose at each frame is defined as a tuple of $(\dot{r}^a, \dot{r}^{xz}, r^y, j^p, j^v, j^r, c^f)$, comprising seven groups of features: root angular velocity along Y-axis \dot{r}^a , root linear velocities on XZ-plane \dot{r}^{xz} , root height r^y , local joint positions $j^p \in \mathbb{R}^{3(J-1)}$ and velocities $j^v \in \mathbb{R}^{3(J-1)}$ in root space, joint rotations $j^r \in \mathbb{R}^{6(J-1)}$ in local space, and binary foot-ground contacts $c^f \in \mathbb{R}^4$. Motions are retargeted to a default human skeletal template and initially rotated to face the positive Z-axis.

However, the above root-centric representation is not suitable for our task, as the critical information for alignment with the egocentric video, such as the pose of the head joint, is deeply buried in a multi-step kinematic calculation. Mathematically, recovering the head joint pose requires integrating root velocities to obtain the root pose, then applying forward kinematics (FK) to propagate transformations through the kinematic chain to the head joint. Intuitively, this computation is too complex to be precisely modeled by neural networks, as experimentally substantiated in Section C.

To address this issue, we propose a head-centric motion representation that explicitly exposes ego-centric information. Specifically, we define the representation as a tuple $(h^r, \dot{h}^r, h^p, \dot{h}^p, j^p, j^v, j^r)$, where $h^r \in \mathbb{R}^6$ and $\dot{h}^r \in \mathbb{R}^6$ are the absolute and relative rotation of the head joint, $h^p \in \mathbb{R}^3$ and $\dot{h}^p \in \mathbb{R}^3$ are the absolute and relative position of the head joint. The terms j^p and j^v are now expressed in head space, while j^r retains its original meaning. Additionally, we normalize the initial head pose to zero translation and identity rotation, and set all first-order kinematic features to zero in the initial frame. Our representation naturally resonates with egocentric video in at least two novel ways: 1) It offers more accurate access to the head trajectory, which closely correlates with camera movement; 2) It more clearly informs the egocentric video how the body is observed egocentrically.

Motion Tokenization. Inspired by the Causal 3D CNN (Yu et al., 2024), we build the motion VAE using 1D causal convolutions, where all padding is applied at the beginning of the convolutional axis. The encoder and decoder are symmetrically structured, each comprising two stages of $2 \times$ downsampling or upsampling, interleaved with ResNet blocks (He et al., 2016). The motion VAE is trained using a combination of reconstruction loss \mathcal{L}_{rec} and Kullback–Leibler (KL) divergence regularization \mathcal{L}_{KL} weighted by λ_{KL} . To ensure that loss contributions are balanced across different groups regardless of their dimensions, we compute the VAE loss \mathcal{L}_{VAE} separately for the 3D head (h^p, \dot{h}^p) , 6D head (h^r, \dot{h}^r) , 3D joint (j^p, j^v) , and 6D joint (j^r) components. The final loss averages these four items:

$$\mathcal{L}_{VAE} = \frac{1}{4} \sum_c \left(\mathcal{L}_{rec}^{(c)} + \lambda_{KL} \mathcal{L}_{KL}^{(c)} \right), \text{ where } c \in \{\text{head}_{3D}, \text{head}_{6D}, \text{joint}_{3D}, \text{joint}_{6D}\}. \quad (1)$$

Using the trained VAE, motion representations are tokenized into latents $Z_m \in \mathbb{R}^{(\frac{N_m}{4}+1) \times C_m}$ with a $4 \times$ downsampling rate and C_m channels, and subsequently transformed into motion embeddings $X_m \in \mathbb{R}^{L_m \times D_m}$, with L_m as the sequence length and D_m as the embedding dimension.

3.2 DIFFUSION TRANSFORMER

Our diffusion transformer extends MM-DiT (Esser et al., 2024), initially designed for text-to-image generation, to support text, video, and motion modalities. As illustrated in Figure 2, each branch consists of a sequence of MLPs and applies adaptive layer normalization (AdaLN) in conjunction with a gating mechanism (Peebles & Xie, 2023) to incorporate timestep information. The text and video branches are initialized from CogVideoX (Yang et al., 2025), with shared weights except for the AdaLNs. The motion branch corresponds to only the lower half of the layers in other branches, as essential visual cues for video-motion interaction, such as camera pose and scene structure, are primarily captured in the early layers of the video diffusion backbone. In contrast, the higher layers specialize in appearance details, which are less relevant to motion. To further improve efficiency, the motion branch employs reduced channel dimensions, consistent with the lower representational complexity of motion relative to video. The embedding sequences from different modalities are projected to a common dimensionality D and concatenated for joint attention operations (Vaswani et al., 2017). This triple-branch architecture allows each modality to work in its own representational space while still attending to and interacting with the others.

Interaction Mechanism. The original MM-DiT framework includes only text and image modalities, where cross-modal consistency is enforced only at the global level, i.e., matching the entire image with the entire text suffices. However, our task demands fine-grained temporal synchronization between video and motion: each video frame must be temporally aligned with the corresponding motion frame. Although we incorporate sinusoidal positional encodings (Vaswani et al., 2017) for both video and motion tokens, along with 3D rotary position embeddings (RoPE) (Su et al., 2024) for video tokens to provide absolute and relative position information, these mechanisms primarily capture intra-modal structure. Consequently, the inter-modal correspondence at each time step remains implicit to the diffusion transformer, which may lead to globally consistent outputs that nevertheless lack frame-wise synchronization.

To address this challenge, we explicitly encode the causal interplay between video and motion by introducing a structured joint attention mask to the diffusion transformer. Given that human motion is typically captured at a higher temporal resolution than egocentric video, we set the number of motion tokens to be twice the number of video tokens (i.e., $N_m = 2N_v$), without loss of generality.

270 Formally, we follow the notations in Cybernetics
 271 (Agrawal et al., 2016; Pathak et al., 2017) to rewrite I^i
 272 as the observation O^i , and (P^{2i+1}, P^{2i+2}) as the (chun-
 273 ked) action A^i , where $i \in [0, N_v - 1]$. According to the
 274 principles of forward dynamics: $\{O^i, A^i\} \rightarrow O^{i+1}$ and
 275 inverse dynamics: $\{O^i, O^{i+1}\} \rightarrow A^i$, video tokens
 276 corresponding to O^i can attend to motion tokens that cor-
 277 respond to A^{i-1} , capturing how O^i arise from A^{i-1} , while
 278 motion tokens corresponding to A^i can attend to video
 279 tokens that correspond to both O^i and O^{i+1} , enabling
 280 the inference of A^i based on scene transitions from O^i
 281 to O^{i+1} . A special case is given to P^0 , which is allowed
 282 bilateral attention with I^0 . As demonstrated in Figure 3,
 283 apart from the aforementioned relationship, the remain-
 284 ing attention between video and motion is blocked, while
 285 all intra-modal attention, as well as inter-modal attention
 286 related to text, are preserved.

286 **Asynchronous Diffusion.** We independently sample two timesteps, t_v and t_m , between 0 and T
 287 (maximum timestep), and add Gaussian noises ϵ_v and ϵ_m associated with these timesteps to the
 288 latents z_v and z_m , respectively. Each timestep is first encoded via a sinusoidal embedding, and an MLP
 289 then processes two concatenated embeddings to produce a unified timestep embedding y , which
 290 serves as input to the AdaLN layers. Our model consists of a video denoiser $\epsilon_\theta^v(z_v^{t_v}, z_m^{t_m}, c, t_v, t_m)$
 291 and a motion denoiser $\epsilon_\theta^m(z_m^{t_m}, z_v^{t_v}, c, t_m, t_v)$, which are jointly optimized to simultaneously predict
 292 the noises added to the video and motion latents using the following objective:

$$\mathcal{L}_{\text{DiT}} = \mathbb{E}_{\epsilon_v, \epsilon_m, c, t_v, t_m} \left[\|\epsilon_v - \epsilon_\theta^v(z_v^{t_v}, z_m^{t_m}, c, t_v, t_m)\|_2^2 + \|\epsilon_m - \epsilon_\theta^m(z_m^{t_m}, z_v^{t_v}, c, t_m, t_v)\|_2^2 \right]. \quad (2)$$

295 3.3 TRAINING AND SAMPLING

297 **Training Paradigm.** Our training schema comprises three stages: 1) *Motion VAE Training*, as de-
 298 scribed in Equation (1). 2) *Text-to-Motion Pretraining*. Since the motion branch lacks pretrained
 299 weights for initialization, we pretrain it on the text-to-motion task using only text and motion embed-
 300 dings as input, while keeping the text branch frozen. Following classifier-free guidance (CFG) (Ho
 301 & Salimans, 2022), we randomly discard the text embeddings with a probability of 10% to model
 302 unconditional motion generation. By omitting the much longer video embeddings, we can leverage
 303 greater parallelism, which accelerates the training process. Critically, freezing the text branch not
 304 only preserves the pretrained text-to-video weights but also facilitates the integration of motion em-
 305 beddings into the pretrained text-video embedding space. 3) *Joint Text-Video-Motion Training*, as
 306 formulated in Equation (2). Video embeddings are incorporated in this final stage, and the model
 307 learns the joint distribution of video and motion conditioned on text. Again, text embeddings are
 308 randomly dropped with a probability of 10% to model the unconditional video-motion generation.

309 **Sampling Strategy.** Benefiting from the joint distribution modeling, our framework supports not
 310 only joint video-motion generation conditioned on text (T2VM), but also unimodal generation, in-
 311 cluding video generation conditioned on text and motion (TM2V), and motion generation condi-
 312 tioned on text and video (TV2M). The CFG for TM2V sampling is defined as follows:

$$\begin{aligned} \hat{\epsilon}_\theta^v(z_v^t, z_m^0, c, t, 0) = & \epsilon_\theta^v(z_v^t, z_m^T, \phi, t, T) + w_t (\epsilon_\theta^v(z_v^t, z_m^T, c, t, T) - \epsilon_\theta^v(z_v^t, z_m^T, \phi, t, T)) \\ & + w_m (\epsilon_\theta^v(z_v^t, z_m^0, c, t, 0) - \epsilon_\theta^v(z_v^t, z_m^T, c, t, T)). \end{aligned} \quad (3)$$

315 The CFG formula for TV2M sampling can be derived by exchanging the roles of v and m in Equa-
 316 tion (3). Here, w_t , w_v , and w_m denote the guidance scales for text, video, and motion conditions,
 317 respectively. For T2VM sampling, taking the motion branch as an example (with the video branch
 318 being analogous), its CFG formula is expressed as:

$$\begin{aligned} \hat{\epsilon}_\theta^m(z_m^t, z_v^t, c, t, t) = & \epsilon_\theta^m(z_m^t, z_v^T, \phi, t, T) + w_t (\epsilon_\theta^m(z_m^t, z_v^T, c, t, T) - \epsilon_\theta^m(z_m^t, z_v^T, \phi, t, T)) \\ & + w_v (\epsilon_\theta^m(z_m^t, z_v^t, c, t, t) - \epsilon_\theta^m(z_m^t, z_v^T, c, t, T)). \end{aligned} \quad (4)$$

322 After sampling, latents from the video branch are unpatchified to recover their original shape and
 323 then decoded by the 3D causal VAE decoder (Yang et al., 2025) to reconstruct the video, while latents
 324 from the motion branch are passed through the motion VAE decoder to reconstruct the motion.

Figure 3: Interaction mechanism.

324

4 EXPERIMENTS

325

4.1 EVALUATION METRICS

326 **Video Quality.** We adopt Image Fréchet Inception Distance (**I-FID**) (Heusel et al., 2017) to evaluate
 327 the visual fidelity and realism of individual frames by measuring the distributional distance between
 328 the features of generated frames and those of real images. At the video level, we employ Fréchet
 329 Video Distance (**FVD**) (Unterthiner et al., 2018) to quantify temporal coherence and consistency
 330 across generated video sequences compared to real ones. Additionally, CLIP Similarity (**CLIP-**
 331 **SIM**) (Wu et al., 2021) is utilized to assess the semantic alignment and contextual relevance between
 332 generated video clips and textual prompts.

333 **Motion Quality.** We choose Motion Fréchet Inception Distance (**M-FID**) (Heusel et al., 2017) to as-
 334 sess the statistical similarity between the high-level features of generated motions and real motions.
 335 To evaluate the alignment between text and motion, we train a GRU-based text feature extractor
 336 and a GRU-based motion feature extractor, both sharing the same architecture as the evaluator in
 337 (Guo et al., 2022a). These models are optimized using a contrastive loss on GloVe (Pennington
 338 et al., 2014) text embeddings and our motion representation described in Section 3.1, ensuring that
 339 matched text-motion pairs yield geometrically close feature vectors. Within this learned feature
 340 space, the text-to-motion Retrieval Precision (**R-Prec**) is measured in terms of Top-3 retrieval ac-
 341 curacy. Meanwhile, the Multimodal Distance (**MM-Dist**) captures the average Euclidean distance
 342 between corresponding motion and text features.

343 **Video-Motion Consistency.** We propose to evaluate the consistency between generated egocentric
 344 videos and human motions from two aspects: 1) *View Consistency*: We first estimate the frame-wise
 345 camera poses of the generated egocentric videos using DROID-SLAM (Teed & Deng, 2021) and
 346 extract the head joint poses from the generated human motions. Then, we align both trajectories
 347 at the first frame and apply Procrustes Analysis to determine the optimal scale factor that aligns
 348 the estimated camera trajectory with the extracted head trajectory. Finally, we compute the Trans-
 349 lation Error (**TransErr**) as the average Euclidean distance between the corresponding camera and
 350 head positions, and the Rotation Error (**RotErr**) as the average angular difference between the cor-
 351 responding camera and head orientations, using the same formulas as (He et al., 2025). 2) *Hand*
 352 *Consistency*: We detect the presence of the left and right hands, equipped with the motion cap-
 353 ture device, in the generated egocentric videos. For the generated human motions, we compute the
 354 hand visibility from the perspective of a virtual camera mounted on the corresponding head joint
 355 with known intrinsics. Based on the presence and visibility analysis, we define the Hand F-Score
 356 (**HandScore**) as the average F-Score of left and right hands, where a *True Positive* means the hand is
 357 present in the video and visible from the head in motion, a *False Positive* means the hand is present
 358 in the video but invisible from the head in motion, and a *False Negative* means the hand is absent in
 359 the video but visible from the head in motion.

360

4.2 EXPERIMENTAL SETUP

361 **Dataset.** To overcome the limitations of using synthetic or small-scale real-world datasets for eval-
 362 uation, we train and evaluate our model on Nymeria (Ma et al., 2024), a large-scale, real-device
 363 dataset that captures diverse people engaged in a wide range of daily activities across various indoor
 364 and outdoor locations. The dataset provides paired text-video-motion data, including egocentric
 365 videos recorded with Project Aria glasses (Engel et al., 2023), full-body motions captured using the
 366 Xsens inertial motion capture system (Paulich et al., 2018), and motion narrations written by human
 367 annotators. All data are segmented into 5-second clips, yielding approximately 170K samples after
 368 filtering, which are split into training, validation, and test sets for the joint training stage. We ensure
 369 that both the individuals and environments in the test split remain unseen during joint training.

370 **Baseline.** Since no prior methods are capable of addressing our task, we propose a simple yet ef-
 371 fective baseline, VidMLD, that retains the architecture of EgoTwin while removing all dedicated
 372 designs introduced in Section 3.1 and Section 3.2. In other words, VidMLD combines the state-of-
 373 the-art video diffusion model CogVideoX (Yang et al., 2025) and the latent-space motion diffusion
 374 model MLD (Chen et al., 2023), both of which excel in unimodal generation, and connects them
 375 through the multimodal diffusion architecture MM-DiT (Esser et al., 2024) to enable joint genera-
 376 tion. We adopt the same three-stage training recipe described in Section 3.3, and employ the original
 377 classifier-free guidance (Ho & Salimans, 2022) for sampling.

378

379
380
Table 1: Quantitative results of joint video and motion generation, evaluated by metrics covering
video quality, motion quality, and video-motion consistency.

Method	Video Quality			Motion Quality			Video-Motion Consistency		
	I-FID ↓	FVD ↓	CLIP-SIM ↑	M-FID ↓	R-Prec ↑	MM-Dist ↓	TransErr ↓	RotErr ↓	HandScore ↑
VidMLD	157.86	1547.28	25.58	45.09	0.47	19.12	1.28	1.53	0.36
EgoTwin	98.17	1033.52	27.34	41.80	0.62	15.05	0.67	0.46	0.81

Figure 4: Qualitative results of joint video and motion generation, based on a textual prompt and initial frames of both video and motion.

Implementation Details. In our experiments, videos are undistorted and resized to a resolution of $H = W = 480$, with each segment containing $N_v + 1 = 41$ frames at 8 FPS. The motion data adopts the Xsens skeleton with $J = 23$ joints and consists of $N_m + 1 = 81$ frames per segment at 16 FPS. The video and motion latents have $C_v = 16$ and $C_m = 64$ channels, respectively. The embedding lengths for text, video, and motion are $L_t = 226$, $L_v = 9900$, and $L_m = 21$, with corresponding dimensions $D_t = D_v = D = 3072$, and $D_m = 768$. The hyperparameter λ_{KL} in Equation (1) is set to 1e-4. CFG scales are set to $w_t = 6$ for text and $w_v = w_m = 4$ for video and motion. The text and video branches have 42 layers, totaling approximately 5B parameters, with most shared across both branches. The motion branch comprises 21 layers, corresponding to the lower halves of the other two branches, and contains roughly 300M parameters.

4.3 MAIN RESULTS

Quantitative Results. As shown in Table 1, EgoTwin significantly outperforms the baseline method across all evaluation metrics, with especially pronounced improvements in video-motion consistency scores. The brute-force joint training of the video and motion generation models leads to poor alignment between the two modalities, resulting in notably lower video-motion consistency performance. In contrast, EgoTwin effectively captures the intrinsic correlation between the two modalities, achieving not only excellent cross-modal consistency but also enhanced single-modal generation quality through the mutually beneficial interaction between video and motion modalities.

Qualitative Results. We visualize several examples generated by EgoTwin in Figure 4. These samples illustrate that the video and motion streams not only adhere to the textual descriptions for single-modal generation but also evolve in strict cross-modal synchrony, particularly in terms of camera viewpoint and head pose, as well as in scene content and human action. We encourage readers to visit our project page (<https://egotwin.pages.dev/>) for richer generation examples.

4.4 ABLATION STUDIES

We present the extensive ablation studies in Table 2, where each row corresponds to a specific ablation setting. All variants exhibit a consistent performance decline across all metrics compared to our full model (listed at the bottom), confirming the effectiveness of each design. First, we replace our Motion Reformulation with the standard representation (Guo et al., 2022a) commonly used in human motion generation research (“w/o MR”). The resulting performance drop highlights the importance of our reformulation in exposing egocentric motion cues to the video, which fundamentally facilitates the alignment between egocentric video and human motion. Next, we remove the Interaction Mechanism from the joint attention operations and instead apply full attention without masking

432
 433 Table 2: Ablation results on three designs: Motion Reformulation (MR), Interaction Mechanism
 434 (IM), and Asynchronous Diffusion (AD).

435 Variant	436 Video Quality			437 Motion Quality			438 Video-Motion Consistency		
	I-FID ↓	FVD ↓	439 CLIP-SIM ↑	M-FID ↓	R-Prec ↑	440 MM-Dist ↓	TransErr ↓	441 RotErr ↓	442 HandScore ↑
w/o MR	134.27	1356.81	26.36	43.65	0.56	17.31	0.96	1.22	0.44
w/o IM	117.54	1237.58	27.10	44.01	0.59	15.87	0.85	0.89	0.57
w/o AD	109.73	1124.19	26.91	42.58	0.53	16.48	0.74	0.62	0.73
EgoTwin	98.17	1033.52	27.34	41.80	0.62	15.05	0.67	0.46	0.81

443
 444 Table 3: Comparisons between joint video–motion modeling and separate video/motion modeling.

445 Method	446 Video Quality			447 Motion Quality		
	I-FID ↓	FVD ↓	448 CLIP-SIM ↑	M-FID ↓	R-Prec ↑	449 MM-Dist ↓
CogVideoX	182.97	1793.79	24.90	–	–	–
CameraCtrl	120.48	1263.90	27.01	–	–	–
MLD	–	–	–	47.25	0.39	21.47
EgoTwin	98.17	1033.52	27.34	41.80	0.62	15.05

450 (“w/o IM”). The observed degradation underscores its critical role in capturing causal relationships
 451 between video and motion, as well as ensuring fine-grained temporal synchronization. Finally, we
 452 substitute the Asynchronous Diffusion with a synchronous counterpart for video and motion latents,
 453 and accordingly simplify the sampling algorithm to vanilla CFG (“w/o AD”). The performance
 454 decline validates its value for modeling comprehensive and diverse dependencies between video and
 455 motion modalities, and enabling precise textual control over the joint generation process.

460 4.5 IN-DEPTH ANALYSIS

461 To demonstrate the advantages of joint modeling, we compare our joint generation (Text-to-Video–
 462 Motion) with separate generation approaches (Text-to-Video and Text-to-Motion), with results re-
 463 ported in Table 3. We also implement and compare against a camera-controlled video generation
 464 method based on CogVideoX. The substantial performance gains confirm that joint modeling sig-
 465 nificantly enhances the generation quality of each modality. This is corroborated by Table 1, which
 466 shows that the stronger joint generation capability of EgoTwin yields notable improvements in both
 467 video and motion metrics compared to VidMLD, which exhibits weaker joint modeling.

468 Beyond quantitative evaluation, we also provide a qualitative analysis using the door-opening exam-
 469 ple in Figure 1. Without modeling the state of the door at each timestep and its temporal evolution,
 470 the generated human motion often appears unrealistic, as it lacks awareness of the door. On the other
 471 hand, without modeling the underlying human motion that drives the egocentric video, the resulting
 472 viewpoint shifts and scene dynamics tend to be physically implausible. Moreover, relying solely on
 473 camera poses as external control signals fails to capture the underlying human motion in egocentric
 474 video, underscoring the necessity for internal motion modeling in egocentric video generation.

476 4.6 CROSS-DATASET EVALUATION

477 Given the scarcity of high-quality datasets synchronizing full-body human motion with egocentric
 478 video, our evaluation in Table 1 centers on the Nymeria dataset. Specifically, we establish a rigorous
 479 evaluation protocol by strictly partitioning the data to ensure that human subjects and interaction
 480 scenes in the test set are unseen during the joint training stage. To further assess the generalization
 481 capabilities of the video-motion correspondence captured by our model, we conduct a systematic
 482 cross-dataset evaluation on Ego-Exo4D (Grauman et al., 2024). However, a substantial discrepancy
 483 exists in skeletal representations: Ego-Exo4D annotations adopt the sparse 17-keypoint COCO for-
 484 mat (Lin et al., 2014), which structurally differs from the dense 23-joint Xsens skeleton required by
 485 our model, rendering direct inference infeasible.

486
 487 **Table 4: Cross-dataset results of joint video and motion generation, evaluated by metrics covering**
 488 **video quality, motion quality, and video-motion consistency.**

Method	Video Quality			Motion Quality			Video-Motion Consistency		
	I-FID ↓	FVD ↓	CLIP-SIM ↑	M-FID ↓	R-Prec ↑	MM-Dist ↓	TransErr ↓	RotErr ↓	HandScore ↑
VidMLD	173.95	1738.15	24.27	52.18	0.37	23.09	1.46	1.78	0.32
EgoTwin	115.82	1242.60	26.13	48.34	0.50	20.16	0.70	0.51	0.79

495 **Prompt:** Open and close the kitchen cabinet.

500 **Figure 5: Results of conditional generation. **Left:** motion generation conditioned on text and video;**
 501 **Right:** video generation conditioned on text and motion.

502 To address this skeletal incompatibility, we design an optimization-based retargeting pipeline.
 503 Specifically, we first regress the sparse COCO keypoints to the SMPL parametric model (Loper
 504 et al., 2015), leveraging its inherent statistical shape and pose priors to reconstruct missing
 505 degrees of freedom and enforce anatomical plausibility. Subsequently, we retarget the resolved SMPL
 506 kinematics to the Xsens rig via precise joint remapping and spline-based interpolation. Finally,
 507 we employ forward kinematics to propagate local joint angles into global joint positions and rotations.
 508 As evidenced in Table 4, EgoTwin not only significantly outperforms the baseline but also maintains
 509 superior video-motion consistency metrics. This validates that the video-motion correspondence
 510 learned by EgoTwin is robust and generalizes effectively to external datasets.

515 4.7 BROADER APPLICATIONS

516 **Conditional Generation.** Our joint distribution enables conditional sampling of one modality given
 517 another, using the CFG algorithm described in Equation (3). As shown in Figure 5, we can generate
 518 human motion conditioned on text and egocentric video (left), as well as generate egocentric video
 519 conditioned on text and human motion (right). Interestingly, textual descriptions are often ambiguous
 520 (e.g., they may refer to cabinets on the left or right side of the scene in Figure 5), the ability to
 521 additionally condition on either motion or video provides greater control over the generation process,
 522 which further substantiates the strong coupling between video and motion in our model.

523 **Scene Reconstruction.** With jointly generated video and motion, we can effortlessly extract camera
 524 poses from human motion and directly integrate both modalities into a 3D Gaussian Splatting (Kerbl
 525 et al., 2023) pipeline. As illustrated in Figure 1, we reconstruct the 3D scene from the generated
 526 video and seamlessly position the synthesized human into it by aligning head poses with camera
 527 trajectories. The realistic spatial interactions exhibited, such as the feet on the ground and the right
 528 hand near the door handle, demonstrate strong spatiotemporal coherence between the generated
 529 egocentric videos and human motion.

531 5 CONCLUSION

532 We propose EgoTwin, a diffusion-based framework that jointly generates egocentric video and hu-
 533 man motion in a viewpoint consistent and causally coherent manner. Our method introduces a head-
 534 centric motion representation and a cybernetics-inspired interaction mechanism, supported by an
 535 efficient three-stage training paradigm and versatile sampling strategies. To evaluate our approach,
 536 we establish a comprehensive benchmark that includes a large-scale dataset of text-video-motion
 537 triplets and novel video-motion consistency metrics. Experiments demonstrate that EgoTwin deliv-
 538 ers promising results. We hope our work encourages further exploration of joint generative modeling
 539 for egocentric video and human motion, and lays a solid foundation for future research in this area.

540 REFERENCES

542 Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke
 543 by poking: Experiential learning of intuitive physics. *Advances in Neural Information Processing*
 544 *Systems*, 29, 2016.

545 Apple Inc. Apple vision pro, 2023. URL [https://www.apple.com/](https://www.apple.com/apple-vision-pro/)
 546 apple-vision-pro/.

547 Narges Ashtari, Andrea Bunt, Joanna McGrenere, Michael Nebeling, and Parmit K Chilana. Creating
 548 augmented and virtual reality applications: Current practices, challenges, and opportunities.
 549 In *ACM CHI Conference on Human Factors in Computing Systems*, pp. 1–13, 2020.

550 Fan Bao, Shen Nie, Kaiwen Xue, Chongxuan Li, Shi Pu, Yaole Wang, Gang Yue, Yue Cao, Hang
 551 Su, and Jun Zhu. One transformer fits all distributions in multi-modal diffusion at scale. In
 552 *International Conference on Machine Learning*, pp. 1692–1717, 2023.

553 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
 554 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
 555 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023a.

556 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
 557 and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
 558 models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22563–
 559 22575, 2023b.

560 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
 561 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
 562 generation models as world simulators. 2024. URL [https://openai.com/research/](https://openai.com/research/video-generation-models-as-world-simulators)
 563 video-generation-models-as-world-simulators.

564 Zhi Cen, Huaijin Pi, Sida Peng, Zehong Shen, Minghui Yang, Shuai Zhu, Hujun Bao, and Xiaowei
 565 Zhou. Generating human motion in 3d scenes from text descriptions. In *IEEE/CVF Conference*
 566 *on Computer Vision and Pattern Recognition*, pp. 1855–1866, 2024.

567 Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, and Gang Yu. Executing your
 568 commands via motion diffusion in latent space. In *IEEE/CVF Conference on Computer Vision*
 569 *and Pattern Recognition*, pp. 18000–18010, 2023.

570 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 571 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
 572 age is worth 16x16 words: Transformers for image recognition at scale. In *International Confer-*
 573 *ence on Learning Representations*, 2021.

574 Jakob Engel, Kiran Somasundaram, Michael Goesele, Albert Sun, Alexander Gamino, Andrew
 575 Turner, Arjang Talatof, Arnie Yuan, Bilal Souti, Brighid Meredith, et al. Project aria: A new
 576 tool for egocentric multi-modal ai research. *arXiv preprint arXiv:2308.13561*, 2023.

577 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 578 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 579 high-resolution image synthesis. In *International Conference on Machine Learning*, 2024.

580 Alexander Fiannaca, Ilias Apostolopoulos, and Eelke Folmer. Headlock: A wearable navigation
 581 aid that helps blind cane users traverse large open spaces. In *International ACM SIGACCESS*
 582 *Conference on Computers and Accessibility*, pp. 19–26, 2014.

583 Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos
 584 Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, et al. Ego-exo4d:
 585 Understanding skilled human activity from first-and third-person perspectives. In *IEEE/CVF*
 586 *Conference on Computer Vision and Pattern Recognition*, pp. 19383–19400, 2024.

587 Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao Sun, Annan Deng, Minglun Gong, and
 588 Li Cheng. Action2motion: Conditioned generation of 3d human motions. In *ACM International*
 589 *Conference on Multimedia*, pp. 2021–2029, 2020.

594 Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
 595 diverse and natural 3d human motions from text. In *IEEE/CVF Conference on Computer Vision*
 596 and *Pattern Recognition*, pp. 5152–5161, 2022a.

597 Chuan Guo, Xinxin Zuo, Sen Wang, and Li Cheng. Tm2t: Stochastic and tokenized modeling for
 598 the reciprocal generation of 3d human motions and texts. In *European Conference on Computer*
 599 *Vision*, pp. 580–597. Springer, 2022b.

601 Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Sen Wang, and Li Cheng. Momask: Generative
 602 masked modeling of 3d human motions. In *IEEE/CVF Conference on Computer Vision and*
 603 *Pattern Recognition*, pp. 1900–1910, 2024a.

604 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
 605 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
 606 sion models without specific tuning. In *International Conference on Learning Representations*,
 607 2024b.

609 Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito, Jimei Yang, Yi Zhou, and Michael J
 610 Black. Stochastic scene-aware motion prediction. In *IEEE/CVF International Conference on*
 611 *Computer Vision*, pp. 11374–11384, 2021.

613 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan Yang.
 614 Cameractrl: Enabling camera control for text-to-video generation. In *International Conference*
 615 *on Learning Representations*, 2025.

616 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 617 nition. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 770–778, 2016.

619 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 620 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 621 *Neural Information Processing Systems*, 30, 2017.

622 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 623 *arXiv:2207.12598*, 2022.

625 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 626 *Neural Information Processing Systems*, 33:6840–6851, 2020.

628 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 629 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–
 630 8646, 2022.

631 Fangzhou Hong, Vladimir Guzov, Hyo Jin Kim, Yuting Ye, Richard Newcombe, Ziwei Liu, and
 632 Lingni Ma. Egolm: Multi-modal language model of egocentric motions. *IEEE/CVF Conference*
 633 *on Computer Vision and Pattern Recognition*, 2025.

635 Siyuan Huang, Zan Wang, Puhao Li, Baoxiong Jia, Tengyu Liu, Yixin Zhu, Wei Liang, and Song-
 636 Chun Zhu. Diffusion-based generation, optimization, and planning in 3d scenes. In *IEEE/CVF*
 637 *Conference on Computer Vision and Pattern Recognition*, pp. 16750–16761, 2023.

638 Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. Motiongpt: Human motion as a
 639 foreign language. *Advances in Neural Information Processing Systems*, 36:20067–20079, 2023.

641 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 642 based generative models. *Advances in Neural Information Processing Systems*, 35:26565–26577,
 643 2022.

644 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
 645 ting for real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4):139–1, 2023.

646 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes. In *International Confer-
 647 ence on Learning Representations*, 2014.

648 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
 649 generation using residual quantization. In *IEEE/CVF Conference on Computer Vision and Pattern*
 650 *Recognition*, pp. 11523–11532, 2022.

651 Chuqiao Li, Julian Chibane, Yannan He, Naama Pearl, Andreas Geiger, and Gerard Pons-Moll.
 652 Unimotion: Unifying 3d human motion synthesis and understanding. In *International Conference*
 653 *on 3D Vision*, 2024.

654 Jiaman Li, Karen Liu, and Jiajun Wu. Ego-body pose estimation via ego-head pose estimation. In
 655 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 17142–17151, 2023.

656 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 657 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 658 *conference on computer vision*, pp. 740–755, 2014.

659 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
 660 detection. In *IEEE International Conference on Computer Vision*, pp. 2980–2988, 2017.

661 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl:
 662 a skinned multi-person linear model. *ACM Transactions on Graphics (TOG)*, 34:1–16, 2015.

663 Camillo Lugaressi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays,
 664 Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, et al. Mediapipe: A framework
 665 for building perception pipelines. *arXiv preprint arXiv:1906.08172*, 2019.

666 Lingni Ma, Yuting Ye, Fangzhou Hong, Vladimir Guzov, Yifeng Jiang, Rowan Postyeni, Luis
 667 Pesqueira, Alexander Gamino, Vijay Baiyya, Hyo Jin Kim, et al. Nymeria: A massive collec-
 668 tion of multimodal egocentric daily motion in the wild. In *European Conference on Computer*
 669 *Vision*, pp. 445–465. Springer, 2024.

670 Zichong Meng, Yiming Xie, Xiaogang Peng, Zeyu Han, and Huaizu Jiang. Rethinking diffusion for
 671 text-driven human motion generation. In *IEEE/CVF Conference on Computer Vision and Pattern*
 672 *Recognition*, 2025.

673 Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
 674 sal visual representation for robot manipulation. In *Conference on Robot Learning*, 2022.

675 Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
 676 by self-supervised prediction. In *International Conference on Machine Learning*, pp. 2778–2787,
 677 2017.

678 Monique Paulich, Martin Schepers, Nina Rudigkeit, and Giovanni Bellusci. Xsens mtw awinda:
 679 Miniature wireless inertial-magnetic motion tracker for highly accurate 3d kinematic applications.
 680 *Xsens: Enschede, The Netherlands*, pp. 1–9, 2018.

681 Georgios Pavlakos, Dandan Shan, Ilija Radosavovic, Angjoo Kanazawa, David Fouhey, and Jitendra
 682 Malik. Reconstructing hands in 3d with transformers. In *IEEE/CVF Conference on Computer*
 683 *Vision and Pattern Recognition*, pp. 9826–9836, 2024.

684 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *IEEE/CVF*
 685 *International Conference on Computer Vision*, pp. 4195–4205, 2023.

686 Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
 687 representation. In *Conference on Empirical Methods in Natural Language Processing*, pp. 1532–
 688 1543, 2014.

689 Mathis Petrovich, Michael J Black, and Gü̈l Varol. Action-conditioned 3d human motion synthesis
 690 with transformer vae. In *IEEE/CVF International Conference on Computer Vision*, pp. 10985–
 691 10995, 2021.

692 Mathis Petrovich, Michael J Black, and Gü̈l Varol. Temos: Generating diverse human motions from
 693 textual descriptions. In *European Conference on Computer Vision*, pp. 480–497, 2022.

702 Ekkasit Pinyoanuntapong, Pu Wang, Minwoo Lee, and Chen Chen. Mmm: Generative masked
 703 motion model. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1546–
 704 1555, 2024.

705

706 Matthias Plappert, Christian Mandery, and Tamim Asfour. The kit motion-language dataset. *Big
 707 Data*, 4(4):236–252, 2016.

708

709 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 710 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 711 transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020.

712

713 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 714 resolution image synthesis with latent diffusion models. In *IEEE/CVF Conference on Computer
 715 Vision and Pattern Recognition*, pp. 10684–10695, 2022.

716

717 Ludan Ruan, Yiyang Ma, Huan Yang, Huiguo He, Bei Liu, Jianlong Fu, Nicholas Jing Yuan, Qin
 718 Jin, and Baining Guo. Mm-diffusion: Learning multi-modal diffusion models for joint audio and
 719 video generation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 10219–10228, 2023.

720

721 Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh Tenenbaum, and Fredo Durand. Light field
 722 networks: Neural scene representations with single-evaluation rendering. *Advances in Neural
 723 Information Processing Systems*, 34:19313–19325, 2021.

724

725 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 726 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

727

728 Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras.
 729 *Advances in Neural Information Processing Systems*, 34:16558–16569, 2021.

730

731 Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano.
 732 Human motion diffusion model. In *International Conference on Learning Representations*, 2023.

733

734 Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
 735 and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
 736 *arXiv preprint arXiv:1812.01717*, 2018.

737

738 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 739 Neural Information Processing Systems*, 30, 2017.

740

741 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 742 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Informa-
 743 tion Processing Systems*, 30, 2017.

744

745 Jiashun Wang, Huazhe Xu, Jingwei Xu, Sifei Liu, and Xiaolong Wang. Synthesizing long-term 3d
 746 human motion and interaction in 3d scenes. In *IEEE/CVF Conference on Computer Vision and
 747 Pattern Recognition*, pp. 9401–9411, 2021.

748

749 Zan Wang, Yixin Chen, Tengyu Liu, Yixin Zhu, Wei Liang, and Siyuan Huang. Humanise:
 750 Language-conditioned human motion generation in 3d scenes. *Advances in Neural Information
 751 Processing Systems*, 35:14959–14971, 2022.

752

753 Zan Wang, Yixin Chen, Baoxiong Jia, Puhao Li, Jinlu Zhang, Jingze Zhang, Tengyu Liu, Yixin
 754 Zhu, Wei Liang, and Siyuan Huang. Move as you say interact as you can: Language-guided
 755 human motion generation with scene affordance. In *IEEE/CVF Conference on Computer Vision
 and Pattern Recognition*, pp. 433–444, 2024a.

756

757 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
 758 and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
 759 *ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference*, pp.
 760 1–11, 2024b.

756 Chenfei Wu, Lun Huang, Qianxi Zhang, Binyang Li, Lei Ji, Fan Yang, Guillermo Sapiro, and
 757 Nan Duan. Godiva: Generating open-domain videos from natural descriptions. *arXiv preprint*
 758 *arXiv:2104.14806*, 2021.

759

760 Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Gongye Liu,
 761 Xintao Wang, Ying Shan, and Tien-Tsin Wong. Dynamicrafter: Animating open-domain images
 762 with video diffusion priors. In *European Conference on Computer Vision*, pp. 399–417. Springer,
 763 2024.

764 Xingqian Xu, Zhangyang Wang, Gong Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion:
 765 Text, images and variations all in one diffusion model. In *IEEE/CVF International Conference*
 766 *on Computer Vision*, pp. 7754–7765, 2023.

767 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 768 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 769 with an expert transformer. In *International Conference on Learning Representations*, 2025.

770

771 Brent Yi, Vickie Ye, Maya Zheng, Yunqi Li, Lea Müller, Georgios Pavlakos, Yi Ma, Jitendra Malik,
 772 and Angjoo Kanazawa. Estimating body and hand motion in an ego-sensed world. *IEEE/CVF*
 773 *Conference on Computer Vision and Pattern Recognition*, 2025.

774

775 Hongwei Yi, Justus Thies, Michael J Black, Xue Bin Peng, and Davis Rempe. Generating human
 776 interaction motions in scenes with text control. In *European Conference on Computer Vision*, pp.
 777 246–263. Springer, 2024.

778

779 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 780 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 781 tokenizer is key to visual generation. In *International Conference on Learning Representations*,
 2024.

782

783 Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Yong Zhang, Hongwei Zhao, Hongtao Lu,
 784 Xi Shen, and Ying Shan. Generating human motion from textual descriptions with discrete rep-
 785 resentations. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14730–
 14740, 2023.

786

787 Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei
 788 Liu. Motiondiffuse: Text-driven human motion generation with diffusion model. *IEEE Transac-*
 789 *tions on Pattern Analysis and Machine Intelligence*, 46(6):4115–4128, 2024.

790

791 Kaifeng Zhao, Yan Zhang, Shaofei Wang, Thabo Beeler, and Siyu Tang. Synthesizing diverse
 792 human motions in 3d indoor scenes. In *IEEE/CVF International Conference on Computer Vision*,
 793 pp. 14738–14749, 2023.

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

APPENDIX

A DETAILS OF MOTION VAE

VAE Encoder. The encoder begins with a 1D causal convolution (kernel size 3) that projects the 288-channel motion input to 512 channels, followed by four DownBlocks that progressively expand the channel dimension to 2048. The first two DownBlocks each downsample the temporal dimension by a factor of 2 using 1D causal convolutions with a kernel size of 4 and a stride of 2. Each DownBlock comprises four ResNet layers, with each layer including two 1D causal convolutions (kernel size 3), GroupNorm, SiLU activation, and optional shortcut connections for channel alignment. A MidBlock comprising two 2048-channel ResNet layers further processes the features. The encoder ends with a 1D causal convolution (kernel size 3) that outputs 128 channels, representing the mean and log-variance of a 64-dimensional motion latent space.

VAE Decoder. The decoder mirrors the encoder in reverse. It starts with a 1D causal convolution (kernel size 3) that maps the 64-dimensional motion latent vector to 2048 channels, followed by a MidBlock with two 2048-channel ResNet layers. Four UpBlocks then progressively reduce the channel dimension to 512. The first two UpBlocks each upsample the temporal dimension by a factor of 2 using 1D nearest neighbor interpolation and 1D causal convolution (kernel size 3). Each UpBlock includes five ResNet layers, structurally identical to those in the encoder. The decoder ends with a 1D causal convolution (kernel size 3) that reconstructs the original 288-channel motion representation. Both the encoder and decoder contain approximately 200M parameters.

B DETAILS OF CONSISTENCY METRICS

Since the generated motion sequence has twice the temporal resolution of the video sequence, we downsample it by selecting every other frame to match the length of the video sequence, N_v , before evaluating the consistency metrics described below.

View Consistency. We denote the canonicalized egocentric camera trajectory and head joint trajectory (i.e., with each frame expressed relative to the first frame) as sequences of rotation matrices and translation vectors: $[R_v \mid T_v] \in \mathbb{R}^{N_v \times 3 \times 4}$ and $[R_m \mid T_m] \in \mathbb{R}^{N_v \times 3 \times 4}$, respectively. Let s denote the optimal scale factor for scene scale alignment. The Translation Error (TransErr) is calculated as the scale-invariant L_2 distance between the translation vector sequences T_v and T_m :

$$\text{TransErr} = \|sT_v - T_m\|_2^2. \quad (5)$$

The Rotation Error (RotErr) is computed by comparing the rotation matrix sequences R_v and R_m :

$$\text{RotErr} = \arccos \left(\frac{\text{tr}(R_v R_m^T) - 1}{2} \right), \quad (6)$$

where $\text{tr}(\cdot)$ denotes the trace of a matrix. Since each sequence is normalized with respect to the first frame, errors are computed as the average frame-wise error over the remaining frames.

Hand Consistency. Because the camera wearer’s hands are covered by motion capture gloves rather than bare skin, state-of-the-art hand landmark detection tools, such as MediaPipe (Lugaresi et al., 2019) and HaMeR (Pavlakos et al., 2024), fail to detect the wearer’s hands in video frames. To overcome this limitation, we formulate the problem as two independent binary classification tasks: one for detecting the presence of the left hand and the other for the right hand in each frame. Our hand classifier is built upon a pretrained Vision Transformer (ViT) (Dosovitskiy et al., 2021) backbone and is trained using supervision signals derived from human poses and camera intrinsics. To mitigate the issue of class imbalance between positive and negative samples, we adopt Focal Loss (Lin et al., 2017) as our classification objective, which is defined as:

$$\mathcal{L}_{\text{CLS}} = \sum_{c=1}^2 -\alpha_t^c (1 - p_t^c)^\gamma \log (p_t^c), \quad (7)$$

where γ is the focusing parameter, $c \in \{0, 1\}$ indicates the hand side, p_t^c is the predicted probability for the target class t , and α_t^c is a weighting factor associated with the target class t . Given the

Figure 6: Head pose regression errors over epochs.

predicted probability $p = \text{sigmoid}(x)$ obtained from the output logits of the model $x \in \mathbb{R}^2$, and the ground-truth labels $y \in \{0, 1\}^2$, the values of p_t^c and α_t^c are calculated as:

$$p_t^c = \begin{cases} p^c & \text{if } y^c = 1 \\ 1 - p^c & \text{if } y^c = 0 \end{cases}, \quad \alpha_t^c = \begin{cases} \alpha^c & \text{if } y^c = 1 \\ 1 - \alpha^c & \text{if } y^c = 0 \end{cases}. \quad (8)$$

In our experiments, we set $\alpha^c = 0.80$ for the left hand and $\alpha^c = 0.75$ for the right hand, and use a focusing parameter of $\gamma = 2$.

C DETAILS OF REGRESSION EXPERIMENT

To validate our insights in Section 3.1, we train a GRU-based regression model that takes the root-centric motion representation sequences as input, supervised by an MSE loss against the ground-truth head pose sequences. As shown in Figure 6, both translation and rotation errors (TransErr and RotErr, see Section 4.1 for details) plateau at high levels, due to insufficient explicit cues for accurately modeling head pose.

D ADDITIONAL QUALITATIVE RESULTS

Joint Generation. Figure 7 presents additional examples generated by EgoTwin. Together with those in Figure 4, these results demonstrate the model’s capacity to synthesize a variety of motion types (e.g., walking, opening, closing, grabbing) across diverse environments (e.g., bedrooms, kitchens, living areas, outdoor yards) and involving a wide range of objects of interaction (e.g., cabinets, clothing, doors, drawers). Video demonstrations can be found on our project page: <https://egotwin.dev/>.

Conditional Generation. Recall that in Figure 5, we demonstrate that when the textual description is ambiguous concerning the referent objects involved in the interaction, conditional sampling strategies (i.e., TV2M or TM2V) allow for fine-grained control over the generation process. Another salient source of linguistic ambiguity arises from human interaction behaviors. For instance, while the prompt in Figure 8 clearly specifies the target object of interaction (i.e., the pillow located on the right side of the sofa in Figure 8), it leaves the manner of the human action unconstrained (e.g., whether the individual uses the left hand or right hand). In such cases, incorporating additional conditioning signals can help disambiguate these subtleties.

Failure Cases. The failure cases primarily stem from the physical implausibility of the generated videos. For instance, in the first example of Figure 7, the cup displays abnormal deformation. This issue reflects a broader challenge in current video generation models and is difficult to address through joint modeling with human motion, as the motion signal typically captures only the global displacement of the object. Nevertheless, we generally observe strong correspondence between the generated video and motion.

918
919
920
921
922
923
924
925
926

Prompt: Open the kitchen cabinet and take out a mug.

Prompt: Look for something on the shelf in the kitchen area.

927 **Prompt:** Grab a piece of clothing
928 from the floor.

Prompt: Walk down the hallway, then turn into the bedroom.

936 **Prompt:** Close the drawer, open the base
937 cabinet, and then close it.

Prompt: Pick up the towels from the black box and toss them onto the bed.

946 Figure 7: Additional qualitative results of joint generation, based on a textual prompt and initial
 947 frames of both video and motion

948

Prompt: Pick up the pillow on the right side of the sofa.

957
958
959

Figure 8: Additional qualitative results of conditional generation. **Left:** motion generation conditioned on text and video; **Right:** video generation conditioned on text and motion.

960

E. LIMITATIONS AND FUTURE WORKS

962
963
964
965
966
967

One major limitation of EgoTwin is its focus on full-body motion representation without incorporating hand joints. This stems from the absence of hand motion capture data in our dataset, which restricts our model’s ability to generate hand movements. While our model achieves reasonable consistency between generated video and motion, the synthesized videos may still exhibit artifacts that violate physical laws or lack 3D coherence, posing challenges for downstream applications.

968
969
970
971

Our future work could involve finetuning on datasets that include hand motion to enable the generation of coordinated body and hand motions alongside egocentric videos. Additionally, integrating 3D priors and physical constraints may enhance the realism of generated videos, thereby improving the fidelity of the corresponding motion synthesis. Other avenues for improvement include increasing video resolution and extending the temporal context to support longer sequences.

972 **F LLM USAGE STATEMENT**
973

974 Large language models (LLMs) were used exclusively to refine the writing and improve readability.
975 They played no role in the research design or the generation of original scientific content.
976

977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025