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ABSTRACT

Artificially intelligent agents are increasingly being integrated into human
decision-making: from large language model (LLM) assistants to autonomous
vehicles. These systems often optimize their individual objective, leading to
conflicts, particularly in general-sum games where naive reinforcement learning
agents empirically converge to Pareto-suboptimal Nash equilibria. To address this
issue, opponent shaping has emerged as a paradigm for finding socially beneficial
equilibria in general-sum games. In this work, we introduce Advantage Align-
ment, a family of algorithms derived from first principles that perform opponent
shaping efficiently and intuitively. We achieve this by aligning the advantages of
interacting agents, increasing the probability of mutually beneficial actions when
their interaction has been positive. We prove that existing opponent shaping meth-
ods implicitly perform Advantage Alignment. Compared to these methods, Ad-
vantage Alignment simplifies the mathematical formulation of opponent shaping,
reduces the computational burden and extends to continuous action domains. We
demonstrate the effectiveness of our algorithms across a range of social dilemmas,
achieving state-of-the-art cooperation and robustness against exploitation.

1 INTRODUCTION

Recent advancements in artificial intelligence, such as language models like GPT (Radford et al.,
2018), image synthesis with diffusion models (Ho et al., 2020), and generalist agents like Gato
(Reed et al., 2022), suggest a future where AI systems seamlessly integrate into everyday human
decision-making. While these systems often optimize for the goals of their individual users, this can
lead to conflicts, especially in tasks that involve both cooperative and competitive elements. Social
dilemmas, as introduced by Rapoport and Chammah (1965), describe scenarios where agents acting
selfishly achieve worse outcomes than if they had cooperated. A global example is the climate
change problem, where individual and national interests in economic growth often clash with the
need for collective action to reduce carbon emissions and mitigate environmental degradation. The
challenges we have faced in tackling this problem highlight the complexity of aligning individual
interests with collective well-being.

As artificially intelligent systems become ubiquitous, there is a pressing need to develop methods
that enable agents to autonomously align their interests with one another. Despite this, the deep re-
inforcement learning community has traditionally focused on fully cooperative or fully competitive
settings, often neglecting the nuances of social dilemmas. Sandholm and Crites (1996) empirically
demonstrated that naive reinforcement learning algorithms tend to converge to the worst Pareto sub-
optimal Nash equilibria of Always Defect in social dilemmas like the Iterated Prisoner’s Dilemma
(IPD). Foerster et al. (2018b), demonstrated that the same is true for policy gradient methods, and
introduced opponent shaping (LOLA) to address this gap.

LOLA is an opponent shaping algorithm that influences the behavior of other agents by assuming
they are naive learners and taking gradients with respect to simulated parameter updates. Following
this approach, other opponent shaping algorithms that compute gradients with respect to simulated
parameter updates have shown success in partially competitive tasks, including SOS (Letcher et al.,
2021), COLA (Willi et al., 2022), and POLA (Zhao et al., 2022). More recently, LOQA (Aghajo-
hari et al., 2024b) proposed an alternative form of opponent shaping by assuming control over the
value function of other agents via REINFORCE estimators (Williams, 1992). This new approach to
opponent shaping offers significant computational advantages over previous methods and lays the
foundation for our work.
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We introduce Advantage Alignment, a family of algorithms designed to shape rational opponents by
aligning their advantages when their historic interactions have been positive. We make two key as-
sumptions about reinforcement learning agents: (1) they aim to maximize their own expected return,
and (2) they take actions proportionally to this expected return. Under these assumptions, we demon-
strate that opponent shaping reduces to aligning the advantages of different players and increasing
the log probability of an action proportionally to their alignment. We show that this mechanism lies
at the heart of existing opponent shaping algorithms, including LOLA and LOQA. By distilling this
objective, Advantage Alignment agents can shape opponents without relying on imagined parameter
updates (as in LOLA and SOS) or stochastic gradient estimation that relies on automatic differen-
tiation introduced in DiCE (Foerster et al., 2018a) (as in POLA, COLA, and LOQA). Furthermore,
we demonstrate that Advantage Alignment preserves Nash Equilibria, ensuring that our algorithms
maintain stable strategic outcomes.

We also introduce Proximal Advantage Alignment, which formulates Advantage Alignment as a
modification to the advantage function used in policy gradient updates. By integrating this modified
advantage into the Proximal Policy Optimization (PPO) (Schulman et al., 2017b) surrogate objec-
tive, we develop a scalable and efficient opponent shaping algorithm suitable for more complex
environments. To identify and overcome challenges that arise from scale—which are often over-
looked in simpler settings like the Iterated Prisoner’s Dilemma (Rapoport and Chammah, 1965) and
the Coin Game (Foerster et al., 2018b)—we apply Advantage Alignment to a continuous variant of
the Negotiation Game (Cao et al., 2018) and Melting Pot’s Commons Harvest Open (Agapiou et al.,
2023). In doing so, we aim to demonstrate the scalability of our methods and offer insights and
solutions applicable to complex, real-world agent interactions.

Our key contributions are:

• We introduce Advantage Alignment and Proximal Advantage Alignment (PAA), two opponent
shaping algorithms derived from first principles and based on policy gradient estimators.

• We prove that LOLA (and its variations) and LOQA implicitly perform Advantage Alignment
through different mechanisms.

• We extend REINFORCE-based opponent shaping to continuous action environments and achieve
state-of-the-art results in a continuous action variant of the Negotiation Game (Cao et al., 2018).

• We apply PAA to the Commons Harvest Open environment in Melting Pot 2.0 (Agapiou et al.,
2023), a high dimensional version of the tragedy of the commons social dilemma, achieving state-
of-the-art results and showcasing the scalability and effectiveness of our methods.

2 BACKGROUND

2.1 SOCIAL DILEMMAS

Social dilemmas describe situations in which selfish behavior leads to sub-optimal collective out-
comes. Such dilemmas are often formalized as normal form games and constitute a subset of
general-sum games. A classical example of a social dilemma is the Iterated Prisoner’s Dilemma
(IPD) (Rapoport and Chammah, 1965), in which two players can choose one of two actions: co-
operate or defect. In the one-step version of the game, the dilemma occurs because defecting is a
dominant strategy, i.e., independently of what the opponent plays the agent is better off playing de-
fect. However, by the reward structure of the game, both the agent and the opponent would achieve a
higher utility if they played cooperate simultaneously. Beyond the IPD, other social dilemmas have
been extensively studied in the literature, including the Chicken Game and the Coin Game (Lerer
and Peysakhovich, 2018), the latter of which has a similar reward structure to IPD but takes place
in a grid world. In this paper we introduce a variation of the Negotiation Game (also known as the
Exchange Game) (DeVault et al., 2015; Lewis et al., 2017), with a strong social dilemma compo-
nent. Additionally, we evaluate our method on the Commons Harvest Open environment in Melting
Pot 2.0 (Agapiou et al., 2023), which exemplifies a large-scale social dilemma. In this environment,
agents must balance short-term personal gains from overharvesting common resources against the
long-term collective benefit of sustainable use.
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2.2 MARKOV GAMES

In this work, we consider fully observable, general sum, n-player Markov Games (Shapley, 1953)
which are represented by a tuple: M = (N,S,A, P,R, γ). Here S is the state space, A :=
A1 × . . . × An, is the joint action space for all players, P : S × A → ∆(S) maps from every
state and joint action to a probability distribution over states, R = {r1, . . . , rn} is the set of reward
functions where each ri : S × A → R maps every state and joint action to a scalar return and
γ ∈ [0, 1] is the discount factor.

2.3 REINFORCEMENT LEARNING

Consider two agents playing a Markov Game, 1 (agent) and 2 (opponent), with policies π1 and π2,
parameterized by θ1 and θ2 respectively. We follow the notation of Agarwal et al. (2021), let τ
denote a trajectory with initial state distribution µ and (unconditional) distribution given by:

Prπ
1,π2

µ (τ) = µ(s0)π
1(a0|s0)π2(b0|s0)P (s1|s0, a0, b0) . . . (1)

Where P (·|s, a, b), often referred as the transition dynamics, is a probability distribution over the
next states conditioned on the current state being s, agent taking action a and opponent taking
action b. Value-based methods like Q-learning (Watkins and Dayan, 1992) and SARSA (Rummery
and Niranjan, 1994) learn an estimate of the discounted reward using the Bellman equation:

Q1(st, at, bt) = r1(st, at, bt) + γ · Est+1

[
V 1(st+1)|st, at, bt

]
. (2)

In policy optimization, both players aim to maximize their expected discounted return by performing
gradient ascent with a REINFORCE estimator (Williams, 1992) of the form:

∇θ1V
1(µ) = E

τ∼Prπ
1,π2

µ

[ ∞∑
t=0

γtA1(st, at, bt)∇θ1 log π
1(at|st)

]
. (3)

Here A1(s, a, b) := Q1(s, a, b)− V 1(s) denotes the advantage of the agent taking action a in state
s while the opponent takes action b.

3 OPPONENT SHAPING

Opponent shaping, first introduced in LOLA (Foerster et al., 2018b), is a paradigm that assumes
the learning dynamics of other players can be controlled via some mechanism to incentivize desired
behaviors. LOLA and its variants assume that the opponent is a naive learner, i.e. an agent that
performs gradient ascent on their value function, and differentiate through an imagined naive update
of the opponent in order to shape it.

LOQA (Aghajohari et al., 2024b) performs opponent shaping by controlling the Q-values of the
opponent for different actions assuming that the opponent’s policy is a softmax over these Q-values:

π̂2(bt|st) :=
expQ2(st, bt)∑
b expQ

2(st, b)
, (4)

where Q2(st, bt) := Ea∼π1 [Q2(st, a, bt)]. The key idea is that these Q-values depend on π1, and
hence the opponent policy π̂2 can be differentiated w.r.t. θ1:1

∇θ1 π̂
2(bt|st) = π̂2(bt|st)

(
∇θ1Q

2(st, bt)−
∑
b

π̂2(b|st)∇θ1Q
2(st, b)

)
. (5)

This dependency of π2 on θ1 leads to the emergence of an extra term in the policy gradient:

∇θ1V
1(µ) = E

τ∼Prπ
1,π2

µ

 ∞∑
t=0

γtA1(st, at, bt)

∇θ1 log π
1(at|st)︸ ︷︷ ︸

policy gradient term

+∇θ1 log π̂
2(bt|st)︸ ︷︷ ︸

opponent shaping term


 . (6)

Aghajohari et al. (2024b) demonstrate an effective way to account for this dependency using REIN-
FORCE. The present work builds on the ideas of LOQA, but reduces opponent shaping to its bare
components to derive Advantage Alignment from first principles.

1See Appendix A.3 for a derivation of this expression.
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Algorithm 1 Advantage Alignment

Initialize: Discount factor γ, agent Q-value parameters ϕ1, t Q-value parameters ϕ1
t , actor pa-

rameters θ1, opponent Q-value parameters ϕ2, t Q-value parameters ϕ2
t , actor parameters θ2

for iteration= 1, 2, . . . do
Run policies π1 and π2 for T timesteps in environment and collect trajectory τ
Compute agent critic loss L1

C using the TD error with r1 and V 1

Compute opponent critic loss L2
C using the TD error with r2 and V 2

Optimize L1
C w.r.t. ϕ1 and L2

C w.r.t. ϕ2 with optimizer of choice
Compute generalized advantage estimates {A1

1, . . . , A
1
T }, {A2

1, . . . , A
2
T }

Compute agent actor loss, L1
a, summing equation 3 and equation 8

Compute opponent actor loss, L2
a, summing equation 3 and equation 8

Optimize L1
a w.r.t. θ1 and L2

a w.r.t. θ2 with optimizer of choice

4 ADVANTAGE ALIGNMENT

4.1 METHOD DESCRIPTION

Motivated by the goal of scaling opponent shaping algorithms to more diverse and complex scenar-
ios, we derive a simple and intuitive objective for efficient opponent shaping. We begin from the
assumptions that agents are learning to maximize their expected return, and will behave in a fashion
that is proportional to this goal:
Assumption 1. Each agent i learns to maximize their value function: maxV i(µ).
Assumption 2. Each opponent i acts proportionally to the exponent of their action-value function:
πi(a|s) ∝ exp

(
β ·Qi(s, a)

)
.

Using Equation 6 and substituting π̂2 in place of π2 (per Assumption 2), we obtain:

∇θ1V
1(µ) = E

τ∼Prπ
1,π2

µ

[ ∞∑
t=0

γtA1(st, at, bt)
(
∇θ1 log π

1(at|st) +∇θ1 log π̂
2(bt|st)

)]
.

The first term is the usual policy gradient. The second term is the opponent shaping term and will
be our focus. Approximating the opponent’s policy (right hand side of equation 4) by ignoring the
contribution due to the partition function, the opponent shaping term becomes:

β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γtA1(st, at, bt)∇θ1Q2(st, bt)

]
. (7)

The gradient of the Q-value can be estimated by a REINFORCE estimator, which leads to a nested
expectation. Aghajohari et al. (2024b) empirically showed that this nested expectation can be effi-
ciently estimated from a single trajectory. We take the same approach (see Appendix A.1) to obtain:

β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γt+1

(∑
k<t

γt−kA1(sk, ak, bk)

)
A2(st, at, bt)∇θ1 log π1(at|st)

]
. (8)

The expression above captures the essence of opponent shaping: an agent should align its advantages
with those of its opponent in order to steer towards trajectories that are mutually beneficial. More
precisely, an agent increases the probability of actions that have high product between the sum of
its past advantages and the advantages of the opponent at the current time step. For implementation
details of the Advantage Alignment formula see Appendix A.6. Equation 8 depends only on the
log probabilities of the agent, which allows us to create a proximal surrogate objective that closely
follows the PPO (Schulman et al., 2017b) formulation:

E
τ∼Prπ

1,π2
µ

[min {rn(θ1)A∗(st, at, bt), clip (rn(θ1); 1− ϵ, 1 + ϵ)A∗(st, at, bt)}] , (9)

where rn denotes the ratio of the policy (new) after n updates and the original policy (old), and:

A∗(st, at, bt) =

(
A1(st, at, bt) + βγ ·

(∑
k<t

γt−kA1(sk, ak, bk)

)
A2(st, at, bt)

)
. (10)
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Figure 1: (a) The sign of the product of the gamma-discounted past advantages for the agent, and
the current advantage of the opponent, indicates whether the probability of taking an action should
increase or decrease. (b) The empirical probability of cooperation of Advantage Alignment for
each previous combination of actions in the one step history Iterated Prisoner’s Dilemma, closely
resembles tit-for-tat. Results are averaged over 10 random seeds, the black whiskers show one std.

This surrogate objective in equation 9 is used to formulate the Proximal Advantage Alignment (Prox-
imal AdAlign) algorithm (see appendix A.7 for implementation details).

Why is Assumption 1 necessary? Assumption 1 allows the agent to influence the learning dy-
namics of the opponent, by controlling the values for different actions. After one iteration of the
algorithm the agent changes the Q-values of the opponent for different actions and, since the oppo-
nent aims to maximize their expected return, it must change its behavior accordingly.

4.2 ANALYZING ADVANTAGE ALIGNMENT

Equation 8 yields four possible different cases for controlling the direction of the gradient of the log
probability of the policy. As with the usual policy gradient estimator, the sign multiplying the log
probability indicates whether the probability of taking an action should increase or decrease. Intu-
itively, when the interaction with the opponent has been positive (blue in figure 1a) the advantages of
the agent align with that of the opponent: the advantage alignment term increases the log probability
of taking an action if the advantage of the opponent is positive and decreases it if it is negative. In
contrast, if the interaction has been negative (red in figure 1a) the advantages are at odds with each
other: the advantage alignment term decreases the log probability of taking an action if the advan-
tage of the opponent is positive and increases it if it is negative. We now relate existing opponent
shaping algorithms to advantage alignment, and argue that these algorithms use the same underlying
mechanisms. Theorem 1 shows that LOLA update from Foerster et al. (2018b) can be written as a
policy gradient method with an opponent shaping term similar to equation 10. This shows the funda-
mental relationship between opponent-shaping dynamics and advantage multiplications. Theorem
2 proves that LOQA’s opponent shaping term has the same form as that of Advantage Alignment,
differing only by a scalar term.
Theorem 1 (LOLA as an advantage alignment estimator). Given a two-player game where players
1 and 2 have respective policies π1(a|s) and π2(b|s), where each policy is parametrised such that
the set of gradients∇θ2 log π

2(a|s) for all pairs (a, s) form an orthonormal basis, the LOLA update
for the first player correspond to a reinforce update with the following opponent shaping term

β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γt

( ∞∑
k=t

dγ,k−tγ
k−tA1

kA
2
k−t

)
∇θ1 log π1(at|st)

]
, (11)

where Ai
k := Ai(sk, ak, bk) and dγ,k is the occupancy measure of the tuple (ak, bk, sk) and β is the

step size of the naive learner. See appendix A.2 for a proof.
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Theorem 2 (LOQA as an advantage alignment estimator). Under Assumption 2, the opponent shap-
ing term in LOQA is equivalent to the opponent shaping term in Equation 8 up to (1− π̃2(bk|sk))

β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γt+1

( ∞∑
k<t

γt−k(1− π̃2(bk|sk))A1
k

)
A2

t∇θ1 log π1(at|st)

]
, (12)

π̃2(bt|st) approximates the opponent policy as defined in LOQA. For a proof see appendix A.5.

Having established the connection between existing opponent shaping algorithms and Advantage
Alignment, we now focus on analyzing the theoretical properties of Advantage Alignment itself.
We investigate the impact of the Advantage Alignment term on Nash equilibria. Theorem 3 demon-
strates that Advantage Alignment preserves Nash equilibria, ensuring that if agents are already play-
ing equilibrium strategies, the Advantage Alignment updates will not cause the policy gradient to
deviate from them locally.
Theorem 3 (Advantage Alignment preserves Nash equilibria). Advantage Alignment preserves
Nash equilibria. That is, if a joint policy (π∗

1 , π
∗
2) constitutes a Nash equilibrium, then applying

the Advantage Alignment formula will not change the policy, as the gradient contribution of the
advantage alignment term is zero. The proof can be found in Appendix A.8.

5 EXPERIMENTS

We follow the evaluation protocol of LOQA (Aghajohari et al., 2024b), where the fixed policy that
is generated by the algorithm is evaluated zero-shot against a distribution of policies.

5.1 ITERATED PRISONER’S DILEMMA

We consider the full history version of IPD, where a gated recurrent unit (GRU) policy conditions
on the full trajectory of observations before sampling an action. In this experiment we follow the
architecture used in POLA (Zhao et al., 2022) (for details see appendix B.1). We also consider
trajectories of length 16 with a discount factor, γ, of 0.9. As shown in figure 1b, Advantage Align-
ment agents consistently achieve a policy that resembles tit-for-tat (Rapoport and Chammah, 1965)
empirically. Tit-for-tat consists of cooperating on the first move and then mimicking the opponent’s
previous move in subsequent rounds.

5.2 COIN GAME

The Coin Game is a 3x3 grid world environment where two agents, red and blue, take turns collecting
coins. During each turn, a coin of either red or blue color spawns at a random location on the grid.
Agents receive a reward of +1 for collecting any coin but incur a penalty of -3 if the opponent
collects a coin of their color. A Pareto-optimal strategy in the Coin Game is for each agent to
collect only the coins matching their color, as this approach maximizes the total returns for both
agents. Figure 2 demonstrates that Advantage Alignment agents perform similarly to LOQA agents
when evaluated against a league of different policies: Advantage Alignment agents cooperate with
themselves, cooperate with Always Cooperate (AC) and are not exploited by Always Defect (AD).

5.3 NEGOTIATION GAME

In the original Negotiation Game, two agents bargain over n types of items over multiple rounds.
In each round, both the quantity of items and the value each agent places on them are randomly set,
but the agents only know their own values. They take turns proposing how to divide the items over a
random number of turns. Agents can end the negotiation by agreeing to a proposal, and rewards are
based on how well the agreement matches their private values. If they don’t reach an agreement by
the final turn, neither gets a reward. We modify the game first by making the values public, otherwise
Advantage Alignment would have an unfair edge over PPO agents by using the opponent’s value
function. Secondly, we do one-shot, simultaneous negotiations instead of negotiation rounds lasting
multiple iterations. Third, we modify the reward function so that every negotiation yields a reward.
For a given item with agent value va, the reward of the agent ra depends on the proposal of the agent
pa and the proposal of the opponent po where pa, po ∈ [0, 5]: ra = pa · va/max(5, pa + po).
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Figure 2: League Results of the Advantage Alignment agents in Coin Game: LOQA, POLA, MFOS, Always
Cooperate (AC), Always Defect (AD), Random and Advantage Alignment (AdAlign). Each number in the plot
is computed by running 10 random seeds of each agent head to head with 10 seeds of another for 50 episodes
of length 16 and averaging the rewards.

Note that the max operation at the denominator serves to break the invariance of the game dynamics
to the scale of proposals. For example, without the max operation, there would be no difference
between pa = 1, po = 1 and pa = 5, po = 5. The social dilemma in this version of the negotiation
game arises because both agents are incentivized to take as many items as possible, but by doing so,
they end up with a lower return compared to the outcome they would achieve if they split the items
based on their individual utilities. A Pareto-optimal strategy entails allowing the agent to take all the
items that are more valuable to them, and similarly for their opponent (this constitutes the Always
Cooperate (AC) strategy in Figure 3a). We experiment with a high-contrast setting where the utilities
of objects for the agents are orthogonal to each other: There are two possible combinations of values
in this setup: va = 5, vb = 1 or va = 1, vb = 5.

As shown in Figure 3a, PPO agents do not learn to solve the social dilemma. They learn the naive
policy of bidding high for every item which means they get a low return against themselves. PPO
agents trained with shared rewards get a high return against themselves, only to be exploited by
PPO agents. They do not learn to abandon cooperation and retaliate after they are defected against.
Advantage Alignment agents solves the social dilemma. They cooperate with themselves while
remaining non-exploitable against Always Defect.

5.4 MELTING POT’S COMMONS HARVEST OPEN

In Commons Harvest Open (Agapiou et al., 2023), a group of 7 agents interact in a environment
in which there is 6 bushes with different amounts of apples. Agents receive a reward of 1 for any
apple consumed. Consumed apples regrow with a probability dependent on the number of apples in
their L2 neighborhood; specifically, if there are no apples nearby, consumed apples do not regrow.
This mechanism creates a tension between agents: they must exercise restraint to prevent extinction
while also feeling compelled to consume quickly out of fear that others may over-harvest.
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Figure 3: (a) League Results of the Advantage Alignment agents in the Negotiation Game: Always
Cooperate (AC), an agent which proposes 5 for items which are more valuable to it and 1 for items
that are less valuable to it, Always Defect (AD), an agent that proposes 5 regardless of the values,
Advantage Alignment (AdAlign), PPO and PPO summing rewards (PPO-SR). Each number in the
plot is computed by running 10 random seeds of each agent head to head with 10 seeds of another
for 50 episodes of length 16 and averaging the rewards. Note that against Always Defect, Always
Cooperate gets an average return of 0.25 while Always Defect gets 0.30. (b) Sample trajectories of
AdAlign vs. AdAlign and PPO vs. PPO in the negotiation game. The numbers show the utilities
and proposals, which have been rounded to integer values. AdAlign agents defect first (red) and
progressively cooperate with each other (blue) while PPO agents Always Defect.

Figure 4: Comparison of different reinforcement learning algorithms in Melting Pot’s 2.0. Commons
Harvest Open. The score is the focal return per capita, min-max normalized between a random agent
and an exploiter baseline (ACB agent with an LSTM policy/value network) trained for 109 steps.
Following the protocol of the Melting Pot contest, we select the best agent out of 10 seeds and
evaluate it 100 times.

There are a number of complications that make the Melting Pot environments particularly challeng-
ing. First, the environments are partially-observable: agents can only see a local window around
themselves. Second, the partial observations are in the form of high-dimensional raw pixel data.
Third, these environments often involve multiple agents—seven in the case of Commons Harvest
Open—which increases the complexity of interactions and coordination. Therefore, agents need to
remember past interactions with other agents to infer their motives and policies. All these factors,
combined with the inherent social dilemma reward structure of the game, make finding policies that
are optimal with respect to social and individual objectives a non-trivial task.

We train a GTrXL transformer (Parisotto et al., 2019) for 34k steps, with context length of 30, and
compare the normalized focal return per capita of our agents against the baselines in Melting Pot 2.0:
Advantage-critic baseline (acb) (Espeholt et al., 2018), V-MPO (vmpo) (Song et al., 2019), options
as responses (opre) (Vezhnevets et al., 2020), and prosocial versions of opre (opre p) and acb (acb p)
that encourage cooperation. We also compare to our own implementations of PPO (ppo) and PPO
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Figure 5: Frames of evaluation trajectories for different algorithms. Qualitatively, we demonstrate
that Proximal Advantage Alignment (adalign) also outperforms naive PPO (ppo) and PPO with
summed rewards. The evaluation trajectories show how adalign agents are able to maintain a bigger
number of apple bushes from extinction (2) for a longer time that either ppo or ppo p. Note that
in the Commons Harvest evaluation two exploiter agents, green and yellow, play against a focal
population of 5 copies of the evaluated algorithm.

with summed rewards (ppo p). Figure 4 shows that our best advantage alignment agent achieves
on average 1.63 normalized per capita focal return in the Commons Harvest evaluation scenarios,
significantly outperforming all baselines (see Appendix B.4). Figure 5, qualitatively shows the
reason why Proximal Advantage Alignment outperforms PPO and PPO with summed rewards on
one of the evaluation scenarios.

6 RELATED WORK

The Iterated Prisoner’s Dilemma (IPD) was introduced by Rapoport and Chammah (1965). Tit-for-
tat was discovered as a robust strategy against a population of opponents in IPD by Axelrod (1984),
who organized multiple IPD tournaments. It was discovered only recently that IPD contains strate-
gies that extort rational opponents into exploitable cooperation (Press and Dyson, 2012). Sandholm
and Crites (1996) were the first to demonstrate that two Q-learning agents playing IPD converge to
mutual defection, which is suboptimal. Later, Foerster et al. (2018b) demonstrated that the same
is true for policy gradient methods. Bertrand et al. (2023) were able to show that with optimistic
initialization and self-play, Q-learning agents find a Pavlov strategy in IPD.

Opponent shaping was first introduced in LOLA Foerster et al. (2018b), as a method for controlling
the learning dynamics of opponents in a game. A LOLA agent assumes the opponents are naive
learners and differentiates through a one step look-ahead optimization update of the opponent. More
formally, LOLA maximizes V 1(θ1, θ2 + ∆θ2) where ∆θ2 is a naive learning step in the direction
that maximizes the opponent’s value function V 2(θ1, θ2). Variations of LOLA have been introduced

9
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to have formal stability guarantees (Letcher et al., 2021), learn consistent update functions assuming
mutual opponent shaping (Willi et al., 2022) and be invariant to policy parameterization (Zhao et al.,
2022). More recent work performs opponent shaping by having an agent play against a best response
approximation of their policy (Aghajohari et al., 2024a). LOQA (Aghajohari et al., 2024b), on which
this work is based, performs opponent shaping by controlling the Q-values of the opponent using
REINFORCE (Williams, 1992) estimators.

Another approach to finding socially beneficial equilibria in general sum games relies on modeling
the problem as a meta-game, where meta-rewards correspond to the returns on the inner game, meta-
states correspond to joint policies of the players, and the meta-actions are updates to these policies.
Al-Shedivat et al. (2018) introduce a continuous adaptation framework for multi-task learning that
uses meta-learning to deal with non-stationary environments. MFOS (Lu et al., 2022) uses model-
free optimization methods like PPO and genetic algorithms to optimize the meta-value of the meta-
game. More recently Meta-Value Learning (Cooijmans et al., 2023) parameterizes the meta-value
as a neural network and applies Q-learning to capture the future effects of changes to the inner
policies. Shaper (Khan et al., 2024), scales opponent shaping to high-dimensional general-sum
games with temporally extended actions and long time horizons. It does so, by simplifying MFOS
and effectively capturing both intra-episode and inter-episode information.

Melting Pot 2.0 (Agapiou et al., 2023) introduces a comprehensive suite of multi-agent reinforce-
ment learning environments that focus on social interactions and coordination challenges, providing
a valuable benchmark for evaluating the scalability and effectiveness of reinforcement learning algo-
rithms in complex, cooperative-competitive settings. The Negotiation Game, introduced by DeVault
et al. (2015); Lewis et al. (2017) and subsequently refined by Cao et al. (2018), has proven to be a
significant benchmark for studying general-sum games. It integrates elements of strategy and social
dilemmas, necessitating that agents balance cooperation and competition to optimize their outcomes.
Noukhovitch et al. (2021) analyze this complex benchmark, underscoring its importance in the field.
Future investigations will turn towards an even more sophisticated simulation proposed by Zhang
et al. (2022), which involves negotiations among countries and regions with diverse resource distri-
butions and preferences in addressing climate change.

7 CONCLUSION

In this work, we introduced Advantage Alignment, a novel family of algorithms designed to ad-
dress the fundamental challenge of achieving self-interested cooperation in multi-agent reinforce-
ment learning, particularly in social dilemmas. By deriving our algorithms from first principles, we
distilled opponent shaping to its core components, providing a simple yet powerful mechanism to
align agents’ advantages and foster mutually beneficial behaviors. Our approach unifies and gen-
eralizes existing opponent shaping methods, such as LOLA and LOQA, demonstrating that they
implicitly perform Advantage Alignment through different mechanisms. This unification not only
simplifies the mathematical formulation of opponent shaping but also reduces computational com-
plexity, enabling more efficient and scalable algorithms.

Our experiments across a range of social dilemmas, including the Iterated Prisoner’s Dilemma,
Coin Game, and a continuous action variant of the Negotiation Game, demonstrate that Advantage
Alignment consistently achieves state-of-the-art cooperation and robustness against exploitation.
Notably, we extended our methods to complex, large-scale, general-sum environments like Melting
Pot’s Commons Harvest Open, addressing challenges that arise from partial observability, high-
dimensional observations, and multi-agent interactions. In these settings, Advantage Alignment
agents learned sophisticated strategies that balance individual and collective interests, showcasing
the potential of our algorithms to scale to real-world applications.

The significance of our work lies in providing a principled, efficient, and scalable solution to the
longstanding problem of self-interested cooperation in general-sum games. By enabling agents
to autonomously align their interests with one another, Advantage Alignment paves the way for
more harmonious and socially beneficial interactions in artificial intelligence systems integrated
into human decision-making processes. This has profound implications for the development of
AI agents in diverse domains, from autonomous vehicles navigating shared environments to AI
assistants collaborating with humans and other agents.
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A MATHEMATICAL DERIVATIONS

A.1 DERIVING THE ADVANTAGE ALIGNMENT FORMULA

In this section we derive the Advantage Alignment formula in equation equation 8 from the opponent
shaping expression in equation equation 6 and assumption 2. Recall assumption 2:

πi(a|s) ∝ expβEb∼π3−i(·|s)[Q
i(s, a, b)]

Note that if i = 1, 3 − i = 2 and if i = 2, 3 − i = 1. Recall the opponent shaping policy gradient
expression:

∇θ1V
1(µ) = E

τ∼Prπ
1,π2

µ

 ∞∑
t=0

γtA1(st, at, bt)

∇θ1 log π
1(at|st)︸ ︷︷ ︸

(A)

+∇θ1 log π
2(bt|st)︸ ︷︷ ︸

(B)




We expand the term (B) above splitting the expectation, by assumption 2, we can write:

E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γtA1(st, at, bt)∇θ1 log π
2(bt|st)

]

= β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γtA1(st, at, bt)∇θ1 log expEa∼π1(|st)[Q
2(st, a, bt)]

]

= β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γtA1(st, at, bt)∇θ1Ea∼π1(|st)[Q
2(st, a, bt)]

]
.

where is the second line we used the fact that the expected advantage is zero. For convenience of
notation we define:

rit := ri(st, at, bt), A
i
t := Ai(st, at, bt)

These are the reward and advantage of agent i at time step t after taking action at and opponent
taking action bt. From the Bellman equation equation 2 we expand as follows:

β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γtA1(st, at, bt)∇θ1Ea∼π1(|st)[Q
2(st, a, bt)]

]
(13)

= β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γtA1
t∇θ1

(
Es′

[
r2t + γ · V 2(s′)

∣∣∣∣st, bt])
]

(14)

= β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γt+1A1
t∇θ1Es′

[
V 2(s′)

∣∣∣∣st, bt]
]

(15)

= β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γt+1A1
tEτ ′∼Prπ

1,π2
µ

[ ∞∑
k=0

γkA2
k∇θ1 log π1(a′k|s′k)

∣∣∣∣st, bt
]]

(16)

= β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

E
τ ′∼Prπ

1,π2
µ

[ ∞∑
k=0

γk+t+1A1
tA

2
k∇θ1 log π1(a′k|s′k)

∣∣∣∣st, bt
]]

(17)

= β · E
τ∼Prπ

1,π2
µ

[
E
τ ′∼Prπ

1,π2
µ

[ ∞∑
t=0

∞∑
k=t+1

γt+k+1A1
tA

2
k∇θ1 log π1(a′k|s′k)

∣∣∣∣st, bt
]]

(18)

= β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

∞∑
k=t+1

γt+k+1A1
tA

2
k∇θ1 log π1(ak|sk)

]
. (19)

We use Bellman equation in line (14), and the policy gradient theorem in line (16). In line (17),
we use the fact that γtA1(st, at, bt) is measurable w.r.t. the natural filtration of the process up to
time t, Ft, and the independence of the two terms conditioned on Ft by the Markov property. In
line (18) we use linearity of expectation. In line (19) we use the rule of the iterated expectations.
Reorganizing the summations in causal form we get the desired result:

β · E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γt+1

(∑
k<t

γt−kA1(sk, ak, bk)

)
A2(st, at, bt)∇θ1 log π1(at|st)

]
. (8)
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A.2 PROOF OF THEOREM 1

Lemma 1 (Policy changes under gradient ascent). Given a policy πθ(a|s) parametrised such that the
set of gradients ∇θ log πθ(a|s) for all pairs (a, s) form an orthonormal basis, and a value function
V (θ), the following holds:

d

dα
πθ+α∇θV (a|s) = ∇θV · ∇θπθ(a|s) = dγ(s)πθ(a|s)2A(a|s) (20)

dγ(s) ≡
∞∑
t=0

γtPr(st = s) (21)

A(a|s) ≡ Q(a|s)− V (s) (22)

Proof. The policy gradient theorem gives us:

∇θV (θ) = Eτ∼π

∞∑
t=0

γtA(at|st)∇θ log πθ(at|st) (23)

=
∑
(s,a)

dγ(s)πθ(a|s)A(a|s)∇θ log πθ(a|s) (24)

Taking the dot product of this expression with ∇θπθ(a
′|s′) = πθ(a

′|s′)∇θ log πθ(a
′|s′) and invok-

ing the assumed orthonormality of gradients:

∇θπθ(a
′|s′) · ∇θV (θ) (25)

=
∑
(s,a)

dγ(s)πθ(a|s)πθ(a
′|s′)A(a|s)

(
∇θ log πθ(a|s) · ∇θ log πθ(a

′|s′)
)

(26)

= dγ(s
′)πθ(a

′|s′)2A(a′|s′) (27)

Theorem 1. (LOLA policy gradient) Given a two-player game where players 1 and 2 have respec-
tive policies π1(a|s) and π2(b|s), where each policy is parametrised such that the set of gradients
∇θ2 log π

2(a|s) for all pairs (a, s) form an orthonormal basis, the LOLA update for the first player
correspond to a reinforce update with an advantage

A∗
LOLA(st, at, bt) = A1(st, at, bt) + β ·

∞∑
k=t

dγ,k−tγ
k−tA1

kA
2
k−t. (11)

where Ai
k := Ai(sk, ak, bk) and dγ,k is the occupancy measure of the tuple (ak, bk, sk)

Proof. LOLA (Foerster et al., 2018b) optimizes the return of the agent under an imagined opti-
mization step of the opponent (assuming the opponent is a naive learning algorithm). Under their
notation, a LOLA agent optimizes V 1(θ1, θ2 + ∆θ2) where ∆θ2 is a gradient ascent step on the
parameters of the opponent θ2. Note that along this proof because we consider the method proposed
by (Foerster et al., 2018b) we use their way to compute gradients. Particularly, one does not use
Assumption 2, and consequently assume that∇θ1 log πθ2 = 0 (and respectively ∇θ2 log πθ1 = 0.)

Since computing this value function explicitly is difficult, LOLA uses the first-order Taylor expan-
sion surrogate objective:

V 1(θ1, θ2 +∆θ2) ≈ V 1(θ1, θ2) + (∆θ2)
T ∇θ2V

1(θ1, θ2) (28)

The gradient of the expression above w.r.t. the parameters θ1 of the agent is given by

∇θ1V
1(θ1, θ2 + α∇θ2V

2(θ1, θ2)) = ∇θ1V
1(θ1, θ2) + β

(
∇θ1∇θ2V

1(θ1, θ2)
)
∇θ2V

2(θ1, θ2).
(29)
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The first-order terms above is computed using the Advantage form of the REINFORCE estimator,
which is given by equation equation 3. Foerster et al. (2018b) derive the following REINFORCE
estimator for the second-order term:

∇θ1∇θ2V
1(θ1, θ2) (30)

= E
τ∼Prπ

1,π2
µ

 ∞∑
t=0

γtr1t

(
t∑

k=0

∇θ1 log π
1(at|st)

)(
t∑

k=0

∇θ2 log π
2(bt|st)

)⊤ (31)

Now, we use the following fact
∞∑
t=0

ct(

t∑
k=0

ak)(

t∑
l=0

bl) =

∞∑
t=0

ct

t∑
S=0

S∑
k=0

akbS−k =

∞∑
S=0

∞∑
t=S

S∑
k=0

akbS−kct =

∞∑
S=0

S∑
k=0

akbS−k

∞∑
t=S

ct

to expand the second order term beginning from equation 29, to bring out the advantage A1
t :

∇θ1∇θ2V
1(θ1, θ2) (32)

= E
τ∼Prπ

1,π2
µ

 ∞∑
t=0

γtr1t

(
t∑

k=0

∇θ1 log π
1(at|st)

)(
t∑

k=0

∇θ2 log π
2(bt|st)

)⊤ (33)

= E
τ∼Prπ

1,π2
µ

[ ∞∑
S=0

(
S∑

k=0

∇θ1 log π
1(ak|sk)∇θ2 log π

2(bS−k|sS−k)
⊤

) ∞∑
t=S

γtr1t

]
(34)

= E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

(
t∑

k=0

∇θ1 log π
1(ak|sk)∇θ2 log π

2(bt−k|st−k)
⊤

) ∞∑
l=t

γlr1l

]
(35)

= E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

(
t∑

k=0

∇θ1 log π
1(ak|sk)∇θ2 log π

2(bt−k|st−k)
⊤

)
γtE

[ ∞∑
l=0

γlr1l+t

]]
(36)

= E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

(
t∑

k=0

∇θ1 log π
1(ak|sk)∇θ2 log π

2(bt−k|st−k)
⊤

)
γtQ1(st, at, bt)

]
(37)

= E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

(
t∑

k=0

∇θ1 log π
1(ak|sk)∇θ2 log π

2(bt−k|st−k)
⊤

)
γtA1

t

]
, (38)

where we reorder the terms of the summation to sum over future rewards instead of past gradient
terms in line 34, we use the law of iterated expectation in line 36 and a baseline subtraction in line
38.

Per Equation equation 29, we multiply this Hessian with the gradient of the value function

∇θ2V
2(θ1, θ2) = Eτ∼π

∞∑
t=0

γtA2(at, bt|st)∇θ2 log π
2(bt|st) (39)

=
∑

(s,a,b)

dγ(a, b, s)A
2(a, b|s)∇θ2 log π

2(b|s) (40)

where where dγ(a, b, s) is the occupancy measure of the state actions tuple (a, b, s), and use the
assumption that the gradients (∇θ2 log π

2(a|s))(a,s) form an orthonormal basis to obtain

E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

(
t∑

k=0

∇θ1 log π
1(ak|sk)dγ(at−k, bt−k, st−k)A

2
t−k

)
γtA1

t

]
.

To completes the proof, we finally need to switch the summations to get

E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

( ∞∑
k=t

γkA1
kdγ(ak−t, bk−t, sk−t)A

2
k−t

)
∇θ1 log π

1(at|st)

]
.
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A.3 GRADIENT OF LOQA

Recall the opponent policy approximation used in LOQA, which takes a softmax over the Q-values
of the opponent. We assume exact estimates of these Q-values:

π̂2(bt|st) :=
expQ2(st, at, bt)∑
b expQ

2(st, at, b)
(4)

Note that π̂2(bt|st) is differentiable w.r.t. the parameters θ1 of the policy of the agent because the
Q-values depend on π1. Therefore, we can use the policy gradient theorem (see Aghajohari et al.
(2024b)) to differentiate the value function of the opponent w.r.t. the parameters of the agent. For
convenience of notation we define:

Qi
t(b) := Qi(st, at, b)

Computing the gradient of the approximated opponent’s policy we get:

∇θ1 π̂
2(bt|st) = ∇θ1

(
expQ2(st, at, bt)∑
b expQ

2(st, at, b)

)
(41)

=
∇θ1 expQ

2
t (bt)∑

b expQ
2
t (b)

−
expQ2

t (bt)∇θ1

∑
b expQ

2
t (b)

(
∑

b expQ
2
t (b))

2 (42)

=
expQ2

t (bt)∇θ1Q
2
t (bt)∑

b expQ
2
t (b)

−
expQ2

t (bt)
∑

b expQ
2
t (b)∇θ1Q

2
t (b)

(
∑

b expQ
2
t (b))

2 (43)

=
expQ2

t (bt)∑
b expQ

2
t (b)

(
∇θ1Q

2
t (bt)−

∑
b

expQ2
t (b)∇θ1Q

2
t (b)∑

b expQ
2
t (b)

)
(44)

= π̂2(bt|st)

(
∇θ1Q

2
t (bt)−

∑
b

π̂2(b|st)∇θ1Q
2
t (b)

)
, (45)

where we used the quotient rule in line (42) and equation equation 4 in line(45). By the chain rule,
the gradient of the log probability is:

∇θ1 log π̂
2(bt|st) =

∇θ1 π̂
2(bt|st)

π̂2(bt|st)
= ∇θ1Q

2
t (bt)−

∑
b

π̂2(b|st)∇θ1Q
2
t (b).

This concludes the derivation.

A.4 GRADIENT OF LOQA IN CONTINUOUS ACTION SPACES

We derive the gradient of the opponent’s policy π2(b|s) with respect to the agent’s parameters θ1,
assuming a continuous action space.

The opponent’s policy is defined as:

π2(b|s) = exp(Q2(s, b))∫
A exp(Q2(s, b′)) db′

, (46)

where Q2(s, b) is the Q-value of the opponent for action b, and A is the continuous action space.

Our goal is to compute the gradient of π2(b|s) with respect to θ1, the parameters of agent 1, which
affect Q2(s, b) through interactions.

Taking the log of π2(b|s), we get:

log π2(b|s) = Q2(s, b)− log

(∫
A
exp(Q2(s, b′)) db′

)
. (47)

The gradient of log π2(b|s) with respect to θ1 is:

∇θ1 log π
2(b|s) = ∇θ1Q

2(s, b)−∇θ1 log

(∫
A
exp(Q2(s, b′)) db′

)
. (48)
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Next, we compute the gradient of the log partition function Z(s) =
∫
A exp(Q2(s, b′)) db′:

∇θ1 logZ(s) =
∇θ1Z(s)

Z(s)
=

1∫
A exp(Q2(s, b′)) db′

∫
A
exp(Q2(s, b′))∇θ1Q

2(s, b′) db′, (49)

which simplifies to:

∇θ1 logZ(s) =

∫
A
π2(b′|s)∇θ1Q

2(s, b′) db′. (50)

Now, applying the chain rule to compute the gradient of π2(b|s), we get:

∇θ1π
2(b|s) = π2(b|s)

(
∇θ1Q

2(s, b)−
∫
A
π2(b′|s)∇θ1Q

2(s, b′) db′
)
. (51)

We are allowed to interchange the gradient and the integral by applying Leibniz’s rule, which holds
under the following conditions: 1. exp(Q2(s, b′)) and its gradient ∇θ1 exp(Q

2(s, b′)) are continu-
ous, as both the exponential function and the Q-value function Q2(s, b′) are smooth. 2. The integral∫
A exp(Q2(s, b′)) db′ converges due to the boundedness of Q2(s, b′) or a rapid decay over the action

space. 3. We assume∇θ1Q
2(s, b′) is bounded, ensuring the interchange of the gradient and integral

is well-defined. Thus, the final expression for the gradient of the opponent’s policy is:

∇θ1π
2(b|s) = π2(b|s)

(
∇θ1Q

2(s, b)−
∫
A
π2(b′|s)∇θ1Q

2(s, b′) db′
)
. (52)

The Integral above is intractable, which makes continuous action LOQA hard to scale.

A.5 PROOF OF THEOREM 2

Proof. In practice, LOQA deviates from the approach discussed in Appendix A.3. Specifically, it
does not differentiate through all of the Q-values, but only through that of the action bt actually
observed in the sampled trajectory:

π̃2(bt|st) :=
expQ2(st, at, bt)

expQ2(st, at, bt) +
∑

b ̸=bt
expQ2(st, at, b)︸ ︷︷ ︸

non-differentiable

(53)

This choice is made because the trajectory provides an estimate of the Q-value of each opponent
action bt. This estimate statistically depends on the agent’s actions a<t and therefore can be stochas-
tically differentiated w.r.t θ1 using REINFORCE. The other Q-values will be estimated by function
approximators, which depend only implicitly on θ1 and cannot be differentiated.

Differentiating equation 53 leads to a simplified gradient:

∇θ1 π̃
2(bt|st) = ∇θ1

(
expQ2(st, at, bt)

expQ2(st, at, bt) +
∑

b ̸=bt
expQ2(st, at, b)

)
(54)

= ∇θ1 expQ
2
t (bt)

(
expQ2

t (bt) +
∑

b ̸=bt
expQ2

t (b)
)
− expQ2

t (bt)(
expQ2

t (bt) +
∑

b ̸=bt
expQ2

t (b)
)2 (55)

= expQ2
t (bt)∇θ1Q

2
t (bt)

∑
b̸=bt

expQ2
t (b) + expQ2

t (bt)− expQ2
t (bt)(

expQ2
t (bt) +

∑
b ̸=bt

expQ2
t (b)

)2 (56)

= π̃2(bt|st)(1− π̃2(bt|st))∇θ1Q
2
t (bt). (57)

By the chain rule, the gradient of the log probability is

∇θ1 log π̃
2(bt|st) =

∇θ1 π̃
2(bt|st)

π̃2(bt|st)
= (1− π̃2(bt|st))∇θ1Q

2
t (bt). (58)

The difference between LOQA and Advantage Alignment lies in the extra scaling factor (1 −
π̃2(bt|st)) which accounts for the partition function. Plugging equation 58 into the generalized
policy gradient equation equation 6 proves the theorem.
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Algorithm 2 Proximal Advantage Alignment

Initialize: Discount factor γ, agent Q-value parameters ϕ1, t Q-value parameters ϕ1
t , actor pa-

rameters θ1, opponent Q-value parameters ϕ2, t Q-value parameters ϕ2
t , actor parameters θ2

for iteration= 1, 2, . . . do
Run policies π1 and π2 for T timesteps in environment and collect trajectory τ
Compute agent critic loss L1

C using the TD error with r1 and V 1

Compute opponent critic loss L2
C using the TD error with r2 and V 2

Optimize L1
C w.r.t. ϕ1 and L2

C w.r.t. ϕ2 with optimizer of choice
Optimize L1

C w.r.t. ϕ1 and L2
C w.r.t. ϕ2 with optimizer of choice

Compute generalized advantage estimates {A1
1, . . . , A

1
T }, {A2

1, . . . , A
2
T }

Compute agent actor loss, L1
a, using equation 9

Compute opponent actor loss, L2
a, using equation 9

Optimize L1
a w.r.t. θ1 and L2

a w.r.t. θ2 with optimizer of choice

A.6 ADVANTAGE ALIGNMENT IMPLEMENTATION

To more clearly see the Advantage Alignment formula as an influence over each individual log
probability term recall the formulation:

E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γt+1

(∑
k<t

γt−kA1(sk, ak, bk)

)
A2(st, at, bt)∇θ1 log π1(at|st)

]
. (8)

The γt term helps regularize the linear scaling of the sum of the advantages of the agent. Alterna-
tively one could regularize using 1/(1 + t) instead:

E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

1

1 + t

(∑
k<t

A1(sk, ak, bk)

)
A2(st, at, bt)∇θ1 log π1(at|st)

]
. (59)

Which accounts to increasing the probability of the actions that align the sum of the past advantages
of the agent up to the current time-step t− 1 and the advantage of the opponent at the current time-
step, t. In our implementation we use equation 59, as it considers more terms in the future and works
better in practice.

A.7 PROXIMAL ADVANTAGE ALIGNMENT

We can combine the two policy gradient terms into a single one to come up with a proximal Advan-
tage Alignment formulation:

E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γtA1
t∇θ1 log π1(at|st) + βγ

∞∑
t=0

γt

(∑
k<t

γt−kA1
k

)
A2

t∇θ1 log π1(at|st)

]
(60)

Where β is the weight put into the Advantage Alignment loss (the negative inverse of the Boltzmann
constant times the temperature). Then we have:

E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γt

(
A1

t + βγ

(∑
k<t

γt−kA1
k

)
A2

t

)
∇θ1 log π1(at|st)

]
. (61)

This is just the normal advantage policy gradient with a modified advantage A∗:

E
τ∼Prπ

1,π2
µ

[ ∞∑
t=0

γtA∗
t∇θ1 log π1(at|st)

]
, where A∗

t = A1
t + βγ

(∑
k<t

γt−kA1
k

)
A2

t . (62)

Recall the Trust Region Policy Optimization (TRPO) (Schulman et al., 2017a) objective, we want
to maximize the value function while maintaining the updated policy close in policy space:

max
θ1

V 1(µ)

s.t. sup
s

∥∥π1(·|s)− π1
n(·|s)

∥∥
tv ≤ δ

(63)
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We can use the PPO (Schulman et al., 2017b) surrogate objective:

E
τ∼Prπ

1,π2
µ

[
min

{
rn(θ1)A

1
t , clip (rn(θ1); 1− ϵ, 1 + ϵ)A1

t

}]
(64)

Now we apply it to the Advantage Alignment formulation that uses the modified advantage on the
policy gradient equation 62:

E
τ∼Prπ

1,π2
µ

[min {rn(θ1)A∗
t , clip (rn(θ1); 1− ϵ, 1 + ϵ)A∗

t }] , (9)

where we denote π1
n(at|st) to be the updated policy and rn(θ1) = π1

n(at|st)/π1(at|st) is the ratio
between the updated policy and the old policy. We used generalized advantage estimation (GAE)
(Schulman et al., 2018) to compute the advantages in this expression. Algorithm 2 summarizes the
implementation of Proximal Advantage Alignment.

A.8 PROOF OF THEOREM 3

Let θ1, ..., θn be the parameter each agent, πθi(a|s) be the policies represented by those parameters,
and Vi(θ1, ..., θn) be the value function of agent i as a function of all the other agents.

Lemma 2 (Zero Advantages At Nash). For all Nash Equilibria of the game, if there exist parameters
θ∗1 , ..., θ

∗
n such that πθ∗

i
= π∗

i , where π∗
i is the policy of agent i at the Nash, then for all action-state

pairs with non-zero probability under the Nash policies, we have Ai(a|s) = 0.

Proof. By the Bellman Optimality Equation, at an optimal policy the value of agent i becomes
V ∗
i (s) = argmaxa Q

∗(a, s), hence all actions with non-zero probability under π∗
i have the same

Q∗(a, s), and since A(a, s) ≡ Q(a, s)− V (s), the advantage will vanish.

We now use lemma 2 to prove that the Advantage Alignment term is zero at a Nash equilibrium.

Proof. Under Advantage Alignment, the updates we take can be represented by

θ′i ← θi + α · E
τ∼Prπ

i,π−i
µ

[ ∞∑
t=0

Bi
t ∇θi log πθi(at|st)

]
(65)

Bi
t ≡ Ai

t + β · E
τ∼Prπ

i,π−i
µ

∑
j ̸=i

(∑
k<t

γt−kAi
k

)
Aj

t

 (66)

But by lemma 2, Aj(bt|st) = 0 for all actions at a Nash, hence the second term vanishes, as does
the first term for the same reason.

A.9 N-PLAYER ADVANTAGE ALIGNMENT

Consider the n-player setup, we can use the policy gradient theorem and assumption 2 to derive the
following expression:

∇θ1V
i(µ) = E

τ∼Prπ
i,π−i

µ

 ∞∑
t=0

γtAi
t

∇θi log π
i(ait|st) +

∑
j ̸=i

∇θi log π
j(ajt |st)

 (67)

Which naturally leads to the following modification to the PPO advantage following the derivation
used in Proximal Advantage Alignment:

Ai
t

∗
= Ai

t + βγ

(∑
k<t

γt−kAi
k

)∑
j ̸=i

Aj
t (68)

Here we use the standard game theory notation of i to refer to the current player and −i to refer to
all other players. Similarly ait denotes the action of player i at time t.
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B EXPERIMENTAL DETAILS

B.1 ITERATED PRISONER’S DILEMMA

We use an MLP layer connected to a GRU followed by another MLP head for both the actor and
critic networks, similar to the architecture used in POLA (Zhao et al., 2022). We also use a replay
buffer of agents collected during training, following Aghajohari et al. (2024b). All of our IPD
experiments run in 50 minutes in a nvidia A100 gpu.

Table 1: IPD Hyperparameters

Parameter Value
Actor Training Optimizer Adam
Actor Training Entropy Beta 0.15
Actor Training Learning Rate (Actor Loss) 0.0001
Advantage Alignment Weight 0.3
Actor Hidden Size 64
Layers Before GRU 1
Q-Value Training Optimizer Adam
Q-Value Training Learning Rate 0.001
Q-Value Training Target EMA Gamma 0.99
Q-Value Hidden Size 64
Batch Size 2048
Self-Play True
Reward Discount Factor 0.9
Agent Replay Buffer Capacity 10000
Agent Replay Buffer Update Frequency 1
Agent Replay Buffer Current Agent Fraction 0
Advantage Alignment Discount Factor 0.9

B.2 COIN GAME

We use the same architecture used for IPD with an MLP connected to a GRU unit, followed by
another MLP. We experimented with both Advantage Alignment (Equation equation 8) and Proximal
Advantage Alignment (Equation equation 9), with Advantage Alignment performing better (this is
the one we used). All of our Coin Game experiments run in 30 minutes in a nvidia A100 gpu.

Table 2: Coin Game Hyperparameters

Parameter Value
Actor Training Optimizer Adam
Actor Training Entropy Beta 0.1
Actor Training Learning Rate (Actor Loss) 0.002
Advantage Alignment Weight 0.25
Actor Hidden Size 64
Layers Before GRU 1
Q-Value Training Optimizer Adam
Q-Value Training Learning Rate 0.005
Q-Value Training Target EMA Gamma 0.99
Q-Value Hidden Size 64
Batch Size 512
Self-Play True
Reward Discount Factor 0.96
Agent Replay Buffer Capacity 10000
Agent Replay Buffer Update Frequency 10
Agent Replay Buffer Current Agent Fraction 0
Advantage Alignment Discount Factor 0.9
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B.3 NEGOTIATION GAME

We experimented with both Advantage Alignment (Equation equation 8) and Proximal Advantage
Alignment (Equation equation 9), with the original Advantage Alignment performing better.

Agent’s Architecture: The game observations are a concatenation of the availability of the items,
agent’s value for each item, opponent’s value for each item, and previous round proposals. This
makes up for an input vector of length 15. The previous round proposals are especially important as
the agents need to examine whether the opponent defected against them by proposing high proposals
for item in which the value of the item is higher for the agent compared to the value of the item to
the opponent. In other words, if the opponent wanted to gain a little return in exchange of huge loss
to the agent, defecting.

Encoder:The observation is then processed by an encoder. The encoder is a GRU network. The
GRU network consists of first two Linear Layers with a relu non-linearity in between. Then it is
passed to a GRU unit.

Critic: The output of the GRU is then fed to a two-layer MLP with relu non-linearities for the critic
module of the agent. Additionally, we concatenate the output of the encoder with the time, the index
of the step of the game, for the value function as otherwise it would be hard to estimate the value of
the state without knowing how long the game is going to go on for.

Actor: The actor is the most complex component as it deals with continuous actions. The output
of the encoder is passed to an MLP with relu non-linearities and the output of the MLP is passed
to a tanh activation and scaled by 2.5, the output of this MLP is used as the mean of a normal
distribution. The logarithm of the standard deviation is modeled by a single global parameter in
the actor. Next, a sample of this normal distribution is passed through a tanh activation and scaled
and shifted back to (0, 5). Computing the log probability of this transformations requires careful
implementation. Especially if the atanh operation that is used is numerically unstable. Please refer
to the code released with this paper for the exact implementation.

Hyperparameters: Please refer to 3 for the hyperparameters used in our negotiation game experi-
ments. We use a replay buffer on our gather trajectories although the rate that it is mixed with fresh
trajectories is small.

Table 3: Negotiation Game Hyperparameters

Parameter Value
Actor Training Optimizer Adam
Trajectory Length 50
Encoder Layers 2
MLP Model Layers 2
Replay Buffer Size 100000
Replay Buffer Update Size 500
Replay Buffer Off-policy Ratio 0.05
Q-Value Training Optimizer Adam
Optimizer (Actor) Learning Rate 0.001
Optimizer (Critic) Learning Rate 0.001
Entropy Beta 0.005
Advantage Alignment Weight 3.0
Self-Play True
Batch Size 16384
Gradient Clipping Norm 1.0

Note that the optimization of the agents in the negotiation game is unstable, preventing us from
taking the last checkpoint. In our experiments in Fig 3a we select the checkpoint that corresponds
to the best achieved return for the agent during the optimization of the agent and the opponent.
While we are not completely certain, we observe the instability happens when the policy distribution
concentrates around the maximum possible proposal which is 5. We clipped the atanh operation in
our implementation for more numerical stability. All of our Negotiation Game experiments run in 1
hour on a nvidia A100 gpu.
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B.4 MELTING POT’S COMMONS HARVEST OPEN

We experimented with both Advantage Alignment (Equation equation 8) and Proximal Advantage
Alignment (Equation equation 9), with Proximal Advantage Alignment performing better.

Agent’s Architecture: In the Commons Harvest Open environment, agents receive observations
consisting of a local view of the environment in the form of raw pixel data. Each observation is an
image frame capturing the agent’s immediate surroundings. We use a 3 layer convolutional neural
network, following (Mnih et al., 2013), to encode the observations, which are then passed to a
GTrXL tranformer (Parisotto et al., 2019).

Encoder: The observation frames are processed by an encoder. The encoder is a GTrXL transformer
network (Parisotto et al., 2019). The GTrXL network consists of 3 transformer layers, each with a
model dimension of 192 and a feedforward dimension of 192. The transformer is capable of handling
sequences up to a maximum length of 1000 steps, capturing temporal dependencies in the agents’
observations. In practice, we use a context length of 15.

Critic: The output of the encoder is then fed to a two-layer Multi-Layer Perceptron (MLP) with
ReLU non-linearities for the critic module of the agent. To provide temporal context, we concatenate
the current time step to the encoder’s output before feeding it to the critic. This helps the critic
estimate the value of the state more accurately, as the remaining time in an episode can affect the
expected return.

Actor: The actor network shares the encoder with the critic. The output of the encoder is passed
through another MLP with ReLU non-linearities to produce logits over discrete action choices. The
policy is modeled as a categorical distribution over these actions, which include turning around,
moving in different directions, and zapping other agents.

Hyperparameters: Please refer to Table 4 for the hyperparameters used in our Commons Harvest
Open experiments.

Table 4: Commons Harvest Open Hyperparameters

Parameter Value
Self-Play True
Batch Size 512
Optimizer (Actor) Learning Rate 1× 10−5

Optimizer (Critic) Learning Rate 1× 10−5

Entropy Beta 0.1
Advantage Alignment Weight 1.0
Clip Gradient Norm 10.0
Transformer Layers 3
Transformer Model Dimension 192
Transformer Feedforward Dimension 192
Discount Factor (γ) 0.99
PPO Clip Range 0.1
PPO Updates per Batch 2
Normalize Advantages True
Context Length 15

We use a parallelized environment with 6 copies of Commons Harvest Open to make training more
efficient. Following LOQA (Aghajohari et al., 2024b), we keep a replay buffer of past agent param-
eters to ensure robustness against a distribution of policies. From this replay buffer we sample 2
agents at each iteration and play against 5 self-play agents with the current version of the policy. For
each environment, we use the 5 on-policy trajectories to compute losses for the actor and critic. In
total, our Commons Harvest Open experiments last 24 hours on an nvidia L40s gpu.
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C ADDITIONAL FIGURES

C.1 NEGOTIATION GAME TRAINING CURVES

Figure 6 shows the training curves of Advantage Alignment on 10 seeds.
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Figure 6: Training curves of Advantage Alignment averaged over 10 seeds.

C.2 COIN GAME FULL LEAGUE RESULTS

Figure 7 shows the head-to-head results of all agents we experimented with in a league.
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Figure 7: The head-to-head results of all variants of the coin game agents experimented with in
this paper. All numbers are an average of 10 seeds of one type of agent with 10 seeds of another
type of agent, where each pair play 32 games. We ablate Advantage Alignment masking different
components of the gradient. Cooperative (C), masks when both advantages are positive; Empathetic
(E), masks when the advantage of the agent is positive and the advantage of the opponent is negative;
Vengeful (V), masks when the advantage of the agent is negative and the advantage of the opponent
is positive; Spiteful (S), masks when both advantages are negative.
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C.3 ABLATION STUDY COMMONS HARVEST OPEN

Figure 8: Sample trajectories for Proximal Advantage Alignment agents with different β weight.
We select the best of 10 seeds for each value of β. On the first row: β = 0.5, agents reach a policy
where they try to consume the apples as fast as possible. On the second row: β = 1, agents reach
a ”bush guarding” policy, zapping any other agents coming into the same bush. On the third row:
β = 2, agents reach a policy where they rotate around specific paths, preventing the extinction of
the bushes.

Interestingly the value of β, which is used to control the weight of the advantage alignment term in
equation 10, leads agents to converge to different policies. With a low value of the weight (β = 0.5),
we empirically observed that most runs converge to a greedy policy that attempts to consume apples
as soon as possible. With a value of β = 1, we find policies that show a ”bush guarding” behavior
preventing other agents from approaching their bush, and consuming apples within that bush with
moderate restraint. This is the policy that shows the best evaluation performance in figure 4. With
high values of the weight (β = 2), most runs find a rotating strategy in which agents stick to eating
only a subset of the apples on each bush. This policy has the highest pro-social return out of all of
them. However, the rotating strategy is also vulnerable to exploitation from greedy agents and does
poorly in the evaluation scenarios. Figure 8 showcases what these policies look like in practice.
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