
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADVANTAGE ALIGNMENT ALGORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Artificially intelligent agents are increasingly being integrated into human
decision-making: from large language model (LLM) assistants to autonomous
vehicles. These systems often optimize their individual objective, leading to
conflicts, particularly in general-sum games where naive reinforcement learning
agents empirically converge to Pareto-suboptimal Nash equilibria. To address this
issue, opponent shaping has emerged as a paradigm for finding socially beneficial
equilibria in general-sum games. In this work, we introduce Advantage Align-
ment, a family of algorithms derived from first principles that perform opponent
shaping efficiently and intuitively. We achieve this by aligning the advantages of
interacting agents, increasing the probability of mutually beneficial actions when
their interaction has been positive. We prove that existing opponent shaping meth-
ods implicitly perform Advantage Alignment. Compared to these methods, Ad-
vantage Alignment simplifies the mathematical formulation of opponent shaping,
reduces the computational burden and extends to continuous action domains. We
demonstrate the effectiveness of our algorithms across a range of social dilemmas,
achieving state-of-the-art cooperation and robustness against exploitation.

1 INTRODUCTION

Recent advancements in artificial intelligence, such as language models like GPT (Radford et al.,
2018), image synthesis with diffusion models (Ho et al., 2020), and generalist agents like Gato
(Reed et al., 2022), suggest a future where AI systems seamlessly integrate into everyday human
decision-making. While these systems often optimize for the goals of their individual users, this can
lead to conflicts, especially in tasks that involve both cooperative and competitive elements. Social
dilemmas, as introduced by Rapoport and Chammah (1965), describe scenarios where agents acting
selfishly achieve worse outcomes than if they had cooperated. A global example is the climate
change problem, where individual and national interests in economic growth often clash with the
need for collective action to reduce carbon emissions and mitigate environmental degradation. The
challenges we have faced in tackling this problem highlight the complexity of aligning individual
interests with collective well-being.

As artificially intelligent systems become ubiquitous, there is a pressing need to develop methods
that enable agents to autonomously align their interests with one another. Despite this, the deep re-
inforcement learning community has traditionally focused on fully cooperative or fully competitive
settings, often neglecting the nuances of social dilemmas. Sandholm and Crites (1996) empirically
demonstrated that naive reinforcement learning algorithms tend to converge to the worst Pareto sub-
optimal Nash equilibria of Always Defect in social dilemmas like the Iterated Prisoner’s Dilemma
(IPD). Foerster et al. (2018b), demonstrated that the same is true for policy gradient methods, and
introduced opponent shaping (LOLA) to address this gap.

LOLA is an opponent shaping algorithm that influences the behavior of other agents by assuming
they are naive learners and taking gradients with respect to simulated parameter updates. Following
this approach, other opponent shaping algorithms that compute gradients with respect to simulated
parameter updates have shown success in partially competitive tasks, including SOS (Letcher et al.,
2021), COLA (Willi et al., 2022), and POLA (Zhao et al., 2022). More recently, LOQA (Aghajo-
hari et al., 2024b) proposed an alternative form of opponent shaping by assuming control over the
value function of other agents via REINFORCE estimators (Williams, 1992). This new approach to
opponent shaping offers significant computational advantages over previous methods and lays the
foundation for our work.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We introduce Advantage Alignment, a family of algorithms designed to shape rational opponents by
aligning their advantages when their historic interactions have been positive. We make two key as-
sumptions about reinforcement learning agents: (1) they aim to maximize their own expected return,
and (2) they take actions proportionally to this expected return. Under these assumptions, we demon-
strate that opponent shaping reduces to aligning the advantages of different players and increasing
the log probability of an action proportionally to their alignment. We show that this mechanism lies
at the heart of existing opponent shaping algorithms, including LOLA and LOQA. By distilling this
objective, Advantage Alignment agents can shape opponents without relying on imagined parameter
updates (as in LOLA and SOS) or stochastic gradient estimation that relies on automatic differen-
tiation introduced in DiCE (Foerster et al., 2018a) (as in POLA, COLA, and LOQA). Furthermore,
we demonstrate that Advantage Alignment preserves Nash Equilibria, ensuring that our algorithms
maintain stable strategic outcomes.

We also introduce Proximal Advantage Alignment, which formulates Advantage Alignment as a
modification to the advantage function used in policy gradient updates. By integrating this modified
advantage into the Proximal Policy Optimization (PPO) (Schulman et al., 2017b) surrogate objec-
tive, we develop a scalable and efficient opponent shaping algorithm suitable for more complex
environments. To identify and overcome challenges that arise from scale—which are often over-
looked in simpler settings like the Iterated Prisoner’s Dilemma (Rapoport and Chammah, 1965) and
the Coin Game (Foerster et al., 2018b)—we apply Advantage Alignment to a continuous variant of
the Negotiation Game (Cao et al., 2018) and Melting Pot’s Commons Harvest Open (Agapiou et al.,
2023). In doing so, we aim to demonstrate the scalability of our methods and offer insights and
solutions applicable to complex, real-world agent interactions.

Our key contributions are:

• We introduce Advantage Alignment and Proximal Advantage Alignment (PAA), two opponent
shaping algorithms derived from first principles and based on policy gradient estimators.

• We prove that LOLA (and its variations) and LOQA implicitly perform Advantage Alignment
through different mechanisms.

• We extend REINFORCE-based opponent shaping to continuous action environments and achieve
state-of-the-art results in a continuous action variant of the Negotiation Game (Cao et al., 2018).

• We apply PAA to the Commons Harvest Open environment in Melting Pot 2.0 (Agapiou et al.,
2023), a high dimensional version of the tragedy of the commons social dilemma, achieving state-
of-the-art results and showcasing the scalability and effectiveness of our methods.

2 BACKGROUND

2.1 SOCIAL DILEMMAS

Social dilemmas describe situations in which selfish behavior leads to sub-optimal collective out-
comes. Such dilemmas are often formalized as normal form games and constitute a subset of
general-sum games. A classical example of a social dilemma is the Iterated Prisoner’s Dilemma
(IPD) (Rapoport and Chammah, 1965), in which two players can choose one of two actions: co-
operate or defect. In the one-step version of the game, the dilemma occurs because defecting is a
dominant strategy, i.e., independently of what the opponent plays the agent is better off playing de-
fect. However, by the reward structure of the game, both the agent and the opponent would achieve a
higher utility if they played cooperate simultaneously. Beyond the IPD, other social dilemmas have
been extensively studied in the literature, including the Chicken Game and the Coin Game (Lerer
and Peysakhovich, 2018), the latter of which has a similar reward structure to IPD but takes place
in a grid world. In this paper we introduce a variation of the Negotiation Game (also known as the
Exchange Game) (DeVault et al., 2015; Lewis et al., 2017), with a strong social dilemma compo-
nent. Additionally, we evaluate our method on the Commons Harvest Open environment in Melting
Pot 2.0 (Agapiou et al., 2023), which exemplifies a large-scale social dilemma. In this environment,
agents must balance short-term personal gains from overharvesting common resources against the
long-term collective benefit of sustainable use.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 MARKOV GAMES

In this work, we consider fully observable, general sum, n-player Markov Games (Shapley, 1953)
which are represented by a tuple: M = (N,S,A, P,R, γ). Here S is the state space, A :=
A1 × . . . × An, is the joint action space for all players, P : S × A → ∆(S) maps from every
state and joint action to a probability distribution over states, R = {r1, . . . , rn} is the set of reward
functions where each ri : S × A → R maps every state and joint action to a scalar return and
γ ∈ [0, 1] is the discount factor.

2.3 REINFORCEMENT LEARNING

Consider two agents playing a Markov Game, 1 (agent) and 2 (opponent), with policies π1 and π2,
parameterized by θ1 and θ2 respectively. We follow the notation of Agarwal et al. (2021), let τ
denote a trajectory with initial state distribution µ and (unconditional) distribution given by:

Prπ
1,π2

µ (τ) = µ(s0)π
1(a0|s0)π2(b0|s0)P (s1|s0, a0, b0) . . . (1)

Where P (·|s, a, b), often referred as the transition dynamics, is a probability distribution over the
next states conditioned on the current state being s, agent taking action a and opponent taking
action b. Value-based methods like Q-learning (Watkins and Dayan, 1992) and SARSA (Rummery
and Niranjan, 1994) learn an estimate of the discounted reward using the Bellman equation:

Q1(st, at, bt) = r1(st, at, bt) + γ · Est+1

[
V 1(st+1)|st, at, bt

]
. (2)

In policy optimization, both players aim to maximize their expected discounted return by performing
gradient ascent with a REINFORCE estimator (Williams, 1992) of the form:

∇θ1V
1(µ) = E

τ∼Prπ
1,π2

µ

[∞∑
t=0

γtA1(st, at, bt)∇θ1 log π
1(at|st)

]
. (3)

Here A1(s, a, b) := Q1(s, a, b)− V 1(s) denotes the advantage of the agent taking action a in state
s while the opponent takes action b.

3 OPPONENT SHAPING

Opponent shaping, first introduced in LOLA (Foerster et al., 2018b), is a paradigm that assumes
the learning dynamics of other players can be controlled via some mechanism to incentivize desired
behaviors. LOLA and its variants assume that the opponent is a naive learner, i.e. an agent that
performs gradient ascent on their value function, and differentiate through an imagined naive update
of the opponent in order to shape it.

LOQA (Aghajohari et al., 2024b) performs opponent shaping by controlling the Q-values of the
opponent for different actions assuming that the opponent’s policy is a softmax over these Q-values:

π̂2(bt|st) :=
expQ2(st, bt)∑
b expQ

2(st, b)
, (4)

where Q2(st, bt) := Ea∼π1 [Q2(st, a, bt)]. The key idea is that these Q-values depend on π1, and
hence the opponent policy π̂2 can be differentiated w.r.t. θ1:1

∇θ1 π̂
2(bt|st) = π̂2(bt|st)

(
∇θ1Q

2(st, bt)−
∑
b

π̂2(b|st)∇θ1Q
2(st, b)

)
. (5)

This dependency of π2 on θ1 leads to the emergence of an extra term in the policy gradient:

∇θ1V
1(µ) = E

τ∼Prπ
1,π2

µ

 ∞∑
t=0

γtA1(st, at, bt)

∇θ1 log π
1(at|st)︸ ︷︷ ︸

policy gradient term

+∇θ1 log π̂
2(bt|st)︸ ︷︷ ︸

opponent shaping term

 . (6)

Aghajohari et al. (2024b) demonstrate an effective way to account for this dependency using REIN-
FORCE. The present work builds on the ideas of LOQA, but reduces opponent shaping to its bare
components to derive Advantage Alignment from first principles.

1See Appendix A.3 for a derivation of this expression.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Advantage Alignment

Initialize: Discount factor γ, agent Q-value parameters ϕ1, t Q-value parameters ϕ1
t , actor pa-

rameters θ1, opponent Q-value parameters ϕ2, t Q-value parameters ϕ2
t , actor parameters θ2

for iteration= 1, 2, . . . do
Run policies π1 and π2 for T timesteps in environment and collect trajectory τ
Compute agent critic loss L1

C using the TD error with r1 and V 1

Compute opponent critic loss L2
C using the TD error with r2 and V 2

Optimize L1
C w.r.t. ϕ1 and L2

C w.r.t. ϕ2 with optimizer of choice
Compute generalized advantage estimates {A1

1, . . . , A
1
T }, {A2

1, . . . , A
2
T }

Compute agent actor loss, L1
a, summing equation 3 and equation 8

Compute opponent actor loss, L2
a, summing equation 3 and equation 8

Optimize L1
a w.r.t. θ1 and L2

a w.r.t. θ2 with optimizer of choice

4 ADVANTAGE ALIGNMENT

4.1 METHOD DESCRIPTION

Motivated by the goal of scaling opponent shaping algorithms to more diverse and complex scenar-
ios, we derive a simple and intuitive objective for efficient opponent shaping. We begin from the
assumptions that agents are learning to maximize their expected return, and will behave in a fashion
that is proportional to this goal:
Assumption 1. Each agent i learns to maximize their value function: maxV i(µ).
Assumption 2. Each opponent i acts proportionally to the exponent of their action-value function:
πi(a|s) ∝ exp

(
β ·Qi(s, a)

)
.

Using Equation 6 and substituting π̂2 in place of π2 (per Assumption 2), we obtain:

∇θ1V
1(µ) = E

τ∼Prπ
1,π2

µ

[∞∑
t=0

γtA1(st, at, bt)
(
∇θ1 log π

1(at|st) +∇θ1 log π̂
2(bt|st)

)]
.

The first term is the usual policy gradient. The second term is the opponent shaping term and will
be our focus. Approximating the opponent’s policy (right hand side of equation 4) by ignoring the
contribution due to the partition function, the opponent shaping term becomes:

β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1(st, at, bt)∇θ1Q2(st, bt)

]
. (7)

The gradient of the Q-value can be estimated by a REINFORCE estimator, which leads to a nested
expectation. Aghajohari et al. (2024b) empirically showed that this nested expectation can be effi-
ciently estimated from a single trajectory. We take the same approach (see Appendix A.1) to obtain:

β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γt+1

(∑
k<t

γt−kA1(sk, ak, bk)

)
A2(st, at, bt)∇θ1 log π1(at|st)

]
. (8)

The expression above captures the essence of opponent shaping: an agent should align its advantages
with those of its opponent in order to steer towards trajectories that are mutually beneficial. More
precisely, an agent increases the probability of actions that have high product between the sum of
its past advantages and the advantages of the opponent at the current time step. For implementation
details of the Advantage Alignment formula see Appendix A.6. Equation 8 depends only on the
log probabilities of the agent, which allows us to create a proximal surrogate objective that closely
follows the PPO (Schulman et al., 2017b) formulation:

E
τ∼Prπ

1,π2
µ

[min {rn(θ1)A∗(st, at, bt), clip (rn(θ1); 1− ϵ, 1 + ϵ)A∗(st, at, bt)}] , (9)

where rn denotes the ratio of the policy (new) after n updates and the original policy (old), and:

A∗(st, at, bt) =

(
A1(st, at, bt) + βγ ·

(∑
k<t

γt−kA1(sk, ak, bk)

)
A2(st, at, bt)

)
. (10)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

+ -

+ + -

- - +

A2
t∑

k<t

γt−kA1
k

+ -

- +

(a)

START CC CD DC DD
State

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
 C

oo
pe

ra
tio

n

Advantage Alignment (AdAlign)

(b)

Figure 1: (a) The sign of the product of the gamma-discounted past advantages for the agent, and
the current advantage of the opponent, indicates whether the probability of taking an action should
increase or decrease. (b) The empirical probability of cooperation of Advantage Alignment for
each previous combination of actions in the one step history Iterated Prisoner’s Dilemma, closely
resembles tit-for-tat. Results are averaged over 10 random seeds, the black whiskers show one std.

This surrogate objective in equation 9 is used to formulate the Proximal Advantage Alignment (Prox-
imal AdAlign) algorithm (see appendix A.7 for implementation details).

Why is Assumption 1 necessary? Assumption 1 allows the agent to influence the learning dy-
namics of the opponent, by controlling the values for different actions. After one iteration of the
algorithm the agent changes the Q-values of the opponent for different actions and, since the oppo-
nent aims to maximize their expected return, it must change its behavior accordingly.

4.2 ANALYZING ADVANTAGE ALIGNMENT

Equation 8 yields four possible different cases for controlling the direction of the gradient of the log
probability of the policy. As with the usual policy gradient estimator, the sign multiplying the log
probability indicates whether the probability of taking an action should increase or decrease. Intu-
itively, when the interaction with the opponent has been positive (blue in figure 1a) the advantages of
the agent align with that of the opponent: the advantage alignment term increases the log probability
of taking an action if the advantage of the opponent is positive and decreases it if it is negative. In
contrast, if the interaction has been negative (red in figure 1a) the advantages are at odds with each
other: the advantage alignment term decreases the log probability of taking an action if the advan-
tage of the opponent is positive and increases it if it is negative. We now relate existing opponent
shaping algorithms to advantage alignment, and argue that these algorithms use the same underlying
mechanisms. Theorem 1 shows that LOLA update from Foerster et al. (2018b) can be written as a
policy gradient method with an opponent shaping term similar to equation 10. This shows the funda-
mental relationship between opponent-shaping dynamics and advantage multiplications. Theorem
2 proves that LOQA’s opponent shaping term has the same form as that of Advantage Alignment,
differing only by a scalar term.
Theorem 1 (LOLA as an advantage alignment estimator). Given a two-player game where players
1 and 2 have respective policies π1(a|s) and π2(b|s), where each policy is parametrised such that
the set of gradients∇θ2 log π

2(a|s) for all pairs (a, s) form an orthonormal basis, the LOLA update
for the first player correspond to a reinforce update with the following opponent shaping term

β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γt

(∞∑
k=t

dγ,k−tγ
k−tA1

kA
2
k−t

)
∇θ1 log π1(at|st)

]
, (11)

where Ai
k := Ai(sk, ak, bk) and dγ,k is the occupancy measure of the tuple (ak, bk, sk) and β is the

step size of the naive learner. See appendix A.2 for a proof.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 2 (LOQA as an advantage alignment estimator). Under Assumption 2, the opponent shap-
ing term in LOQA is equivalent to the opponent shaping term in Equation 8 up to (1− π̃2(bk|sk))

β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γt+1

(∞∑
k<t

γt−k(1− π̃2(bk|sk))A1
k

)
A2

t∇θ1 log π1(at|st)

]
, (12)

π̃2(bt|st) approximates the opponent policy as defined in LOQA. For a proof see appendix A.5.

Having established the connection between existing opponent shaping algorithms and Advantage
Alignment, we now focus on analyzing the theoretical properties of Advantage Alignment itself.
We investigate the impact of the Advantage Alignment term on Nash equilibria. Theorem 3 demon-
strates that Advantage Alignment preserves Nash equilibria, ensuring that if agents are already play-
ing equilibrium strategies, the Advantage Alignment updates will not cause the policy gradient to
deviate from them locally.
Theorem 3 (Advantage Alignment preserves Nash equilibria). Advantage Alignment preserves
Nash equilibria. That is, if a joint policy (π∗

1 , π
∗
2) constitutes a Nash equilibrium, then applying

the Advantage Alignment formula will not change the policy, as the gradient contribution of the
advantage alignment term is zero. The proof can be found in Appendix A.8.

5 EXPERIMENTS

We follow the evaluation protocol of LOQA (Aghajohari et al., 2024b), where the fixed policy that
is generated by the algorithm is evaluated zero-shot against a distribution of policies.

5.1 ITERATED PRISONER’S DILEMMA

We consider the full history version of IPD, where a gated recurrent unit (GRU) policy conditions
on the full trajectory of observations before sampling an action. In this experiment we follow the
architecture used in POLA (Zhao et al., 2022) (for details see appendix B.1). We also consider
trajectories of length 16 with a discount factor, γ, of 0.9. As shown in figure 1b, Advantage Align-
ment agents consistently achieve a policy that resembles tit-for-tat (Rapoport and Chammah, 1965)
empirically. Tit-for-tat consists of cooperating on the first move and then mimicking the opponent’s
previous move in subsequent rounds.

5.2 COIN GAME

The Coin Game is a 3x3 grid world environment where two agents, red and blue, take turns collecting
coins. During each turn, a coin of either red or blue color spawns at a random location on the grid.
Agents receive a reward of +1 for collecting any coin but incur a penalty of -3 if the opponent
collects a coin of their color. A Pareto-optimal strategy in the Coin Game is for each agent to
collect only the coins matching their color, as this approach maximizes the total returns for both
agents. Figure 2 demonstrates that Advantage Alignment agents perform similarly to LOQA agents
when evaluated against a league of different policies: Advantage Alignment agents cooperate with
themselves, cooperate with Always Cooperate (AC) and are not exploited by Always Defect (AD).

5.3 NEGOTIATION GAME

In the original Negotiation Game, two agents bargain over n types of items over multiple rounds.
In each round, both the quantity of items and the value each agent places on them are randomly set,
but the agents only know their own values. They take turns proposing how to divide the items over a
random number of turns. Agents can end the negotiation by agreeing to a proposal, and rewards are
based on how well the agreement matches their private values. If they don’t reach an agreement by
the final turn, neither gets a reward. We modify the game first by making the values public, otherwise
Advantage Alignment would have an unfair edge over PPO agents by using the opponent’s value
function. Secondly, we do one-shot, simultaneous negotiations instead of negotiation rounds lasting
multiple iterations. Third, we modify the reward function so that every negotiation yields a reward.
For a given item with agent value va, the reward of the agent ra depends on the proposal of the agent
pa and the proposal of the opponent po where pa, po ∈ [0, 5]: ra = pa · va/max(5, pa + po).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Ad
Al

ig
n

LO
Q

A

PO
LA

M
FO

S

AC AD Ra
nd

om

AdAlign

LOQA

POLA

MFOS

AC

AD

Random

0.28

0.28

0.28

0.29

0.24

0.18

0.01

0.19

0.31

0.35

0.15

-0.08

-0.18

0.26

0.29

0.28

0.30

0.30

0.24

0.17

0.06

0.16

0.32

0.35

0.12

-0.05

-0.15

0.26

0.18

0.24

0.17

0.24

0.19

0.19

0.01

0.19

0.29

0.38

0.07

-0.03

-0.13

0.24

0.19

0.01

0.16

0.06

0.19

0.01

-0.01

-0.01

0.03

0.32

0.41

-0.42

-0.21

0.20

0.35

0.31

0.35

0.32

0.38

0.29

0.32

0.03

0.35

0.35

0.63

-0.27

0.11

0.05

-0.08

0.15

-0.05

0.12

-0.03

0.07

-0.42

0.41

-0.27

0.63

0.00

-0.00

-0.53

0.53

0.26

-0.18

0.26

-0.15

0.24

-0.13

0.20

-0.21

0.05

0.11

0.53

-0.53

-0.01

0.01

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Return

Figure 2: League Results of the Advantage Alignment agents in Coin Game: LOQA, POLA, MFOS, Always
Cooperate (AC), Always Defect (AD), Random and Advantage Alignment (AdAlign). Each number in the plot
is computed by running 10 random seeds of each agent head to head with 10 seeds of another for 50 episodes
of length 16 and averaging the rewards.

Note that the max operation at the denominator serves to break the invariance of the game dynamics
to the scale of proposals. For example, without the max operation, there would be no difference
between pa = 1, po = 1 and pa = 5, po = 5. The social dilemma in this version of the negotiation
game arises because both agents are incentivized to take as many items as possible, but by doing so,
they end up with a lower return compared to the outcome they would achieve if they split the items
based on their individual utilities. A Pareto-optimal strategy entails allowing the agent to take all the
items that are more valuable to them, and similarly for their opponent (this constitutes the Always
Cooperate (AC) strategy in Figure 3a). We experiment with a high-contrast setting where the utilities
of objects for the agents are orthogonal to each other: There are two possible combinations of values
in this setup: va = 5, vb = 1 or va = 1, vb = 5.

As shown in Figure 3a, PPO agents do not learn to solve the social dilemma. They learn the naive
policy of bidding high for every item which means they get a low return against themselves. PPO
agents trained with shared rewards get a high return against themselves, only to be exploited by
PPO agents. They do not learn to abandon cooperation and retaliate after they are defected against.
Advantage Alignment agents solves the social dilemma. They cooperate with themselves while
remaining non-exploitable against Always Defect.

5.4 MELTING POT’S COMMONS HARVEST OPEN

In Commons Harvest Open (Agapiou et al., 2023), a group of 7 agents interact in a environment
in which there is 6 bushes with different amounts of apples. Agents receive a reward of 1 for any
apple consumed. Consumed apples regrow with a probability dependent on the number of apples in
their L2 neighborhood; specifically, if there are no apples nearby, consumed apples do not regrow.
This mechanism creates a tension between agents: they must exercise restraint to prevent extinction
while also feeling compelled to consume quickly out of fear that others may over-harvest.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

AC AD Ad
Ali

gn

PP
O

PP
O-

SR

AC

AD

AdAlign

PPO

PPO-SR

0.50

0.50

0.55

0.25

0.44

0.39

0.53

0.25

0.46

0.38

0.25

0.55

0.30

0.30

0.28

0.34

0.30

0.30

0.26

0.41

0.39

0.44

0.34

0.28

0.35

0.35

0.34

0.29

0.35

0.37

0.26

0.52

0.30

0.30

0.29

0.34

0.30

0.30

0.27

0.40

0.38

0.45

0.41

0.26

0.37

0.35

0.40

0.27

0.36

0.36

0.22

0.27

0.32

0.37

Return

(a)

 Agent 1
(AdAlign)

P
ro
po
sa
l

U
til
ity

P
ro
po
sa
l

Time step 1 2 3 4 5

Agent 1
 (PPO)

P
ro
po
sa
l

U
til
ity

U
til
ity

1 2 3

Agent 2
 (PPO)

4 5

 Agent 2
(AdAlign)

P
ro
po
sa
l

U
til
ity

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

1

5

5

1

1

1

1

1

1

5

1

1

1

5

1

1

1

5

5

1

5

5

5

5

5

1

1

1

5

5

1

5

5

1

5

5

1

5

5

5

3

5

5

1

5

1

5

4

1

5

1

5

1

2

5

1

1

1

5

5

1

5

5

5

1

1

5

1

1

5

5

1

5

5

1

1

5

5

1

5

5

(b)

Figure 3: (a) League Results of the Advantage Alignment agents in the Negotiation Game: Always
Cooperate (AC), an agent which proposes 5 for items which are more valuable to it and 1 for items
that are less valuable to it, Always Defect (AD), an agent that proposes 5 regardless of the values,
Advantage Alignment (AdAlign), PPO and PPO summing rewards (PPO-SR). Each number in the
plot is computed by running 10 random seeds of each agent head to head with 10 seeds of another
for 50 episodes of length 16 and averaging the rewards. Note that against Always Defect, Always
Cooperate gets an average return of 0.25 while Always Defect gets 0.30. (b) Sample trajectories of
AdAlign vs. AdAlign and PPO vs. PPO in the negotiation game. The numbers show the utilities
and proposals, which have been rounded to integer values. AdAlign agents defect first (red) and
progressively cooperate with each other (blue) while PPO agents Always Defect.

Figure 4: Comparison of different reinforcement learning algorithms in Melting Pot’s 2.0. Commons
Harvest Open. The score is the focal return per capita, min-max normalized between a random agent
and an exploiter baseline (ACB agent with an LSTM policy/value network) trained for 109 steps.
Following the protocol of the Melting Pot contest, we select the best agent out of 10 seeds and
evaluate it 100 times.

There are a number of complications that make the Melting Pot environments particularly challeng-
ing. First, the environments are partially-observable: agents can only see a local window around
themselves. Second, the partial observations are in the form of high-dimensional raw pixel data.
Third, these environments often involve multiple agents—seven in the case of Commons Harvest
Open—which increases the complexity of interactions and coordination. Therefore, agents need to
remember past interactions with other agents to infer their motives and policies. All these factors,
combined with the inherent social dilemma reward structure of the game, make finding policies that
are optimal with respect to social and individual objectives a non-trivial task.

We train a GTrXL transformer (Parisotto et al., 2019) for 34k steps, with context length of 30, and
compare the normalized focal return per capita of our agents against the baselines in Melting Pot 2.0:
Advantage-critic baseline (acb) (Espeholt et al., 2018), V-MPO (vmpo) (Song et al., 2019), options
as responses (opre) (Vezhnevets et al., 2020), and prosocial versions of opre (opre p) and acb (acb p)
that encourage cooperation. We also compare to our own implementations of PPO (ppo) and PPO

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ad
al

ig
n

Step 1 Step 155 Step 310

pp
o

pp
o_

p

Figure 5: Frames of evaluation trajectories for different algorithms. Qualitatively, we demonstrate
that Proximal Advantage Alignment (adalign) also outperforms naive PPO (ppo) and PPO with
summed rewards. The evaluation trajectories show how adalign agents are able to maintain a bigger
number of apple bushes from extinction (2) for a longer time that either ppo or ppo p. Note that
in the Commons Harvest evaluation two exploiter agents, green and yellow, play against a focal
population of 5 copies of the evaluated algorithm.

with summed rewards (ppo p). Figure 4 shows that our best advantage alignment agent achieves
on average 1.63 normalized per capita focal return in the Commons Harvest evaluation scenarios,
significantly outperforming all baselines (see Appendix B.4). Figure 5, qualitatively shows the
reason why Proximal Advantage Alignment outperforms PPO and PPO with summed rewards on
one of the evaluation scenarios.

6 RELATED WORK

The Iterated Prisoner’s Dilemma (IPD) was introduced by Rapoport and Chammah (1965). Tit-for-
tat was discovered as a robust strategy against a population of opponents in IPD by Axelrod (1984),
who organized multiple IPD tournaments. It was discovered only recently that IPD contains strate-
gies that extort rational opponents into exploitable cooperation (Press and Dyson, 2012). Sandholm
and Crites (1996) were the first to demonstrate that two Q-learning agents playing IPD converge to
mutual defection, which is suboptimal. Later, Foerster et al. (2018b) demonstrated that the same
is true for policy gradient methods. Bertrand et al. (2023) were able to show that with optimistic
initialization and self-play, Q-learning agents find a Pavlov strategy in IPD.

Opponent shaping was first introduced in LOLA Foerster et al. (2018b), as a method for controlling
the learning dynamics of opponents in a game. A LOLA agent assumes the opponents are naive
learners and differentiates through a one step look-ahead optimization update of the opponent. More
formally, LOLA maximizes V 1(θ1, θ2 + ∆θ2) where ∆θ2 is a naive learning step in the direction
that maximizes the opponent’s value function V 2(θ1, θ2). Variations of LOLA have been introduced

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

to have formal stability guarantees (Letcher et al., 2021), learn consistent update functions assuming
mutual opponent shaping (Willi et al., 2022) and be invariant to policy parameterization (Zhao et al.,
2022). More recent work performs opponent shaping by having an agent play against a best response
approximation of their policy (Aghajohari et al., 2024a). LOQA (Aghajohari et al., 2024b), on which
this work is based, performs opponent shaping by controlling the Q-values of the opponent using
REINFORCE (Williams, 1992) estimators.

Another approach to finding socially beneficial equilibria in general sum games relies on modeling
the problem as a meta-game, where meta-rewards correspond to the returns on the inner game, meta-
states correspond to joint policies of the players, and the meta-actions are updates to these policies.
Al-Shedivat et al. (2018) introduce a continuous adaptation framework for multi-task learning that
uses meta-learning to deal with non-stationary environments. MFOS (Lu et al., 2022) uses model-
free optimization methods like PPO and genetic algorithms to optimize the meta-value of the meta-
game. More recently Meta-Value Learning (Cooijmans et al., 2023) parameterizes the meta-value
as a neural network and applies Q-learning to capture the future effects of changes to the inner
policies. Shaper (Khan et al., 2024), scales opponent shaping to high-dimensional general-sum
games with temporally extended actions and long time horizons. It does so, by simplifying MFOS
and effectively capturing both intra-episode and inter-episode information.

Melting Pot 2.0 (Agapiou et al., 2023) introduces a comprehensive suite of multi-agent reinforce-
ment learning environments that focus on social interactions and coordination challenges, providing
a valuable benchmark for evaluating the scalability and effectiveness of reinforcement learning algo-
rithms in complex, cooperative-competitive settings. The Negotiation Game, introduced by DeVault
et al. (2015); Lewis et al. (2017) and subsequently refined by Cao et al. (2018), has proven to be a
significant benchmark for studying general-sum games. It integrates elements of strategy and social
dilemmas, necessitating that agents balance cooperation and competition to optimize their outcomes.
Noukhovitch et al. (2021) analyze this complex benchmark, underscoring its importance in the field.
Future investigations will turn towards an even more sophisticated simulation proposed by Zhang
et al. (2022), which involves negotiations among countries and regions with diverse resource distri-
butions and preferences in addressing climate change.

7 CONCLUSION

In this work, we introduced Advantage Alignment, a novel family of algorithms designed to ad-
dress the fundamental challenge of achieving self-interested cooperation in multi-agent reinforce-
ment learning, particularly in social dilemmas. By deriving our algorithms from first principles, we
distilled opponent shaping to its core components, providing a simple yet powerful mechanism to
align agents’ advantages and foster mutually beneficial behaviors. Our approach unifies and gen-
eralizes existing opponent shaping methods, such as LOLA and LOQA, demonstrating that they
implicitly perform Advantage Alignment through different mechanisms. This unification not only
simplifies the mathematical formulation of opponent shaping but also reduces computational com-
plexity, enabling more efficient and scalable algorithms.

Our experiments across a range of social dilemmas, including the Iterated Prisoner’s Dilemma,
Coin Game, and a continuous action variant of the Negotiation Game, demonstrate that Advantage
Alignment consistently achieves state-of-the-art cooperation and robustness against exploitation.
Notably, we extended our methods to complex, large-scale, general-sum environments like Melting
Pot’s Commons Harvest Open, addressing challenges that arise from partial observability, high-
dimensional observations, and multi-agent interactions. In these settings, Advantage Alignment
agents learned sophisticated strategies that balance individual and collective interests, showcasing
the potential of our algorithms to scale to real-world applications.

The significance of our work lies in providing a principled, efficient, and scalable solution to the
longstanding problem of self-interested cooperation in general-sum games. By enabling agents
to autonomously align their interests with one another, Advantage Alignment paves the way for
more harmonious and socially beneficial interactions in artificial intelligence systems integrated
into human decision-making processes. This has profound implications for the development of
AI agents in diverse domains, from autonomous vehicles navigating shared environments to AI
assistants collaborating with humans and other agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Agapiou, J. P., Vezhnevets, A. S., Duéñez-Guzmán, E. A., Matyas, J., Mao, Y., Sunehag, P., Köster,
R., Madhushani, U., Kopparapu, K., Comanescu, R., Strouse, D., Johanson, M. B., Singh, S.,
Haas, J., Mordatch, I., Mobbs, D., and Leibo, J. Z. (2023). Melting pot 2.0.

Agarwal, A., Jiang, N., Kakade, S., and Sun, W. (2021). Reinforcement Learning: Theory and
Algorithms. Preprint.

Aghajohari, M., Cooijmans, T., Duque, J. A., Akatsuka, S., and Courville, A. (2024a). Best response
shaping.

Aghajohari, M., Duque, J. A., Cooijmans, T., and Courville, A. (2024b). Loqa: Learning with
opponent q-learning awareness.

Al-Shedivat, M., Bansal, T., Burda, Y., Sutskever, I., Mordatch, I., and Abbeel, P. (2018). Continu-
ous adaptation via meta-learning in nonstationary and competitive environments.

Axelrod, R. (1984). The Evolution of Cooperation. Basic, New York.

Bertrand, Q., Duque, J., Calvano, E., and Gidel, G. (2023). Q-learners can provably collude in the
iterated prisoner’s dilemma.

Cao, K., Lazaridou, A., Lanctot, M., Leibo, J. Z., Tuyls, K., and Clark, S. (2018). Emergent com-
munication through negotiation.

Cooijmans, T., Aghajohari, M., and Courville, A. (2023). Meta-value learning: a general framework
for learning with learning awareness.

DeVault, D., Mell, J., and Gratch, J. (2015). Toward natural turn-taking in a virtual human negotia-
tion agent. In AAAI Spring Symposia.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley,
T., Dunning, I., Legg, S., and Kavukcuoglu, K. (2018). Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures.

Foerster, J., Farquhar, G., Al-Shedivat, M., Rocktäschel, T., Xing, E. P., and Whiteson, S. (2018a).
Dice: The infinitely differentiable monte-carlo estimator.

Foerster, J. N., Chen, R. Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., and Mordatch, I. (2018b).
Learning with opponent-learning awareness.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models.

Khan, A., Willi, T., Kwan, N., Tacchetti, A., Lu, C., Grefenstette, E., Rocktäschel, T., and Foerster,
J. (2024). Scaling opponent shaping to high dimensional games.

Lerer, A. and Peysakhovich, A. (2018). Maintaining cooperation in complex social dilemmas using
deep reinforcement learning.

Letcher, A., Foerster, J., Balduzzi, D., Rocktäschel, T., and Whiteson, S. (2021). Stable opponent
shaping in differentiable games.

Lewis, M., Yarats, D., Dauphin, Y. N., Parikh, D., and Batra, D. (2017). Deal or no deal? end-to-end
learning for negotiation dialogues. arXiv preprint arXiv: 1706.05125.

Lu, C., Willi, T., de Witt, C. S., and Foerster, J. (2022). Model-free opponent shaping.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learning.

Noukhovitch, M., LaCroix, T., Lazaridou, A., and Courville, A. C. (2021). Emergent communi-
cation under competition. In Dignum, F., Lomuscio, A., Endriss, U., and Nowé, A., editors,
AAMAS ’21: 20th International Conference on Autonomous Agents and Multiagent Systems, Vir-
tual Event, United Kingdom, May 3-7, 2021, pages 974–982. ACM.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Parisotto, E., Song, H. F., Rae, J. W., Pascanu, R., Gulcehre, C., Jayakumar, S. M., Jaderberg, M.,
Kaufman, R. L., Clark, A., Noury, S., Botvinick, M. M., Heess, N., and Hadsell, R. (2019).
Stabilizing transformers for reinforcement learning.

Press, W. H. and Dyson, F. J. (2012). Iterated prisoner’s dilemma contains strategies that dominate
any evolutionary opponent. Proceedings of the National Academy of Sciences, 109(26):10409–
10413.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language under-
standing by generative pre-training.

Rapoport, A. and Chammah, A. (1965). Prisoner’s Dilemma: A Study in Conflict and Cooperation.
University of Michigan Press.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron, G., Gimenez, M.,
Sulsky, Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J., Razavi, A., Edwards, A., Heess, N.,
Chen, Y., Hadsell, R., Vinyals, O., Bordbar, M., and de Freitas, N. (2022). A generalist agent.

Rummery, G. and Niranjan, M. (1994). On-line q-learning using connectionist systems. Technical
Report CUED/F-INFENG/TR 166, Cambridge University.

Sandholm, T. and Crites, R. (1996). Multiagent reinforcement learning in the iterated prisoner’s
dilemma. Bio Systems, 37(1-2):147–166.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. (2017a). Trust region policy
optimization.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2018). High-dimensional continu-
ous control using generalized advantage estimation.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017b). Proximal policy
optimization algorithms.

Shapley, L. (1953). Stochastic games. Proceedings of the national academy of sciences,
39(10):1095–1100.

Song, H. F., Abdolmaleki, A., Springenberg, J. T., Clark, A., Soyer, H., Rae, J. W., Noury, S.,
Ahuja, A., Liu, S., Tirumala, D., Heess, N., Belov, D., Riedmiller, M., and Botvinick, M. M.
(2019). V-mpo: On-policy maximum a posteriori policy optimization for discrete and continuous
control.

Vezhnevets, A., Wu, Y., Eckstein, M., Leblond, R., and Leibo, J. Z. (2020). OPtions as REsponses:
Grounding behavioural hierarchies in multi-agent reinforcement learning. In III, H. D. and Singh,
A., editors, Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages 9733–9742. PMLR.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279–292.

Willi, T., Letcher, A., Treutlein, J., and Foerster, J. (2022). Cola: Consistent learning with opponent-
learning awareness.

Williams, R. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256.

Zhang, T., Williams, A., Phade, S. R., Srinivasa, S., Zhang, Y., Gupta, P., Bengio, Y., and Zheng,
S. (2022). Ai for global climate cooperation: Modeling global climate negotiations, agreements,
and long-term cooperation in rice-n. Social Science Research Network.

Zhao, S., Lu, C., Grosse, R. B., and Foerster, J. N. (2022). Proximal learning with opponent-learning
awareness.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Mathematical Derivations 14

A.1 Deriving the Advantage Alignment Formula 14
A.2 Proof of Theorem 1 . 15
A.3 Gradient of LOQA . 17
A.4 Gradient of LOQA in Continuous Action Spaces 17
A.5 Proof of Theorem 2 . 18
A.6 Advantage Alignment Implementation . 19
A.7 Proximal Advantage Alignment . 19
A.8 Proof of Theorem 3 . 20
A.9 N-Player Advantage Alignment . 20

B Experimental Details 21
B.1 Iterated Prisoner’s Dilemma . 21
B.2 Coin Game . 21
B.3 Negotiation Game . 22
B.4 Melting Pot’s Commons Harvest Open . 23

C Additional Figures 24
C.1 Negotiation Game Training Curves . 24
C.2 Coin Game Full League Results . 24
C.3 Ablation Study Commons Harvest Open . 25

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MATHEMATICAL DERIVATIONS

A.1 DERIVING THE ADVANTAGE ALIGNMENT FORMULA

In this section we derive the Advantage Alignment formula in equation equation 8 from the opponent
shaping expression in equation equation 6 and assumption 2. Recall assumption 2:

πi(a|s) ∝ expβEb∼π3−i(·|s)[Q
i(s, a, b)]

Note that if i = 1, 3 − i = 2 and if i = 2, 3 − i = 1. Recall the opponent shaping policy gradient
expression:

∇θ1V
1(µ) = E

τ∼Prπ
1,π2

µ

 ∞∑
t=0

γtA1(st, at, bt)

∇θ1 log π
1(at|st)︸ ︷︷ ︸

(A)

+∇θ1 log π
2(bt|st)︸ ︷︷ ︸

(B)

We expand the term (B) above splitting the expectation, by assumption 2, we can write:

E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1(st, at, bt)∇θ1 log π
2(bt|st)

]

= β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1(st, at, bt)∇θ1 log expEa∼π1(|st)[Q
2(st, a, bt)]

]

= β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1(st, at, bt)∇θ1Ea∼π1(|st)[Q
2(st, a, bt)]

]
.

where is the second line we used the fact that the expected advantage is zero. For convenience of
notation we define:

rit := ri(st, at, bt), A
i
t := Ai(st, at, bt)

These are the reward and advantage of agent i at time step t after taking action at and opponent
taking action bt. From the Bellman equation equation 2 we expand as follows:

β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1(st, at, bt)∇θ1Ea∼π1(|st)[Q
2(st, a, bt)]

]
(13)

= β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1
t∇θ1

(
Es′

[
r2t + γ · V 2(s′)

∣∣∣∣st, bt])
]

(14)

= β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γt+1A1
t∇θ1Es′

[
V 2(s′)

∣∣∣∣st, bt]
]

(15)

= β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γt+1A1
tEτ ′∼Prπ

1,π2
µ

[∞∑
k=0

γkA2
k∇θ1 log π1(a′k|s′k)

∣∣∣∣st, bt
]]

(16)

= β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

E
τ ′∼Prπ

1,π2
µ

[∞∑
k=0

γk+t+1A1
tA

2
k∇θ1 log π1(a′k|s′k)

∣∣∣∣st, bt
]]

(17)

= β · E
τ∼Prπ

1,π2
µ

[
E
τ ′∼Prπ

1,π2
µ

[∞∑
t=0

∞∑
k=t+1

γt+k+1A1
tA

2
k∇θ1 log π1(a′k|s′k)

∣∣∣∣st, bt
]]

(18)

= β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

∞∑
k=t+1

γt+k+1A1
tA

2
k∇θ1 log π1(ak|sk)

]
. (19)

We use Bellman equation in line (14), and the policy gradient theorem in line (16). In line (17),
we use the fact that γtA1(st, at, bt) is measurable w.r.t. the natural filtration of the process up to
time t, Ft, and the independence of the two terms conditioned on Ft by the Markov property. In
line (18) we use linearity of expectation. In line (19) we use the rule of the iterated expectations.
Reorganizing the summations in causal form we get the desired result:

β · E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γt+1

(∑
k<t

γt−kA1(sk, ak, bk)

)
A2(st, at, bt)∇θ1 log π1(at|st)

]
. (8)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 PROOF OF THEOREM 1

Lemma 1 (Policy changes under gradient ascent). Given a policy πθ(a|s) parametrised such that the
set of gradients ∇θ log πθ(a|s) for all pairs (a, s) form an orthonormal basis, and a value function
V (θ), the following holds:

d

dα
πθ+α∇θV (a|s) = ∇θV · ∇θπθ(a|s) = dγ(s)πθ(a|s)2A(a|s) (20)

dγ(s) ≡
∞∑
t=0

γtPr(st = s) (21)

A(a|s) ≡ Q(a|s)− V (s) (22)

Proof. The policy gradient theorem gives us:

∇θV (θ) = Eτ∼π

∞∑
t=0

γtA(at|st)∇θ log πθ(at|st) (23)

=
∑
(s,a)

dγ(s)πθ(a|s)A(a|s)∇θ log πθ(a|s) (24)

Taking the dot product of this expression with ∇θπθ(a
′|s′) = πθ(a

′|s′)∇θ log πθ(a
′|s′) and invok-

ing the assumed orthonormality of gradients:

∇θπθ(a
′|s′) · ∇θV (θ) (25)

=
∑
(s,a)

dγ(s)πθ(a|s)πθ(a
′|s′)A(a|s)

(
∇θ log πθ(a|s) · ∇θ log πθ(a

′|s′)
)

(26)

= dγ(s
′)πθ(a

′|s′)2A(a′|s′) (27)

Theorem 1. (LOLA policy gradient) Given a two-player game where players 1 and 2 have respec-
tive policies π1(a|s) and π2(b|s), where each policy is parametrised such that the set of gradients
∇θ2 log π

2(a|s) for all pairs (a, s) form an orthonormal basis, the LOLA update for the first player
correspond to a reinforce update with an advantage

A∗
LOLA(st, at, bt) = A1(st, at, bt) + β ·

∞∑
k=t

dγ,k−tγ
k−tA1

kA
2
k−t. (11)

where Ai
k := Ai(sk, ak, bk) and dγ,k is the occupancy measure of the tuple (ak, bk, sk)

Proof. LOLA (Foerster et al., 2018b) optimizes the return of the agent under an imagined opti-
mization step of the opponent (assuming the opponent is a naive learning algorithm). Under their
notation, a LOLA agent optimizes V 1(θ1, θ2 + ∆θ2) where ∆θ2 is a gradient ascent step on the
parameters of the opponent θ2. Note that along this proof because we consider the method proposed
by (Foerster et al., 2018b) we use their way to compute gradients. Particularly, one does not use
Assumption 2, and consequently assume that∇θ1 log πθ2 = 0 (and respectively ∇θ2 log πθ1 = 0.)

Since computing this value function explicitly is difficult, LOLA uses the first-order Taylor expan-
sion surrogate objective:

V 1(θ1, θ2 +∆θ2) ≈ V 1(θ1, θ2) + (∆θ2)
T ∇θ2V

1(θ1, θ2) (28)

The gradient of the expression above w.r.t. the parameters θ1 of the agent is given by

∇θ1V
1(θ1, θ2 + α∇θ2V

2(θ1, θ2)) = ∇θ1V
1(θ1, θ2) + β

(
∇θ1∇θ2V

1(θ1, θ2)
)
∇θ2V

2(θ1, θ2).
(29)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The first-order terms above is computed using the Advantage form of the REINFORCE estimator,
which is given by equation equation 3. Foerster et al. (2018b) derive the following REINFORCE
estimator for the second-order term:

∇θ1∇θ2V
1(θ1, θ2) (30)

= E
τ∼Prπ

1,π2
µ

 ∞∑
t=0

γtr1t

(
t∑

k=0

∇θ1 log π
1(at|st)

)(
t∑

k=0

∇θ2 log π
2(bt|st)

)⊤ (31)

Now, we use the following fact
∞∑
t=0

ct(

t∑
k=0

ak)(

t∑
l=0

bl) =

∞∑
t=0

ct

t∑
S=0

S∑
k=0

akbS−k =

∞∑
S=0

∞∑
t=S

S∑
k=0

akbS−kct =

∞∑
S=0

S∑
k=0

akbS−k

∞∑
t=S

ct

to expand the second order term beginning from equation 29, to bring out the advantage A1
t :

∇θ1∇θ2V
1(θ1, θ2) (32)

= E
τ∼Prπ

1,π2
µ

 ∞∑
t=0

γtr1t

(
t∑

k=0

∇θ1 log π
1(at|st)

)(
t∑

k=0

∇θ2 log π
2(bt|st)

)⊤ (33)

= E
τ∼Prπ

1,π2
µ

[∞∑
S=0

(
S∑

k=0

∇θ1 log π
1(ak|sk)∇θ2 log π

2(bS−k|sS−k)
⊤

) ∞∑
t=S

γtr1t

]
(34)

= E
τ∼Prπ

1,π2
µ

[∞∑
t=0

(
t∑

k=0

∇θ1 log π
1(ak|sk)∇θ2 log π

2(bt−k|st−k)
⊤

) ∞∑
l=t

γlr1l

]
(35)

= E
τ∼Prπ

1,π2
µ

[∞∑
t=0

(
t∑

k=0

∇θ1 log π
1(ak|sk)∇θ2 log π

2(bt−k|st−k)
⊤

)
γtE

[∞∑
l=0

γlr1l+t

]]
(36)

= E
τ∼Prπ

1,π2
µ

[∞∑
t=0

(
t∑

k=0

∇θ1 log π
1(ak|sk)∇θ2 log π

2(bt−k|st−k)
⊤

)
γtQ1(st, at, bt)

]
(37)

= E
τ∼Prπ

1,π2
µ

[∞∑
t=0

(
t∑

k=0

∇θ1 log π
1(ak|sk)∇θ2 log π

2(bt−k|st−k)
⊤

)
γtA1

t

]
, (38)

where we reorder the terms of the summation to sum over future rewards instead of past gradient
terms in line 34, we use the law of iterated expectation in line 36 and a baseline subtraction in line
38.

Per Equation equation 29, we multiply this Hessian with the gradient of the value function

∇θ2V
2(θ1, θ2) = Eτ∼π

∞∑
t=0

γtA2(at, bt|st)∇θ2 log π
2(bt|st) (39)

=
∑

(s,a,b)

dγ(a, b, s)A
2(a, b|s)∇θ2 log π

2(b|s) (40)

where where dγ(a, b, s) is the occupancy measure of the state actions tuple (a, b, s), and use the
assumption that the gradients (∇θ2 log π

2(a|s))(a,s) form an orthonormal basis to obtain

E
τ∼Prπ

1,π2
µ

[∞∑
t=0

(
t∑

k=0

∇θ1 log π
1(ak|sk)dγ(at−k, bt−k, st−k)A

2
t−k

)
γtA1

t

]
.

To completes the proof, we finally need to switch the summations to get

E
τ∼Prπ

1,π2
µ

[∞∑
t=0

(∞∑
k=t

γkA1
kdγ(ak−t, bk−t, sk−t)A

2
k−t

)
∇θ1 log π

1(at|st)

]
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 GRADIENT OF LOQA

Recall the opponent policy approximation used in LOQA, which takes a softmax over the Q-values
of the opponent. We assume exact estimates of these Q-values:

π̂2(bt|st) :=
expQ2(st, at, bt)∑
b expQ

2(st, at, b)
(4)

Note that π̂2(bt|st) is differentiable w.r.t. the parameters θ1 of the policy of the agent because the
Q-values depend on π1. Therefore, we can use the policy gradient theorem (see Aghajohari et al.
(2024b)) to differentiate the value function of the opponent w.r.t. the parameters of the agent. For
convenience of notation we define:

Qi
t(b) := Qi(st, at, b)

Computing the gradient of the approximated opponent’s policy we get:

∇θ1 π̂
2(bt|st) = ∇θ1

(
expQ2(st, at, bt)∑
b expQ

2(st, at, b)

)
(41)

=
∇θ1 expQ

2
t (bt)∑

b expQ
2
t (b)

−
expQ2

t (bt)∇θ1

∑
b expQ

2
t (b)

(
∑

b expQ
2
t (b))

2 (42)

=
expQ2

t (bt)∇θ1Q
2
t (bt)∑

b expQ
2
t (b)

−
expQ2

t (bt)
∑

b expQ
2
t (b)∇θ1Q

2
t (b)

(
∑

b expQ
2
t (b))

2 (43)

=
expQ2

t (bt)∑
b expQ

2
t (b)

(
∇θ1Q

2
t (bt)−

∑
b

expQ2
t (b)∇θ1Q

2
t (b)∑

b expQ
2
t (b)

)
(44)

= π̂2(bt|st)

(
∇θ1Q

2
t (bt)−

∑
b

π̂2(b|st)∇θ1Q
2
t (b)

)
, (45)

where we used the quotient rule in line (42) and equation equation 4 in line(45). By the chain rule,
the gradient of the log probability is:

∇θ1 log π̂
2(bt|st) =

∇θ1 π̂
2(bt|st)

π̂2(bt|st)
= ∇θ1Q

2
t (bt)−

∑
b

π̂2(b|st)∇θ1Q
2
t (b).

This concludes the derivation.

A.4 GRADIENT OF LOQA IN CONTINUOUS ACTION SPACES

We derive the gradient of the opponent’s policy π2(b|s) with respect to the agent’s parameters θ1,
assuming a continuous action space.

The opponent’s policy is defined as:

π2(b|s) = exp(Q2(s, b))∫
A exp(Q2(s, b′)) db′

, (46)

where Q2(s, b) is the Q-value of the opponent for action b, and A is the continuous action space.

Our goal is to compute the gradient of π2(b|s) with respect to θ1, the parameters of agent 1, which
affect Q2(s, b) through interactions.

Taking the log of π2(b|s), we get:

log π2(b|s) = Q2(s, b)− log

(∫
A
exp(Q2(s, b′)) db′

)
. (47)

The gradient of log π2(b|s) with respect to θ1 is:

∇θ1 log π
2(b|s) = ∇θ1Q

2(s, b)−∇θ1 log

(∫
A
exp(Q2(s, b′)) db′

)
. (48)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Next, we compute the gradient of the log partition function Z(s) =
∫
A exp(Q2(s, b′)) db′:

∇θ1 logZ(s) =
∇θ1Z(s)

Z(s)
=

1∫
A exp(Q2(s, b′)) db′

∫
A
exp(Q2(s, b′))∇θ1Q

2(s, b′) db′, (49)

which simplifies to:

∇θ1 logZ(s) =

∫
A
π2(b′|s)∇θ1Q

2(s, b′) db′. (50)

Now, applying the chain rule to compute the gradient of π2(b|s), we get:

∇θ1π
2(b|s) = π2(b|s)

(
∇θ1Q

2(s, b)−
∫
A
π2(b′|s)∇θ1Q

2(s, b′) db′
)
. (51)

We are allowed to interchange the gradient and the integral by applying Leibniz’s rule, which holds
under the following conditions: 1. exp(Q2(s, b′)) and its gradient ∇θ1 exp(Q

2(s, b′)) are continu-
ous, as both the exponential function and the Q-value function Q2(s, b′) are smooth. 2. The integral∫
A exp(Q2(s, b′)) db′ converges due to the boundedness of Q2(s, b′) or a rapid decay over the action

space. 3. We assume∇θ1Q
2(s, b′) is bounded, ensuring the interchange of the gradient and integral

is well-defined. Thus, the final expression for the gradient of the opponent’s policy is:

∇θ1π
2(b|s) = π2(b|s)

(
∇θ1Q

2(s, b)−
∫
A
π2(b′|s)∇θ1Q

2(s, b′) db′
)
. (52)

The Integral above is intractable, which makes continuous action LOQA hard to scale.

A.5 PROOF OF THEOREM 2

Proof. In practice, LOQA deviates from the approach discussed in Appendix A.3. Specifically, it
does not differentiate through all of the Q-values, but only through that of the action bt actually
observed in the sampled trajectory:

π̃2(bt|st) :=
expQ2(st, at, bt)

expQ2(st, at, bt) +
∑

b ̸=bt
expQ2(st, at, b)︸ ︷︷ ︸

non-differentiable

(53)

This choice is made because the trajectory provides an estimate of the Q-value of each opponent
action bt. This estimate statistically depends on the agent’s actions a<t and therefore can be stochas-
tically differentiated w.r.t θ1 using REINFORCE. The other Q-values will be estimated by function
approximators, which depend only implicitly on θ1 and cannot be differentiated.

Differentiating equation 53 leads to a simplified gradient:

∇θ1 π̃
2(bt|st) = ∇θ1

(
expQ2(st, at, bt)

expQ2(st, at, bt) +
∑

b ̸=bt
expQ2(st, at, b)

)
(54)

= ∇θ1 expQ
2
t (bt)

(
expQ2

t (bt) +
∑

b ̸=bt
expQ2

t (b)
)
− expQ2

t (bt)(
expQ2

t (bt) +
∑

b ̸=bt
expQ2

t (b)
)2 (55)

= expQ2
t (bt)∇θ1Q

2
t (bt)

∑
b̸=bt

expQ2
t (b) + expQ2

t (bt)− expQ2
t (bt)(

expQ2
t (bt) +

∑
b ̸=bt

expQ2
t (b)

)2 (56)

= π̃2(bt|st)(1− π̃2(bt|st))∇θ1Q
2
t (bt). (57)

By the chain rule, the gradient of the log probability is

∇θ1 log π̃
2(bt|st) =

∇θ1 π̃
2(bt|st)

π̃2(bt|st)
= (1− π̃2(bt|st))∇θ1Q

2
t (bt). (58)

The difference between LOQA and Advantage Alignment lies in the extra scaling factor (1 −
π̃2(bt|st)) which accounts for the partition function. Plugging equation 58 into the generalized
policy gradient equation equation 6 proves the theorem.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2 Proximal Advantage Alignment

Initialize: Discount factor γ, agent Q-value parameters ϕ1, t Q-value parameters ϕ1
t , actor pa-

rameters θ1, opponent Q-value parameters ϕ2, t Q-value parameters ϕ2
t , actor parameters θ2

for iteration= 1, 2, . . . do
Run policies π1 and π2 for T timesteps in environment and collect trajectory τ
Compute agent critic loss L1

C using the TD error with r1 and V 1

Compute opponent critic loss L2
C using the TD error with r2 and V 2

Optimize L1
C w.r.t. ϕ1 and L2

C w.r.t. ϕ2 with optimizer of choice
Optimize L1

C w.r.t. ϕ1 and L2
C w.r.t. ϕ2 with optimizer of choice

Compute generalized advantage estimates {A1
1, . . . , A

1
T }, {A2

1, . . . , A
2
T }

Compute agent actor loss, L1
a, using equation 9

Compute opponent actor loss, L2
a, using equation 9

Optimize L1
a w.r.t. θ1 and L2

a w.r.t. θ2 with optimizer of choice

A.6 ADVANTAGE ALIGNMENT IMPLEMENTATION

To more clearly see the Advantage Alignment formula as an influence over each individual log
probability term recall the formulation:

E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γt+1

(∑
k<t

γt−kA1(sk, ak, bk)

)
A2(st, at, bt)∇θ1 log π1(at|st)

]
. (8)

The γt term helps regularize the linear scaling of the sum of the advantages of the agent. Alterna-
tively one could regularize using 1/(1 + t) instead:

E
τ∼Prπ

1,π2
µ

[∞∑
t=0

1

1 + t

(∑
k<t

A1(sk, ak, bk)

)
A2(st, at, bt)∇θ1 log π1(at|st)

]
. (59)

Which accounts to increasing the probability of the actions that align the sum of the past advantages
of the agent up to the current time-step t− 1 and the advantage of the opponent at the current time-
step, t. In our implementation we use equation 59, as it considers more terms in the future and works
better in practice.

A.7 PROXIMAL ADVANTAGE ALIGNMENT

We can combine the two policy gradient terms into a single one to come up with a proximal Advan-
tage Alignment formulation:

E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA1
t∇θ1 log π1(at|st) + βγ

∞∑
t=0

γt

(∑
k<t

γt−kA1
k

)
A2

t∇θ1 log π1(at|st)

]
(60)

Where β is the weight put into the Advantage Alignment loss (the negative inverse of the Boltzmann
constant times the temperature). Then we have:

E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γt

(
A1

t + βγ

(∑
k<t

γt−kA1
k

)
A2

t

)
∇θ1 log π1(at|st)

]
. (61)

This is just the normal advantage policy gradient with a modified advantage A∗:

E
τ∼Prπ

1,π2
µ

[∞∑
t=0

γtA∗
t∇θ1 log π1(at|st)

]
, where A∗

t = A1
t + βγ

(∑
k<t

γt−kA1
k

)
A2

t . (62)

Recall the Trust Region Policy Optimization (TRPO) (Schulman et al., 2017a) objective, we want
to maximize the value function while maintaining the updated policy close in policy space:

max
θ1

V 1(µ)

s.t. sup
s

∥∥π1(·|s)− π1
n(·|s)

∥∥
tv ≤ δ

(63)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We can use the PPO (Schulman et al., 2017b) surrogate objective:

E
τ∼Prπ

1,π2
µ

[
min

{
rn(θ1)A

1
t , clip (rn(θ1); 1− ϵ, 1 + ϵ)A1

t

}]
(64)

Now we apply it to the Advantage Alignment formulation that uses the modified advantage on the
policy gradient equation 62:

E
τ∼Prπ

1,π2
µ

[min {rn(θ1)A∗
t , clip (rn(θ1); 1− ϵ, 1 + ϵ)A∗

t }] , (9)

where we denote π1
n(at|st) to be the updated policy and rn(θ1) = π1

n(at|st)/π1(at|st) is the ratio
between the updated policy and the old policy. We used generalized advantage estimation (GAE)
(Schulman et al., 2018) to compute the advantages in this expression. Algorithm 2 summarizes the
implementation of Proximal Advantage Alignment.

A.8 PROOF OF THEOREM 3

Let θ1, ..., θn be the parameter each agent, πθi(a|s) be the policies represented by those parameters,
and Vi(θ1, ..., θn) be the value function of agent i as a function of all the other agents.

Lemma 2 (Zero Advantages At Nash). For all Nash Equilibria of the game, if there exist parameters
θ∗1 , ..., θ

∗
n such that πθ∗

i
= π∗

i , where π∗
i is the policy of agent i at the Nash, then for all action-state

pairs with non-zero probability under the Nash policies, we have Ai(a|s) = 0.

Proof. By the Bellman Optimality Equation, at an optimal policy the value of agent i becomes
V ∗
i (s) = argmaxa Q

∗(a, s), hence all actions with non-zero probability under π∗
i have the same

Q∗(a, s), and since A(a, s) ≡ Q(a, s)− V (s), the advantage will vanish.

We now use lemma 2 to prove that the Advantage Alignment term is zero at a Nash equilibrium.

Proof. Under Advantage Alignment, the updates we take can be represented by

θ′i ← θi + α · E
τ∼Prπ

i,π−i
µ

[∞∑
t=0

Bi
t ∇θi log πθi(at|st)

]
(65)

Bi
t ≡ Ai

t + β · E
τ∼Prπ

i,π−i
µ

∑
j ̸=i

(∑
k<t

γt−kAi
k

)
Aj

t

 (66)

But by lemma 2, Aj(bt|st) = 0 for all actions at a Nash, hence the second term vanishes, as does
the first term for the same reason.

A.9 N-PLAYER ADVANTAGE ALIGNMENT

Consider the n-player setup, we can use the policy gradient theorem and assumption 2 to derive the
following expression:

∇θ1V
i(µ) = E

τ∼Prπ
i,π−i

µ

 ∞∑
t=0

γtAi
t

∇θi log π
i(ait|st) +

∑
j ̸=i

∇θi log π
j(ajt |st)

 (67)

Which naturally leads to the following modification to the PPO advantage following the derivation
used in Proximal Advantage Alignment:

Ai
t

∗
= Ai

t + βγ

(∑
k<t

γt−kAi
k

)∑
j ̸=i

Aj
t (68)

Here we use the standard game theory notation of i to refer to the current player and −i to refer to
all other players. Similarly ait denotes the action of player i at time t.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS

B.1 ITERATED PRISONER’S DILEMMA

We use an MLP layer connected to a GRU followed by another MLP head for both the actor and
critic networks, similar to the architecture used in POLA (Zhao et al., 2022). We also use a replay
buffer of agents collected during training, following Aghajohari et al. (2024b). All of our IPD
experiments run in 50 minutes in a nvidia A100 gpu.

Table 1: IPD Hyperparameters

Parameter Value
Actor Training Optimizer Adam
Actor Training Entropy Beta 0.15
Actor Training Learning Rate (Actor Loss) 0.0001
Advantage Alignment Weight 0.3
Actor Hidden Size 64
Layers Before GRU 1
Q-Value Training Optimizer Adam
Q-Value Training Learning Rate 0.001
Q-Value Training Target EMA Gamma 0.99
Q-Value Hidden Size 64
Batch Size 2048
Self-Play True
Reward Discount Factor 0.9
Agent Replay Buffer Capacity 10000
Agent Replay Buffer Update Frequency 1
Agent Replay Buffer Current Agent Fraction 0
Advantage Alignment Discount Factor 0.9

B.2 COIN GAME

We use the same architecture used for IPD with an MLP connected to a GRU unit, followed by
another MLP. We experimented with both Advantage Alignment (Equation equation 8) and Proximal
Advantage Alignment (Equation equation 9), with Advantage Alignment performing better (this is
the one we used). All of our Coin Game experiments run in 30 minutes in a nvidia A100 gpu.

Table 2: Coin Game Hyperparameters

Parameter Value
Actor Training Optimizer Adam
Actor Training Entropy Beta 0.1
Actor Training Learning Rate (Actor Loss) 0.002
Advantage Alignment Weight 0.25
Actor Hidden Size 64
Layers Before GRU 1
Q-Value Training Optimizer Adam
Q-Value Training Learning Rate 0.005
Q-Value Training Target EMA Gamma 0.99
Q-Value Hidden Size 64
Batch Size 512
Self-Play True
Reward Discount Factor 0.96
Agent Replay Buffer Capacity 10000
Agent Replay Buffer Update Frequency 10
Agent Replay Buffer Current Agent Fraction 0
Advantage Alignment Discount Factor 0.9

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.3 NEGOTIATION GAME

We experimented with both Advantage Alignment (Equation equation 8) and Proximal Advantage
Alignment (Equation equation 9), with the original Advantage Alignment performing better.

Agent’s Architecture: The game observations are a concatenation of the availability of the items,
agent’s value for each item, opponent’s value for each item, and previous round proposals. This
makes up for an input vector of length 15. The previous round proposals are especially important as
the agents need to examine whether the opponent defected against them by proposing high proposals
for item in which the value of the item is higher for the agent compared to the value of the item to
the opponent. In other words, if the opponent wanted to gain a little return in exchange of huge loss
to the agent, defecting.

Encoder:The observation is then processed by an encoder. The encoder is a GRU network. The
GRU network consists of first two Linear Layers with a relu non-linearity in between. Then it is
passed to a GRU unit.

Critic: The output of the GRU is then fed to a two-layer MLP with relu non-linearities for the critic
module of the agent. Additionally, we concatenate the output of the encoder with the time, the index
of the step of the game, for the value function as otherwise it would be hard to estimate the value of
the state without knowing how long the game is going to go on for.

Actor: The actor is the most complex component as it deals with continuous actions. The output
of the encoder is passed to an MLP with relu non-linearities and the output of the MLP is passed
to a tanh activation and scaled by 2.5, the output of this MLP is used as the mean of a normal
distribution. The logarithm of the standard deviation is modeled by a single global parameter in
the actor. Next, a sample of this normal distribution is passed through a tanh activation and scaled
and shifted back to (0, 5). Computing the log probability of this transformations requires careful
implementation. Especially if the atanh operation that is used is numerically unstable. Please refer
to the code released with this paper for the exact implementation.

Hyperparameters: Please refer to 3 for the hyperparameters used in our negotiation game experi-
ments. We use a replay buffer on our gather trajectories although the rate that it is mixed with fresh
trajectories is small.

Table 3: Negotiation Game Hyperparameters

Parameter Value
Actor Training Optimizer Adam
Trajectory Length 50
Encoder Layers 2
MLP Model Layers 2
Replay Buffer Size 100000
Replay Buffer Update Size 500
Replay Buffer Off-policy Ratio 0.05
Q-Value Training Optimizer Adam
Optimizer (Actor) Learning Rate 0.001
Optimizer (Critic) Learning Rate 0.001
Entropy Beta 0.005
Advantage Alignment Weight 3.0
Self-Play True
Batch Size 16384
Gradient Clipping Norm 1.0

Note that the optimization of the agents in the negotiation game is unstable, preventing us from
taking the last checkpoint. In our experiments in Fig 3a we select the checkpoint that corresponds
to the best achieved return for the agent during the optimization of the agent and the opponent.
While we are not completely certain, we observe the instability happens when the policy distribution
concentrates around the maximum possible proposal which is 5. We clipped the atanh operation in
our implementation for more numerical stability. All of our Negotiation Game experiments run in 1
hour on a nvidia A100 gpu.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.4 MELTING POT’S COMMONS HARVEST OPEN

We experimented with both Advantage Alignment (Equation equation 8) and Proximal Advantage
Alignment (Equation equation 9), with Proximal Advantage Alignment performing better.

Agent’s Architecture: In the Commons Harvest Open environment, agents receive observations
consisting of a local view of the environment in the form of raw pixel data. Each observation is an
image frame capturing the agent’s immediate surroundings. We use a 3 layer convolutional neural
network, following (Mnih et al., 2013), to encode the observations, which are then passed to a
GTrXL tranformer (Parisotto et al., 2019).

Encoder: The observation frames are processed by an encoder. The encoder is a GTrXL transformer
network (Parisotto et al., 2019). The GTrXL network consists of 3 transformer layers, each with a
model dimension of 192 and a feedforward dimension of 192. The transformer is capable of handling
sequences up to a maximum length of 1000 steps, capturing temporal dependencies in the agents’
observations. In practice, we use a context length of 15.

Critic: The output of the encoder is then fed to a two-layer Multi-Layer Perceptron (MLP) with
ReLU non-linearities for the critic module of the agent. To provide temporal context, we concatenate
the current time step to the encoder’s output before feeding it to the critic. This helps the critic
estimate the value of the state more accurately, as the remaining time in an episode can affect the
expected return.

Actor: The actor network shares the encoder with the critic. The output of the encoder is passed
through another MLP with ReLU non-linearities to produce logits over discrete action choices. The
policy is modeled as a categorical distribution over these actions, which include turning around,
moving in different directions, and zapping other agents.

Hyperparameters: Please refer to Table 4 for the hyperparameters used in our Commons Harvest
Open experiments.

Table 4: Commons Harvest Open Hyperparameters

Parameter Value
Self-Play True
Batch Size 512
Optimizer (Actor) Learning Rate 1× 10−5

Optimizer (Critic) Learning Rate 1× 10−5

Entropy Beta 0.1
Advantage Alignment Weight 1.0
Clip Gradient Norm 10.0
Transformer Layers 3
Transformer Model Dimension 192
Transformer Feedforward Dimension 192
Discount Factor (γ) 0.99
PPO Clip Range 0.1
PPO Updates per Batch 2
Normalize Advantages True
Context Length 15

We use a parallelized environment with 6 copies of Commons Harvest Open to make training more
efficient. Following LOQA (Aghajohari et al., 2024b), we keep a replay buffer of past agent param-
eters to ensure robustness against a distribution of policies. From this replay buffer we sample 2
agents at each iteration and play against 5 self-play agents with the current version of the policy. For
each environment, we use the 5 on-policy trajectories to compute losses for the actor and critic. In
total, our Commons Harvest Open experiments last 24 hours on an nvidia L40s gpu.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C ADDITIONAL FIGURES

C.1 NEGOTIATION GAME TRAINING CURVES

Figure 6 shows the training curves of Advantage Alignment on 10 seeds.

0 200 400 600 800 1000
Steps

0.20

0.25

0.30

0.35

0.40

R
ew

ar
d

Average Reward 1

0 200 400 600 800 1000
Steps

0.30

0.35

0.40

0.45

0.50

Agent vs AC Rewards

0 200 400 600 800 1000
Steps

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Agent vs AD Rewards

Figure 6: Training curves of Advantage Alignment averaged over 10 seeds.

C.2 COIN GAME FULL LEAGUE RESULTS

Figure 7 shows the head-to-head results of all agents we experimented with in a league.

Ad
Al

ig
n

LO
Q

A

PO
LA

M
FO

S

AC AD Ra
nd

om

Ad
Al

ig
n-

CE

Ad
Al

ig
n-

E

Ad
Al

ig
n-

S

Ad
Al

ig
n-

V

Ad
Al

ig
n-

VS

AdAlign

LOQA

POLA

MFOS

AC

AD

Random

AdAlign-CE

AdAlign-E

AdAlign-S

AdAlign-V

AdAlign-VS

0.28

0.28

0.28

0.29

0.24

0.18

0.01

0.19

0.31

0.35

0.15

-0.08

-0.18

0.26

0.13

-0.07

0.14

-0.02

0.18

0.10

0.20

0.13

0.20

0.12

0.29

0.28

0.30

0.30

0.24

0.17

0.06

0.16

0.32

0.35

0.12

-0.05

-0.15

0.26

0.26

-0.11

0.27

-0.06

0.28

0.08

0.28

0.13

0.29

0.11

0.18

0.24

0.17

0.24

0.19

0.19

0.01

0.19

0.29

0.38

0.07

-0.03

-0.13

0.24

0.20

-0.09

0.19

-0.03

0.18

0.11

0.18

0.14

0.18

0.14

0.19

0.01

0.16

0.06

0.19

0.01

-0.01

-0.01

0.03

0.32

0.41

-0.42

-0.21

0.20

0.40

-0.39

0.37

-0.34

0.25

-0.13

0.24

-0.10

0.24

-0.08

0.35

0.31

0.35

0.32

0.38

0.29

0.32

0.03

0.35

0.35

0.63

-0.27

0.11

0.05

0.62

-0.26

0.58

-0.18

0.47

0.05

0.43

0.13

0.46

0.08

-0.08

0.15

-0.05

0.12

-0.03

0.07

-0.42

0.41

-0.27

0.63

0.00

-0.00

-0.53

0.53

-0.01

0.01

-0.02

0.04

-0.08

0.16

-0.09

0.16

-0.09

0.19

0.26

-0.18

0.26

-0.15

0.24

-0.13

0.20

-0.21

0.05

0.11

0.53

-0.53

-0.01

0.01

0.52

-0.53

0.49

-0.47

0.31

-0.22

0.30

-0.23

0.27

-0.19

-0.07

0.13

-0.11

0.26

-0.09

0.20

-0.39

0.40

-0.26

0.62

0.01

-0.01

-0.53

0.52

0.00

0.00

-0.02

0.04

-0.07

0.15

-0.07

0.14

-0.06

0.17

-0.02

0.14

-0.06

0.27

-0.03

0.19

-0.34

0.37

-0.18

0.58

0.04

-0.02

-0.47

0.49

0.04

-0.02

0.03

0.03

-0.02

0.14

-0.03

0.14

-0.02

0.16

0.10

0.18

0.08

0.28

0.11

0.18

-0.13

0.25

0.05

0.47

0.16

-0.08

-0.22

0.31

0.15

-0.07

0.14

-0.02

0.10

0.10

0.11

0.12

0.11

0.13

0.13

0.20

0.13

0.28

0.14

0.18

-0.10

0.24

0.13

0.43

0.16

-0.09

-0.23

0.30

0.14

-0.07

0.14

-0.03

0.12

0.11

0.12

0.12

0.13

0.12

0.12

0.20

0.11

0.29

0.14

0.18

-0.08

0.24

0.08

0.46

0.19

-0.09

-0.19

0.27

0.17

-0.06

0.16

-0.02

0.13

0.11

0.12

0.13

0.13

0.13

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Return

Figure 7: The head-to-head results of all variants of the coin game agents experimented with in
this paper. All numbers are an average of 10 seeds of one type of agent with 10 seeds of another
type of agent, where each pair play 32 games. We ablate Advantage Alignment masking different
components of the gradient. Cooperative (C), masks when both advantages are positive; Empathetic
(E), masks when the advantage of the agent is positive and the advantage of the opponent is negative;
Vengeful (V), masks when the advantage of the agent is negative and the advantage of the opponent
is positive; Spiteful (S), masks when both advantages are negative.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C.3 ABLATION STUDY COMMONS HARVEST OPEN

Figure 8: Sample trajectories for Proximal Advantage Alignment agents with different β weight.
We select the best of 10 seeds for each value of β. On the first row: β = 0.5, agents reach a policy
where they try to consume the apples as fast as possible. On the second row: β = 1, agents reach
a ”bush guarding” policy, zapping any other agents coming into the same bush. On the third row:
β = 2, agents reach a policy where they rotate around specific paths, preventing the extinction of
the bushes.

Interestingly the value of β, which is used to control the weight of the advantage alignment term in
equation 10, leads agents to converge to different policies. With a low value of the weight (β = 0.5),
we empirically observed that most runs converge to a greedy policy that attempts to consume apples
as soon as possible. With a value of β = 1, we find policies that show a ”bush guarding” behavior
preventing other agents from approaching their bush, and consuming apples within that bush with
moderate restraint. This is the policy that shows the best evaluation performance in figure 4. With
high values of the weight (β = 2), most runs find a rotating strategy in which agents stick to eating
only a subset of the apples on each bush. This policy has the highest pro-social return out of all of
them. However, the rotating strategy is also vulnerable to exploitation from greedy agents and does
poorly in the evaluation scenarios. Figure 8 showcases what these policies look like in practice.

25

	Introduction
	Background
	Social Dilemmas
	Markov Games
	Reinforcement Learning

	Opponent Shaping
	Advantage Alignment
	Method Description
	Analyzing Advantage Alignment

	Experiments
	Iterated Prisoner's Dilemma
	Coin Game
	Negotiation Game
	Melting Pot's Commons Harvest Open

	Related Work
	Conclusion
	
	Appendix

	 Appendix
	Mathematical Derivations
	Deriving the Advantage Alignment Formula
	Proof of Theorem 1
	Gradient of LOQA
	Gradient of LOQA in Continuous Action Spaces
	Proof of Theorem 2
	Advantage Alignment Implementation
	Proximal Advantage Alignment
	Proof of Theorem 3
	N-Player Advantage Alignment

	Experimental Details
	Iterated Prisoner's Dilemma
	Coin Game
	Negotiation Game
	Melting Pot's Commons Harvest Open

	Additional Figures
	Negotiation Game Training Curves
	Coin Game Full League Results
	Ablation Study Commons Harvest Open

