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Figure 1: Comparisons with feature maps learned by our method and different visual foundation
models. Our method focuses on the unity of object instance, in contrast to other methods emphasize
on object class more.

Abstract

Object concepts play a foundational role in human visual cognition, enabling per-
ception, memory, and interaction in the physical world. Inspired by findings in
developmental psychology—where infants are shown to acquire object understand-
ing through observation of motion—we propose a biologically inspired framework
for learning object-centric visual representations in an unsupervised manner. We
were inspired by the insight that motion boundary serves as a strong signal for
object-level grouping, which can be used to derive pseudo-instance supervision
from raw videos. Concretely, we generate motion-based instance masks using
off-the-shelf optical flow and clustering algorithms, and use them to train visual
encoders via contrastive learning. Our framework is fully label-free and does
not rely on camera calibration, making it scalable to large-scale unstructured
video data. We evaluate our approach on three downstream tasks spanning both
low-level (monocular depth estimation) and high-level (3D object detection and
occupancy prediction) vision. Our models outperform previous supervised and
self-supervised baselines and demonstrate strong generalization to unseen scenes.
These results suggest that motion-induced object representations offer a compelling
alternative to existing vision foundation models, capturing a crucial but overlooked
level of abstraction: the visual instance. The implementation can be found here:
https://github.com/yulemao/Object_Concepts_Emerge_from_Motion
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1 Introduction

Physical Al aims to develop intelligent agents capable of perceiving and interacting with the physical
world. A fundamental cognitive capacity required for such agents is the ability to recognize and
understand the concept of "object"—a core unit of perception and reasoning. In the human visual
system, the importance of object concepts is well-established in neuroscience. As noted by Kellman
and Spelke [27]], “this cognitive ability not only supports object recognition and classification, but
also plays a crucial role in spatial perception, memory formation, and the interaction between objects
and their environment.” Understanding how object concepts are formed and represented in biological
systems provides critical insights for building more robust and generalizable visual agents in artificial
systems.

However, what makes an object look like an object? This is a non-trivial question, as objects can vary
drastically in appearance, shape, and motion patterns. Early studies in developmental psychology [27]]
have demonstrated that the ability to perceive object unity is not innate, but learned during infancy.
Infants begin to exhibit evidence of understanding object cohesion from around two months of age,
with robust performance observed by four months. These findings suggest that object perception
is a learned capacity grounded in sensory experience. Subsequent research [24} 40] has shown that
motion cues—particularly common or coherent motion—serve as a powerful signal for infants to infer
object boundaries and unity. As the visual system matures, this dynamic understanding is gradually
internalized into the ventral visual stream [29, 53], enabling object recognition from static visual
inputs alone. Inspired by this developmental trajectory, our work aims to design an unsupervised
computational model that mimics this learning process: beginning with motion-based interactions
and evolving toward abstract, appearance-based object concepts.

Recently, learning universal visual representations through self-supervised or weakly supervised
paradigms has gained significant attention, due to their strong performance across a wide range
of vision tasks. Among self-supervised approaches, notable examples include the DINO [7, 41]
and MAE [23| |64] families, which rely on self-distillation and self-reconstruction mechanisms,
respectively, to learn robust feature representations. Another influential direction leverages web-scale
image-text pairs, as exemplified by CLIP [435], to align visual and language representations. To
better understand what these models capture, we compare the low-dimensional PCA projections of
features extracted by DINO, CLIP, and our model (see Fig. . ‘We observe that DINO and CLIP
tend to focus on semantic categories. However, neither method captures the concept of a semantic
instance—a distinct, coherent object entity—adequately. We argue that existing visual foundation
models overlook this crucial level of abstraction, which is fundamental for understanding the physical
world.

In this work, we propose a biologically inspired framework for learning visual features that encode
object-level semantics. As a first step, we explore this approach in outdoor driving scenarios, which
provide rich motion cues arising from both ego-motion and independently moving objects. The key
observation that inspires our method is that motion boundaries often align with object boundaries
(detailed in Sec.[3.T)), which echoes the discoveries in neuroscience that common motion is crucial
to the early development of object unity. Based on this, we employ an off-the-shelf optical flow
estimation algorithm, followed by a simple clustering technique, to generate pseudo instance masks
without human supervision. These instance labels are then used to supervise representation learning
via a contrastive objective. Importantly, unlike previous approaches [74, 4], our method does not
require camera calibration parameters, allowing it to scale to large and diverse unlabeled video
datasets.

Our motion-guided learning paradigm naturally bridges low-level and high-level vision. We validate
our method on three downstream tasks: monocular depth estimation (low-level), 3D object detection
and occupancy prediction (high-level). Across all model sizes, our method consistently outperforms
supervised pretraining on ImageNet-22K and other self-supervised learning methods, demonstrating
the effectiveness of learning object-centric representations from motion cues. Moreover, we find that
our features are complementary to those from existing foundation models such as DINO—fusing
them leads to further performance gains. Interestingly, although our model is trained only on outdoor
scenes, it generalizes well to unseen indoor environments. This suggests that the learned features
capture object composition and structure, rather than merely memorizing training-set appearances.

To summarize, our key contributions are as follows:



* We propose a biologically inspired paradigm for object-centric visual representation learning.
Motivated by studies of infant cognition, we are the first to demonstrate the effectiveness and
scalability of using motion as an unsupervised supervisory signal on a large-scale dataset
and modern model architectures.

* We introduce a computationally efficient framework that implements this paradigm using
off-the-shelf optical flow and simple clustering. Our approach scales naturally to large-scale
outdoor driving datasets without requiring camera calibration or manual labels, and supports
models of varying capacities.

* We extensively evaluate our models on three downstream tasks—monocular depth estima-
tion (low-level), 3D object detection and occupancy prediction (high-level). Our method
outperforms supervised and self-supervised methods across all model sizes, and shows
strong generalization to unseen indoor scenes, highlighting the robustness and transferability
of the learned object-centric features.

2 Related Work
2.1 Object Discovery

The central aim of object discovery is the identification and localization of objects within visual data,
including images and videos, without the prerequisite of instance-level annotations for specific object
classes. This paradigm significantly mitigates the need for large-scale, high-quality labeled datasets.
Early approaches to object discovery included methods based on object occurrence frequency [25,
20, 54]], and techniques utilizing region proposals to select key object bounding boxes through
combinatorial optimization [52} 55,156,162, [75]. More recently, researchers have proposed numerous
learning-based methods built upon the Transformer architecture. These approaches leverage features
obtained from powerful pre-trained image models (e.g., DINO) to identify and segment objects via
graph-based or spectral clustering techniques [46) 50, |59} 160 [73]. Another line of research adopts an
object-centric perspective, frequently utilizing scene generation or reconstruction methodologies to
derive learning signals, that involve decomposing scenes into their constituent parts (e.g., objects,
background) and learning their respective representations [15, 18 |36/ 38]]. Similarly, another class of
methods utilizes motion and multi-modal information as supervision, using the motion consistency
of 2D or 3D points as a cue to distinguish objects from the background [34} 51,161, [72]]. To address
the high demand for input dependencies of these works, our method only requires the simplest
optical flow and clustering process to acquire object masks in an unsupervised manner. These masks
subsequently serve as pseudo labels for single-image representation learning.

2.2 Visual Foundation Models

Visual foundation models aim to learn broadly applicable and transferable visual representations by
pre-training on large-scale data. These learned general representations are intended to be transferred
to downstream tasks by fine-tuning or prompting. Various self-supervised learning paradigms have
been proposed for visual foundation models. Contrastive-learning-based methods pull together
representations of different augmented views of the same image (positive samples) in an embedding
space, while pushing apart representations of different images (negative samples) [8-10, [14} 22 [70]].
Building upon this, subsequent self-distillation methods utilize "teacher" signals moving averaged by
the student model itself for self-guided training, achieving excellent performance without relying on
negative sample pairs [7,[12}[19/41]. On the other hand, inspired by masked language modeling in
natural language processing, masked-autoencoder-based methods learn representations by randomly
masking portions of an image and training the model to reconstruct the masked content [2, 23 144, |58
64]. There is also some works that jointly learn the embeddings and predictions for more semantically
rich and general features [} 3]]. Furthermore, despite different supervisory approaches, methods
employing weak supervision, such as through text, have also made significant progress in the field
of foundation models [45]. However, as illustrated in Fig. [T} all these pretrained models provide
semantic class features rather than semantic instance features. We argue that semantic instance
features could be beneficial for downstream tasks that require instance-level separation, such as object
detection.

3 Method

To build an object-centric visual representation that generalizes across tasks and environments, we
propose a biologically inspired learning framework centered on motion cues. Rooted in cognitive
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Figure 2: Pipeline of the proposed method.

developmental insights, our approach leverages the observation that coherent motion often indicates
objecthood—an idea supported by infant perception studies and geometric reasoning in dynamic
scenes. In this section, we introduce our method, which consists of three key components: (1) a
geometric analysis revealing how motion boundaries correlate with object boundaries, (2) a data
processing pipeline that extracts motion-induced pseudo-labels from large-scale video data, and (3)
an unsupervised training objective designed to learn robust and transferable features from these labels.
Together, these components form a scalable and calibration-free paradigm for learning object-level
semantics from raw videos. The whole pipeline is shown in Fig. 2}

3.1 Geometric Insights

A central insight of our approach is that motion boundaries often align with object boundaries. 1t is
obvious that if the object itself moves, its flow boundary can naturally serve as the object boundary.
In this section, we provide a geometric and mathematical justification for why ego-motion can also
be used to separate different objects under the assumption of rigid scenes.

Let p = (u, v) denote a pixel in the image domain, and D(u, v) its corresponding depth. Assuming a
pinhole camera model with intrinsic matrix K, p is the pixel projected by the 3D point P. Under rigid
motion, the 3D scene point undergoes a transformation via camera pose change (R, t) € SE(3),
resulting in a new image projection p’ in the next frame. Projecting P’ back into the image plane

yields:
u U
V| ~K-P=K|[R-D(u,v)-K!|v| +t (1)
1 1

The optical flow is then computed as the pixel displacement. This means that the optical flow F(u, v)
is a function of the depth D(u,v), the camera motion (R, t), and the camera intrinsics K. We
summarize this dependency as:

u —u
F(u,v) = N o(D(u,v); R, t,K) )
Taking the spatial gradient of the flow field gives:
d¢
VF(u,v) = i VD(u,v) 3)

This expression indicates that discontinuities in the flow field—i.e., motion boundaries—can arise
from large gradients in the depth map. Under the assumption of rigid motion, these motion boundaries
serve as reliable proxies for object boundaries. This geometric insight underpins our approach of
utilizing motion cues to derive instance-level supervision.

This concept aligns with foundational theories in computer vision. David Marr, in his seminal
book [39], articulated that:
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Figure 3: Examples of the pseudo-label generation results and the output features.

“...the velocity field of motion in the image varies continuously almost everywhere,
and if it is ever discontinuous at more than an isolated point, then a failure of
rigidity (like an object boundary) is present in the outside world. In particular, if
the direction of motion is ever discontinuous at more than one point—along a line,
for example—then an object boundary is present.”

A notable advantage of our method is its independence from camera calibration. The necessary
geometric information is inherently encoded within the optical flow, enabling us to train on large-scale,
uncalibrated video datasets. This approach enhances scalability and broadens the applicability of our
framework across diverse real-world scenarios.

3.2 Data Processing

Data Sources. We use two datasets in our approach: OpenDV-YouTube [67] and nuPlan [20]. Both
datasets provide a large amount of high-quality and diverse unlabeled video data. OpenDV-YouTube
contains videos collected from more than 244 cities all over the world, resulting in a total of 1747
hours of front-view videos. nuPlan provides 8 different camera views. It collects 1200 hours of
driving data from 4 cities, 120 hours of which were recorded with 8 different camera views. We
merged the two datasets and obtained approximately 2,700 hours of raw video data in total.

Optical Flow Estimation. We apply the pipeline of VideoFlow [49] to extract optical flow informa-
tion from videos. The model takes five frames as input and outputs the optical flow for the middle
three frames. We sample each clip with 0.3s intervals, and for each clip, we select the first frame
within two consecutive frames as input, which spans 1 second.

Pixel Cluster. For all optical flow data generated by VideoFlow, we perform a simple Breadth-
First Search (BFS) to cluster objects. Our algorithm takes the optical flow, the forward-backward
consistency check result, and two thresholds 6 and 6, as input. For each pixel that satisfies the
forward-backward consistency check, all neighboring pixels with a flow difference smaller than 6
are considered to belong to the same object. 6 is the minimum number of pixels to form a cluster.
Pseudo-code of our algorithm is provided in the appendix.

Results. We set two thresholds to ¢y = 1.5,0, = 100. Fig. 3| shows some example results. As
illustrated in the pseudo-label visualizations, the proposed algorithm successfully segments objects
exhibiting significant movement, such as moving cars and pedestrians. Furthermore, because objects
at different depths exhibit different apparent motion in the image even when they are stationary,
the proposed algorithm is also able to segment foreground instances such as trees and signs. The
pseudo-labels exhibit under segmentation due to weak motion cues or errors in optical flow estimation.
Such cases are explicitly handled in the design of the loss function. We retained all samples with at
least two pseudo-labels(i.e., at least one foreground cluster) and successfully obtained a total of 48
million images along with their corresponding pseudo-labels for pre-training.

3.3 Pre-training

Overall Structure. Our network architecture follows the design proposed in [28]. The network
takes one image as input. Due to the need for high-resolution feature maps, we choose backbone
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networks(e.g. , ResNet [21], Swin [35]) whose computational cost scales linearly with input size.
These features are then processed by a Feature Pyramid Network (FPN). Similar to the semantic
segmentation branch in [28]], the information from all levels of the FPN pyramid is merged into a
simple output. The resulting feature map has a spatial resolution of 1/4 the input size and a channel
dimension of 64. A 2x bilinear upsampling is then applied, and each feature vector is normalized to
yield the final output features.

Training Loss. Based on the labels derived from the optical flow and the output feature map, we
design a simple yet effective loss function. As discussed in Sec.[3.2] the pseudo-labels can only
extract a subset of the instances, making it inappropriate to cluster all background regions together.
Since the number of background pixels is usually significantly larger than that of instance pixels, we
treat the label with the highest pixel count as the background. The loss between any two background
pixels is ignored. The loss function between two pixels ¢ and 7 is defined as follows:

IF; — Fyl2?, yi=y; #0
L(i,§) = { max{m — | F; — Fj|l2,0}%, i #y; 4)
0, yi=y; =0

where F; and F; are the feature vectors of the final output feature map of the network, m is a
margin parameter, y represents the instance label derived from the optical flow. y = 0 denotes the
background. We set the margin parameter m to 1.0 in our implementation.

The total loss over all sampled pixel pairs is defined as:

1
Liotat = 3 Y L(ij). 5)

%]

4 Experiments

To validate the effectiveness of our method across the vision spectrum, we conduct comprehensive
experiments on both low-level and high-level vision tasks. Our core hypothesis is that the model,
by learning from low-level cues, develops an internal understanding of object composition, which
subsequently benefits high-level semantic reasoning. Conversely, this object-centric representation
also enhances performance on low-level tasks by providing richer contextual cues. We evaluate our
models on three representative downstream tasks: monocular depth estimation (low-level), 3D object
detection, and 3D occupancy prediction (high-level).

4.1 Implementation Details

We implement the proposed method using PyTorch [43]] and mmPretrain [11]. We train models on
Swin Transformer [35]] (Tiny to Large) and ResNet-50 [21]]. All Swin models use a window size of 7,
while the B and L variants of SimMIM [[64] and Semantic-SAM [30]], which are used for comparison,
adopt a larger window size of 12. This larger window is usually beneficial due to the increased
context, at the expense of higher computational cost. AdamW optimizer [37]] with a weight decay of
0.05 is adopted. All models are trained for 200 epochs using a cosine decay learning rate scheduler
and 10 epochs of linear warm-up. The initial learning rate is set to 0.001 and batch size is set to
2048. All input images are cropped and resized to a resolution of 224 x 224. We employ a data
augmentation strategy that includes random flipping, brightness, and gamma adjustment. We sample
200 labeled pixels from each image for training. We further fine-tune the models for 20 epochs with
an initial learning rate of 2 x 10~° and a weight decay of 10~*. During fine-tuning, two random crops
are extracted from each input image, and the loss is calculated both within each crop and between the
two. This fine-tuning process further enhances the separation of distant objects in large images. All
downstream models are trained with official open-sourced code for comparison. During fine-tuning
on downstream tasks, only the pretrained weights of the backbone are utilized for a fair comparison.

4.2 Qualitative Results

The fourth column in Fig. |3|shows PCA projections of our model’s features. Thanks to the generaliza-
tion of the backbone network, the features reveal a key strength: the model distinguishes many objects
not annotated in the pseudo-labels—such as distant cars, pedestrians, and even static structures like
buildings and poles. This suggests that our model goes beyond mimicking pseudo-labels and learns a
more general, object-centric representation. Fig. 4] further visualizes similarity maps from selected



Figure 4: Similarity visualization for a set of reference points.

Table 1: Quantitative evaluation of DCDepth [57] on the KITTI Eigen split using different pretraining.

Method Backbone SILog| AbsRel] SqRel] RMSE| RMSElog| 611 d21 d37
ImageNet-22K Swin-T ~ 7.455 0.055 0.165 2.182 0.082 0.969 0.996 0.999
Semantic-SAM [30] Swin-T  7.346 0.055 0.165 2.169 0.082 0.971 0.996 0.999
DINOV2 [41] ViT-S 7.119 0.052 0.158 2.153 0.079 0.974 0.997 0.999
ImageNet-22K Swin-L.  6.891 0.051 0.145 2.044 0.076 0.977 0.997 0.999
Semantic-SAM [30] Swin-L  6.713 0.049 0.137 2.007 0.074 0.979 0.998 1.000
SimMIM [64] Swin-L.  6.542 0.048 0.130 1.941 0.073 0.979 0.998 0.999
Ours Swin-T  6.991 0.051 0.145 2.016 0.077 0.975 0.997 0.999
Ours Swin-S  6.736 0.049 0.138 1.981 0.075 0.978 0.997 0.999
Ours Swin-B 6.598 0.048 0.131 1.939 0.073 0.981 0.997 0.999
Ours Swin-L  6.558 0.047 0.129 1.929 0.072 0.981 0.997 0.999

reference points. The sharp boundaries and clear object separation confirm that our features capture
consistent, instance-level semantics, even without explicit supervision.

4.3 Monocular Depth Estimation

We evaluate our model on the KITTI dataset [16] using the standard Eigen split [[15)], with
DCDepth [57] as the decoder. As shown in Tab. [T} our model consistently outperforms both su-
pervised ImageNet-22K pretraining and models pretrained on the Semantic-SAM [30]], which is a
weakly supervised method utilizing large-scale pseudo segmentation annotations.

Our approach achieves superior performance across all backbone sizes. For instance, with Swin-Tiny,
our model reduces the RMSE to 2.016 (compared to 2.169 from Semantic-SAM) and improves the d;
accuracy to 0.975. These results are even comparable to Swin-Large with ImageNet-22K pretraining.
As the backbone scale increases, the performance of our method improves steadily.

As shown in Tab.[5] combining our features with DINO leads to consistent and significant performance
improvements. While our method alone already outperforms using either DINO or ImageNet-22K
pretrained features in isolation (rows 1-3), the best result is achieved when concatenating our features
with DINO pretrained features (row 6), reaching the lowest SILog (6.796) and a competitive RMSE
(2.014).

This highlights the complementary nature of the two representations: DINO focuses more on semantic
category-level cues, while our method emphasizes instance-level object structure derived from motion
cues. Fusing them allows the model to leverage both semantic context and object-centric information,
leading to improved depth estimation performance.

Tab. 2| further shows the results on the official KITTI online leaderboard. Our method outperforms
other methods in the primary metric (SILog) and also achieves competitive performance across the
other evaluation metrics.

4.4 3D Object Detection

We evaluate our learned visual representations on the nuScenes dataset [6] for the 3D object detection
task, using BEVFormer V2 [31,66] as the detection framework. We compare our method against
a diverse set of pretraining strategies, including supervised ImageNet-22K and COCO, as well as
self-supervised approaches such as MoCo [10] and SimMIM [64].

As shown in Tab. 3] our approach achieves consistent and substantial improvements in both mean
Average Precision (mAP) and NuScenes Detection Score (NDS) across multiple backbones. For
instance, with a Swin-Tiny backbone, our model achieves an mAP of 43.01% and NDS of 52.41%,



Table 2: Quantitative results on the official split of KITTI dataset. All metrics reported here are from
the KITTI online leaderboard.

Method Backbone Pretrain SILog | AbsRel| SqRel] iRMSE |
NeW CRFs [[71] Swin-Large ImageNet-22K 10.39 8.37 1.83 11.03
VA-DepthNet [32] Swin-Large ImageNet-22K 9.63 7.96 1.66 10.44
1IEBins [48]] Swin-v2-Large MIM [65]] 9.84 7.82 1.60 10.68
NDDepth [47]] Swin-v2-Large MIM [65] 9.62 7.75 1.59 10.62
DCDepth [57]] Swin-Large  Semantic-SAM [30]  9.60 7.83 1.54 10.12
DCDepth [57] Swin-Large Ours 9.54 7.76 1.55 10.37

Table 3: Quantitative evaluation of BEVFormerV2 [[66]] on nuScenes val set using different pretrain-
ing methods.

Method Backbone | NDS + mAP 1| mATE | mASE | mAOE | mAVE | mAAE |
COCO Res50 51.82 4199 | 66.89 28.14 39.15 38.34 19.28

ImageNet-1K Res50 | 51.99 42.51 | 65.90 27.79 42.12 37.70 19.20
MoCo v3 [10]  Res50 | 52.42 4294 | 67.13 27.70 35.84 3991 19.95

Ours Res50 | 52.55 43.22 | 66.30 27.56 37.76 38.47 20.53
ImageNet-22K  Swin-T | 51.69 42.12 | 67.69 28.07 38.39 40.89 18.68
Ours Swin-T | 52.41 43.01 | 65.81 28.30 41.43 37.23 18.15
ImageNet-22K  Swin-S | 53.62 45.22 | 64.94 27.75 36.97 40.07 20.18
Ours Swin-S | 54.22 4549 | 65.22 27.73 37.61 35.61 19.04

ImageNet-22K  Swin-B | 53.98 4548 | 65.94 28.10 35.82 38.75 19.01
SimMIM [64] Swin-B | 54.03 45.18 | 63.81 27.53 38.02 37.04 19.22
Ours Swin-B | 55.68 47.54 | 62.74 27.84 33.79 36.77 19.81
ImageNet-22K  Swin-L | 54.59 4591 | 65.39 27.44 34.31 37.64 18.87
SimMIM [64] Swin-L | 54.98 46.52 | 64.80 28.06 33.72 35.87 20.36
Ours Swin-L | 55.80 47.29 | 62.83 27.16 33.20 36.50 18.77

outperforming the ImageNet-22K pretrained counterpart (mAP 42.12%, NDS 51.69%). As the
backbone scales up to Swin-Large, our model further improves to 47.29% mAP and 55.80% NDS,
still outperforming the compared supervised and self-supervised methods.

To compare with more methods based on ViT architectures whose computational cost are not
affordable for high input resolution, we also tested various methods at a resolution of 704 x 256. As
shown in Tab. 4} our Swin-based models achieve competitive or superior performance compared to
DINOV2, while using significantly fewer parameters and lower computational costs. For instance,
our model pretrained with the Swin-L backbone attains an NDS of 52.03% and an mAP of 41.79%.
These results are comparable to those achieved by DINOv?2 with the ViT-L backbone.

Notably, these improvements are not limited to Transformer-based architectures. With ResNet
backbones such as R50, our model also outperforms COCO-supervised models, indicating that the
benefit of our pretraining is architecture-agnostic. This broad compatibility with both convolutional
and Transformer backbones highlights the generality of the learned features.

These gains can be attributed to the object-centric and geometry-aware priors introduced by our
object-based visual representation. Unlike traditional supervised pretraining, our approach enables
the model to internalize compositional structure and spatial relationships between objects. This
proves particularly valuable in 3D detection tasks, where reasoning about object placement, extent,
and occlusion is critical.

4.5 3D Occupancy Perception

We evaluate our method on the nuScenes validation set using SparseOcc [33]] as the occupancy
prediction framework. As shown in Tab. [6] our pre-trained models outperform both supervised
(ImageNet-22K) and self-supervised (SimMIM) counterparts across all Swin backbone variants.
Crucially, the strong performance of our method can be attributed to the underlying geometric insight
described in Sec[3.1] By leveraging this property, our method is able to encode spatial structures that
are semantically meaningful, even without direct instance-level annotations.



Table 4: Quantitative evaluation of BEVFormerV?2 [66] on nuScenes val set using different pretrain-
ing methods at a resolution of 704 x 256

Method Backbone | NDS + mAP 1 | mATE | mASE | mAOE | mAVE | mAAE |
DINOv2 ViT-S 46.24 3488 | 71.65 28.45 49.97 42.70 18.84
DINOv2 ViT-B 49.08 38.36 | 69.74 28.21 41.81 42.40 18.84
DINOv2 ViT-L 5191 42.05 | 65.04 27.35 36.45 43.79 18.51
ImageNet-22K  Swin-T | 4742 36.34 | 70.90 28.40 48.36 40.47 19.40
Ours Swin-T | 48.24 37.08 | 70.61 27.99 44.45 40.54 19.45
ImageNet-22K  Swin-S | 48.78 38.00 | 70.65 28.35 41.20 42.95 19.01
Ours Swin-S | 50.87 40.23 | 68.88 27.85 40.45 36.67 18.61
ImageNet-22K  Swin-B | 50.42 40.71 68.56 27.80 40.60 42.81 19.52
Ours Swin-B | 51.69 41.36 | 66.01 28.03 37.98 39.73 18.10
ImageNet-22K  Swin-L | 50.48 40.09 68.01 27.90 40.69 40.67 18.38
Ours Swin-L | 52.03 41.79 | 66.10 28.12 36.84 40.13 17.51

Table 6: Quantitative evaluation of SparseOcc [33]]
on nuScenes val set using different pretraining.

Table 5: Ablation studies on the KITTI depth
estimation task. We evaluate the impact of _M°thod | BB | RayloU | RayloUum.m. 4m
different pretraining strategies: DINO refers MoCo v3 [10] | R50 | 34.4 |283 351 399
to DINOvV2 [41]], and IN denotes ImageNet- ImageNet-1IK | R50 | 35.0 |28.8 35.6 40.5

22K [[13] supervised pretraining.Ours and IN _Ours R50 | 36.4 |30.2 37.1 418
use Swin-T as the backbone, while DINO  ImageNet-22K | Sw-T | 355 129.4 36.3 409
uses ViT-S. Ours Sw-T 37.0 |31.1 37.8 42.2

DINOvV2 [41] | ViT-S | 359 |29.5 36.8 41.4
ImageNet-22K | Sw-S | 36.8 |304 37.6 42.3

O;rs DINO IN S;L9°9g1¢ Ags(l)‘\’;u RIZVIOSI? Ours Sw-S | 381 [320 39.1 434
: ' : DINOV2 [41] |[ViTB| 37.1 |31.0 379 424

v 7119 0052  2.153
A 7555 005 2im ImageNet-22K | Sw-B | 37.6 |31.3 384 43.1
SimMIM [64] | Sw-B | 380 |317 387 434

v V| 7071 0052 2117
y "] 6927 0ose 2000 Ours SwB | 383 |321 390 437
VY €796 0050 2014 DINOVZ [A1] | ViTL| 39.0 |328 39.9 443

ImageNet-22K | Sw-L | 37.6 |31.4 384 43.0
SimMIM [64] | Sw-L | 38.6 |32.6 39.4 43.7
Ours Sw-L | 38.7 |32.6 39.5 438

5 Discussion and Future Work

5.1 Generalization to out of domain scenes

As a preliminary investigation, we train our method on outdoor driving videos. To demonstrate the
generalization of our learned features, we also visualize the features on daily life videos from the
Ego4D [17] and the robot manipulation dataset RTX [42], as shown in Fig.[5] Though not perfect,
our model is capable of distinguishing different objects that did not appear in the training set. The
first row shows some common scenes in indoor scenes. Our method can segment the unseen objects,
including windows, tools, even cats, and hands. We observe similar results in the second row for
robot manipulation. These results illustrate that our method does not overfit the objects in the training
set, but indeed learns the essential composition of an object.

5.2 Further scaling up and extensions

We also attempted to apply our method to broader scenarios, such as ego-centric videos and uncon-
strained videos from the web. However, we found that the performance of our method is greatly
limited by the performance of optical flow. Fortunately, we find that recent closely related work in
monocular depth estimation 68 |69] improves significantly with the help of large-scale synthetic
data. We hope a similar paradigm can also benefit the performance of optical flow.

Our method can be further extended to a temporal setting. Based on the compact object instance
representation, we can easily endow the model with temporal prediction ability. It is essentially a
world model that could predict the dynamics of the world. We will pursue these directions in our
future work.



Figure 5: Examples of feature maps in out of domain scenes.

5.3 Improving precise localization ability

As seen in the visualization, our method focuses on the whole object, which means the features of the
parts within an object are indistinguishable. This makes our method unsuitable for applications that
need precise localization, such as keypoint matching. Our method can be improved by combining
previous works that emphasizes local feature learning, such as CroCo [63]], to get the best of two
worlds.

6 Conclusions

In this work, we present a biologically inspired framework for learning object-centric visual rep-
resentations, drawing motivation from developmental psychology studies on how infants acquire
the concept of objects through motion cues. By leveraging the natural correlation between motion
boundaries and object boundaries, our method derives instance-level pseudo labels from raw videos,
enabling unsupervised representation learning without human annotations or camera calibration.

Through extensive experiments across three diverse vision tasks, we demonstrate that our approach
not only matches but surpasses the supervised and self-supervised pretraining baselines. Our learned
features capture object-level semantics that are complementary to those in existing vision foundation
models such as DINO and MAE.

These results highlight the potential of integrating biologically inspired mechanisms—such as motion-
guided grouping—into the design of scalable, general-purpose visual pretraining frameworks. We
hope this work encourages further exploration of cognitive principles in building more robust and
human-aligned vision systems.

References

[1] Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat, Yann
LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding predictive
architecture. In CVPR, 2023.

[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BETR pre-training of image transformers. In
ICLR, 2022.

[3] Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mahmoud
Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual representations from video.
TMLR, 2024.

[4] Jiawang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen, Ming-Ming Cheng, and Ian
Reid. Unsupervised scale-consistent depth and ego-motion learning from monocular video. In NeurIPS,
2019.

[5] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,
and Alexander Lerchner. MONet: Unsupervised scene decomposition and representation. arXiv preprint
arXiv:1901.11390, 2019.

[6] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,

Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In CVPR, 2020.

10



(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

(15]

(16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]
(27]

(28]

[29]

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In /CML, 2020.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297, 2020.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In ICCV, 2021.

MMPreTrain Contributors. OpenMMLab’s pre-training toolbox and benchmark. https://github.com/
open-mmlab/mmpretrain, 2023.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need registers.
In ICLR, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, 2009.

Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman. With a little
help from my friends: Nearest-neighbor contrastive learning of visual representations. In /ICCV, 2021.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using a
multi-scale deep network. In NeurlIPS, 2014.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In CVPR, 2012.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar,
Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4D: Around the world in 3,000 hours of
egocentric video. In CVPR, 2022.

Klaus Greff, Raphaél Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel Zoran,
Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation learning with
iterative variational inference. In ICML, 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your
own latent-a new approach to self-supervised learning. In NeurlIPS, 2020.

K. Tan et al. H. Caesar, J. Kabzan. NuPlan: A closed-loop ML-based planning benchmark for autonomous
vehicles. In CVPR ADP3 workshop, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In CVPR, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked autoencoders
are scalable vision learners. In CVPR, 2022.

Scott P Johnson and Susan A Johnson. Development of perceptual completion originates in early infancy.
Psychological Science, 14(6):553-559, 2003.

Armand Joulin, Francis Bach, and Jean Ponce. Discriminative clustering for image co-segmentation. In
CVPR, 2010.

Armand Joulin, Francis Bach, and Jean Ponce. Multi-class cosegmentation. In CVPR, 2012.

Philip J Kellman and Elizabeth S Spelke. Perception of object unity in young infants. Infant Behavior and
Development, 11(2):161-180, 1983.

Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollar. Panoptic feature pyramid networks. In
CVPR, 2019.

Dwight J Kravitz, Kadharbatcha S Saleem, Chris I Baker, and Mortimer Mishkin. A new neural framework
for visuospatial processing. Nature Reviews Neuroscience, 12(4):217-230, 2011.

11


https://github.com/open-mmlab/mmpretrain
https://github.com/open-mmlab/mmpretrain

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

[39]

(40]

[41]

[42]

(43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Chunyuan Li, Jianwei Yang, Lei Zhang, and
Jianfeng Gao. Segment and recognize anything at any granularity. In ECCV, 2024.

Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Qiao Yu, and Jifeng Dai.
BEVFormer: learning bird’s-eye-view representation from LiDAR-camera via spatiotemporal transformers.
TPAMI, 47(3):2020-2036, 2024.

Ce Liu, Suryansh Kumar, Shuhang Gu, Radu Timofte, and Luc Van Gool. VA-DepthNet: A variational
approach to single image depth prediction. In /CLR, 2023.

Haisong Liu, Yang Chen, Haiguang Wang, Zetong Yang, Tianyu Li, Jia Zeng, Li Chen, Hongyang Li, and
Limin Wang. Fully sparse 3D occupancy prediction. In ECCV, 2024.

Runtao Liu, Zhirong Wu, Stella Yu, and Stephen Lin. The emergence of objectness: Learning zero-shot
segmentation from videos. In NeurIPS, 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention. In NeurIPS,
2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In /CLR, 2019.

Rundong Luo, Hong-Xing Yu, and Jiajun Wu. Unsupervised discovery of object-centric neural fields.
arXiv preprint arXiv:2402.07376, 2024.

David Marr. Vision: A Computational Investigation into the Human Representation and Processing of
Visual Information. 1982.

Amy Needham. Object exploration and object knowledge in young infants: A view from developmental
psychology. Cognition, Brain, and Consciousness, 2001.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. DINOv2: Learning robust visual
features without supervision. TMLR, 2023.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee,
Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open X-embodiment: Robotic learning
datasets and RT-X models. In /CRA, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, 2019.

Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye, and Furu Wei. BEiT v2: Masked image modeling with
vector-quantized visual tokenizers. arXiv preprint arXiv:2208.06366, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In ICML, 2021.

Mohammadreza Salehi, Efstratios Gavves, Cees GM Snoek, and Yuki M Asano. Time does tell: Self-
supervised time-tuning of dense image representations. In /CCV, 2023.

Shuwei Shao, Zhongcai Pei, Weihai Chen, Xingming Wu, and Zhengguo Li. NDDepth: Normal-distance
assisted monocular depth estimation. In /CCV, 2023.

Shuwei Shao, Zhongcai Pei, Xingming Wu, Zhong Liu, Weihai Chen, and Zhengguo Li. IEBins: Iterative
elastic bins for monocular depth estimation. In NeurIPS, 2023.

Xiaoyu Shi, Zhaoyang Huang, Weikang Bian, Dasong Li, Manyuan Zhang, Ka Chun Cheung, Simon See,
Hongwei Qin, Jifeng Dai, and Hongsheng Li. VideoFlow: Exploiting temporal cues for multi-frame optical
flow estimation. In /CCV, 2023.

Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin, Spyros Gidaris, Andrei Bursuc, Patrick Pérez,

Renaud Marlet, and Jean Ponce. Localizing objects with self-supervised transformers and no labels. In
BMVC, 2021.

12



[51]

(52]

(53]

[54]
[55]

(561

(571

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Silky Singh, Shripad Deshmukh, Mausoom Sarkar, and Balaji Krishnamurthy. Locate: self-supervised
object discovery via flow-guided graph-cut and bootstrapped self-training. In BMVC, 2023.

Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders. Selective search
for object recognition. IJCV, 104:154-171, 2013.

Leslie G Ungerleider and Mortimer Mishkin. Two cortical visual systems. Analysis of Visual Behavior,
1982.

Sara Vicente, Carsten Rother, and Vladimir Kolmogorov. Object cosegmentation. In CVPR, 2011.

Huy V Vo, Francis Bach, Minsu Cho, Kai Han, Yann LeCun, Patrick Pérez, and Jean Ponce. Unsupervised
image matching and object discovery as optimization. In CVPR, 2019.

Van Huy Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, and Jean Ponce. Large-scale unsupervised
object discovery. In NeurIPS, 2021.

Kun Wang, Zhigiang Yan, Junkai Fan, Wanlu Zhu, Xiang Li, Jun Li, and Jian Yang. DCDepth: Progressive
monocular depth estimation in discrete cosine domain. In NeurIPS, 2024.

Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit Som, et al. Image as a foreign language: BEiT
pretraining for vision and vision-language tasks. In CVPR, 2023.

Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L Crowley, and Dominique Vaufreydaz. Self-
supervised transformers for unsupervised object discovery using normalized cut. In CVPR, 2022.

Yangtao Wang, Xi Shen, Yuan Yuan, Yuming Du, Maomao Li, Shell Xu Hu, James L. Crowley, and
Dominique Vaufreydaz. TokenCut: Segmenting objects in images and videos with self-supervised
transformer and normalized cut. TPAMI, 45(12):15790-15801, 2023.

Yuqi Wang, Yuntao Chen, and Zhao-Xiang Zhang. 4D unsupervised object discovery. In NeurIPS, 2022.

Xiu-Shen Wei, Chen-Lin Zhang, Jianxin Wu, Chunhua Shen, and Zhi-Hua Zhou. Unsupervised object
discovery and co-localization by deep descriptor transformation. PR, 88:113-126, 2019.

Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Romain Brégier, Yohann Cabon, Vaibhav Arora,
Leonid Antsfeld, Boris Chidlovskii, Gabriela Csurka, and Jérdme Revaud. CroCo: Self-supervised
pre-training for 3D vision tasks by cross-view completion. In NeurIPS, 2022.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
SimMIM: A simple framework for masked image modeling. In CVPR, 2022.

Zhenda Xie, Zigang Geng, Jingcheng Hu, Zheng Zhang, Han Hu, and Yue Cao. Revealing the dark secrets
of masked image modeling. In CVPR, 2023.

Chenyu Yang, Yuntao Chen, Hao Tian, Chenxin Tao, Xizhou Zhu, Zhaoxiang Zhang, Gao Huang,
Hongyang Li, Yu Qiao, Lewei Lu, et al. BEVFormer v2: Adapting modern image backbones to bird’s-eye-
view recognition via perspective supervision. In CVPR, 2023.

Jiazhi Yang, Shenyuan Gao, Yihang Qiu, Li Chen, Tianyu Li, Bo Dai, Kashyap Chitta, Penghao Wu, Jia
Zeng, Ping Luo, Jun Zhang, Andreas Geiger, Yu Qiao, and Hongyang Li. Generalized predictive model for
autonomous driving. In CVPR, 2024.

Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything:
Unleashing the power of large-scale unlabeled data. In CVPR, 2024.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao.
Depth anything v2. In NeurIPS, 2024.

Chun-Hsiao Yeh, Cheng-Yao Hong, Yen-Chi Hsu, Tyng-Luh Liu, Yubei Chen, and Yann LeCun. Decoupled
contrastive learning. In ECCV, 2022.

Weihao Yuan, Xiaodong Gu, Zuozhuo Dai, Siyu Zhu, and Ping Tan. Neural window fully-connected CRFs
for monocular depth estimation. In CVPR, 2022.

Xiao Zhang and Michael Maire. Self-supervised visual representation learning from hierarchical grouping.
In NeurIPS, 2020.

13



[73] Xin Zhang, Jinheng Xie, Yuan Yuan, Michael Bi Mi, and Robby T Tan. HEAP: unsupervised object
discovery and localization with contrastive grouping. In AAAI, 2024.

[74] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. Unsupervised learning of depth and
ego-motion from video. In CVPR, 2017.

[75] C Lawrence Zitnick and Piotr Dollar. Edge boxes: Locating object proposals from edges. In ECCV, 2014.

14



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions, and the experi-
ments in Sec. d]are conducted to support these contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in Sec.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details are specified in Sec. [3] and Sec. ] Pseudo-code is provided in
appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code and data associated with this paper will be made publicly available
at the link provided in the abstract.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All training and test details are specified in Sec. 4]
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We report evaluation metrics following prior work.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All training and test details are specified in Sec. 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our research followed the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets and related prior work are properly cited in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: The paper does not release new assets at this time.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Pseudo-codes for Pixel Cluster

For all optical flow data generated by VideoFlow, we perform a simple Breadth-First Search(BFS) to
segment moving objects. Alg.[T|provides a pseudocode description of our algorithm. The algorithm
takes the optical flow, the forward-backward consistency check result, and two thresholds ¢ and
05 as input. 0 is used to determine when the optical flow of two adjacent pixels, being sufficiently
close, is considered to belong to the same object. 65 controls the minimum number of pixels that an
object should have.

Algorithm 1 Pixel Cluster

Input: flow(optical flow), valid(consistency check), 0, 0,
1: Initialization:n < 0, v[i][j] < false, S + 0
2: for x < 1to H do
3: fory< 1toW do

4 if v[z][y] = true or valid[z][y] = false then
5: continue
6: end if
7 Q <+ empty queue, C' < ()
$  Enqueue(Q, (,y))
9: while Q # () do
10: (z,y) < Dequeue(Q)
11: C <+ CU{(z,y)}
12: for (i, j) in (x, y)’s 4 neighbors do
13: if ||flow[¢][j], flow[x][y]||2 < 8 and v[¢][j] = false and valid[z][y] = true then
14: v[i][§] = true
15: Enqueue(Q, (i, 7))
16: end if
17: end for
18: end while
19: if |C| > 0, then
20: S+ Su{C}
21: end if
22:  end for
23: end for
QOutput: S

B Data Augmentation Details

All input images are first randomly resized to a resolution between 512 x 288 and 1024 x 576. They
are then randomly cropped to 224 x 224. During cropping, up to 10 attempts are made to ensure that
the cropped region contains at least two distinct labels. Afterward, each image has a 50% chance of
being horizontally flipped. Additionally, gamma, brightness, and color augmentations are applied
with a 50% probability, each sampled within the range of (0.9, 1.1).

C More Qualitative Results

Fig.[6]shows additional qualitative results of the pseudo-label generation and the visualizations of the
output features. As illustrated in the pseudo-label visualizations, the proposed algorithm successfully
segments objects exhibiting significant movement, as well as foreground instances exhibiting motion
patterns distinct from the background. The feature visualizations shows that the model distinguishes
many objects not annotated in the pseudo-labels. This suggests our model goes beyond mimicking
pseudo-labels, but learning a more general, object-centric representation.
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Figure 6: Examples of the pseudo-label generation results and the output features.
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