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Abstract

Large language models (LLMs) struggle with001
compositional generalisation, limiting their002
ability to systematically combine learned com-003
ponents to interpret novel inputs. While ar-004
chitectural modifications, fine-tuning, and data005
augmentation improve compositionality, they006
often have limited adaptability, face scalabil-007
ity constraints, or yield diminishing returns008
on real data. To address this, we propose009
CARMA, an intervention that enhances the010
stability and robustness of compositional rea-011
soning in LLMs while preserving fine-tuned012
performance. CARMA employs mutual in-013
formation regularisation and layer-wise stabil-014
ity constraints to mitigate feature fragmenta-015
tion, ensuring structured representations per-016
sist across and within layers. We evaluate017
CARMA on inverse dictionary modelling and018
sentiment classification, measuring its impact019
on semantic consistency, performance stability,020
and robustness to lexical perturbations. Re-021
sults show that CARMA reduces the variabil-022
ity introduced by fine-tuning, stabilises token023
representations, and improves compositional024
reasoning. While its effectiveness varies across025
architectures, CARMA’s key strength lies in026
reinforcing learned structures rather than intro-027
ducing new capabilities, making it a scalable028
auxiliary method. These findings suggest that029
integrating CARMA with fine-tuning can im-030
prove compositional generalisation while main-031
taining task-specific performance in LLMs.032

1 Introduction033

Compositional generalisation (CG) refers to the034

ability to systematically combine known expres-035

sions to generate novel ones following learned036

rules (Partee, 1984). This capability is essential037

for advancing language models (LMs) towards ro-038

bust linguistic understanding beyond mere pattern039

matching (Ram et al., 2024).040

Despite their strong performance across various041

natural language processing tasks, large language042

models (LLMs) exhibit persistent weaknesses in 043

compositional generalisation (Hupkes et al., 2020; 044

Kim and Linzen, 2020a; Aljaafari et al., 2024). 045

These limitations stem from multiple factors, in- 046

cluding training objectives and model architectures. 047

Standard autoregressive training methods, such as 048

next-token prediction, prioritise statistical corre- 049

lations in token sequences over structured seman- 050

tic understanding (Yin et al., 2023a; Dziri et al., 051

2024). As a result, token representations often lack 052

structured compositionality, leading to fragmented 053

information processing within layers (horizontal 054

misalignment) and across layers (vertical inconsis- 055

tency). 056

Additionally, while self-attention mechanisms 057

in Transformer models effectively capture local 058

dependencies, they frequently fail to maintain co- 059

herent compositional representations across multi- 060

ple layers (Murty et al., 2023). This misalignment 061

impairs the model’s ability to generalise composi- 062

tionally, resulting in sensitivity to input order (Is- 063

mayilzada et al., 2024) and difficulties in handling 064

complex syntactic and morphological structures 065

(Aljaafari et al., 2024). 066

Several approaches have been proposed to ad- 067

dress these limitations, including architectural mod- 068

ifications, enhanced encoding strategies, and tar- 069

geted regularisation techniques (Ontanon et al., 070

2022; Murty et al., 2023; Csordás et al., 2021). 071

However, these methods often struggle to balance 072

compositional improvements with maintaining per- 073

formance across diverse downstream tasks. More- 074

over, their effectiveness is typically confined to spe- 075

cific compositional structures or synthetic bench- 076

marks. Developing a robust and adaptable solution 077

that enables LLMs to achieve consistent CG across 078

diverse tasks remains a major challenge. 079

This work introduces CARMA: enhanced 080

Compositionality in LLMs via Advanced 081

Regularisation and Mutual Information Alignment, 082

illustrated in Figure 1. CARMA enhances CG by 083
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Figure 1: This diagram depicts the computation of the loss and illustrates the integration of the Mutual Information
(MI) loss (LMI) and the Stability Loss (Lstability) into the final optimisation process. Tokens Tok1 and Tok2
form the positive set (Hpos), while Tok3, T ok4, T ok5 form the negative set (Hneg). The LMI loss is computed
vertically across layers (l to k), maximising the similarity of tokens in Hpos while contrasting them with tokens in
Hneg. The Lstability loss is computed horizontally between consecutive layers, ensuring consistency in hidden state
representations. Both auxiliary losses are combined with the task loss (Ltask) to form the total loss (Ltotal). This
integration improves token representations and enhances the model’s overall optimisation.

addressing training challenges that hinder struc-084

tured compositionality in LLMs. By balancing085

layer-specific updates and reinforcing token-level086

dependencies, CARMA provides a scalable and087

adaptable solution that improves CG without088

sacrificing downstream task performance. To089

evaluate CARMA’s effectiveness, we investigate090

the following research questions:091

• RQ1: How does regulating mutual informa-092

tion across layers influence compositionality093

in LLMs? How does it affect sensitivity to094

input and internal perturbations?095

• RQ2: To what extent does layer-specific reg-096

ularisation improve compositional generalisa-097

tion across semantic and sentiment analysis098

tasks, assessing CARMA’s adaptability across099

domains?100

The key contributions of this work are as follows:101

• A novel regularisation method that enhances102

compositional generalisation without requir-103

ing architectural modifications. CARMA104

leverages mutual information alignment to105

preserve token dependencies across layers and106

employs layer-wise stability constraints to re-107

duce representational inconsistencies.108

• A systematic evaluation of CARMA across109

compositionally demanding tasks, demonstrat-110

ing its ability to reinforce systematicity and111

substitutivity, particularly in models where 112

fine-tuning alone is insufficient. 113

• A theoretical and empirical analysis of how 114

token dependencies degrade across layers 115

in standard LLMs, revealing that CG limi- 116

tations are not solely dependent on model 117

size but rather on representational instability. 118

CARMA mitigates this by ensuring consistent 119

information flow, showing that non-intrusive 120

regularisation strategies can significantly im- 121

prove CG. 122

The remainder of this paper is structured as fol- 123

lows: Section 2 reviews compositionality in LLMs 124

and associated challenges. Section 3 introduces the 125

CARMA method. Section 4 describes the experi- 126

mental setup. Section 5 presents empirical findings. 127

Section 6 discusses related work. Section 7 offers 128

insights and future research directions. Support- 129

ing datasets and software are available at a public 130

repository.1 131

2 Compositionality in LLMs 132

Compositional generalisation (CG) in linguistics 133

encompasses five key principles: systematicity, 134

productivity, substitutivity, localism, and over- 135

generalisation (Dankers et al., 2022a). These princi- 136

ples have been explored in LLMs for various appli- 137

cations, including compositional instruction (Yang 138

1Anonymised for review.
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et al., 2024b), semantic parsing (Li et al., 2023),139

machine translation (Li et al., 2021), and multi-step140

inference (Zhang et al., 2024). Empirical studies141

reveal that standard Transformer-based LLMs ex-142

hibit limited CG, even for relatively simple com-143

positional tasks. For instance, models frequently144

struggle to assemble tokens into words or construct145

morphemes into coherent structures (Aljaafari et al.,146

2024; Ismayilzada et al., 2024). These limitations147

are linked to architectural constraints, training ob-148

jectives, and tokenisation practices, which frag-149

ment information and increase sensitivity to input150

order and contextual noise (Murty et al., 2023).151

Training Objectives and Information Frag-152

mentation. Standard training objectives for LLMs153

typically optimise for next-token prediction, which154

prioritises surface-level correlations over deeper155

semantic integration (Dziri et al., 2024). While156

this approach is effective for data already seen, it157

often impedes CG by reducing mutual informa-158

tion between dependent tokens, thereby limiting159

the model’s ability to form coherent compositional160

representations (Aljaafari et al., 2024).161

Architectural Mechanisms and Composi-162

tional Consistency. Beyond training objectives,163

architectural mechanisms such as dropout and self-164

attention contribute to the dispersion of information165

across the model. This fragmentation increases sen-166

sitivity to input order and context, often resulting in167

errors that undermine compositional consistency168

(Sajjadi et al., 2016; Cai et al., 2021)—the model’s169

ability to maintain produce consistent outputs when170

processing variations of semantically equivalent in-171

puts through transformations like word substitution172

or paraphrasing.173

These challenges impact both high-complexity174

reasoning tasks and simpler operations that demand175

consistent morphological and syntactic processing176

(Ismayilzada et al., 2024).177

Existing Approaches to Enhance CG in LLMs.178

To address CG limitations, research has explored ar-179

chitectural adjustments, regularisation techniques,180

and task-specific strategies. For instance, (Ontanon181

et al., 2022) demonstrated that combining relative182

positional encoding with embeddings enhances CG,183

particularly in algorithmic tasks. Their findings184

suggest that weight sharing and copy decoders help185

retain input structures, thus improving CG accu-186

racy. Other architectural modifications, such as187

Pushdown Layers (Murty et al., 2023) and GroCoT188

(Sikarwar et al., 2022), incorporate mechanisms189

for tracking syntactic depth and spatial relations,190

which enable recursive processing of compositional 191

structures. 192

Models like RegularGPT (Chi et al., 2023) in- 193

troduce adaptive depth and memory mechanisms 194

to facilitate CG by constructing complex struc- 195

tures from simpler components. Studies by (Csor- 196

dás et al., 2021) and (Petty et al., 2024) evaluate 197

model depth, parameter configurations, and encod- 198

ing methods, revealing that architectural choices 199

and training setups—such as avoiding early stop- 200

ping and prioritising accuracy over loss minimisa- 201

tion—are critical to enhancing CG. In neural ma- 202

chine translation (NMT), (Dankers et al., 2022b) 203

reformulated CG evaluations, finding a positive 204

correlation between data size and compositional 205

performance, underscoring the importance of ex- 206

tensive, real-world benchmarks for capturing the 207

complexities of linguistic compositionality. 208

Frameworks like CompMCTG and Meta-MCTG 209

(Zhong et al., 2024) offer benchmarks for evaluat- 210

ing CG in multi-aspect text generation, suggesting 211

that joint training and meta-learning approaches 212

can improve fluency. However, significant perfor- 213

mance drops persist in out-of-distribution tasks. 214

Additionally, synthetic tasks reveal that recursive, 215

step-by-step prompt formats support combinato- 216

rial generalisation, although training biases and 217

sequence order constraints remain limiting factors 218

(Ramesh et al., 2024). 219

3 Enhanced Compositionality via 220

Advanced Regularisation and Mutual 221

Information Alignment (CARMA) 222

This section formalises compositionality, intro- 223

duces the core principles of CARMA, and details 224

its components. Figure 1 illustrates the CARMA 225

method, highlighting its optimisation process and 226

key components. 227

3.1 Compositionality Formalisation 228

Mathematical Foundations of Compositionality. 229

CG (Section 2) can be formally defined through 230

a compositional system where E denotes a set of 231

expressions (e.g., token sequences recognised by 232

the model), and M represents a corresponding set 233

of meanings. This relationship is formalised as a 234

function: 235

f : E → M (1) 236

For any complex expression e ∈ E , composed of 237

constituent elements e1, . . . , en according to a syn- 238
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tactic rule r, the function f satisfies:239

f(r(e1, . . . , en)) = gr(f(e1), . . . , f(en)), (2)240

where gr is the semantic operation that corresponds241

to the syntactic rule r.242

Compositional Generalisation in LLMs. Effec-243

tive CG in LLMs requires generating structured244

compositions that preserve semantic consistency.245

Given a novel expression enovel similar to a known246

expression eknown within a threshold β, their seman-247

tic functions must remain within an interpretable248

bound or deviation α:249

d(enovel, eknown) ≤ β ⇒ d(f(enovel), f(eknown)) ≤ α.
(3)250

This formulation captures systematicity (struc-251

tured combinations), substitutivity (preservation252

under transformations), and resistance to over-253

generalisation (bounded semantic deviation) while254

maintaining interpretability.255

3.2 CARMA Formalisation256

CARMA operates over a range of target layers,257

from l to K (0 < l ≤ K ≤ L, where L is the total258

number of layers), and consists of two core com-259

ponents: Mutual Information and Layer-Wise260

Stability Regularisation.261

Mutual Information (MI) Regularisation Across262

Layers. CARMA preserves essential dependen-263

cies and maintains structural coherence by max-264

imising MI between hidden states of related tokens.265

The MI between hidden states hki and hkj at layer k,266

representing two related tokens i and j, is defined267

as:268

I(hki ;h
k
j ) = EP (hk

i ,h
k
j )

[
log

P (hki , h
k
j )

P (hki )P (hkj )

]
(4)269

Since exact computation is intractable, MI is270

approximated using the InfoNCE loss (Oord271

et al., 2018), encouraging token-level dependen-272

cies across the same layers:273

LMI = − 1

N

K∑
k=l

Q∑
i=1

(
log

∑
hj∈Hk

j ̸=i

exp

(
f(hk

i , h
k
j )

τ

)

− log

( ∑
hj∈Hk

j ̸=i

exp

(
f(hk

i , h
k
j )

τ

)

+
∑

hm∈Nk

exp

(
f(hk

i , hm)

τ

)))
,

(5)274

where f(hki , h
k
j ) is a similarity function quantify- 275

ing the relationship between hidden states at layer 276

k, Hk denotes the set of positive examples related 277

to hki , N k is the set of negative examples unrelated 278

to hki at layer k, τ is the temperature parameter, 279

and N is the total number of target layers from l 280

to K, with Q representing the number of tokens 281

or samples used per layer. Further details on MI 282

approximation are provided in Appendix D. 283

Layer-Wise Stability Regularisation. This com- 284

ponent enforces smooth transitions across layers, 285

reducing abrupt changes that could disrupt compo- 286

sitional structures. For a layer k, the Layer-Wise 287

Stability Loss is defined as: 288

LStability =

K∑
k=l

E


∣∣∣f (k+1)(X)− f (k)(X)

∣∣∣2
E
[
|f (k)(X)|2

]
+ E

[
|f (k+1)(X)|2

]
+ ϵ

 ,

(6) 289

where f (k)(X) denotes the activation output at 290

layer k, and ϵ is a small positive constant to en- 291

sure numerical stability (e.g., ϵ = 10−8). Min- 292

imising this loss preserves compositional integrity 293

across the specified layers by encouraging smooth 294

and consistent transitions between them, thereby 295

enabling more stable information flow and aggre- 296

gation within this range. 297

CARMA Loss. CARMA integrates LMI and 298

LStability into its total loss as: 299

LCARMA = γLMI + ηLStability, (7) 300

where γ and η are hyperparameters in [0, 2] that 301

control the relative contribution of each compo- 302

nent. The final optimisation objective balances 303

task-specific performance with CARMA’s regulari- 304

sation as: 305

Ltotal = (1− λ) · Ltask + λ · LCARMA, (8) 306

where Ltask represents the task-specific loss, 307

LCARMA is the regularisation loss, and λ ∈ [0, 2] 308

controls the trade-off between task accuracy and 309

compositional robustness. 310

4 Experimental Setup 311

4.1 Downstream Tasks & datasets 312

CARMA is evaluated across two tasks that assess 313

different aspects of compositional generalisation: 314

Inverse Dictionary Modelling for word-level com- 315

position and Sentiment Classification for phrase- 316

level structure. These tasks measure systematicity, 317
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substitutivity, over-generalisation, and robustness318

to perturbations.319

Inverse Dictionary Modelling (IDM) evaluates320

a model’s ability to generate terms from defini-321

tions, focusing on substitutivity in semantic com-322

position. WordNet (Miller, 1994) is used as the323

training dataset, with an 80-10-10 train-validation-324

test split. Models are prompted with a definition325

and tasked with generating the corresponding term326

(e.g., “The star around which the Earth orbits is327

called” → “Sun”). Performance is assessed using328

Exact Match Accuracy, which measures whether329

the generated term precisely matches the expected330

output. By mapping definitions to terms, this task331

provides a robust assessment of a model’s ability332

to perform compositional substitution.333

Sentiment Classification (SC) assesses the334

model’s ability to infer sentiment from phrases and335

sentences, particularly focusing on sentiment shifts336

and over-generalisation. The Stanford Sentiment337

Treebank (SST) (Socher et al., 2013) is used with338

its original dataset splits. Models predict sentiment339

labels given textual inputs (e.g., “A brilliant perfor-340

mance sentiment is” → “positive”). Performance341

is evaluated using Exact Match Accuracy. This342

task examines how sentiment composition is pre-343

served across different levels of linguistic structure.344

Task formalisation, dataset details, and task selec-345

tion rationale are in Appendices A, B.1, and B.2,346

respectively.347

4.2 Model Configurations and Baselines348

Experiments are conducted across three model con-349

figurations: baseline models, models with task-350

specific fine-tuning, and models with fine-tuning351

plus CARMA regularisation. Models use 500352

warm-up steps and a 0.006 learning rate. We353

test GPT-2 (S/L) (Radford et al., 2019), Gemma-354

2B (Team et al., 2024), Llama (1B/3B) (Dubey355

et al., 2024), and Qwen (0.5B/3B) (Yang et al.,356

2024a), representing diverse architectures and ca-357

pacities. CARMA regularisation is generally ap-358

plied at approximately one-third of the model’s359

depth, though specific layer positions vary. De-360

tails on fine-tuning methodologies, model specifi-361

cations, and CARMA hyperparameter selection are362

provided in Appendix B.3.363

4.3 Interventions for Compositional364

Robustness and Performance Stability365

Two interventions are used to evaluate the robust-366

ness of compositional structures and the stability367

of learned representations: Constituent-aware pool- 368

ing and synonym replacement. These interventions 369

assess hierarchical dependencies and semantic con- 370

sistency under controlled perturbations. 371

Constituent-Aware Pooling (CAP) (Aljaafari 372

et al., 2024) groups token-level representations into 373

higher-level semantic units (e.g., words, syntactic 374

constituents) to assess hierarchical dependencies 375

and how compositional structures are maintained 376

across layers. In this paper, the token-to-word CAP 377

is utilised. Model robustness is measured by moni- 378

toring performance metrics before and after apply- 379

ing CAP. Full methodology and formalisation are 380

provided in Appendix C.1. 381

Synonym Replacement evaluates semantic con- 382

sistency by substituting 25% and 40% of prompt 383

words with synonyms within an interpretable 384

bound (α). Experiments were repeated at least 385

five times with different seeds for robustness and 386

performance stability assessment; further details 387

are in Appendix C.2. 388

4.4 Experimental setup 389

Experiments were conducted using NVIDIA RTX 390

A6000 and A100 GPUs. The method was de- 391

veloped in Python (v3.10.15) with Transformers 392

(v4.44.2) (Wolf et al., 2020), PyTorch (v2.4.1) 393

(Paszke et al., 2019), and Transformer-lens (v2.8.1) 394

(Nanda and Bloom, 2022). Preprocessing tasks, 395

including tokenisation and tagging, used NLTK 396

(v3.9.1) (Bird et al., 2009), spaCy (v3.7.2) (Hon- 397

nibal et al., 2020), and TextBlob (v0.18.0) (Loria 398

et al.), with Scikit-learn (v1.5.1) (Pedregosa et al., 399

2011) for evaluation. 400

5 Results and discussion 401

The method is evaluated across three aspects: (1) its 402

impact on model robustness against compositional- 403

based perturbations, (2) its impact on model per- 404

formance stability, and (3) its impact on model 405

overall performance. See Appendix B.4 for a de- 406

tailed breakdown of the evaluation metrics used for 407

each aspect. 408

5.1 Constituent-Aware Pooling (CAP) 409

Intervention 410

Figures 2(a) and 2(b) show the impact of CAP on 411

IDM and SC tasks, comparing original, fine-tuned 412

(FT) and CARMA models.2 Model performance is 413

2Throughout this paper, models incorporating CARMA
with FT are referred to as CARMA models.
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Figure 2: Layer-wise performance comparison under CAP intervention, with performance averaged over three
protocols (Mean CAP, Max CAP, Sum CAP) for Original, Fine-Tuned (FT), and CARMA (FT + CARMA) models.
Layer numbers are normalised to their relative positions within each model to enable cross-architecture comparison.
The IDM task (left) highlights CARMA’s improvements in systematicity and stability, particularly in the early and
middle layers. The SC task (right) demonstrates CARMA’s ability to enhance robustness, though convergence with
FT occurs in deeper layers.

averaged across three CAP protocols (Mean, Max,414

and Sum), with per-protocol results provided in415

Appendix E. The analysis examines how well mod-416

els preserve compositionality under hierarchical417

pooling.418

CARMA’s effectiveness is influenced by model419

size, tokenisation strategy, and task complexity.420

In IDM tasks, CARMA models have consider-421

able gains when applying CAP at the earliest lay-422

ers (1% of model depth), particularly in models423

with fine-grained tokenisation: Llama-1B (+3.61%)424

and Gemma-2B (+16.89%). GPT2-L, despite its425

reliance on subword tokenisation, benefits from426

CARMA over FT (+3.67%). However, Llama-3B427

and Qwen-3B minimal improvements (+1.0%) sug-428

gest a capacity ceiling where increased model size429

does not yield proportional gains due to training430

data limitations. The combination of smaller scale431

and multilingual training particularly affects Qwen-432

0.5B, where limited model capacity coupled with433

broad language coverage appears to constrain En-434

glish-specific compositional learning, resulting in435

reduced CARMA benefits. In SC tasks, tokeni-436

sation effects vary with task complexity. When437

intervening at 25% layer position, Gemma-2B438

and Llama-1B show the strongest gains (+27.38%,439

+10.59%), while Llama-3B exhibits a marginal dif-440

ference between CARMA and FT (∼ 1%) but still441

outperforms the Original model (+37.68%). These442

results suggest that fine-tuning alone is sufficient443

for simpler tasks, whereas structured interventions444

like CARMA are particularly beneficial for more 445

complex, compositional reasoning tasks. 446

In a layer-wise analysis, the impact of CARMA 447

varies significantly across network depths, reveal- 448

ing crucial insights about compositional learning in 449

transformers. Early layers (0-25%) benefit the most 450

from regularisation, as they establish foundational 451

compositional representations by exhibiting a weak 452

notion of compositionality. Middle layers (25-75%) 453

reinforce these patterns, maintaining structured fea- 454

ture dependencies with moderate improvements. 455

Deeper layers (75-100%) show minimal benefits as 456

the model transitions from compositional learning 457

to task-specialised representations. This pattern 458

aligns with previous findings on layer-wise com- 459

positional evolution in Transformers, where earlier 460

layers capture hierarchical structure, while deeper 461

layers exhibit increased task specificity (Feucht 462

et al., 2024). CARMA can thus be strategically ap- 463

plied to control these early representations, main- 464

taining beneficial compositional structure while 465

allowing natural task-specific adaptations in deeper 466

layers. 467

These findings demonstrate CARMA’s effective- 468

ness, particularly for models with granular tokeni- 469

sation under data constraints, mediated by model 470

capacity and task demands. The method’s dual role 471

- enhancing early compositional learning while pre- 472

serving deeper layer adaptations - enables targeted 473

improvement in model robustness without disrupt- 474

ing task-specific processing. 475
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Model Ver. Task Int. CS CV

GPT2-L

CARMA IDM 25% 56.31 0.0164
FT IDM 25% 56.95 0.0311
Org IDM 25% 51.10 0.1175

CARMA SC 25% 0.8858 0.0065
FT SC 25% 0.8804 0.0082

Gemma-2B

CARMA IDM 25% 56.70 0.023
FT IDM 25% 57.42 0.030
Org IDM 25% 49.47 0.031

CARMA SC 25% 78.90 0.008
FT SC 25% 80.23 0.009
Org SC 25% 68.14 0.042

Llama-3B

CARMA IDM 25% 62.86 0.015
FT IDM 25% 62.22 0.029
Org IDM 25% 52.47 0.035

CARMA SC 25% 84.83 0.0056
FT SC 25% 85.85 0.0065
Org SC 25% 35.21 0.0136

Table 1: Model performance (25% synonym interven-
tion). Ver.: Version; Int.: Intervention rate; CS: Con-
sistSyn (%); CV: Coefficient of Variation. Best values
in bold.

5.2 Synonyms Replacement Intervention476

Synonym Replacement evaluates semantic consis-477

tency and robustness under lexical variations across478

multiple runs (N ≥ 5) with different seeds. Con-479

sistSyn measures output preservation after substitu-480

tion, while the coefficient of variation (CV) quanti-481

fies performance stability, with lower values indi-482

cating higher stability. Performance is assessed at483

25% and 40% word replacement rates to measure484

sensitivity to increasing perturbations. A sample of485

results is presented in Table 1, with full details in486

Appendix E.487

Across models, CARMA achieves a distinctive488

performance profile, matching or exceeding FT489

ConsistSyn while consistently demonstrating supe-490

rior stability through lower CV values. At 25% in-491

tervention, Gemma-2B CARMA achieves 56.70%492

ConsistSyn with a CV of 0.0225, compared to493

FT’s 57.42% with higher variance (CV: 0.0307).494

Llama-3B CARMA outperforms FT in both Con-495

sistSyn (62.86% vs. 62.22%) and stability (CV:496

0.0148 vs. 0.0292) for IDM. Qwen-3B follows a497

similar trend but with smaller relative gains, im-498

proving stability (CV: 0.0225 vs. 0.0279) while499

maintaining a marginal ConsistSyn advantage over500

FT (62.00% vs. 61.79%). However, as interven-501

tion complexity increases to 40%, the performance502

gap widens; for example, Gemma-2B FT main-503

tains higher ConsistSyn (44.98%) than CARMA504

(42.36%), though CARMA remains more stable505

(CV: 0.0174 vs. 0.0249). This behaviour implies506

that the advantage of CARMA lies in its lower507

variance and reinforcement of compositional con-508

sistency. Thus, it maintains compositional under-509

standing without sacrificing performance, whereas510

FT produces a performance-driven approach.511

The tokenisation method significantly affects 512

CARMA’s impact. Models with more structured 513

tokenisation show stronger stability improvements, 514

but gains vary based on vocabulary design and lan- 515

guage coverage. Llama and GPT2-L generally ben- 516

efit more than Qwen, even with similar sizes, likely 517

due to their smaller multilingual coverage, which 518

results in a more compact and consistent token dis- 519

tribution. Qwen, with a larger vocabulary (151K 520

tokens) supporting broader multilingual processing, 521

introduces redundancy that dampens CARMA’s rel- 522

ative stability advantage. Gemma-2B, optimised 523

for a single dominant language with a large vocabu- 524

lary size, shows the highest overall gains, reinforc- 525

ing that a structured tokenisation approach focused 526

on a limited linguistic scope enhances CARMA’s 527

effectiveness. 528

Task complexity further differentiates CARMA’s 529

effect. CARMA’s advantages align with its method- 530

ological design, particularly in tasks requiring ex- 531

plicit structural reinforcement. In IDM, where sys- 532

tematicity and substitutivity are critical, CARMA 533

ensures structured mappings hold under perturba- 534

tion, particularly in Gemma-2B (+14.6% over the 535

original) and Llama-1B (+2692.5% over the origi- 536

nal in SC). However, in SC, where compositional- 537

ity is more distributed, larger models show lower 538

differences between CARMA and FT, reinforcing 539

that larger models encode sentiment shifts effec- 540

tively without additional intervention. 541

These results strengthen the hypothesis that 542

CARMA enhances model robustness across per- 543

turbations, particularly in structured learning tasks 544

and models where fine-tuning alone does not 545

fully capture compositional dependencies. While 546

FT maintains an advantage in absolute accuracy, 547

CARMA ensures greater consistency, making it 548

critical for improving compositional alignment and 549

mitigating instability in high-variance settings. 550

5.3 Impact of CARMA on Performance 551

Figures 3 and 4 show the performance of original, 552

FT, and CARMA accuracies across tasks. CARMA 553

demonstrates significant improvements over orig- 554

inal models across tasks. For example, in IDM, 555

GPT2-L achieves 150% improvement, and Llama- 556

3B shows an 89.6% increase, while in SC, Gemma- 557

2B demonstrates 122.5% improvement over Origi- 558

nal baselines. 559

Task-specific patterns emerge when comparing 560

models. For instance, in IDM, CARMA outper- 561

forms FT, with Llama-3B showing a +5% gain 562
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Figure 3: Task performance in IDM across GPT-2 (S,
L), Gemma-2B, Llama (1B, 3B), and Qwen (0.5B, 3B).
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Figure 4: Task performance in SC across GPT-2 (S, L),
Gemma-2B, Llama (1B, 3B) and Qwen (0.5B, 3B).

and GPT2-L improving by 1.7%. In SC, CARMA563

maintains comparable performance to FT while en-564

hancing robustness, suggesting it preserves learned565

features while strengthening compositional consis-566

tency.567

CARMA enhances FT by improving represen-568

tation stability and preventing feature drift, ensur-569

ing structured compositional consistency. Its bene-570

fits are most pronounced in larger models, where571

greater capacity supports robust representations572

while maintaining fine-tuned performance. This573

scalability highlights CARMA’s effectiveness in574

regularising model representations and reinforcing575

compositional structure without disrupting learned576

task features, providing a reliable solution for im-577

proving compositional reasoning in LLMs.578

6 Related work579

Research on CG in LLMs has revealed both capabil-580

ities and limitations (Tull et al., 2024; Moisio et al.,581

2023; Sinha et al., 2024), though many studies lack582

mechanistic analysis or concrete suggestions for583

improvements.584

Architectural modifications are a common ap-585

proach to tackle CG challenges. Recent proposals586

include pushdown layers for recursive attention 587

(Murty et al., 2023), Layer-wise Representation 588

Fusion for dynamic encoder weighting (Lin et al., 589

2023), and specialised semantic parsing methods 590

(Shaw et al., 2021). While effective for specific 591

tasks, these solutions face scalability challenges 592

due to computational overhead, specialised annota- 593

tion requirements, and architectural constraints. 594

Regularisation methods provide alternative ap- 595

proaches through consistency regularisation (Yin 596

et al., 2023b), data augmentation strategies (On- 597

tanon et al., 2022), and attention stability mecha- 598

nisms (Zhai et al., 2023). Studies show dataset com- 599

plexity and example frequency variations improve 600

compositional reasoning (Zhou et al., 2023). How- 601

ever, these methods face key limitations: token- 602

level approaches lack adaptability to complex struc- 603

tures, augmentation shows diminishing returns on 604

real data, and stability mechanisms prioritise train- 605

ing stability over compositional generalisation. 606

Evaluation challenges persist in CG research. 607

Standard benchmarks like SCAN (Lake and Ba- 608

roni, 2017), PCFG (Hupkes et al., 2020), and 609

COGS (Kim and Linzen, 2020b) rely heavily on 610

synthetic data, limiting real-world applicability. Re- 611

cent frameworks like CoGnition (Li et al., 2021) 612

and CAP (Aljaafari et al., 2024) better align with 613

natural language phenomena, but evaluation gaps 614

remain. Current approaches often sacrifice gener- 615

alisability for task-specific performance. CARMA 616

addresses these limitations through a task-agnostic, 617

efficient solution that enhances CG while maintain- 618

ing robust cross-task performance. 619

7 Conclusion 620

This paper presents CARMA, a method for enhanc- 621

ing compositional generalisation in LLMs through 622

mutual information regularisation and stability con- 623

straints. By addressing information fragmentation 624

and layer-wise instability, CARMA improves per- 625

formance stability and robustness under interven- 626

tions, as demonstrated through IDM and SC tasks. 627

The method offers a cost-effective solution applica- 628

ble across model architectures with minimal mod- 629

ifications. Future work should explore extending 630

CARMA to additional tasks that rely more on nu- 631

anced semantic features and multilingual settings 632

to further evaluate its scalability and adaptability. 633

Integrating CARMA into improved, targeted trans- 634

former architectures for CG could unlock new pos- 635

sibilities for enhancing compositionality. 636
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Limitations637

The limitations of this paper can be summed up as638

follows: First, our results are primarily reported639

for the English language. Further analysis across640

languages with diverse linguistic structures is left641

as a confirmatory future work. Second, the datasets642

(WordNet and SST) lack a more comprehensive643

representativeness of broader linguistic phenomena.644

Third, our focus is predominantly on decoder-based645

Transformers. Finally, the employed Transformer646

models may inherit potential biases ingrained from647

their pre-training data.648

Ethical statement649

This work aims to enhance language model ro-650

bustness and compositional understanding through651

CARMA. While improving model reliability is ben-652

eficial, we acknowledge potential risks in enhanc-653

ing language model capabilities. Our evaluation654

focuses on controlled tasks (IDM and SC) with655

comprehensive stability metrics to ensure responsi-656

ble development and transparent reporting of model657

behaviour under perturbations.658

References659

Nura Aljaafari, Danilo S Carvalho, and André Fre-660
itas. 2024. Interpreting token compositionality661
in llms: A robustness analysis. arXiv preprint662
arXiv:2410.12924.663

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-664
ural language processing with Python: analyzing text665
with the natural language toolkit. " O’Reilly Media,666
Inc.".667

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth668
Church. 2021. Isotropy in the contextual embedding669
space: Clusters and manifolds. In International con-670
ference on learning representations.671

Ta-Chung Chi, Ting-Han Fan, Alexander Rudnicky, and672
Peter Ramadge. 2023. Transformer working mem-673
ory enables regular language reasoning and natural674
language length extrapolation. In Findings of the675
Association for Computational Linguistics: EMNLP676
2023, pages 5972–5984, Singapore. Association for677
Computational Linguistics.678

Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber.679
2021. The devil is in the detail: Simple tricks im-680
prove systematic generalization of transformers. In681
Proceedings of the 2021 Conference on Empirical682
Methods in Natural Language Processing, pages 619–683
634, Online and Punta Cana, Dominican Republic.684
Association for Computational Linguistics.685

Verna Dankers, Elia Bruni, and Dieuwke Hupkes. 2022a. 686
The paradox of the compositionality of natural lan- 687
guage: A neural machine translation case study. In 688
Proceedings of the 60th Annual Meeting of the As- 689
sociation for Computational Linguistics (Volume 1: 690
Long Papers), pages 4154–4175, Dublin, Ireland. As- 691
sociation for Computational Linguistics. 692

Verna Dankers, Elia Bruni, and Dieuwke Hupkes. 2022b. 693
The paradox of the compositionality of natural lan- 694
guage: A neural machine translation case study. In 695
Proceedings of the 60th Annual Meeting of the Associ- 696
ation for Computational Linguistics (Volume 1: Long 697
Papers), pages 4154–4175. Association for Compu- 698
tational Linguistics. 699

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 700
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 701
Akhil Mathur, Alan Schelten, Amy Yang, Angela 702
Fan, et al. 2024. The llama 3 herd of models. arXiv 703
preprint arXiv:2407.21783. 704

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lor- 705
raine Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck, 706
Peter West, Chandra Bhagavatula, Ronan Le Bras, 707
et al. 2024. Faith and fate: Limits of transformers on 708
compositionality. Advances in Neural Information 709
Processing Systems, 36. 710

Christiane Fellbaum. 1998. Wordnet: An electronic 711
lexical database. MIT Press google schola, 2:678– 712
686. 713

Sheridan Feucht, David Atkinson, Byron Wallace, and 714
David Bau. 2024. Token erasure as a footprint of 715
implicit vocabulary items in llms. In The 2024 Con- 716
ference on Empirical Methods in Natural Language 717
Processing. 718

Matthew Honnibal, Ines Montani, Sofie Van Lan- 719
deghem, and Adriane Boyd. 2020. spacy: Industrial- 720
strength natural language processing in python. 721

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia 722
Bruni. 2020. Compositionality decomposed: How 723
do neural networks generalise? (extended abstract). 724
In Proceedings of the Twenty-Ninth International 725
Joint Conference on Artificial Intelligence, IJCAI-20, 726
pages 5065–5069. International Joint Conferences on 727
Artificial Intelligence Organization. Journal track. 728

Mete Ismayilzada, Defne Circi, Jonne Sälevä, Hale 729
Sirin, Abdullatif Köksal, Bhuwan Dhingra, Antoine 730
Bosselut, Lonneke van der Plas, and Duygu Ataman. 731
2024. Evaluating morphological compositional gen- 732
eralization in large language models. arXiv preprint 733
arXiv:2410.12656. 734

Najoung Kim and Tal Linzen. 2020a. Cogs: A compo- 735
sitional generalization challenge based on semantic 736
interpretation. In Proceedings of the 2020 conference 737
on empirical methods in natural language processing 738
(emnlp), pages 9087–9105. 739

Najoung Kim and Tal Linzen. 2020b. COGS: A compo- 740
sitional generalization challenge based on semantic 741

9

https://doi.org/10.18653/v1/2023.findings-emnlp.397
https://doi.org/10.18653/v1/2023.findings-emnlp.397
https://doi.org/10.18653/v1/2023.findings-emnlp.397
https://doi.org/10.18653/v1/2023.findings-emnlp.397
https://doi.org/10.18653/v1/2023.findings-emnlp.397
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/2022.acl-long.286
https://doi.org/10.18653/v1/2022.acl-long.286
https://arxiv.org/abs/2406.20086
https://arxiv.org/abs/2406.20086
https://arxiv.org/abs/2406.20086
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.24963/ijcai.2020/708
https://doi.org/10.24963/ijcai.2020/708
https://doi.org/10.24963/ijcai.2020/708
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731


interpretation. In Proceedings of the 2020 Confer-742
ence on Empirical Methods in Natural Language743
Processing (EMNLP), pages 9087–9105, Online. As-744
sociation for Computational Linguistics.745

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-746
lingual constituency parsing with self-attention and747
pre-training. In Proceedings of the 57th Annual Meet-748
ing of the Association for Computational Linguistics,749
pages 3499–3505, Florence, Italy. Association for750
Computational Linguistics.751

Nikita Kitaev and Dan Klein. 2018. Constituency pars-752
ing with a self-attentive encoder. In Proceedings753
of the 56th Annual Meeting of the Association for754
Computational Linguistics (Volume 1: Long Papers),755
pages 2676–2686, Melbourne, Australia. Association756
for Computational Linguistics.757

Brenden M. Lake and Marco Baroni. 2017. General-758
ization without systematicity: On the compositional759
skills of sequence-to-sequence recurrent networks.760
In International Conference on Machine Learning.761

Yafu Li, Yongjing Yin, Yulong Chen, and Yue Zhang.762
2021. On compositional generalization of neural ma-763
chine translation. In Proceedings of the 59th Annual764
Meeting of the Association for Computational Lin-765
guistics and the 11th International Joint Conference766
on Natural Language Processing (Volume 1: Long767
Papers), pages 4767–4780, Online. Association for768
Computational Linguistics.769

Zhaoyi Li, Ying Wei, and Defu Lian. 2023. Learning770
to substitute spans towards improving compositional771
generalization. In Proceedings of the 61st Annual772
Meeting of the Association for Computational Lin-773
guistics (Volume 1: Long Papers), pages 2791–2811,774
Toronto, Canada. Association for Computational Lin-775
guistics.776

Lei Lin, Shuangtao Li, Yafang Zheng, Biao Fu, Shan777
Liu, Yidong Chen, and Xiaodong Shi. 2023. Learn-778
ing to compose representations of different encoder779
layers towards improving compositional generaliza-780
tion. In Findings of the Association for Computa-781
tional Linguistics: EMNLP 2023, pages 1599–1614,782
Singapore. Association for Computational Linguis-783
tics.784

Steven Loria et al. textblob documentation. Release785
0.18.0.786

George A. Miller. 1994. WordNet: A lexical database787
for English. In Human Language Technology: Pro-788
ceedings of a Workshop held at Plainsboro, New789
Jersey, March 8-11, 1994.790

Anssi Moisio, Mathias Creutz, and Mikko Kurimo.791
2023. Evaluating morphological generalisation in792
machine translation by distribution-based composi-793
tionality assessment. In Proceedings of the 24th794
Nordic Conference on Computational Linguistics795
(NoDaLiDa), pages 738–751, Tórshavn, Faroe Is-796
lands. University of Tartu Library.797

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and 798
Christopher Manning. 2023. Pushdown layers: En- 799
coding recursive structure in transformer language 800
models. In Proceedings of the 2023 Conference on 801
Empirical Methods in Natural Language Processing, 802
pages 3233–3247, Singapore. Association for Com- 803
putational Linguistics. 804

Neel Nanda and Joseph Bloom. 2022. Transformerlens. 805
https://github.com/TransformerLensOrg/ 806
TransformerLens. 807

Santiago Ontanon, Joshua Ainslie, Zachary Fisher, and 808
Vaclav Cvicek. 2022. Making transformers solve 809
compositional tasks. In Proceedings of the 60th An- 810
nual Meeting of the Association for Computational 811
Linguistics (Volume 1: Long Papers), pages 3591– 812
3607, Dublin, Ireland. Association for Computational 813
Linguistics. 814

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. 815
Representation learning with contrastive predictive 816
coding. arXiv preprint arXiv:1807.03748. 817

Barbara H. Partee. 1984. Compositionality. In Fred 818
Landman and Frank Veltman, editors, Varieties of 819
Formal Semantics, pages 281–312. Foris Publica- 820
tions. 821

Adam Paszke, Sam Gross, Francisco Massa, Adam 822
Lerer, James Bradbury, Gregory Chanan, Trevor 823
Killeen, Zeming Lin, Natalia Gimelshein, Luca 824
Antiga, et al. 2019. Pytorch: An imperative style, 825
high-performance deep learning library. Advances in 826
neural information processing systems, 32. 827

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, 828
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, 829
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, 830
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch- 831
esnay. 2011. Scikit-learn: Machine learning in 832
Python. Journal of Machine Learning Research, 833
12:2825–2830. 834

Jackson Petty, Sjoerd Steenkiste, Ishita Dasgupta, Fei 835
Sha, Dan Garrette, and Tal Linzen. 2024. The impact 836
of depth on compositional generalization in trans- 837
former language models. In Proceedings of the 2024 838
Conference of the North American Chapter of the 839
Association for Computational Linguistics: Human 840
Language Technologies (Volume 1: Long Papers), 841
pages 7232–7245. 842

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 843
Dario Amodei, Ilya Sutskever, et al. 2019. Language 844
models are unsupervised multitask learners. OpenAI 845
blog, 1(8):9. 846

Parikshit Ram, Tim Klinger, and Alexander Gray. 2024. 847
What makes models compositional? a theoretical 848
view. In Proceedings of the Thirty-Third Interna- 849
tional Joint Conference on Artificial Intelligence 850
(IJCAI-24), pages 4824–4832. International Joint 851
Conferences on Artificial Intelligence Organization. 852

10

https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://api.semanticscholar.org/CorpusID:46761158
https://api.semanticscholar.org/CorpusID:46761158
https://api.semanticscholar.org/CorpusID:46761158
https://api.semanticscholar.org/CorpusID:46761158
https://api.semanticscholar.org/CorpusID:46761158
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.18653/v1/2023.acl-long.157
https://doi.org/10.18653/v1/2023.acl-long.157
https://doi.org/10.18653/v1/2023.acl-long.157
https://doi.org/10.18653/v1/2023.acl-long.157
https://doi.org/10.18653/v1/2023.acl-long.157
https://doi.org/10.18653/v1/2023.findings-emnlp.108
https://doi.org/10.18653/v1/2023.findings-emnlp.108
https://doi.org/10.18653/v1/2023.findings-emnlp.108
https://doi.org/10.18653/v1/2023.findings-emnlp.108
https://doi.org/10.18653/v1/2023.findings-emnlp.108
https://doi.org/10.18653/v1/2023.findings-emnlp.108
https://doi.org/10.18653/v1/2023.findings-emnlp.108
https://aclanthology.org/H94-1111
https://aclanthology.org/H94-1111
https://aclanthology.org/H94-1111
https://aclanthology.org/2023.nodalida-1.75
https://aclanthology.org/2023.nodalida-1.75
https://aclanthology.org/2023.nodalida-1.75
https://aclanthology.org/2023.nodalida-1.75
https://aclanthology.org/2023.nodalida-1.75
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.24963/ijcai.2024/533
https://doi.org/10.24963/ijcai.2024/533
https://doi.org/10.24963/ijcai.2024/533


Rahul Ramesh, Ekdeep Singh Lubana, Mikail Khona,853
Robert P. Dick, and Hidenori Tanaka. 2024. Compo-854
sitional capabilities of autoregressive transformers: A855
study on synthetic, interpretable tasks. In Forty-first856
International Conference on Machine Learning.857

Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.858
2016. Regularization with stochastic transformations859
and perturbations for deep semi-supervised learning.860
Advances in neural information processing systems,861
29.862

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and863
Kristina Toutanova. 2021. Compositional generaliza-864
tion and natural language variation: Can a semantic865
parsing approach handle both? In Proceedings of the866
59th Annual Meeting of the Association for Compu-867
tational Linguistics and the 11th International Joint868
Conference on Natural Language Processing (Vol-869
ume 1: Long Papers), pages 922–938, Online. Asso-870
ciation for Computational Linguistics.871

Ankur Sikarwar, Arkil Patel, and Navin Goyal. 2022.872
When can transformers ground and compose: In-873
sights from compositional generalization bench-874
marks. In Proceedings of the 2022 Conference on875
Empirical Methods in Natural Language Processing,876
pages 648–669, Abu Dhabi, United Arab Emirates.877
Association for Computational Linguistics.878

Sania Sinha, Tanawan Premsri, and Parisa Kordjamshidi.879
2024. A survey on compositional learning of ai mod-880
els: Theoretical and experimetnal practices. arXiv881
preprint arXiv:2406.08787.882

Richard Socher, Alex Perelygin, Jean Wu, Jason883
Chuang, Christopher D Manning, Andrew Y Ng, and884
Christopher Potts. 2013. Recursive deep models for885
semantic compositionality over a sentiment treebank.886
In Proceedings of the 2013 conference on empiri-887
cal methods in natural language processing, pages888
1631–1642.889

Gemma Team, Morgane Riviere, Shreya Pathak,890
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-891
raju, Léonard Hussenot, Thomas Mesnard, Bobak892
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:893
Improving open language models at a practical size.894
arXiv preprint arXiv:2408.00118.895

Sean Tull, Robin Lorenz, Stephen Clark, Ilyas Khan,896
and Bob Coecke. 2024. Towards compositional inter-897
pretability for xai. arXiv preprint arXiv:2406.17583.898

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien899
Chaumond, Clement Delangue, Anthony Moi, Pier-900
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-901
icz, Joe Davison, Sam Shleifer, Patrick von Platen,902
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,903
Teven Le Scao, Sylvain Gugger, Mariama Drame,904
Quentin Lhoest, and Alexander Rush. 2019. Hug-905
gingface’s transformers: State-of-the-art natural lan-906
guage processing. arXiv preprint arXiv:1910.03771.907

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 908
Chaumond, Clement Delangue, Anthony Moi, Pier- 909
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 910
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 911
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 912
Scao, Sylvain Gugger, Mariama Drame, Quentin 913
Lhoest, and Alexander M. Rush. 2020. Transform- 914
ers: State-of-the-art natural language processing. In 915
Proceedings of the 2020 Conference on Empirical 916
Methods in Natural Language Processing: System 917
Demonstrations, pages 38–45, Online. Association 918
for Computational Linguistics. 919

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 920
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 921
Fei Huang, Haoran Wei, et al. 2024a. Qwen2.5 tech- 922
nical report. arXiv preprint arXiv:2412.15115. 923

Haoran Yang, Hongyuan Lu, Wai Lam, and Deng Cai. 924
2024b. Exploring compositional generalization of 925
large language models. In Proceedings of the 2024 926
Conference of the North American Chapter of the 927
Association for Computational Linguistics: Human 928
Language Technologies (Volume 4: Student Research 929
Workshop), pages 16–24. 930

Yongjing Yin, Jiali Zeng, Yafu Li, Fandong Meng, Jie 931
Zhou, and Yue Zhang. 2023a. Consistency regular- 932
ization training for compositional generalization. In 933
Proceedings of the 61st Annual Meeting of the As- 934
sociation for Computational Linguistics (Volume 1: 935
Long Papers), pages 1294–1308. 936

Yongjing Yin, Jiali Zeng, Yafu Li, Fandong Meng, Jie 937
Zhou, and Yue Zhang. 2023b. Consistency regular- 938
ization training for compositional generalization. In 939
Proceedings of the 61st Annual Meeting of the As- 940
sociation for Computational Linguistics (Volume 1: 941
Long Papers), pages 1294–1308, Toronto, Canada. 942
Association for Computational Linguistics. 943

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, 944
Dan Busbridge, Jason Ramapuram, Yizhe Zhang, 945
Jiatao Gu, and Joshua M Susskind. 2023. Stabilizing 946
transformer training by preventing attention entropy 947
collapse. In International Conference on Machine 948
Learning, pages 40770–40803. PMLR. 949

Min Zhang, Jianfeng He, Shuo Lei, Murong Yue, Lin- 950
han Wang, and Chang-Tien Lu. 2024. Can llm find 951
the green circle? investigation and human-guided 952
tool manipulation for compositional generalization. 953
In ICASSP 2024-2024 IEEE International Confer- 954
ence on Acoustics, Speech and Signal Processing 955
(ICASSP), pages 11996–12000. IEEE. 956

Tianqi Zhong, Zhaoyi Li, Quan Wang, Linqi Song, Ying 957
Wei, Defu Lian, and Zhendong Mao. 2024. Bench- 958
marking and improving compositional generalization 959
of multi-aspect controllable text generation. In Pro- 960
ceedings of the 62nd Annual Meeting of the Associa- 961
tion for Computational Linguistics (Volume 1: Long 962
Papers), pages 6486–6517. Association for Compu- 963
tational Linguistics. 964

11

https://openreview.net/forum?id=L1eJ3NKPCd
https://openreview.net/forum?id=L1eJ3NKPCd
https://openreview.net/forum?id=L1eJ3NKPCd
https://openreview.net/forum?id=L1eJ3NKPCd
https://openreview.net/forum?id=L1eJ3NKPCd
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2022.emnlp-main.41
https://doi.org/10.18653/v1/2022.emnlp-main.41
https://doi.org/10.18653/v1/2022.emnlp-main.41
https://doi.org/10.18653/v1/2022.emnlp-main.41
https://doi.org/10.18653/v1/2022.emnlp-main.41
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2023.acl-long.72
https://doi.org/10.18653/v1/2023.acl-long.72
https://doi.org/10.18653/v1/2023.acl-long.72
https://doi.org/10.18653/v1/2024.acl-long.351
https://doi.org/10.18653/v1/2024.acl-long.351
https://doi.org/10.18653/v1/2024.acl-long.351
https://doi.org/10.18653/v1/2024.acl-long.351
https://doi.org/10.18653/v1/2024.acl-long.351


Xiang Zhou, Yichen Jiang, and Mohit Bansal. 2023.965
Data factors for better compositional generalization.966
In Proceedings of the 2023 Conference on Empiri-967
cal Methods in Natural Language Processing, pages968
14549–14566, Singapore. Association for Computa-969
tional Linguistics.970

A Task Selection and Compositionality971

Considerations972

To assess compositional generalisation and the ben-973

efits of CARMA, we targeted tasks that involve974

systematic meaning construction and sensitivity to975

structural modifications. To that end, we opted to976

employ Inverse Dictionary Modelling (IDM) and977

Sentiment Classification (SC) as proxies for differ-978

ent dimensions of compositionality, capturing both979

structured composition and hierarchical generalisa-980

tion.981

IDM requires models to generate a single-word982

representation from a natural language defini-983

tion, mapping from the composition of input con-984

stituents (individual concept components) to a spe-985

cific term. On the other hand, SC maps meaning986

to a sentiment label, aggregating local meaning el-987

ements into a global interpretation. While IDM988

focuses on explicit compositional mapping, SC989

evaluates distributed composition, where sentiment990

is shaped by multiple interacting components.991

Both tasks assess several aspects of composi-992

tionality (Figure 5), namely systematicity (struc-993

tured meaning formation), substitutivity (semantic994

preservation under transformation), and resistance995

to over-generalisation (ensuring bounded semantic996

deviation). Further, they evaluate robustness, test-997

ing whether models can maintain correctness and998

consistency under internal and input-lexical pertur-999

bations. IDM and SC provide a comprehensive test1000

of compositional generalisation across structured1001

and distributed representations.1002

B Detailed Experimental Configuration1003

B.1 Task Formalisation1004

This paper evaluates the effectiveness of CARMA1005

in enhancing the compositional generalisation of1006

large language models (LLMs) through two tasks.1007

These tasks were selected based on their focus on1008

input token structure and compositional semantics,1009

utilising next-token prediction with single-token1010

outputs. Formal definitions for each task are pre-1011

sented below.1012

Inverse Definition Modelling (IDM). This task1013

requires the model to predict a definiendum D,1014

Compositionality 

< IDM task > < SC task >

Compositional
output

Compositional
Input Processing

IDM: neuron (correct prediction)
SC: positive (correct prediction

IDM: cell (too broad, lacks
specificity for ‘neuron’)
SC: neutral (ignoring stronger
sentiment words)

Intervention
(e.g. CAP, Synonym

replacement) 

 

  

Figure 5: Illustration of compositional generalisation
in Inverse Dictionary Modelling (IDM) and Sentiment
Classification (SC). The figure highlights key composi-
tional properties: systematicity ensures coherent mean-
ing construction, substitutivity maintains meaning under
lexical variations, robustness preserves intended outputs
under perturbations, and over-generalisation leads to
overly broad or semantically weak predictions (e.g.,
neuron misclassified as cell or positive reduced to neu-
tral).

given its corresponding definition definition in nat- 1015

ural language. Formally, the definition is rep- 1016

resented as a sequence of tokens, definition = 1017

{tok1, tok2, . . . , tokn}, and the model seeks to pro- 1018

duce D such that: 1019

D = argmax
t∈V

P (d | definition), (9) 1020

where V denotes the model’s vocabulary, and d 1021

represents a potential definiendum. Predictions are 1022

deemed correct only if they exactly match the target 1023

output. 1024

Sentiment classification (SC). This task in- 1025

volves assigning a sentiment label to a given sen- 1026

tence containing sentiment cues and potential mod- 1027

ifiers. The model processes the input sentence, 1028

represented as a sequence of tokens sentence = 1029

{tok1, tok2, . . . , tokn}, and produces an output 1030

label from a predefined set of sentiment classes 1031

A (i.e., positive, negative, neutral). Formally, the 1032

task is defined as: 1033

label = argmax
ℓ∈L

P (ℓ | sentence), (10) 1034

where P (ℓ | sentence) is the probability of the 1035

sentiment label ℓ given the sentence. The model’s 1036
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Figure 6: IDM Performance Across Models Under CAP

performance is evaluated based on its ability to cor-1037

rectly predict the sentiment, accounting for compo-1038

sitional nuances such as modifiers and contrasts.1039

B.2 Datasets specification and pre-processing1040

For IDM, the training and test datasets were derived1041

from WordNet (Fellbaum, 1998), a widely used lex-1042

ical database of the English language. WordNet1043

comprises over 117,000 synsets, each representing1044

a distinct concept and annotated with semantic re-1045

lationships such as hypernyms, synonyms, and def-1046

initions. To ensure consistency and improve data1047

quality, standard preprocessing techniques were1048

applied, including the removal of special charac-1049

ters, punctuation, extra spaces, and parenthesised1050

content where necessary. The dataset focuses on1051

general-purpose vocabulary rather than specialised1052

domains or demographic groups. The dataset was1053

initially split into an 80-20 ratio, with 80% allo-1054

cated for training. The remaining 20% was further1055

divided equally into validation and test sets.1056

The SC dataset was derived from the Stanford1057

Sentiment Treebank (SST) (Socher et al., 2013),1058

a corpus of English movie reviews annotated for1059

analysis of the compositional effects of sentiment 1060

inference and was released under Apache License, 1061

Version 2.0. SST includes fine-grained sentiment 1062

labels at both the phrase and sentence levels, mak- 1063

ing it a standard benchmark for evaluating senti- 1064

ment classification models. The original dataset 1065

splits provided by the authors were maintained to 1066

ensure consistency in training, validation, and test- 1067

ing. For SST labels, sentiment scores were cate- 1068

gorised as follows: values equal to or greater than 1069

0.6 were classified as positive, scores between 0 1070

and 0.6 were considered neutral, and scores be- 1071

low zero were assigned as negative. The final test 1072

dataset sizes for each task are presented in Table 2. 1073

Dataset Train size validation Size Test Size
WordNet 9563 1154 1231%
SST 8544 1101 2210

Table 2: Train, validation, and test set sizes for WordNet
and SST datasets used in this paper.

B.3 Model training and fine-tuning settings 1074

Table 3 summarises the key characteristics of the 1075

models evaluated in this study. All models were ob- 1076
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tained from Hugging Face (Wolf et al., 2019) under1077

their respective licenses: GPT-2 (Modified MIT),1078

Llama 3.2 (Meta Llama 3 Community), Qwen 2.51079

(Apache 2.0), and Gemma-2B (Gemma Terms of1080

Use). While all models were pre-trained on En-1081

glish data, LLama and Qwen models provide ad-1082

ditional multilingual capabilities, namely English,1083

German, French, Italian, Portuguese, Hindi, Span-1084

ish, and Thai for LLama, and over 10 languages,1085

including Chinese, English, French, Spanish, Por-1086

tuguese, Russian, Arabic, Japanese, Korean, Viet-1087

namese, Thai, and Indonesian for Qwen. The mod-1088

els employ the following tokenisation approaches:1089

GPT-2, Byte Pair Encoding (BPE) with a 50,257-1090

token vocabulary, optimised primarily for English,1091

Llama 3.2 uses SentencePiece-based BPE, combin-1092

ing 100K tokens from Tiktoken3 with 28K addi-1093

tional tokens to enhance multilingual performance,1094

Qwen 2.5 employs Byte-level BPE, utilising a1095

151,643-token vocabulary designed for multilin-1096

gual processing, Gemma-2B has a SentencePiece1097

tokeniser leveraging a 256,000-token vocabulary,1098

making it highly effective for English-based tasks.1099

Each model was fine-tuned on its respective down-1100

stream task following a systematic hyperparameter1101

search to identify optimal configurations. Prior1102

to fine-tuning, prompt engineering was conducted1103

to determine well-performing prompts tailored to1104

each task, ensuring alignment with task-specific1105

requirements and enhancing the models’ ability to1106

generate accurate and contextually relevant outputs.1107

The hyperparameter search explored key factors,1108

including weights for stability regularisation, mu-1109

tual information (MI) regularisation, and the over-1110

all CARMA weight (Equation 7), as well as the1111

specific layers to which these losses were applied.1112

For training parameters, the following batch1113

sizes were set in the IDM task: 16 for the Gemma-1114

2B and GPT models, 32 for the Qwen-3B and1115

Llama models, and 64 for the Qwen-0.5B model.1116

For SC, the batch sizes were 16 for the GPT mod-1117

els, Gemma-2B and Llama-3B; 32 for Llama-1B1118

and Qwen-3B; and 64 for Qwen-0.5B. For the num-1119

ber of training epochs, in the IDM, the Gemma and1120

GPT models were trained for two epochs, while1121

all other models were trained for three epochs,1122

whereas all models were trained for two epochs,1123

except Gemma-2B and LLama-1B, which were1124

trained for three epochs for the SC task. The stop-1125

ping layers for IDM and CARMA were configured1126

as follows: GPT2-S at layer 3, GPT2-L at layer1127

8, Gemma-2B at layer 10, Llama-1B at layer 7,1128

Llama-3B at layers 8 (stability) and 12 (MI), Qwen- 1129

0.5B at layer 5, and Qwen-3B at layer 10. The SC, 1130

the ending layers, 4 for GPT2-S, 12 for GPT2-L, 10 1131

for Gemma-2B, 7, for LLama 1B, 8, for LLama 3B, 1132

5 for Qwen-0.5B and 7 for Qwen-3B. For CARMA 1133

weight, optimal values varied by model size: 0.4 1134

and 0.5 were most effective for larger models. We 1135

hypothesise that CARMA regularisation exhibits 1136

a weaker effect when lower weights are applied, 1137

particularly in larger architectures where stronger 1138

constraints are needed to stabilise compositional 1139

representations. In IDM, GPT2-L and Gemma per- 1140

formed best with a weight of 0.3, GPT2-S with 1141

0.2, Llama-1B with 0.4, and Llama-3B with 0.5. 1142

Qwen models used 0.5 and 0.4 for the 0.5B and 1143

3B variants, respectively. For SC Carma weight, 1144

it was 0.4 for Qwen-0.5B and GPT models, 0.5 1145

for LLama-3B and Qwen-3B, and 0.3 for the rest. 1146

For the ending layer, it was 4 for GPT2-S, 12 for 1147

GPT2-L, 10 for Gemma-2B, 7 for LLama-1B, 8 for 1148

LLama-3B, 5 for Qwen-0.5B and 7 for Qwen-3B. 1149

Model Parameters Layers Dmodel Heads Activation MLP Dimension
GPT-2 Small 85M 12 768 12 GELU 3072
GPT-2 Large 708M 36 1280 20 GELU 5120
Gemma-2B 2B 32 4096 16 GELU 8192
LLaMA3.2 1B 1.1B 16 2048 32 SiLU 8192
LLaMA3.2 3B 3.2B 28 3072 24 SiLU 8192
Qwen2.5-0.5B 391M 24 896 14 SiLU 4864
Qwen2.5-3B 3.0B 36 2048 16 SiLU 11008

Table 3: Summary of model architectures. Param-
eters: total number of trainable parameters; Layers:
total number of transformer layers; Dmodel: size of word
embeddings and hidden states; Heads: number of self-
attention heads; Activation: activation function used in
feedforward layers; MLP Dimension: dimensionality
of the feedforward network.

B.4 Evaluation Metrics 1150

This section details the evaluation metrics used 1151

in the study, including accuracy, synonym consis- 1152

tency, and performance stability. 1153

Accuracy is used as a primary measure of model 1154

performance and is defined as: 1155

Accuracy =
TP + TN

TP + TN + FP + FN
, (11) 1156

where TP (true positives) and TN (true negatives) 1157

denote correctly classified instances, while FP 1158

(false positives) and FN (false negatives) repre- 1159

sent misclassified instances. 1160
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Synonym Consistency (ConsistSyn)1161

(ConsistSyn) quantifies a model’s ability1162

to maintain correct predictions after synonym1163

replacement. It is computed as:1164

ConsistSyn =
|Correct After Replacement|
|Correct Before Replacement|

×100,

(12)1165

where Correct After Replacement refers to the1166

number of correct predictions following synonym1167

substitution, and Correct Before Replacement de-1168

notes the number of correct predictions before sub-1169

stitution. The reported results are the averaged1170

ConsistSyn across (N ≥ 5) runs.1171

Coefficient of Variation (CV) The coefficient of1172

variation (CV) measures the stability of model per-1173

formance across multiple runs, with lower values1174

indicating greater consistency. It is defined as:1175

CV =
σ

µ
, (13)1176

where σ represents the standard deviation of model1177

performance across runs, and µ denotes the mean1178

performance.1179

Normalised Improvement (NI) Normalised Im-1180

provement (NI) evaluates the relative gain in consis-1181

tency introduced by a model over a baseline model.1182

It is calculated as:1183

NI =
ConsistSynCARMA − ConsistSynbaseline

ConsistSynbaseline
×100.

(14)1184

This metric captures the percentage improvement1185

in synonym consistency due to a model variant1186

compared to the baseline model.1187

C Comprehensive Explanation of1188

Evaluation Interventions1189

C.1 Constituent-Aware Pooling (CAP)1190

Formalisation1191

Constituent-Aware Pooling (CAP) Formalisation1192

is a method proposed in (Aljaafari et al., 2024) to1193

systematically assess compositional generalisation1194

via aggregating token-level activations into higher-1195

level semantic representation. Below is a detailed1196

explanation and formalisation of CAP.1197

Overview. CAP aggregates model activations1198

at any chosen constituency level (e.g. tokens to1199

words), enabling the analysis of compositional de-1200

pendencies. The key steps involved are:1201

• Input Representations: For a given input 1202

sequence X = [x1, x2, . . . , xn], the model 1203

produces inner states H = [h1, h2, . . . , hn] at 1204

a specific layer. 1205

• Grouping Constituents: Using syntactic 1206

parsers such as Benepar (Kitaev et al., 1207

2019; Kitaev and Klein, 2018), or by in- 1208

versing the model tokeniser function, the se- 1209

quence is segmented into constituents C = 1210

[c1, c2, . . . , cm], where each ci represents a 1211

phrase or syntactic unit. For the experiments 1212

presented in the paper, tokens were grouped 1213

into words to form the smallest linguistic 1214

units. 1215

• Pooling Operations: For each constituent ci, 1216

the corresponding activations {hj |xj ∈ ci} 1217

are aggregated into a single representation ri 1218

using a pooling function: 1219

ri = α({hj |xj ∈ ci}) 1220

CAP supports three pooling functions: 1221

– Maximum pooling: Selects the highest 1222

activation values as: 1223

α({hj |xj ∈ ci}) = max({hj |xj ∈ ci}), 1224

– Mean pooling: Computes the average of 1225

activation values as: 1226

α({hj |xj ∈ ci}) =
1

|ci|
∑
j∈ci

{hj |xj ∈ ci}, 1227

– Sum pooling: Accumulates activation 1228

values as: 1229

α({hj |xj ∈ ci}) =
∑
j∈ci

{hj |xj ∈ ci}. 1230

• Updating Representations: The pooled rep- 1231

resentations R = [r1, r2, . . . , rm] replace the 1232

original activations H for further processing. 1233

Evaluation. The impact of CAP is evaluated by 1234

comparing task-specific performance metrics (e.g., 1235

accuracy, F1 score) of models before and after CAP 1236

is applied. This allows for a direct assessment of 1237

how CAP affects compositionality and task per- 1238

formance. This paper utilises the word-level CAP, 1239

pooling related token representation to their corre- 1240

sponding words. 1241
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(b) GPT2-L
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(c) Gemma-2B
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(d) Qwen-0.5B

0% 25% 50% 75% 100%
Normalised Layer Position

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

gr
ou

pe
d 

ac
cu

ra
cy

Mean CAP

0% 25% 50% 75% 100%
Normalised Layer Position

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

gr
ou

pe
d 

ac
cu

ra
cy

Max CAP

0% 25% 50% 75% 100%
Normalised Layer Position

0.0

0.2

0.4

0.6

0.8

1.0

Av
g 

gr
ou

pe
d 

ac
cu

ra
cy

Sum CAP

Model name & Supervision type
model_name
Llama 1B Original

Llama 1B Tuned
Llama 1B Carma

supervision_type original fine-tuned

(e) Llama-1B
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Figure 7: SC Performance Across Models Under CAP

C.2 Synonym Replacement1242

A multi-step approach was adopted to ensure re-1243

liable synonym replacements. First, preprocess-1244

ing was applied to filter out words that were un-1245

likely to produce meaningful replacements. Specif-1246

ically, words belonging to NLTK’s predefined stop-1247

words list or shorter than two characters were ex-1248

cluded from consideration. The remaining words1249

were tagged with their part-of-speech (POS) us-1250

ing spaCy’s (Honnibal et al., 2020) POS tagger.1251

Additionally, the sentiment of each word was de-1252

termined using TextBlob (Loria et al.) to ensure1253

that replacements preserved the semantic tone of1254

the original text. Next, a synonym vocabulary was1255

constructed using words extracted from spaCy’s1256

en_core_web_md language model. This vocabu-1257

lary was filtered to include only alphabetic common1258

words with high probability scores (greater than -151259

in our case), as determined by spaCy’s word fre-1260

quency data, while stopwords and rare terms were1261

excluded. This step ensured that the vocabulary1262

consisted of meaningful and contextually appropri-1263

ate words for replacement. For each target word,1264

a list of synonym candidates was generated by it-1265

erating over the constructed vocabulary. The top 1266

n candidates were selected based on their seman- 1267

tic similarity to the original word, measured using 1268

spaCy’s word vectors. Synonyms with high simi- 1269

larity scores and alignment in POS were prioritised 1270

to maintain grammatical and contextual coherence 1271

in the text. 1272

D InfoNCE for Mutual Information 1273

Estimation 1274

Mutual information (MI) quantifies the shared 1275

information between two variables X and Y . 1276

CARMA leverages MI maximisation to cap- 1277

ture dependencies between tokens effectively, 1278

thereby enhancing compositional generalisation in 1279

LLMs. Specifically, CARMA uses MI, denoted 1280

as I(X;Y ), to reinforce token-level interactions 1281

critical for compositionality. However, direct com- 1282

putation of MI is challenging in practice. 1283

To address this challenge, a variant of InfoNCE 1284

is employed to estimate MI and approximate these 1285

dependencies efficiently. Given an anchor token 1286

hidden state hi, we construct a corresponding pos- 1287

itive set H, which contains tokens hidden states 1288
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Model Ver. Task Int. CS CV

GPT2-S

CARMA IDM 25% 49.17 0.025
FT IDM 25% 50.89 0.017
Org IDM 25% 52.46 0.044

CARMA IDM 40% 35.90 0.0542
FT IDM 40% 37.16 0.0628
Org IDM 40% 37.20 0.1223

GPT2-L

CARMA IDM 25% 56.31 0.0164
FT IDM 25% 56.95 0.0311
Org IDM 25% 51.10 0.1175

CARMA IDM 40% 43.56 0.0485
FT IDM 40% 43.97 0.0459
Org IDM 40% 34.68 0.0895

Gemma-2B

CARMA IDM 25% 56.70 0.023
FT IDM 25% 57.42 0.030
Org IDM 25% 49.47 0.031

CARMA IDM 40% 0.4236 0.0174
FT IDM 40% 0.4498 0.0249
Org IDM 40% 0.3576 0.0480

Llama-1B

CARMA IDM 25% 58.40 0.0400
FT IDM 25% 57.86 0.0385
Org IDM 25% 47.55 0.0503

CARMA IDM 40% 47.07 0.0476
FT IDM 40% 46.75 0.0455
Org IDM 40% 33.49 0.0391

Qwen-0.5B

CARMA IDM 25% 56.98 0.0286
FT IDM 25% 54.57 0.0191
Org IDM 25% 46.84 0.0684

CARMA IDM 40% 40.55 0.0397
FT IDM 40% 39.69 0.0491
Org IDM 40% 32.98 0.0938

Qwen-3B

CARMA IDM 25% 62.00 0.0225
FT IDM 25% 61.79 0.0279
Org IDM 25% 49.37 0.0441

CARMA IDM 40% 45.05 0.0400
FT IDM 40% 45.74 0.0551
Org IDM 40% 31.95 0.0688

Llama-3B

CARMA IDM 25% 62.86 0.015
FT IDM 25% 62.22 0.029
Org IDM 25% 52.47 0.035

CARMA IDM 40% 49.05 0.0297
FT IDM 40% 48.31 0.0191
Org IDM 40% 36.95 0.0458

Table 4: Model performance (25% and 40% synonym
intervention) on the IDM task. Ver.: Version; Int.:
Intervention rate; CS: ConsistSyn (%); CV: Coefficient
of Variation. Best values in bold.

semantically or syntactically related to hi. Addi-1289

tionally, we define N as the set of negative exam-1290

ples consisting of unrelated tokens hidden states.1291

The InfoNCE objective provides a practical1292

lower bound on I(X;Y ) (Oord et al., 2018), as1293

follows:1294

I(X;Y ) ≥ E

[
log

∑
hj∈H f(hi, hj)∑

hj∈H f(hi, hj) +
∑

hk∈N f(hi, hk)

]
,

(15)1295

where f(hi, hj) = exp(sim(hi, hj)/τ) is a scaled1296

similarity function, and τ is a temperature parame-1297

ter. This adaptation of InfoNCE introduces token-1298

specific interactions within the layer-wise structure1299

of LLMs, ensuring that dependencies are captured1300

across layers. By maximising mutual information, 1301

CARMA aligns the optimisation direction to en- 1302

hance compositional structures. 1303

To extend this approach across layers, the final 1304

CARMA MI loss is computed as: 1305

LMI = − 1

N

N∑
i=1

(
log

∑
hj∈H
j ̸=i

exp

(
sim(hi, hj)

τ

)

− log

( ∑
hj∈H
j ̸=i

exp

(
sim(hi, hj)

τ

)

+
∑

hk∈N

exp

(
sim(hi, hk)

τ

)))
,

(16) 1306

where hi is the anchor token, hj ∈ H are positive 1307

examples related to hi, hk ∈ N are negative exam- 1308

ples, N is the number of anchors, and sim(hi, hj) 1309

is a similarity function. The negative sign ensures 1310

that MI is maximised during optimisation. Without 1311

this negative sign, the objective would incorrectly 1312

minimise MI, thereby hindering CG enhancement. 1313

E Extended results 1314

Figures 6 and 7, and Tables 4 and 5 provide addi- 1315

tional results for models’ performance comparison 1316

under CAP and synonym interventions. CARMA 1317

models show a clear advantage over all models and 1318

tasks. However, the gain is clearer in the IDM case, 1319

where more intricate features and compositional- 1320

ity generalisation are required. It is also observed 1321

that the performance of the FT and CARMA mod- 1322

els demonstrates similar curves or trends. Given 1323

this observation, we argue that CARMA’s improve- 1324

ments stem from its learning objectives, which 1325

align closely with cross-entropy loss while explic- 1326

itly addressing intermediate representation stability. 1327

The observed improvements are moderate in some 1328

cases, particularly for SC tasks. This behaviour is 1329

expected due to the limited size of the fine-tuning 1330

datasets compared to the original pretraining data 1331

used for these models. Nevertheless, larger models, 1332

such as Llama-3B and Gemma-2B, exhibit more 1333

substantial improvements with CARMA, demon- 1334

strating its scalability with model capacity. 1335
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Model Ver. Task Int. CS CV

GPT2-S

CARMA SC 25% 89.03 0.8903
FT SC 25% 89.54 0.8954

CARMA SC 40% 84.95 0.0095
FT SC 40% 85.07 0.0098

GPT2-L

CARMA SC 25% 88.58 0.0065
FT SC 25% 88.04 0.0082

CARMA SC 40% 84.61 0.0072
FT SC 40% 84.04 0.0073

Gemma-2B

CARMA SC 25% 84.81 0.0069
FT SC 25% 81.67 0.0088
Org SC 25% 68.14 0.0076

CARMA SC 40% 81.48 0.0102
FT SC 40% 74.29 0.0073
Org SC 40% 76.06 0.0136

Llama-1B

CARMA SC 25% 74.03 0.0069
FT SC 25% 75.69 0.0044
Org SC 25% 2.65 0.1239

CARMA SC 40% 71.43 0.0065
FT SC 40% 74.31 0.0102
Org SC 40% 1.73 0.2245

Qwen-0.5B

CARMA SC 25% 89.66 0.0037
FT SC 25% 89.83 0.0085
Org SC 25% 59.12 0.0691

CARMA SC 40% 86.03 0.0084
FT SC 40% 86.31 0.0046
Org SC 40% 55.27 0.0429

Qwen-3B

CARMA SC 25% 93.65 0.0061
FT SC 25% 93.85 0.0039
Org SC 25% 67.63 0.0227

CARMA SC 40% 91.26 0.0050
FT SC 40% 91.26 0.0050
Org SC 40% 64.05 0.0159

Llama-3B

CARMA SC 25% 84.83 0.0056
FT SC 25% 85.85 0.0065
Org SC 25% 35.21 0.0136

CARMA SC 40% 82.89 0.0016
FT SC 40% 83.55 0.0067
Org SC 40% 32.88 0.0188

Table 5: Model performance (25% and 40% synonym
intervention) on the SC task. Ver.: Version; Int.: Inter-
vention rate; CS: ConsistSyn (%); CV: Coefficient of
Variation. Best values in bold.
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