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Abstract

Spatial commonsense, the knowledge about001
spatial position and relationship between ob-002
jects (like the relative size of a lion and a girl,003
and the position of a boy relative to a bicycle004
when cycling), is an important part of com-005
monsense knowledge. Although pretrained lan-006
guage models (PLMs) succeed in many NLP007
tasks, they are shown to be ineffective in spatial008
commonsense reasoning. Starting from the ob-009
servation that images are more likely to exhibit010
spatial commonsense than texts, we explore011
whether models with visual signals learn more012
spatial commonsense than text-based PLMs.013
We propose a spatial commonsense benchmark014
that focuses on the relative scales of objects,015
and the positional relationship between peo-016
ple and objects under different actions.1 We017
probe PLMs and models with visual signals, in-018
cluding vision-language pretrained models and019
image synthesis models, on this benchmark,020
and find that image synthesis models are more021
capable of learning accurate and consistent spa-022
tial knowledge than other models. The spatial023
knowledge from image synthesis models also024
helps in natural language understanding tasks025
that require spatial commonsense.026

1 Introduction027

Spatial perception, the ability to detect the spa-028

tial position and to infer the relationship between029

visual stimuli (Donnon et al., 2005; Saj and Baris-030

nikov, 2015), is basic but important for human031

beings (Pellegrino et al., 1984). It is of everyday032

use, from understanding the surrounding environ-033

ment, like when seeing a woman sitting in a car034

with her hands on the steering wheel, we know035

she is probably driving, to processing spatial infor-036

mation and performing reasoning, like navigating037

through a dense forest. We regard the knowledge038

needed in spatial perception as spatial common-039

sense. Humans start to develop spatial perception040

1Code and data are available in supplementary materials.

LionLion CyclingCycling

Texts

Images

The lion (Panthera leo) is a large felid 

of the genus Panthera native to Africa 

and India. It has a muscular, deep-

chested body, short, rounded head, 

round ears, and a hairy tuft at the end 

of its tail ...

Cycling, also called bicycling or biking, 

is the use of bicycles for transport, 

recreation, exercise or sport. People 

engaged in cycling are referred to as 

"cyclists", "bicyclists", or "bikers" ...

How big is a lion? Where is a boy relative to 
a bike when cycling?

Figure 1: Texts and images related to lion and cycling.
Images are shown to contain more spatial knowledge.

and acquire spatial commonsense from infancy, and 041

apply the commonsense through lifetime (Kuipers 042

et al., 1990; Poole et al., 2006). 043

Although text-based Pretrained Language Mod- 044

els (PLMs) achieve great performance on vari- 045

ous commonsense reasoning tasks (Davison et al., 046

2019; Zhou et al., 2020), they are shown to be 047

ineffective when dealing with spatial common- 048

sense. Zhang et al. (2020) and Aroca-Ouellette 049

et al. (2021) show that current PLMs lack the abil- 050

ity to reason about object scales. Bhagavatula et al. 051

(2020) find that BERT (Devlin et al., 2019) under- 052

performs on instances involving spatial locations. 053

The struggle of PLMs with spatial commonsense 054

is partly because spatial commonsense is rarely ex- 055

pressed explicitly in texts. We may write sentences 056

like lions are big animals, but we seldom explicitly 057

mention how big lions are; we also rarely write 058

about the spatial relationship between a boy and a 059

bicycle when he is cycling. 060

Spatial commonsense is exhibited in images 061

more commonly. As shown in Figure 1, the two 062

Wikipedia articles provide little spatial information, 063

but a picture of a lion and a girl provides a refer- 064

ence to the size of a lion; and a painting of a boy 065

riding a bicycle depicts that he sits on the bicycle. 066

Hence, a natural idea is to elicit spatial knowledge 067

from models with visual signals. 068
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A sofa is  [MASK]  than a mountain.

A sofa and a mountain.

PLM
larger, 7.2%
smaller, 6.6%

Text prompt

sofa < mountainISMISM

VL-
PTM

larger, 6.7%
smaller, 10.3%

Figure 2: The probing process. We take the size comparison between sofa and mountain as an example.

We first study whether models with visual sig-069

nals learn more spatial knowledge than text-only070

models. We select Vision-Language PreTrained071

Models (VL-PTMs) and Image Synthesis Models072

(ISMs) for investigation. VL-PTMs encode text073

and images together, fusing their features to deal074

with downstream tasks. ISMs take text as input,075

and generate images based on the text. To evaluate076

the spatial commonsense in PLMs and models with077

visual signals, we design a benchmark. It involves078

two subtasks: 1) comparing sizes and heights of079

different objects (like a lion and a girl), and 2)080

determining the positional relationship between a081

person and an object when a certain action happens082

(like a boy’s position when riding a bicycle). The083

subtasks are designed to examine the model’s capa-084

bility to master two kinds of spatial commonsense:085

understanding spatial scales, and the relationship086

between surrounding objects and ourselves.087

As shown in Figure 2, we probe models with text088

prompts on this benchmark. We feed text prompts089

with masks to PLMs and VL-PTMs, and take the090

possible word with the highest probability as its091

prediction. We probe ISMs in a similar way: we092

first feed the text prompts to ISMs and then evaluate093

the generated images. We evaluate the images with094

two methods: automatically comparing bounding095

boxes of objects and conducting human evaluation.096

Results show that models with visual signals learn097

more accurate spatial commonsense than PLMs.098

Besides the performance comparison, we are099

also interested in how is the quality of spatial com-100

monsense learned by different models? We investi-101

gate how consistent the spatial knowledge in differ-102

ent models is, like whether it can manifest a lion103

is larger than a girl and a girl is smaller than a104

lion simultaneously; and to what extent models can105

generalize the knowledge when uncommon scenar-106

ios like an enchantress lights the sparkler appear.107

We observe that ISMs are capable of generating 108

consistent spatial knowledge and the performance 109

is robust in uncommon scenarios. 110

The following problem is how to benefit natu- 111

ral language understanding tasks with the spatial 112

knowledge from ISMs? We investigate this in the 113

question answering scenario. Take a question like 114

A boy is riding a bicycle. Is he on the bicycle? We 115

generate an image about the question context a boy 116

who is riding a bicycle with a text prompt using 117

ISMs, and feed both the question and the generated 118

image into vision-language models to predict an an- 119

swer. This framework outperforms strong question 120

answering models pretrained on texts only. While 121

this is a simplified scenario of spatial commonsense 122

reasoning, it manifests a possible way to employ 123

the spatial knowledge learned by ISMs in natural 124

language understanding. 125

Motivated by the observation that images contain 126

more spatial commonsense than texts, we 1) design 127

a framework, including the data and probing meth- 128

ods, to compare the spatial commonsense reason- 129

ing ability of models with different modalities; 2) 130

propose methods to evaluate the quality of learned 131

spatial commonsense, and find that models with 132

visual signals, especially ISMs, learn more precise 133

and robust spatial knowledge than PLMs; and 3) 134

demonstrate the improvement in spatial common- 135

sense question answering with the help of ISMs. 136

2 Related Works 137

2.1 Spatial Commonsense Reasoning 138

Object Scales. Bagherinezhad et al. (2016) build 139

a dataset for objects’ size comparison, and Elazar 140

et al. (2019) provide distributional information 141

about objects’ lengths. Forbes and Choi (2017) also 142

involve spatial comparison but are criticized for 143

ill-defined comparison (Elazar et al., 2019). Aroca- 144
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Ouellette et al. (2021) design a physical reasoning145

dataset that requires not only spatial commonsense146

but also a complex reasoning process, which is147

extremely challenging for existing models. We148

choose the formulation of object comparison in149

pairs as this kind of knowledge is easy to be probed150

from different models.151

Spatial Relationship. Collell et al. (2018) intro-152

duce a dataset of spatial templates for objects under153

different relations, but the spatial relations are rep-154

resented as relative positions of bounding boxes,155

which are hard to express in language. Mirzaee156

et al. (2021) design a textual spatial reasoning157

benchmark, and Johnson et al. (2017) and Hudson158

and Manning (2019) involve spatial reasoning in159

images, but they focus on logical reasoning rather160

than commonsense. Contrast to them, we build a161

dataset to describe the spatial relationship between162

people and objects in certain actions with preposi-163

tion words.164

2.2 Knowledge Probing165

Early attempts in probing PLMs (Liu et al., 2019a;166

Hewitt and Manning, 2019) mainly train a classifier167

on the task of interest with the encoded representa-168

tions. However, the probing performance is highly169

influenced by the probe design (Pimentel et al.,170

2020), thus is hard to reflect the ability of PLMs.171

Recently, prompt-based methods (Petroni et al.,172

2019; Zhou et al., 2020) become more prevalent173

to study what knowledge PLMs already encode.174

PLMs take a prompt as input, and generate the con-175

tinuation (for generative PLMs) or predict masked176

words (for discriminative PLMs). This does not177

need additional training, and only a small devel-178

opment set is used to choose optimal prompts and179

answers (Jiang et al., 2020). In this work, we probe180

PLMs and VL-PTMs with prompts. Prompt-based181

methods are also used in model training (Schick182

and Schütze, 2021; Zhou et al., 2021), while we183

focus on the knowledge already learned by models.184

Basaj et al. (2021); Oleszkiewicz et al. (2021)185

try to apply the probing methods into the computer186

vision domain, but they focus on probing repre-187

sentations of visual models. In contrast, we probe188

ISMs by evaluating the generated images.189

3 Benchmark Construction190

3.1 Datasets191

Size and Height. Inspired by the cognitive dis-192

covery (Hersh and Caramazza, 1976) that people193

Size

1 ant, coin, nut, bullet, dice
2 bird, cup, shell, bottle, wallet
3 tyre, chair, microwave, dog, suitcase
4 human, sofa, bookshelf, tiger, bed
5 house, cinema, mountain, truck, plane

(a) Objects of different levels of sizes.

Height

1 ant, insect, water drop, bullet, dice
2 bird, cup, shoe, bottle, mobile phone
3 table, chair, trash can, sofa, suitcase
4 human, horse, bookshelf, camel, door
5 apartment, theatre, giraffe, truck, street lamp

(b) Objects of different levels of heights.

Table 1: The dataset of object scales.

A man <verb> the car. He is         the car.

A man washes the car. beside A man drives the car. inside

Figure 3: Example of two positional relations between
man and car.

tend to categorize objects scales into fuzzy sets, we 194

select 25 common objects in daily life, and cate- 195

gorize them into 5 groups as shown in Table 1a to 196

construct the dataset for size comparison. Typical 197

objects in the former group are smaller than those 198

in the latter group. We form 250 pairs with objects 199

from different groups, like ⟨ant, bird⟩, where the 200

first object is smaller than the second in common- 201

sense. Models are asked to compare the size of 202

objects in pairs. To avoid an imbalance of answer 203

distribution, we also consider the reversed pairs 204

like ⟨bird, ant⟩, so there are 500 instances in total. 205

The dataset for comparing objects’ heights is 206

constructed similarly, as shown in Table 1b. We 207

also form 500 instances with the objects. The com- 208

parison between objects is validated by 5 human 209

annotators for both datasets. 210

Positional Relationship. The positional relation- 211

ship dataset consists of human actions regarding 212

objects and the most likely positional relation be- 213

tween the person and the object. We consider four 214

types of positional relations: above, below, inside, 215

beside, as they do not overlap with each other. 216

We select common objects, and write actions 217

between people and the objects. The actions do not 218
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contain prepositions, like sit on the chair. Each ob-219

ject is accompanied by two actions with different220

positional relations. Take Figure 3 as an exam-221

ple. The man is beside the car when washing the222

car, whereas he is inside the car when driving it.223

Therefore, the relation cannot be easily inferred224

from collocations between the person and the ob-225

ject. The relations are validated by 5 annotators.226

The dataset contains 224 instances.227

3.2 Probing Tasks228

We probe PLMs and VL-PTMs through masked229

word prediction. Given a text prompt with masks230

and a set of possible words, a model calculates the231

probability of each possible word filling the masked232

position. The word with the highest possibility is233

regarded as the prediction.234

We also probe ISMs through text prompts. The235

input is a piece of descriptive text, and the output236

is the image generated by an ISM. We assess the237

image with two methods as described in 3.3.238

PLMs are found to perform poorly in scenarios239

involving complex reasoning over spatial knowl-240

edge (Aroca-Ouellette et al., 2021), and we want241

to investigate whether they even fail in early stages,242

like the acquisition of spatial knowledge. So we243

probe models with simple tasks. In the subtask244

of size and height, the prompt for PLMs and245

VL-PTMs is in the form of Oa is [MASK] than246

Ob, where ⟨Oa, Ob⟩ is an object pair. The possi-247

ble answer set is {larger, smaller} for size and248

{taller, shorter} for height. The prompt for ISMs249

is in the form of Oa and Ob, and the objects in gen-250

erated images are compared for size and height.251

In the subtask of positional relationship, the252

prompt for PLMs and VL-PTMs contains an event253

scenario and a masked token for the positional254

relationship, like A woman washes the car. She255

is [MASK] the car. The possible answer set is256

{above, below, inside, beside}. The prompt for257

ISMs describes the scenario only, like A woman258

washes the car.259

3.3 Evaluation260

We assess the images generated by ISMs with two261

methods. We first use the spatial information of262

bounding boxes (referred to as ISM (Box)). For263

each object mentioned in the prompt, we select264

the classified bounding box with the highest con-265

fidence. To mitigate the effect of viewpoint (an266

object closer to the camera may appear larger in267

the image), we compute the average depth of the268

box as the object’s depth. The object detector is 269

from Zhang et al. (2021), and the depth estimator 270

is from Godard et al. (2019). When probing the 271

relative size, we compare area × depth2 of the 272

two objects’ boxes; and when probing the relative 273

height, we compare height × depth. When clas- 274

sifying positional relations, we use the mapping 275

rules between spatial relations and image regions 276

from Visual Dependency Grammar (VDG) (Elliott 277

and Keller, 2013). The rules are in Appendix A.1. 278

Some generated images are vague, and object 279

detection models are trained to process clear pic- 280

tures, so a number of objects are not recognized. 281

To precisely assess the generated images, we con- 282

duct human evaluation on all images (referred to 283

as ISM (Human)). Annotators are asked to com- 284

pare the size/height of the objects in the images 285

(in the first subtask) and classify the positional re- 286

lationship between the person and the object (in 287

the second subtask). Each image is evaluated by 288

two annotators, and the average performance is re- 289

ported. Specifically, we report the accuracy and 290

macro F1 between models’ predictions and correct 291

answers. Besides the performance of ISMs on the 292

subset of recognized instances, we also report the 293

performance on the full dataset, giving the unrec- 294

ognized instances a random guess. 295

4 Probing Spatial Commonsense 296

4.1 Models 297

We take BERT (Devlin et al., 2019) and 298

RoBERTa (Liu et al., 2019b) as examples of 299

text-only PLMs. For VL-PTMs, we choose 300

VinVL (Zhang et al., 2021), which performs well 301

in various vision-language tasks. As it preserves 302

the masked word prediction objective like PLMs, 303

it can also be probed with prompts. We choose 304

VQGAN+CLIP2 as a representative of ISMs. It 305

uses CLIP (Radford et al., 2021) to guide VQ- 306

GAN (Esser et al., 2021) to generate images that 307

best match the given text. To make a fair compar- 308

ison regarding model size, we select BERT-large, 309

RoBERTa-large, and VinVL-large. We use VQ- 310

GAN with codebook size Z = 16384 and down- 311

sampling factor f = 16, and CLIP with ViT- 312

B/32 (Dosovitskiy et al., 2020) architecture. All 313

four models are of similar sizes. 314

As language models are sensitive to the expres- 315

sions in probing (Liu et al., 2021) (like changing 316

2Originated by Ryan Murdoch, @advadnoun on Twitter.
Implementation details are in Appendix A.2.
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Model Acc (avg. / σ) F1 (avg. / σ)

BERT 49.8 / 2.66 47.7 / 2.48
RoBERTa 54.1 / 3.93 52.2 / 6.92
VinVL 61.8 / 2.47 54.4 / 3.06

Model Acc F1

Best PLM 54.1 (52.2) 52.2 (46.7)
VinVL 61.8 (61.6) 54.4 (53.8)
ISM (Box) 54.8 (81.6) 54.8 (81.6)

Best PLM 54.1 (52.9) 52.2 (51.0)
VinVL 61.8 (61.6) 54.4 (54.3)
ISM (Human) 72.7 (76.5) 72.6 (76.4)

(a) Comparing sizes of objects. Both objects are recog-
nized by the object detection model in 15% images and
are recognized by humans in 86% images.

Model Acc (avg. / σ) F1 (avg. / σ)

BERT 50.8 / 2.29 50.3 / 0.25
RoBERTa 50.8 / 6.43 49.2 / 7.45
VinVL 64.5 / 7.61 61.5 / 10.5

Model Acc F1

Best PLM 50.8 (48.6) 50.3 (47.9)
VinVL 64.5 (69.3) 61.5 (65.2)
ISM (Box) 52.5 (68.1) 52.5 (68.1)

Best PLM 50.8 (48.5) 50.3 (47.5)
VinVL 64.5 (63.9) 61.5 (60.6)
ISM (Human) 78.9 (85.4) 78.8 (85.3)

(b) Comparing heights of objects. Both objects are recog-
nized by the object detection model in 14% images and
are recognized by humans in 82% images.

Table 2: Probing performance on object scales. The numbers are in percentages (%). In the last six lines, the first
number is the performance on the whole dataset, and the number in parentheses indicates performance on the subset
of instances where the generated images can be recognized by object detection models for lines 4-6, and on the
subset recognized by humans for lines 7-9. Standard deviation of models on different folds is represented with σ.

an answer choice from larger to bigger, the pre-317

dictions of BERT may differ a lot), we generate318

new prompts and answers based on those originally319

designed in the benchmark, and search for the op-320

timal ones for PLMs and VL-PTMs. Similar to321

Jiang et al. (2020), we use back-translation to gen-322

erate 10 candidates for prompts and answers, and323

filter out the repeated ones. To select prompts and324

answers, we split the dataset into 5 folds, where325

different folds do not share the same objects. For326

each run, one fold is used as the development set to327

choose the best candidate, and the model is probed328

on other folds with the chosen prompt. We report329

average performance of 5 runs.330

4.2 Probing Results331

Size and Height. Table 2 reports the probing332

performance of comparing the scales of objects.333

We also demonstrate probing results on Relative-334

Size (Bagherinezhad et al., 2016) in Appendix B.335

We observe that PLMs perform similarly. Even the336

best PLMs are slightly better than random guesses,337

indicating they are ineffective in predicting object338

scales. Although RoBERTa is trained on more texts339

and assumed to encode more knowledge, its perfor-340

mance is similar to BERT’s. It shows that PLMs341

do not learn much spatial commonsense from texts342

even if the pretrained corpus greatly increases.343

With the help of visual features in pretraining,344

VinVL greatly outperforms PLMs. ISM (Box),345

which simply compares bounding boxes in images346

generated by the ISM, also outperforms PLMs.347

Since only a small portion of instances are rec-348

HumanBox HumanBox HumanBox

A house and a bird
A bottle and a 

bookshelf
A plane and a 

bullet

Size

Height

A bird and a trash 
can

A trash can and a 
theatre

An apartment and 
a horse

Figure 4: Images generated by ISM in scale comparison.
Objects are successfully recognized by both the object
detection model and humans in the left column, by hu-
mans but not the object detection model in the middle
column, and by neither of them in the right column.

ognized with bounding boxes, if we only consider 349

the predictions on these instances, the gap between 350

ISM (Box) and PLMs is more than 15%. These 351

indicate that models with visual signals learn accu- 352

rate spatial commonsense knowledge from images. 353

ISM (Box) performs better than VinVL on those 354

recognizable instances, but underperforms on the 355

whole dataset. We conduct human evaluation on 356

the generated images for more precise assessment. 357

More than 80% of images are recognized by hu- 358

mans and these images accurately reflect the spatial 359

commonsense compared to PLMs and VinVL. 3 360

The gap between VinVL and ISM (Human) may 361

3The agreement between annotators is more than 90%.
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Model Acc (avg. / σ) F1 (avg. / σ)

BERT 26.1 / 4.15 19.0 / 5.20
RoBERTa 31.0 / 15.4 20.1 / 9.29
VinVL 56.1 / 7.09 41.8 / 6.69

Model Acc F1

Best PLM 31.0 (32.5) 20.1 (17.6)
VinVL 56.1 (56.0) 41.8 (36.0)
ISM (Box) 33.0 (42.5) 26.5 (26.1)

Best PLM 31.0 (30.5) 20.1 (20.1)
VinVL 56.1 (56.4) 41.8 (42.9)
ISM (Human) 73.4 (75.4) 65.1 (68.0)

Table 3: Probing performance on positional relationship
(%). The symbols are identical to those in Table 2. Both
the person and the object are recognized with bounding
boxes in 39% images and by humans in 93% images.

come from different ways of using visual signals362

in pretraining. A main training objective of VinVL,363

and other VL-PTMs, is aligning text with image364

regions. The discriminative features of objects are365

amplified, while other features may not receive as366

much attention. For instance, the shape and color367

are the discriminative features of an apple, and its368

size is not that important in recognition. In im-369

age synthesis, models need to learn comprehensive370

knowledge of objects in order to reconstruct them,371

and spatial knowledge may be learned implicitly in372

this process.373

Figure 4 demonstrates images generated by the374

ISM given the prompts of object pairs. ISM grasps375

the main characteristics of the objects, including376

their scales. Some objects (like theatre at the bot-377

tom of the middle column) can be identified by378

humans but are difficult for the object detection379

model because they are obstructed by objects in380

the foreground. And some objects are generated381

in multiple fragments (like plane and horse in the382

right column), therefore cannot be recognized by383

either the object detection model or humans.384

Positional Relationship. The probing perfor-385

mance on positional relationship is shown in Ta-386

ble 3. VinVL outperforms PLMs more than 20%,387

and ISM (Human) outperforms PLMs more than388

35%, suggesting that models with visual signals389

learn more knowledge of the scenarios, especially390

the positions of objects relative to people.391

The gap between PLMs and ISM (Box) is392

smaller compared to the gap in the subtask of size393

and height. One reason is that the rules defined394

in VDG cannot perfectly reflect the true positional395

relationship in images. For example, the man is396

Model Size Height
Sym. Trans. Sym. Trans.

Best PLM 37.5 71.9 25.9 73.1
VinVL 43.5 95.0 43.0 93.2

Best PLM† 36.6 72.2 26.1 72.3
VinVL† 44.4 95.3 32.2 97.8
ISM (Human)† 82.5 81.1 83.2 85.2

Table 4: The percentage (%) of predictions that meet
consistency. Sym and Trans indicate symmetry and
transitivity. † indicates performance on the subset of
images recognized by humans.

beside the car in the left image of Figure 3, but he 397

will be regarded as inside the car by the rules, as 398

the region of car covers the region of man. 399

Text-based PLMs tend to lean towards certain 400

positional relations between a person and an ob- 401

ject, without referring to the action. In 64% cases, 402

RoBERTa chooses the same option for a ⟨person, 403

object⟩ pair with different actions, while the propor- 404

tion is 21% for VinVL, and 28% for ISM (Human). 405

5 Quality of Spatial Knowledge 406

5.1 Consistency 407

Models that master better spatial knowledge should 408

be able to infer the relative scale of two objects 409

from intermediate references. For example, if a 410

model knows a dog is larger than an ant and a 411

sofa is larger than a dog, it may learn a sofa is 412

larger than an ant, even if it has not seen sofa and 413

ant together. We inspect models on how consistent 414

their probing results are. 415

The consistency is measured in two aspects: sym- 416

metry and transitivity. Symmetry implies that if a 417

model predicts A > B, then it should also predict 418

B < A, and vice versa: A < B =⇒ B > A. 419

Here > and < are in terms of size or height. We 420

enumerate the object pairs and count the percent- 421

age of predictions that meet the symmetry criterion. 422

Transitivity implies that if a model predicts A > B 423

and B > C, then it should predict A > C. It also 424

works for <, A < B ∧ B < C =⇒ A < C. 425

We enumerate the triples ⟨A,B,C⟩ where the pre- 426

dicted relation between ⟨A,B⟩ is identical to the 427

prediction between ⟨B,C⟩, and count the percent- 428

age that the prediction between ⟨A,C⟩ meets the 429

transitivity criterion. Note that we only evaluate 430

whether the predictions are consistent with each 431

other, regardless of the gold answers. 432

We evaluate the consistency of predictions from 433

PLMs that perform the best in the probing tasks 434
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Figure 5: Predictions from RoBERTa and VinVL in the subtask of objects’ sizes. c is the current object and A is the
set of all other comparable objects. #(c > a)/|A| indicates the ratio of predicting the current object larger than
others. As c > a and a > c should not appear simultaneously, the sum of the two solid bars is expected to be 1.

(RoBERTa for size and BERT for height), VinVL,435

and ISM (Human). The results are in Table 4.436

VinVL outperforms the best PLM in both met-437

rics, and the characteristics of them are similar:438

the transitive consistency is high, while the sym-439

metric consistency is low. To further analyze this440

phenomenon, we exhibit each object’s size predic-441

tions from RoBERTa and VinVL in Figure 5. The442

models exhibit different behaviors in recognizing443

object scales. As the objects (X-axis of Figure 5)444

are roughly listed from smaller to larger groups,445

the bottom blue bars are expected to follow a non-446

descending order from left to right, and the solid447

orange bars should be non-ascending. The pre-448

dictions of VinVL are generally in line with this449

trend, while RoBERTa’s predictions are disordered.450

For example, ant is predicted to be larger than451

other objects with high probability, and cinema is452

larger than others is unlikely to happen. On the453

other hand, if the model predictions are consistent,454

the two solid bars should sum to 1. However, the455

sum is far above 1 for most objects in VinVL’s456

predictions. This bias towards words indicating457

the choice of large may come from the pretraining458

corpus. For example, sofa occurs twice as many459

times with words indicating large as with words460

indicating small in COCO (Lin et al., 2014), one of461

VinVL’s pretraining datasets.462

ISM’s predictions comply with the symmetry cri-463

terion, outperforming other models by 40%, while464

also having good transitive consistency. The knowl-465

edge probed from ISM is more consistent. More466

images generated by ISM are in Appendix C.467

Model Acc (avg. / σ) F1 (avg. / σ)

BERT 27.4 / 3.17 19.7 / 7.25
RoBERTa 29.5 / 16.0 20.1 / 9.90
VinVL 58.1 / 1.97 44.4 / 1.63

Model Acc F1

Best PLM 29.5 (28.4) 20.1 (19.1)
VinVL 58.1 (52.3) 44.4 (41.0)
ISM (Human) 66.5 (74.8) 59.4 (69.2)

Table 5: Probing models on the generalized dataset of
positional relationship. The symbols are identical to
those in Table 2. The human recognition ratio is 81%.

5.2 Generalizability 468

ISM may learn positional relations from training 469

images directly. For example, a boy riding a bi- 470

cycle is a common scenario and may frequently 471

exist in ISM’s training set, so models can gener- 472

ate images more easily when being fed with the 473

text prompts like a boy rides a bicycle. To further 474

challenge ISM’s capability, we make a general- 475

ized version of our original positional relationship 476

dataset. It is designed to examine whether models 477

are able to robustly reflect the spatial commonsense 478

knowledge when facing uncommon scenarios. 479

A generalized scenario is built upon the original 480

one by replacing the person and object in the text 481

prompts. We select the new person and new object 482

from the subterms of the original ones (those with 483

IsA relation in ConceptNet (Speer et al., 2017), like 484

enchantress is a woman). To ensure these newly 485

constructed scenarios are not likely to appear in 486

the training data of models, we search them in 487
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A housefather is 
feeding the foal.

A schoolgirl climbs 
the cherry tree.

An enchantress lights 
the sparkler.

Figure 6: Images generated by ISM with the generalized
prompts.

BookCorpus (Zhu et al., 2015) and remove the488

scenarios that have appeared. The newly generated489

scenarios are also validated by humans to ensure490

that they are reasonable.491

Results of probing PLMs, VinVL, and ISM4 on492

the generalized dataset are in Table 5. PLMs and493

VinVL achieve similar performance on both the494

generalized dataset and the original one, indicating495

that they behave robustly when facing uncommon496

scenarios. The performance gap between other497

models and ISM (Human) slightly narrows down,498

but ISM (Human) still outperforms VinVL more499

than 8%. Figure 6 exhibits images generated by500

ISM with the generalized prompts. Although it is501

difficult for ISM to generate unfamiliar objects, it502

is still capable of capturing the positional relations.503

6 Solving Natural Language Questions504

We investigate how to acquire spatial knowledge505

from ISMs and whether the knowledge is effective506

in natural language understanding scenarios. To507

our best knowledge, there is no appropriate task508

that focuses on spatial commonsense, so we create509

a toy task by transforming our probing benchmark510

into the form of question answering (QA).511

Dataset. We construct a QA dataset of yes/no512

questions. Questions of objects’ sizes are in the513

form of Is Oa larger/smaller than Ob? And ques-514

tions of objects’ heights are like Is Oa taller/shorter515

than Ob?, where Oa and Ob are two objects. Ques-516

tions about positional relationship are accompanied517

with the action: for instance, A man washes the car.518

Is the man inside the car? To avoid bias in answer519

distribution, the numbers of yes and no are equal520

in gold answers. There are 500 questions for size,521

500 for height, and 448 for positional relationship.522

Models. We use VinVL-base together with our523

image synthesis model VQGAN+CLIP to answer524

4We do not consider ISM (Box) because many new objects
we used are unfamiliar to object detection models. Only 17%
of the objects are in the object detection classes.

Model Size Height PosRel
Acc F1 Acc F1 Acc F1

UnifiedQA 51.3 38.5 58.4 52.8 56.7 48.1
ISM w/ VinVL 52.4 43.8 59.4 54.3 59.8 58.7

Table 6: Performance of answering commonsense ques-
tions. Accuracy (%) and macro F1 (%) are reported.
PosRel refers to positional relationship.

spatial commonsense questions. The VinVL here 525

is finetuned on the VQA (Goyal et al., 2017) task. 526

It takes images generated from ISM with textual 527

prompts from questions, and predicts the answer 528

based on the question and image together. Note 529

that the VQA training corpus does not contain com- 530

monsense reasoning questions. 531

We choose UnifiedQA (Khashabi et al., 2020) as 532

a text-based QA model for comparison. Based on 533

the pretrained T5 model (Raffel et al., 2019), Uni- 534

fiedQA is continually trained on various QA tasks, 535

including three yes/no datasets. We use UnifiedQA- 536

large, which is comparable with our synthesis and 537

reasoning model (ISM w/ VinVL) in size. 538

Results. As shown in Table 6, ISM w/ VinVL out- 539

performs UnifiedQA on all subtasks, showing that 540

spatial knowledge from ISMs can be directly used 541

by vision-language models without additional train- 542

ing. Although some images cannot be precisely 543

recognized by object detection models, vision- 544

language models may find regions that are related 545

to the objects mentioned in questions, and make de- 546

cisions based on the features of these regions. The 547

results on the simple natural language task show 548

that it is beneficial to tackle natural language tasks 549

with vision-language methods, and ISMs can be a 550

bridge between the two modalities. With the devel- 551

opment of ISMs and object detection techniques, 552

we believe the generated images will help more. 553

7 Conclusion 554

We propose a new spatial commonsense probing 555

framework to investigate object scales and posi- 556

tional relationship knowledge in text-based pre- 557

trained models and models with visual signals. Ex- 558

perimental results show that models with visual sig- 559

nals, especially ISMs, learn more accurate and con- 560

sistent spatial commonsense than text-only mod- 561

els. Integrating ISMs with visual reasoning models 562

outperforms PLMs in answering spatial questions. 563

This manifests the potential of using spatial knowl- 564

edge from ISMs in natural language reasoning. 565
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A Implementation Details787

Relation Definition

X inside Y The entirety of region X overlaps with Y.
X beside Y The angle between the centroid of X and

the centroid of Y lies between 315◦ and
45◦ or 135◦ and 225◦.

X above Y The angle between X and Y lies between
225◦ and 315◦.

X below Y The angle between X and Y lies between
45◦ and 135◦.

Table 7: Spatial relations between image regions in
Visual Dependency Grammar (VDG).

A.1 Spatial Relations in Visual Dependency788

Grammar789

We use the rules defined in Visual Dependency790

Grammar (Elliott and Keller, 2013) to determine791

the positional relationship between bounding boxes.792

The rules used are listed in Table 7. If two bound-793

ing boxes meet the inside standard, they will be794

predicted as inside. Otherwise, the angle between795

the centers of the boxes is calculated to determine796

whether the prediction is above, below, or beside.797

A.2 Image Synthesis798

We generate images of 512 × 512 pixels with799

text prompts. We use 1) VQGAN (Esser et al.,800

2021), which takes in a vector, and outputs a high-801

resolution image; and 2) CLIP (Radford et al.,802

2021), which can encode both text and images, and803

map them into a multi-modal embedding space. Im-804

age synthesis is the process of finding the optimal805

vector v inputted to VQGAN. In each iteration, the806

vector is fed into VQGAN to generate an image807

img = VQGAN(v). CLIP encodes the image into808

c = CLIP(img), and encodes the text prompt into809

t = CLIP(text), respectively.810

The optimization goal is to bring c and t, the811

representation of the image and text encoded by812

CLIP closer. The vector v is randomly initialized813

and optimized for 600 iterations. We use Adam814

optimizer with a learning rate of 0.5. This process815

looks like a normal model “training”, but here both816

VQGAN and CLIP are pretrained and their parame-817

ters are frozen; only the vector v is optimized from818

randomness for every prompt.819

A.3 Prompt Candidates Generation820

When probing PLMs, we follow Jiang et al. (2020)821

to generate prompt and answer candidates with822

Model Acc (avg. / σ) F1 (avg. / σ)

BERT 49.0 / 4.11 43.7 / 8.25
RoBERTa 48.9 / 1.71 43.4 / 5.42
VinVL 60.6 / 1.47 51.2 / 2.22

Model Acc F1

Best PLM 49.0 (47.5) 43.7 (40.5)
VinVL 60.6 (60.8) 51.2 (49.8)
ISM (Box) 58.5 (71.5) 58.5 (71.4)

Best PLM 49.0 (48.5) 43.7 (43.5)
VinVL 60.6 (65.5) 51.2 (55.7)
ISM (Human) 72.5 (76.5) 71.8 (75.7)

Table 8: Probing performance on RelatizeSize. Accu-
racy and macro F1 are reported. The numbers are in
percentages (%). In the last six lines, the first number is
the performance on the whole dataset, and the number
in parentheses indicates performance on the subset of
instances where the generated images can be recognized
by object detection models and humans, respectively.
The standard deviation on different folds is represented
with σ. Both objects are recognized with bounding
boxes in 40% images and are recognized by humans in
85% images.

back-translation. Manually designed prompts and 823

answers are translated from English to German and 824

then backward. It is used to construct candidates 825

with similar meanings. We leverage the translation 826

model designed in Ng et al. (2019). 827

A.4 Computing Infrastructure 828

Experiments are conducted on NVIDIA GeForce 829

RTX 3090 GPU. It takes 8 hours to generate 500 830

images on one GPU, and all other experiments can 831

be executed in a few minutes. 832

B Probing Results on RelativeSize 833

RelativeSize (Bagherinezhad et al., 2016) is an- 834

other dataset for comparing objects’ sizes. Table 8 835

demonstrates the probing results on it. The results 836

are consistent with those on our datasets: ISM 837

probing, both evaluated with bounding boxes and 838

evaluated by humans, outperforms PLM probing. 839

The methods used in Bagherinezhad et al. (2016) 840

are all retrieval-based. They execute search en- 841

gine queries and download images from Flickr to 842

make the comparisons. So we do not compare with 843

their results directly. However, it is worth noticing 844

that our ISM probing is comparable to the image 845

retrieval-based baseline (its accuracy is 72.4%). It 846

exhibits that ISM learns sufficient knowledge from 847

images. 848
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coin < tyre tyre > coin

chair < mountain mountain > chair

 

coin < tyre tyre > coin

chair < mountain mountain > chair

 

(a) Two groups of generated images. The sizes of
objects are consistent with each other.

bird < chair chair < theatre bird < theatre

suitcase > bottle suitcase > bulletbottle > bullet

(b) Two groups of generated images. The heights of objects meet the
transitivity criterion.

Figure 7: Examples of the symmetric and transitive consistency of images generated by ISM.

C Consistency of Images Generated by849

ISM850

Figure 7 exhibits the symmetric and transitive con-851

sistency of images generated by ISM. In Figure 7a,852

the relationship between the sizes of objects is con-853

sistent; in Figure 7b, objects’ heights comply with854

the transitivity criterion. The consistency of scale855

knowledge makes the predictions more convincing,856

and gives models a chance to learn new compar-857

isons between objects.858
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