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ABSTRACT

Robustness and compactness are two essential attributes of deep learning mod-
els that are deployed in the real world. The goals of robustness and compactness
may seem to be at odds, since robustness requires generalization across domains,
while the process of compression exploits specificity in one domain. We introduce
Adaptive Sharpness-Aware Pruning (AdaSAP), which unifies these goals through
the lens of network sharpness. The AdaSAP method produces sparse networks
that are robust to input variations which are unseen at training time. We achieve
this by strategically incorporating weight perturbations in order to optimize the
loss landscape. This allows the model to be both primed for pruning and regular-
ized for improved robustness. AdaSAP improves the robust accuracy of pruned
models on image classification by up to +6% on ImageNet C and +4% on Ima-
geNet V2, and on object detection by +4% on a corrupted Pascal VOC dataset,
over a wide range of compression ratios, pruning criteria, and network architec-
tures, outperforming recent pruning art by large margins.

1 INTRODUCTION

Figure 1: Robustness of pruned models trained on
ImageNet-1K drastically degrades on ImageNet-C
as pruning ratio increases for many SOTA pruning
methods. AdaSAP reduces the degradation in robust
performance relative to standard validation perfor-
mance. We approach the grey dashed line, which
indicates an ideal scenario in which robust perfor-
mance does not degrade at higher rates than valida-
tion performance.

Deep neural networks have increasingly
been used in many applications such as au-
tonomous driving. Unlike the controlled
environments in which these models are
trained, test-time inference presents new
challenges including noisy real-world data
and latency and memory constraints. These
challenges have led to recent efforts in
network robustness and compression, but
through largely separate lines of work.

Robustness to input variation unseen during
training is especially important for deployed
deep learning models in safety-critical appli-
cations such as autonomous driving, where,
for instance, artifacts such as dirt or snow
may obscure the camera image. More gen-
erally, in computer vision applications, this
input variation falls into categories including
distribution shifts, image corruptions, adver-
sarial attacks, and label noise (Hendrycks
& Dietterich, 2019; Azulay & Weiss, 2018;
Carlini & Wagner, 2016; 2017; Hendrycks
et al., 2018; Steinhardt et al., 2017). In at-
tempts to address these challenges, the vi-
sion community has collected and released datasets to assess model robustness (Hendrycks & Diet-
terich, 2019; Recht et al., 2019) and investigated and improved performance on a variety of types of

∗Work done during an internship at NVIDIA.
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Figure 2: AdaSAP is a three step process that takes as input a dense pretrained model and outputs a
sparse robust model. The process can be used with any pruning method.

robustness (Xie et al., 2021; Zhou et al., 2022; Szegedy et al., 2013; Madry et al., 2017). Despite
significant progress in this area, most existing robustness work focuses on dense networks (Guo
et al., 2023; Zhou et al., 2022).

Running large models imposes substantial computational burdens that can be mitigated via model
compression methods. Given the observation that neural networks often include redundant compu-
tation at inference, this line of work aims to reduce network inference costs through techniques such
as knowledge distillation (Hinton et al., 2015; Molchanov et al., 2022; Yin et al., 2020), quantiza-
tion (Gholami et al., 2021; Banner et al., 2018; Idelbayev et al., 2021; Cai et al., 2020), pruning (Han
et al., 2015b; Yang et al., 2021; Yu et al., 2019; Molchanov et al., 2016; 2019; Shen et al., 2022a),
and network adaptation (Molchanov et al., 2022; Dai et al., 2019; Yang et al., 2018). Here we focus
on pruning due to its simple procedure for network speedup. The pruning process retains neurons
deemed important over the training distribution, so it is unsurprising that pruned networks can have
reduced out-of-distribution (OOD) generalization, as observed in Liebenwein et al. (2021); Hooker
et al. (2019). The effort to jointly address robustness and compression remains an open problem.

The goal of our work is to produce compact and robust neural networks. In particular, we empha-
size robustness to input variations that are unseen at training time, in contrast with methods such
as robust pruning (Sehwag et al., 2020; Vemparala et al., 2021; Zhao & Wressnegger, 2022) which
assume access to the input variations at training time. It might seem as if the goals of sparsity
and robustness are at odds since one aims to exploit the current dataset and task for extreme com-
pactness whereas the other strives for maximal generalization. However, our method leverages a
new flatness-based optimization procedure that both primes the network for pruning and improves
network robustness. Specifically, flatness can mitigate the loss in performance during the pruning
procedure and regularize the network towards improved robustness.

We introduce Adaptive Sharpness-Aware Pruning (AdaSAP), a three-step algorithm that prunes a
network so that it is robust to OOD inputs. (1) We introduce the novel adaptive weight perturbations
which are incorporated into the optimization procedure to adaptively penalize sharpness in order
to prepare the network for pruning, (2) apply any pruning method to the model, and (3) continue
training the model while uniformly penalizing sharpness across the network to encourage robustness.

AdaSAP significantly improves the relative robustness over prior pruning art, seen in Figure 1. As
models are pruned (with SOTA methods) more, their performance on corrupted images suffers dis-
proportionately as compared to their validation performance. This highlights the lack of robustness
preservation in recent SOTA pruning methods and AdaSAP’s success at reducing this degradation1.

Our contributions can be summarized as follows:

• We introduce AdaSAP, a sharpness-aware pruning and fine-tuning process to jointly optimize for
sparsity and robustness in deep neural networks.

• We propose novel adaptive weight perturbations that prepare a network for both pruning and
robustness to OOD inputs. This strategy actively manipulates the flatness of the loss surface so as
to minimize the impact of removing neurons with lower importance scores.

• We demonstrate state-of-the-art performance compared to prior art by noticeable margins across
a wide range of setups, covering (i) two tasks (classification and detection), (ii) two OOD types
(image corruption and distribution shift), (iii) four networks (ResNet50 and MobileNet V1/V2 for

1Relative robustness in Fig. 1 refers to the ratio between the accuracy on corrupted images and the standard
validation accuracy at a given prune ratio. A dense model in this setup retains 55% of its validation performance
when given corrupted images (location of grey dashed line).

2



Published as a conference paper at ICLR 2024

Figure 3: (Left) Before pruning, encourage neu-
rons that will be pruned to lie within a flat min-
imum, since their removal will affect the loss
less. (Right) After pruning, promote robustness
by encouraging flatness across the network.

Algorithm 1 AdaSAP Optimization Iteration
Require: model weights w partitioned into neurons

wi, training batch b, ρ bounds (ρmin, ρmax), loss
L, score function ψ, learning rate η
for each neuron wi do

si = ψ(wi) ▷ Score
Compute ρi as in Eq. 2 ▷ Determine

perturbation ball size
Compute ϵ̂i as in Eq. 5 ▷ Optimal perturbation
gi ≈ ∇wiLb,w(wi)|wi+ϵ̂i ▷ Gradient

approximation
end for
w = w − ηg
return w

classification, SSD512 for detection), (iv) two pruning paradigms (parameter-based and latency-
based), and (v) sparsity ratios spanning from around 20% to 80%.

• We present a detailed evaluation of robustness and compactness and show, as a first encouraging
attempt, that both goals can be unified through the lens of sharpness, with analysis to encourage
the community to continue pursuing this direction.

2 RELATED WORKS

Robustness. Researchers and practitioners care about many types of robustness, including adver-
sarial robustness, robustness to distribution shift, robustness to image corruptions such as weather
effects, and robustness to label noise or data poisoning (Szegedy et al., 2013; Madry et al., 2017;
Hendrycks & Dietterich, 2019; Azulay & Weiss, 2018; Carlini & Wagner, 2016; 2017; Hendrycks
et al., 2018; Steinhardt et al., 2017). Several prior works examine the adversarial robustness of
sparse networks (Sehwag et al., 2020; Fu et al., 2021). Simultaneously, work such as Stutz et al.
(2021) suggests that adversarially robust networks have flatter minima.

In this work we focus on robustness to corrupted images (Hendrycks & Dietterich, 2019; Recht et al.,
2019) due to its real-world applications such as autonomous driving. Diffenderfer et al. (2021) shows
that sparse subnetworks can outperform the original dense model on clean and robust accuracy.
However, almost all current pruning methods still lead to worse performance on OOD data than
dense networks, a result we replicate in Figure 1 (Liebenwein et al., 2021; Hooker et al., 2019).

Efficiency. Efforts to improve network efficiency include pruning, distillation, quantization, and
adaptation (Han et al., 2015a;b; Yu et al., 2019; Molchanov et al., 2016; 2019; 2022; Shen et al.,
2022a; Hinton et al., 2015; Gholami et al., 2021; Banner et al., 2018; Dai et al., 2019; Yang et al.,
2018). Two broad categories of pruning are structured and unstructured pruning. While unstructured
pruning removes individual weights and can retain strong performance at high sparsities, structured
pruning removes larger elements in the network, such as convolutional channels, and often allows
for direct size or latency reduction of the pruned model (Anwar et al., 2017; Molchanov et al., 2019;
Shen et al., 2022a). Unstructured pruning dates back to Optimal Brain Damage, but the Lottery
Ticket Hypothesis has incited recent interest in the topic and spurred developments such as SNIP
and GraSP (Lee et al., 2019; Frankle & Carbin, 2018; Hoffmann et al., 2021; LeCun et al., 1989;
Tartaglione et al., 2022; Wang et al., 2020a; Yu et al., 2022). In the current work, we focus on
structured channel-wise pruning.

Flat minima. The relationship between flat minima and generalization has been studied for many
years (Hochreiter & Schmidhuber, 1997; Keskar et al., 2016; Wu et al., 2017; Guo et al., 2020; Jiang
et al., 2019; Wu et al., 2020; Bartoldson et al., 2020; Cha et al., 2021; Izmailov et al., 2018; Kaddour
et al.). Flat minima are often correlated with improved generalization, but the investigations into
the extent of this correlation and the underlying causal relationship are still ongoing. Also, flatness
is metric-dependent and sharp minima can generalize well (Dinh et al., 2017). Sharpness-Aware
Minimization (SAM) (Foret et al., 2020) is a way to optimize for finding flatter minima and leads
to better generalization. Work which builds upon SAM improves its efficiency (Liu et al., 2022;
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Du et al., 2022; Jiang et al., 2023), modifies the optimization for improved performance (Kwon
et al., 2021), applies it for compression in NLP applications (Na et al., 2022) and as a pre-pruning
optimizer (Zhou et al., 2023), and modifies the objective for unstructured pruning (Peste et al.,
2022). Stochastic weight averaging (SWA) is another method that has been used to optimize for
flatter minima (Izmailov et al., 2018; Cha et al., 2021; Kaddour et al.). The present work is inspired
by SAM and its use in model compression (Foret et al., 2020; Na et al., 2022) but differs in its use of
adaptive weight perturbations and its emphasis on robustness. In this work we use the formulation
introduced in ASAM (Kwon et al., 2021) due to its improved performance over that of SAM.

3 THE ADASAP METHOD

Algorithm 2 AdaSAP Pruning Procedure
Require: Pretrained model weights w partitioned into neurons wi, pruning

importance criteria ϕ, ρ bounds (ρmin, ρmax)
Let train iter = Algorithm 1
for epoch in warmup epochs do ▷ Adaptive Weight Perturbation

for each iteration do
Sample training batch b
w = train iter (w, b, ρmin, ρmax)

end for
end for
for epoch in pruning epochs do ▷ Pruning

for each iteration do
Sample training batch b
w = train iter (w, b, ρmin, ρmax)
if iteration % prune frequency = 0 then

s = ϕ(w) ▷ Score all neurons
idxs = rank(s)[: prune num] ▷ Neurons with lowest score
widxs = 0 ▷ Prune neurons

end if
end for

end for
for epoch in finetune epochs do ▷ Robustness encouragement

for each iteration do
Sample training batch b
w = train iter (w, b, ρmin = ρmax = constant) ▷ SAM

end for
end for
return w

Ensure: Pruned and finetuned model

Flat minima are minima
within relatively large
regions of the parameter
space that have low loss.
It has previously been
observed that optimiz-
ing for flatter minima
improves generalization
and adversarial robustness
in deep networks and
generalization in sparse
networks (Foret et al.,
2020; Stutz et al., 2021;
Na et al., 2022). Based on
these observations, we hy-
pothesize that optimizing
for flatter minima during
pruning can also enhance
robustness. The main
objective of our design
is to find flat minima in
order to produce models
that are simultaneously
prunable and robust. We
introduce a new method,
Adaptive Sharpness-Aware
Pruning (AdaSAP). Figure
2 and Algorithm 2 detail
the following three step
procedure:

(1) Adaptive Weight Perturbations. During warmup, we ensure that the neurons that will be
pruned, are regularized to lie in flat regions so that they will not cause the model’s performance to
suffer too much after pruning.

(2) Neuron Removal. We conduct structured channel pruning and remove neurons according to
any pruning criteria. Here we use magnitude pruning (Han et al., 2015b). During pruning, the
model will preserve much of its performance since unimportant neurons have already been situated
in flatter loss regions.

(3) Robustness Encouragement. While training the pruned model to convergence, we enforce flat
minima, this time uniformly (i.e., non-adaptively) across the entire network to promote robustness.
This step is compatible with any flatness-based optimizer. Here we use ASAM (Kwon et al., 2021).

3.1 ADAPTIVE WEIGHT PERTURBATION

Flatness-informed pruning. Our procedure performs gradient updates which are informed by the
local flatness in order to best prepare the network for pruning. We adapt the regularization per
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neuron based on the importance, or likelihood of that neuron to be pruned. Pruning can be viewed
as a special case of directional robustness, in which the weight and activation of a pruned neuron are
set to zero. When the loss landscape is flat, the pruning process will incur only a small impact on the
performance of the model. This formulation indicates that pruning and robustness share a common
characterization through the perspective of sharpness, as demonstrated in Figure 3.

Taking inspiration from the uniform ϵ-ball perturbation based method in Foret et al. (2020) and its
scale-invariant version in Kwon et al. (2021), among several other approaches for achieving flatness
in dense models (Izmailov et al., 2018; Santurkar et al., 2018), we perturb neurons according to their
importance to better prepare the network for pruning. We follow the intuition that important weights
are worth adding some sharpness to our model, while unimportant weights can have stronger regu-
larization. This idea is supported by Molchanov et al. (2019), which shows that pruning neurons in
flat regions hurts the loss less than pruning neurons in sharp regions. We adapt the size of allowable
perturbations based on the likelihood of each weight to be pruned: weights with low importance
scores have large perturbation balls which enforce that they lie within flatter regions and vice versa.

Setup. Following this intuition, we derive the gradient update for training. Consider a network
whose parameters are grouped into I partitions, where each partition i includes the set of weights
wi. In our setting, since we consider channel-wise pruning, each channel constitutes a partition. For
simplicity, throughout this paper we refer to a channel-wise group of weights as a neuron. We use
wi to refer to a single neuron and w to refer to the collection of all neurons {wi}Ii=1.

Perturbation regions. Consider training loss LS(w) of the network over the training dataset S.
Consider a set of weight perturbation ball radius sizes ρ, with each ρi corresponding to the size of
allowable perturbations for neuron wi. Our goal is to optimize for a network in which unimportant
neurons lie in flatter minima prior to pruning via the following objective

min
w

max
{ϵ:∥T−1

w ϵi∥≤ρi}I
i=1

LS(w + ϵ). (1)

where Tw and its inverse T−1
w are transformations that can be applied during optimization so as

to reshape the perturbation region (i.e., not necessarily a ball). Kwon et al. (2021) showed that this
strategy allows for greater perturbation exploration and leads to improved performance. ρi values are
based on computing an importance score for each neuron, similar to a pruning criterion. Consider a
neuron importance score function ψ(·), such as the ℓ2 norm of the neuron weight or other scores that
are some function of weights, gradients, and higher order terms (Molchanov et al., 2019; Lee et al.,
2019; Yu et al., 2022; Shen et al., 2022a; Wang et al., 2020a). Given each neuron score si = ψ(wi),
we can now compute the perturbation ball size ρi, which projects si to lie within (ρmin, ρmax)

ρi = ρmax −
si − smin

smax − smin
(ρmax − ρmin). (2)

Scores smin and smax are obtained empirically at each gradient step, but ρmax and ρmin are hyper-
parameters that are set ahead of time and we find them to scale across various experiment settings
(further details in Section 4 and Appendix A). Neuron importance estimates ψ(·) can be evaluated
during training with little additional computational overhead.

Optimal gradient update. Our enhanced gradient update optimizes for finding a minimum that
also lies in a region of low loss. Beginning with our objective in Eq. 1, we perform a series of
approximations in order to find the most adversarial perturbations ϵ = {ϵi} (i.e., highest loss near
the minimum) which we can apply to the neurons w = {wi} in our network in order to obtain a
flatness-informed gradient update.

We use a first order Taylor expansion around each neuron i with respect to ϵ around 0 (in line with
Foret et al. (2020)) to approximate the inner maximization in Eq. 1. This gives us ϵ∗, the optimal
ϵ we can use to inform our gradient update. Define ϵ̃i = T−1

w ϵi. For simplicity we denote the
conditional loss due to weight perturbations as the function LS,w(·). Then we derive our optimal
update as follows for each neuron:

ϵ̃∗i = argmax
∥ϵ̃i∥2≤ρi

LS,w(wi + Tw ϵ̃i),

≈ argmax
∥ϵ̃i∥2≤ρi

LS,w(wi) + ϵ̃⊤i Tw∇wi
LS,w(wi),

= argmax
∥ϵ̃i∥2≤ρi

ϵ̃⊤i Tw∇wi
LS,w(wi), (3)
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∥ · ∥2 being the ℓ2 norm. We can then approximate ϵ̃∗ by rescaling the gradient associated with each
neuron so that its norm is ρi through

ϵ̃∗i = ρi
sign(∇wi

LS,w(wi))|Tw∇wi
LS,w(wi)|

(∥Tw∇wiLS,w(wi)∥22)1/2
. (4)

Since we were originally approximating ϵ̃i = T−1
w ϵi, we recover our approximation of ϵ∗ as

ϵ̂i = ρi
T 2
w∇wiLS,w(wi)

∥∇wi
LS,w(wi)∥2

. (5)

Approximating the optimal gradient update. We then find an approximation to our desired gra-
dient. Referring to Eq. 1, we can find the gradient of the inner maximization in order to derive a
sharpness-aware gradient update. We use the inner maximization and plug in our approximation ϵ̂
for each individual neuron during adjacent pruning steps, defined as

∇wi max
∥T−1

w ϵi∥2≤ρi

LS,w(wi + ϵi) ≈ ∇wiLS,w(wi + ϵ̂i)

=
d(wi + ϵ̂i)

dwi
∇wi

LS,w(wi)|wi+ϵ̂i

= ∇wiLS,w(wi)|wi+ϵ̂i +
dϵ̂i
dwi

∇wiLS,w(wi)|wi+ϵ̂i

≈ ∇wi
LS,w(wi)|wi+ϵ̂i , (6)

where we drop the second order terms for efficiency. This leads us to our final gradient update
approximation between adjacent pruning steps as ∇wi

LS,w(wi) ≈ ∇wi
LS,w(wi)|wi+ϵ̂i .

We use this gradient update in place of the standard gradient update during the warmup phase of our
pruning procedure before neuron removal. This sets up our network so that when pruning begins,
we have a model that is closer to a flat minima. Optimization details are in Algorithm 1.

3.2 NEURON REMOVAL

We focus on structured (channel-wise) pruning since it leads to models that can take advantage of
direct computational resource savings on GPUs, leading to inference speedup (Molchanov et al.,
2022; Shen et al., 2022a; Yang et al., 2021).

In this stage of the procedure, we remove unimportant neurons according to any scoring function
ϕ(·) that measures neuron saliency. This may be the same or different from the scoring function ψ(·)
used in determining adaptive weight perturbation ball sizes during the first step. AdaSAP works with
a range of pruning methods as we show later in Section 4.

3.3 ROBUSTNESS ENCOURAGEMENT

In the third and final phase, we focus on optimizing our model for robust performance. We regularize
our weights uniformly since we have completed pruning and now want to enforce robustness for the
entire network. This is illustrated in Figure 3 in the plot on the right: the network loss relative to
a flatter neuron will stay more stable in the presence of corruptions, whereas the loss relative to a
sharper neuron could fluctuate significantly. This portion of the procedure could be instantiated with
any sharpness-based method that optimizes for an overall flatter minima.

3.4 FINAL COMMENTS

We emphasize that AdaSAP is not a pruning method but rather an optimization paradigm that per-
forms robustness-aware pruning. Our method can be used in conjunction with any existing pruning
criteria. In Section 4 we show that AdaSAP (in conjunction with magnitude pruning) generally out-
performs existing SOTA pruning methods. As new pruning techniques arise, they could be enhanced
via AdaSAP in order to obtain increased performance, particularly robust performance.

Additionally, we note that our method differs from robust pruning methods such as Sehwag et al.
(2020); Vemparala et al. (2021); Zhao & Wressnegger (2022) since we consider a setting in which
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the model may be exposed to novel types of corruptions at test time. Therefore, we do not want
to include, i.e. ImageNet C or ImageNet V2 images in our training set. We demonstrate results on
these OOD datasets in an attempt to demonstrate the versatility of our method: despite only training
on ImageNet data, we can still expect the models to be robust to unseen input variation.

4 EXPERIMENTS & RESULTS

4.1 EXPERIMENT DETAILS

We describe the basics of our experimental setup here. Additional experiment details and confidence
intervals can be found in Appendix A.

Datasets. For image classification, we train on ImageNet-1K (Deng et al., 2009) and additionally
evaluate on ImageNet-C (Hendrycks & Dietterich, 2019) and ImageNet-V2 (Recht et al., 2019). For
object detection, we use the Pascal VOC dataset (Everingham et al., 2009). To assess robustness, we
create a Pascal VOC-C dataset by applying ImageNet-C-style corruptions to the test set.

Pruning criteria. Our proposal is agnostic to the particular importance criteria ϕ used to prune the
network. We evaluate our method on two types of pruning: parameter-based and latency-based. We
choose to group our methods into these two categories due to the different goals of pruning methods.
Some methods, such as magnitude pruning, seek to reduce the number of parameters to produce a
small model. Other methods, such as HALP (Shen et al., 2022b), seek to produce a model with the
fastest latency speedup, regardless of the number of parameters.

In both cases, we perform structured pruning, that is, pruning channels rather than individual pa-
rameters. We refer to our two methods as AdaSAPP and AdaSAPL, to denote the parameter-
specific method and the latency-specific method, respectively. We use ℓ2 norm magnitude pruning
for AdaSAPP and HALP for AdaSAPL. Details of the pruning schedule are in Appendix A.

Metrics. For image classification, we report the Top1 accuracy on each dataset and two robustness
ratios, defined as the ratio in robust accuracy to validation accuracy: RC = accC/accval and RV2 =
accV2/accval. Improvement in these ratios indicates that we are closing the gap between robust and
validation performance. For object detection, we evaluate the model on Pascal VOC and VOC-C.
We report mean average precision (mAP) and a robustness ratio RC = mAPC/mAPval.

Baselines. We primarily focus on comparing to two SOTA baselines which we re-run in our ex-
periments, Taylor pruning for parameter-based pruning (Molchanov et al., 2019), and HALP for
latency-based pruning (Shen et al., 2022a). Taylor pruning assigns a score to each neuron based on a
Taylor series approximation of how much the loss would change if the neuron were removed. HALP
is a pruning method that optimizes for improving latency. We additionally run results on magnitude
pruning (Han et al., 2015b), to demonstrate the improvements of AdaSAPP over its closest baseline.
We also compare to the results cited in several other pruning methods such as GR-eg (Wang et al.,
2020b), EagleEye (Li et al., 2020), ABCPruner (Lin et al., 2020), and SMCP (Humble et al., 2022).

4.2 IMAGENET CLASSIFICATION

Parameter reduction. Table 1 shows how AdaSAP compares favorably to other pruning methods at
a variety of pruning ratios for ResNet50. MobileNet V1 and V2 results show a similar trend and are
included in Appendix B. First, AdaSAP has the best overall RC and RV2 ratios among all pruning
methods. This means that our method helps to close the gap between robust performance and stan-
dard validation performance. Additionally, our method consistently outperforms comparisons on
both ImageNet validation performance and on robust performance (via ImageNet C and ImageNet
V2) while at the same or even smaller compressed model size.

Latency Reduction. In a second set of experiments, we focus on latency constraints. To this end, we
consider the most recent hardware-aware pruning method HALP (NeurIPS’22 (Shen et al., 2022b)),
which incorporates latency into the metric to measure the saliency of each neuron. Table 2 shows
that using AdaSAPL outperforms prior works both in terms of the RC and RV2 robustness ratios,
and also in terms of standard validation performance and performance on OOD datasets.
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Table 1: ResNet50 - Parameter Reduction.
Method Size ↓ Val RV2 RC IN-V2 IN-C

ResNet50
Dense 1 77.32 0.83 0.55 64.79 42.46

Magnitude 0.20 73.80 0.83 0.48 61.40 35.27
Taylor 0.20 73.56 0.82 0.46 60.56 33.93
EagleEye 1G 0.27 74.13 0.83 0.47 61.30 34.84
AdaSAPP 0.20 74.63 0.83 0.50 62.08 37.30

Magnitude 0.44 76.83 0.85 0.51 64.92 39.27
Taylor 0.42 75.85 0.84 0.50 63.51 37.84
Greg-1 0.43 73.72 0.82 0.48 60.47 35.04
Greg-2 0.43 73.84 0.83 0.48 61.05 35.39
ABCPruner 0.44 73.52 0.82 0.50 60.46 36.64
AdaSAPP 0.40 77.27 0.83 0.53 64.51 41.23

Greg-1 0.62 75.16 0.82 0.49 61.82 36.88
Greg-2 0.62 75.36 0.82 0.49 62.06 37.09
ABCPruner 0.71 74.84 0.83 0.51 61.73 38.35
AdaSAPP 0.62 77.99 0.84 0.52 65.49 42.68

Magnitude 0.76 77.32 0.84 0.53 65.20 40.73
Taylor 0.76 77.05 0.84 0.52 64.53 39.68
Greg-1 0.77 76.25 0.83 0.51 63.61 38.96
EagleEye 3G 0.78 77.07 0.84 0.53 64.84 40.67
AdaSAPP 0.77 78.29 0.84 0.55 66.14 43.22

Table 2: ResNet50 - Latency Reduction.
Method Speedup ↑ Size ↓ Val RV2 RC IN-V2 IN-C

ResNet50
Dense 1 1 77.32 0.838 0.55 64.79 42.46

HALP 2.6 0.43 74.46 0.82 0.47 61.21 35.03
AdaSAPL 2.6 0.41 75.37 0.83 0.50 62.61 37.93

HALP 1.6 0.68 76.55 0.83 0.51 63.62 39.13
SMCP 1.7 0.60 76.62 0.83 0.51 63.86 38.72
AdaSAPL 1.6 0.65 77.28 0.85 0.54 65.35 41.63

HALP 1.2 0.87 77.45 0.84 0.53 64.88 40.77
SMCP 1.2 0.87 77.57 0.84 0.53 65.02 40.91
AdaSAPL 1.1 0.82 77.93 0.84 0.55 65.53 42.92

4.3 OBJECT DETECTION

We show object detection results in Table 3. Across two pruning levels, AdaSAP consistently out-
performs the HALP baseline by noticeable margins. More details can be found in Appendix A.

4.4 ABLATIONS

Sensitivity to importance metrics. In our experiments, we considered ℓ2 norm, or magnitude,
as the saliency metric for pruning since this led to the best performance. However, our method is
flexible enough to work with other metrics such as Taylor importance as seen in Table 5.

Adaptive perturbations. In order to determine the importance of using adaptive weight perturba-
tions, we compare our method to the use of uniform perturbations throughout all three steps, which
is equivalent to using SAM. In Table 6, we compare three different setups: Taylor pruning with
SGD as a baseline, Taylor pruning with SAM, and AdaSAPP . All three settings are fine-tuned for
90 epochs. Our method outperforms both SGD and SAM at the same or smaller compressed size.
This demonstrates that our method’s adaptive perturbations during the warmup phase are helping
the network achieve a more prunable state. See Appendix C for more extensive results and further
analysis of the choice of uniform perturbations during robustness encouragement.
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Table 3: Object Detection. mAP on validation
images and ImageNetC style corruptions on the
Pascal VOC dataset.

Method Size ↓ Val Corrupted RC

HALP 0.40 0.774 0.583 0.753
AdaSAP 0.40 0.795 0.620 0.780

HALP 0.20 0.770 0.580 0.753
AdaSAP 0.20 0.793 0.616 0.776

Table 4: Sharpness before and after prun-
ing without finetuning. Lower sharpness val-
ues indicates a flatter loss landscape. AdaSAP
achieves flatter minima both directly before and
after pruning, before any finetuning.

Sharpness Sharpness
Method Size ↓ pre pruning post pruning

Taylor 0.42 0.039 0.044
AdaSAPP 0.40 0.037 0.039

Taylor 0.76 0.039 0.041
AdaSAPP 0.76 0.037 0.038

Table 5: AdaSAP can work with any pruning
criteria. AdaSAP with Taylor pruning matches
or outperforms SGD with Taylor pruning.

Method Size ↓ Val RC IN-C

Taylor + SGD 0.42 75.85 0.50 37.84
AdaSAPP,Taylor 0.43 76.26 0.50 38.07
AdaSAPP 0.41 76.93 0.52 39.64

Taylor + SGD 0.76 77.05 0.52 39.68
AdaSAPP,Taylor 0.76 77.42 0.52 40.27
AdaSAPP 0.76 77.86 0.53 41.30

Table 6: Adaptive perturbations are critical
for the best clean and robust performance.

Method Size ↓ Val RC IN-C

SGD
Dense 1 77.32 0.54 42.46
Taylor + SGD 0.20 73.56 0.46 33.93

AdaSAP vs. SAM (without ASAM)
Taylor + SAM 0.20 73.62 0.47 34.49
AdaSAPP 0.20 74.38 0.48 35.86

AdaSAP vs. SAM (with ASAM)
SAM + ASAM 0.19 73.93 0.50 36.66
AdaSAPP + ASAM 0.19 74.63 0.50 37.30

4.5 SHARPNESS ANALYSIS

Consider the sharpness defined in Foret et al. (2020) as max∥ϵ∥2≤ρ LS(w + ϵ) − LS(w). This
measures the maximum amount that the loss could change if the weights are perturbed within a ball
of radius ρ. We measure sharpness directly before and after pruning, to evaluate how sharpness
prepares the network to be optimally pruned, as well as how pruning affects the model sharpness.
Table 4 shows that using AdaSAP leads to flatter models both before and after pruning. In line with
previous results that found an association between flatness and generalization, this result can help
explain why our models have better generalization and robust generalization performance.

4.6 LIMITATIONS

One limitation is that AdaSAP requires twice the training time due to the two backward passes
necessary for optimization. A 90 epoch pruning and finetuning run on 8 V100 GPUs to reduce a
ResNet50 network to 0.2× its size takes takes 32 hours and 12 minutes for AdaSAPP while SGD
with magnitude pruning takes 16 hours and 53 minutes. Recent strategies (Du et al., 2022; Liu
et al., 2022; Jiang et al., 2023) could be used to reduce this additional overhead. Another limitation
is that our analysis is based on existing robustness datasets that don’t fully capture the real world
corruptions encountered in autonomous driving. Despite a focus in the present work on applying
pruning (and fine-tuning) to an existing high performing dense model, AdaSAP shows promise
in also being used to prune models from scratch. Finally, although we focus here on the more
challenging structured pruning, we believe AdaSAP could also benefit unstructured pruning.

5 CONCLUSION

We introduce the Adaptive Sharpness-Aware Pruning method (AdaSAP) which optimizes for both
accuracy and robust generalization during the pruning procedure. The method consists of three
steps: application of our novel adaptive weight perturbations, pruning, and flatness-based robustness
encouragement. AdaSAP outperforms a variety of SOTA pruning techniques on clean and robust
performance and relative robustness in both image classification and object detection.
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A EXPERIMENT DETAILS

A.1 DATASETS

We conduct image classification experiments on the ImageNet dataset (Deng et al., 2009). To evalu-
ate the generalization ability of pruned models, we also evaluate models on ImageNet-C (Hendrycks
& Dietterich, 2019) and ImageNet-V2 (Recht et al., 2019) datasets. The former consists of the val-
idation images from the ImageNet dataset, but with nineteen types of corruptions applied with five
different levels of severity. The latter is a dataset created in the same manner as the original dataset,
but consisting of different images. Therefore, it is intended to measure out of distribution perfor-
mance of models. This ImageNet-V2 dataset includes three different sets, each one with a slightly
different sampling strategy. We focus our experiments on the MatchedFrequencies dataset, but
include evaluation on all three datasets in Table 8 and see that our method consistently outperforms
the baseline. These results do not use the ASAM formulation.

We conduct object detection experiments on the Pascal VOC dataset (Everingham et al., 2009). We
additionally create a Pascal VOC-C dataset, in which we apply the ImageNet-C corruptions to the
Pascal VOC test set. We only use one severity level.

A.2 ADDITIONAL ROBUSTNESS DATASETS

As described above, we choose the ImageNet V2 Matched Frequencies dataset to perform
our main set of experiments, but there are two other ImageNet V2 datasets: Threshold 0.7
and Top Images. These three datasets vary in terms of selection criteria for included images.
Matched Frequencies attempts to match the image selection frequency of MTurk workers
in the original ImageNet validation set. Threshold 0.7 samples from among images with a
selection frequency of at least 0.7. Top Images includes the images with the highest selection
frequency within each class. We provide the pruned model robustness comparison on these the
additional ImageNet V2 datasets in Table 8.

A.3 NETWORK ARCHITECTURES

In our experiments we prune three different networks for the classification task: ResNet50, Mo-
bileNet V1 and MobileNet V2 (He et al., 2016; Howard et al., 2017). All ablation studies use
ResNet50 with ImageNet and ImageNet C datasets unless otherwise specified. “Val” column labels
refer to standard ImageNet validation accuracy or loss. We use a pretrained model trained for 90
epochs with a cosine learning rate as in HALP (Shen et al., 2022b) and EagleEye (Li et al., 2020).
For object detection, we follow the experimental setup in HALP (Shen et al., 2022b) to prune an
SSD512 model with ResNet50 as the backbone. We perform Distributed Data Parallel training
across 8 V100 GPUs with batch size 128 for all experiments.

A.4 PRUNING SCHEDULE

Given a pre-trained model, for any architecture, we run the warm up for 10 epochs, and then we
follow the same pruning schedule as in de Jorge et al. (2020): we prune every 30 iterations and,
in each iteration, we prune away a pr fraction of neurons so that the final network is pruned by
a fraction p (resulting in a network of size 1 − p). To determine the pr fraction, we follow an
exponential decay schedule. Let k = 1 − p and let kr be the number of neurons remaining after
r pruning iterations, where the total number of pruning iterations is R. Let m be the number of
neurons in the dense network, and define α = r

R . Then, kr = exp{α log k + (1 − α logm)}. We
fine-tune the pruned model for another 79 epochs (to reach 90 epochs total).

A.5 OPTIMIZATION HYPERPARAMETERS

The base optimizer is SGD with cosine annealing learning rate with a linear warmup over 8 epochs, a
largest learning rate of 1.024, momentum of 0.875, and weight decay 3.05e− 05. Unless otherwise
stated we use ρmin = 0.01 and ρmax = 2.0 for all experiments – we observe these values scale
well across networks and tasks. For robustness encouragement we use ρ = 2.0 in line with prior
work (Kwon et al., 2021). For some ablation experiments, the original SAM (Foret et al., 2020)
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optimizer is sufficient and in these cases we reduce ρmax = 0.1 and use constant ρ = 0.05 for
finetuning. We include some simple hyperparameter tuning results for ρ values in Table 7.

Table 7: Simple hyperparameter tuning results on ResNet50 model.
ρmin ρmax Epoch 2 Val Loss Epoch 2 Val Acc

0.01 0.05 5.54 8.63
0.01 0.1 5.59 7.11
0.05 0.1 5.73 5.69
0.05 0.5 6.92 0.1

Table 8: Our AdaSAP method outperforms the Taylor pruning baseline on the additional ImageNet
V2 datasets. Additionally, the AdaSAP model pruned to 76% outperforms the dense model across
all three datasets. Results are on ResNet50 and do not use ASAM.

Method Size ↓ Matched Frequences Threshold 0.7 Top Images

Dense 1 64.80 73.79 79.00

Taylor 0.20 60.56 69.74 75.53
AdaSAPP 0.20 62.03 70.83 76.62
Taylor 0.40 63.51 72.54 77.83
AdaSAPP 0.40 64.62 73.75 78.87
Taylor 0.76 64.53 73.32 78.72
AdaSAPP 0.76 66.00 74.70 79.66

B ADDITIONAL RESULTS

B.1 MOBILENET RESULTS

We include results on MobileNet V1 and MobileNet V2 in Tables 9 and 10. These parallel our
main results in the main paper, in which we evaluated AdaSAPP and AdaSAPL on ResNet50 and
compared them against other pruning methods. Here, we perform a similar comparison, where
Table 9 includes our results on AdaSAPP and Table 10 includes our results on AdaSAPL. We com-
pare against Taylor importance (Molchanov et al., 2019), EagleEye (Li et al., 2020), and PolarReg
(Zhuang et al., 2020) for AdaSAPP and against HALP (Shen et al., 2022b), SMCP (Humble et al.,
2022), MetaPruning (Liu et al., 2019), AutoSlim (Yu & Huang, 2019), AMC (He et al., 2018), and
EagleEye (Li et al., 2020) for AdaSAPL. Results here do not use ASAM. We can observe that
AdaSAP performs strongly compared to baselines, particularly in the parameter-based setting.

B.2 MARGIN OF IMPROVEMENT IN CLASSIFICATION

Figure 4 shows the margin of performance on various corruption types for the classification task.
AdaSAP outperforms a Taylor pruned model on all corruptions, across three different sparsities.
We can see that it tends to particularly improve performance on several corruptions that may be
important for the autonomous driving application, such as pixelated images, fog, and snow.

B.3 MARGIN OF IMPROVEMENT IN OBJECT DETECTION

Similarly to our result on classification, we include margins of performance improvement on various
corruption types for the object detection task in Figure 5.

B.4 RELATIVE ROBUSTNESS

In Figure 6 we show that AdaSAP outperforms baselines on each of the constituent elements of the
relative robustness metric. Recall that relative robustness is robust accuracy divided by standard
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validation accuracy. In addition to outperforming baselines on relative robustness, AdaSAP also
outperforms on ImageNet validation accuracy and ImageNet C robust accuracy.

Table 9: MobileNet-V1/V2 - Parameters. Top1 Accuracy as a function of the pruning ratio.
Method Size ↓ Val RV2 RC IN-V2 IN-C

MobileNet-V1
Dense 1 72.63 0.82 0.45 59.30 32.79

Taylor 0.40 69.61 0.80 0.42 55.90 29.51
AdaSAPP 0.39 71.05 0.82 0.44 58.08 31.06

Taylor 0.52 71.21 0.81 0.43 57.65 30.92
AdaSAPP 0.52 71.58 0.82 0.44 58.75 31.77

EagleEye 0.56 70.86 0.80 0.42 56.88 29.98
AdaSAPP 0.56 72.05 0.82 0.45 58.94 32.24

MobileNet-V2
Dense 1 72.10 0.81 0.45 58.50 32.40

Taylor 0.72 70.49 0.81 0.43 56.87 30.22
AdaSAPP 0.72 72.06 0.82 0.45 58.73 32.63

PolarReg 0.87 71.72 0.82 0.45 58.46 32.04
Taylor 0.88 71.93 0.82 0.45 58.75 32.21
AdaSAPP 0.88 72.34 0.82 0.45 59.28 32.80

Table 10: MobileNet-V1/V2 - Latency. Top1 accuracy for latency constrained pruning for various
speedup ratios. “–” indicates that we could not evaluate the model due to unavailable code or models.

Method Speedup ↑ Val RV2 RC IN-V2 IN-C

MobileNet-V1
Dense 1 72.63 0.82 0.45 59.30 32.79

MetaPruning 2.06 66.1 – – – –
AutoSlim 2.27 67.9 – – – –
HALP 2.32 68.30 0.80 0.41 54.95 28.15
SMCP 2.39 68.34 0.80 0.42 54.38 28.68
AdaSAPL 2.33 68.45 0.81 0.41 55.42 28.29

0.75 MobileNetV1 1.37 68.4 – – – –
AMC 1.42 70.5 – – – –
MetaPruning 1.42 70.9 – – – –
EagleEye 1.47 70.86 0.80 0.42 56.88 29.98
HALP 1.68 71.31 0.81 0.43 57.38 30.77
SMCP 1.72 71.00 0.81 0.44 57.20 31.02
AdaSAPL 1.70 71.48 0.82 0.44 58.23 31.35

MobileNet-V2
Dense 1 72.10 0.81 0.45 58.50 32.40

HALP 1.84 70.42 0.81 0.45 57.21 31.69
AdaSAPL 1.81 71.35 0.81 0.46 57.85 32.63

HALP 1.33 72.16 0.81 0.46 58.53 33.04
AdaSAPL 1.39 72.19 0.82 0.46 59.36 32.91
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Figure 4: ImageNet C Dataset. Performance difference on various ImageNet C corruption types
on models of varying sparsity. Accuracy improvement is the Top1 accuracy on a ResNet50 model
trained and pruned using AdaSAP minus that of a Taylor pruned model.

B.5 ADDITIONAL SHARPNESS METRICS

We additionally run limited measurements of an alternative sharpness metric: the top eigenvalue of
the Hessian. We compare the sharpness of a model trained with AdaSAP vs. SGD in Table 11.

Table 11: Top Hessian eigenvalue sharpness measurements on ResNet50 model.
Optimizer Pre-pruning Post-pruning Post-finetuning

SGD 35.91 93.82 8.17
AdaSAPL 25.23 16.79 7.66

C ADDITIONAL ABLATIONS

C.1 PERFORMANCE CHANGE AFTER PRUNING

In Table 14 we show how the loss and accuracy change over the course of pruning. Our hypothesis is
that our method sets up the network for better pruning, so that the performance drop over the course
of pruning is minimized. In most cases, our method has the best validation loss and accuracy both
before and after pruning. This indicates that our method sets up the model to be pruned well, and
also preserves performance well throughout the pruning process.
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Figure 5: Pascal VOC-C dataset. Performance difference on various ImageNet C corruption types
on models of varying sparsity. mAP improvement is the mAP of a ResNet50 model trained and
pruned using AdaSAP minus that of a HALP pruned model.

Figure 6: ImageNet Validation and ImageNet C performance on AdaSAP vs. baselines. Con-
tains the same data as used to produce Figure 1 but demonstrates that AdaSAP additionally domi-
nates baselines on both components of the relative robustness metric.

C.2 VARYING THE LENGTH OF THE ADAPTIVE WEIGHT PERTURBATION STEP.

Throughout the main set of experiments use 10 epochs for the adaptive weight perturbation step.
This delineates how long we use the AdaSAP optimizer for, as well as how soon into the procedure
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Table 12: Sensitivity to pruning criteria. AdaSAP performs best when combined with magnitude
pruning, but is flexible enough to be used with other criteria, such as Taylor importance. Here we
see that AdaSAP with Taylor pruning matches or outperforms SGD with Taylor pruning. Results
are on ResNet50 and do not use ASAM.

Method Size ↓ Val RV2 RC IN-V2 IN-C

Taylor + SGD 0.42 75.85 0.84 0.50 63.51 37.84
AdaSAPP,Taylor 0.43 76.26 0.84 0.50 63.77 38.07
AdaSAPP 0.41 76.93 0.84 0.52 64.49 39.64
Taylor + SGD 0.76 77.05 0.84 0.52 64.53 39.68
AdaSAPP,Taylor 0.76 77.42 0.84 0.52 65.24 40.27
AdaSAPP 0.76 77.86 0.85 0.53 66.00 41.30

Table 13: Confidence intervals over three repeats. EagleEye checkpoints are obtained from the
official repository with only one seed. Results are on ResNet50.

Method Size ↓ Val IN-V2 IN-C

Magnitude 0.20 73.71± 0.12 61.21± 0.17 35.33± 0.18
Taylor 0.20 73.42± 0.19 60.36± 0.19 33.97± 0.12
EagleEye 0.27 74.13 61.30 34.84
AdaSAPP 0.20 74.54± 0.09 62.21± 0.13 37.30± 0.19

Magnitude 0.76 77.32± 0.06 65.18± 0.27 40.64± 0.20
Taylor 0.76 77.05 64.53 39.68
EagleEye 0.78 77.07 64.84 40.67
AdaSAPP 0.77 78.23± 0.06 65.98± 0.32 43.43± 0.20

we begin pruning. In this experiment, we analyze the sensitivity of the approach to this parameter.
We report results for this experiment in Table 15. We can observe that as we make this period longer,
validation accuracy and ImageNet C accuracy both drop slightly, while ImageNet V2 seems to have
no discernible pattern. Ratios RC and RV 2 also stay consistent across the experiment.

C.3 ROBUSTNESS ENCOURAGEMENT

As mentioned in the main text, we consider various ablations to determine the necessity of various
steps of the AdaSAP procedure. In the third step of our procedure, robustness encouragement, we
choose to apply uniform perturbations across all weights in the network. This differs from the first
step, in which we apply adaptive weight perturbations. In Table 16, we examine the effects of
different weight perturbation strategies during the robustness encouragement phase. We can see that
while all three strategies lead to relatively close final performance across the three datasets, uniform
weight perturbations perform slightly better, suggesting that our choice of applying them in our
procedure may be slightly benefitting the performance.

C.4 IMPORTANCE OF ADAPTIVE WEIGHT PERTURBATIONS

In Table 17 we extend an ablation from the main paper in which we compare AdaSAP to SAM,
effectively evaluating the importance of warmup with adaptive weight perturbations. Here, we per-
form the comparison on a wider range of sparsities and observe that a similar pattern emerges.
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Table 14: Validation Loss and Accuracy directly before and after pruning (before additional fine-
tuning). Across several pruning levels, our method generally reaches the lowest validation loss and
accuracy both before and after pruning. Results are on ResNet50 and do not use ASAM.

Method Size ↓ Val Loss Before Val Loss After Val Acc Before Val Acc After

Taylor 0.20 2.245 3.315 67.798 42.915
Mag 0.20 2.416 3.288 63.843 43.21
SAM 0.20 2.255 3.2 67.577 45.802
AdaSAPP 0.20 2.293 3.146 66.555 46.313
Taylor 0.43 2.284 2.69 66.67 57.046
Mag 0.43 2.408 2.587 63.844 59.275
SAM 0.43 2.327 2.676 65.541 57.449
AdaSAPP 0.43 2.251 2.574 67.473 59.962
Taylor 0.76 2.441 2.42 63.389 63.711
Mag 0.76 2.292 2.406 66.714 64.087
SAM 0.76 2.401 2.379 64.019 64.589
AdaSAPP 0.76 2.213 2.347 68.463 65.393

Table 15: Effects of varying number of epochs of adaptive weight perturbation. Increasing
the number of epochs leads to smaller models but slightly worse validation and ImageNet C perfor-
mance. Results are on ResNet50.

Num epochs Size ↓ Val RV2 RC IN-V2 IN-C

5 0.48 73.89 0.83 0.48 61.29 35.65
10 0.46 73.82 0.83 0.48 60.91 35.59
20 0.44 73.63 0.84 0.48 61.48 35.25
30 0.43 73.47 0.83 0.48 60.72 35.04

Table 16: Comparison of various weight perturbation strategies during robustness encouragement.
Results are on ResNet50.

Perturbation Type Val IN-C IN-V2

No weight perturbations 73.98 35.84 62.00
Adaptive weight perturbations 74.10 35.72 61.94
Uniform weight perturbations 74.39 35.86 62.03
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Table 17: Comparison of AdaSAP to SAM optimizer. AdaSAP outperforms SAM and SGD
on standard validation performance and ImageNet-C performance, but slightly trails SAM on
ImageNet-V2 when both methods are augmented with ASAM. Results are on ResNet50.

Method Size ↓ Val RV2 RC IN-V2 IN-C

SGD
Dense 1 77.32 0.84 0.54 64.79 42.46

Taylor + SGD 0.20 73.56 0.82 0.46 60.56 33.93

AdaSAP vs. SAM (without ASAM)
Taylor + SAM 0.20 73.62 0.83 0.47 61.37 34.49
AdaSAPP 0.20 74.38 0.83 0.48 62.03 35.86

Taylor + SGD 0.42 75.85 0.84 0.50 63.51 37.84
Taylor + SAM 0.43 76.27 0.84 0.50 63.81 37.72
AdaSAPP 0.40 77.03 0.84 0.51 64.62 39.57

Taylor + SGD 0.76 77.05 0.84 0.52 64.53 39.68
Taylor + SAM 0.76 77.29 0.84 0.52 64.84 40.07
AdaSAPP 0.76 77.86 0.85 0.53 66.00 41.30

AdaSAP vs. SAM (with ASAM)
SAM + ASAM 0.19 73.93 0.84 0.50 61.76 36.66
AdaSAPP + ASAM 0.19 74.63 0.83 0.50 62.08 37.30

SAM + ASAM 0.41 77.10 0.84 0.53 64.94 40.90
AdaSAPP + ASAM 0.40 77.27 0.83 0.53 64.51 41.23
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