
Published as a conference paper at ICLR 2021

REINFORCEMENT LEARNING WITH RANDOM DELAYS

Yann Bouteiller∗
Polytechnique Montreal
yann.bouteiller@polymtl.ca

Simon Ramstedt∗
Mila, McGill University
simonramstedt@gmail.com

Giovanni Beltrame
Polytechnique Montreal

Christopher Pal
Mila, Polytechnique Montreal

Jonathan Binas
Mila, University of Montreal

ABSTRACT

Action and observation delays commonly occur in many Reinforcement Learning
applications, such as remote control scenarios. We study the anatomy of randomly
delayed environments, and show that partially resampling trajectory fragments in
hindsight allows for off-policy multi-step value estimation. We apply this principle
to derive Delay-Correcting Actor-Critic (DCAC), an algorithm based on Soft Actor-
Critic with significantly better performance in environments with delays. This
is shown theoretically and also demonstrated practically on a delay-augmented
version of the MuJoCo continuous control benchmark.

1 INTRODUCTION

Undelayed
environment

Delayed environment

Agent

obse
rv

at
io

n dela
y

ac
tio

n dela
y

Figure 1: A delayed
environment can be decomposed
into an undelayed environment

and delayed communication
dynamics.

This article is concerned with the Reinforcement Learning (RL)
scenario depicted in Figure 1, which is commonly encountered in
real-world applications (Mahmood et al., 2018; Fuchs et al., 2020;
Hwangbo et al., 2017). Oftentimes, actions generated by the agent
are not immediately applied in the environment, and observations
do not immediately reach the agent. Such environments have mainly
been studied under the unrealistic assumption of constant delays
(Nilsson et al., 1998; Ge et al., 2013; Mahmood et al., 2018). Here,
prior work has proposed different planning algorithms which naively
try to undelay the environment by simulating future observations
(Walsh et al., 2008; Schuitema et al., 2010; Firoiu et al., 2018).

We propose an off-policy, planning-free approach that enables low-
bias and low-variance multi-step value estimation in environments
with random delays. First, we study the anatomy of such environ-
ments in order to exploit their structure, defining Random-Delay
Markov Decision Processes (RDMDP). Then, we show how to trans-
form trajectory fragments collected under one policy into trajectory fragments distributed according to
another policy. We demonstrate this principle by deriving a novel off-policy algorithm (DCAC) based
on Soft Actor-Critic (SAC), and exhibiting greatly improved performance in delayed environments.
Along with this work we release our code, including a wrapper that conveniently augments any
OpenAI gym environment with custom delays.

2 DELAYED ENVIRONMENTS

We frame the general setting of real-world Reinforcement Learning in terms of an agent, random
observation delays, random action delays, and an undelayed environment. At the beginning of each
time-step, the agent starts computing a new action from the most recent available delayed observation.
Meanwhile, a new observation is sent and the most recent delayed action is applied in the undelayed
environment. Real-valued delays are rounded up to the next integer time-step.

∗equal contribution

1

https://github.com/rmst/rlrd

Published as a conference paper at ICLR 2021

Figure 3: Influence of actions on delayed observations in delayed environments.

For a given delayed observation st, the observation delay ωt refers to the number of elapsed
time-steps from when st finishes being captured to when it starts being used to compute a new
action. The action delay αt refers to the number of elapsed time-steps from when the last
action influencing st starts being computed to one time-step before st finishes being captured.

Figure 2: Histogram of
real-world WiFi delays.

We further refer to ωt + αt as the total delay of st.

As a motivating illustration of real-world delayed setting, we have
collected a dataset of communication delays between a decision-
making computer and a flying robot over WiFi, summarized in
Figure 2. In the presence of such delays, the naive approach is to
simply use the last received observation. In this case, any delay
longer than one time-step violates the Markov assumption, since the
last sent action becomes an unobserved part of the current state of the
environment. To overcome this issue, we define a Markov Decision
Process that takes into account the communication dynamics.

2.1 RANDOM DELAY MARKOV DECISION PROCESSES

To ensure the Markov property in delayed settings, it is necessary to augment the delayed observation
with at least the last K sent actions. K is the combined maximum possible observation and action
delay. This is required as the oldest actions along with the delayed observation describe the current
state of the undelayed environment, whereas the most recent actions are yet to be applied (see
Appendix C). Using this augmentation suffices to ensure that the Markov property is met in certain
delayed environments. On the other hand, it is possible to do much better when the delays themselves
are also part of the state-space. First, this allows us to model self-correlated delays, e.g. discarding
outdated actions and observations (see Appendix A.1). Second, this provides useful information to
the model about how old an observation is and what actions have been applied next. Third, knowledge
over the total delay allows for efficient credit assignment and off-policy partial trajectory resampling,
as we show in this work.

Definition 1. A Random Delay Markov Decision Process RDMDP(E, pω, pα) = (X,A, µ̃, p̃)
augments a Markov Decision Process E = (S,A, µ, p) with:
(1) state-space X = S ×AK × N2, (2) action-space A,
(3) initial state distribution µ̃(x0) = µ̃(s, u, ω, α) = µ(s) δ(u− cu) δ(ω − cω) δ(α− cα),
(4) transition distribution p̃(s′,u′,ω′,α′ ,r′|s,u,ω,α,a)=fω−ω′(s

′,α′,r′|s,u,ω,α,a)pω(ω′|ω)pu(u′|u,a),

where s ∈ S is the delayed observation, u ∈ AK is a buffer of the last K sent actions, ω ∈ N is
the observation delay, and α ∈ N is the action delay as defined above. To avoid conflicting with
the subscript notation, we index the action buffers’ elements using square brackets. Here, u[1] is the
most recent and u[K] is the oldest action in the buffer. We denote slices by u[i :j] = (u[i], . . . , u[j])
and u[i :−j] = (u[i], . . . , u[K−j]). We slightly override this notation and additionally define u[0] = a.

2

Published as a conference paper at ICLR 2021

The constants cu ∈ AK and cω, cα ∈ N initialize u, ω, α, since δ is the Dirac delta distribution.
The transition distribution itself is composed of three parts: (1) The observation delay distribution
pω modelling the evolution of observation delays. Note that this density function must represent a
discrete distribution (i.e. be a weighted sum of Dirac delta distributions). Furthermore, this process
will repeat observations if there are no new ones available. This means that the observation delay
can maximally grow by one from one time-step to the next. (2) The transition distribution for the
action buffer pu(u′|u, a) = δ(u′ − (a, u[1 :−1])). (3) The distribution f∆ describing the evolution of
observations, rewards and action delays (Definition 2).

Definition 2. For each change in observation delays (∆=ω−ω′) we define a variable step update
distribution f∆ as

f∆(s′,α′,r′|s,u,ω,α,a)=Es∗,α∗,r∗∼f∆−1(·|s,u,ω,α,a)[p(s
′,r′−r∗|s∗,u[

ω′︷ ︸︸ ︷
ω−∆+α′]) pα(α′|α∗)]. (1)

The base case of the recursion is f−1(s′, α′, r′ | s, u, ω, α, a) = δ(s′ − s) δ(α′ − α) δ(r′).

Here, pα is the action delay distribution which, similar to pω, must be discrete. The transition
distribution of the underlying, undelayed MDP is p. The r′ − r∗ term accumulates intermediate
rewards in case observations are skipped or repeated (see Appendix A.4). Since the observation delay
cannot increment by more than one, f−1 is used when ω is increasing, whereas f0 is used when there
is no change in observation delay.

A simple special case of the RDMDP is the constant observation and action delay case with pω(ω′|ω) =
δ(ω′ − cω) and pα(α′|α) = δ(α′ − cα). Here, the RDMDP reduces to a Constantly Delayed Markov
Decision Process, described by Walsh et al. (2008). In this case, the action and observation delays
α, ω can be removed from the state-space as they don’t carry information. Examples of RDMDP
dynamics are visualized in Figure 3 (see also Appendix C).

3 REINFORCEMENT LEARNING IN DELAYED ENVIRONMENTS

Delayed environments as described in Section 2 are specific types of MDP, with an augmented state-
space and delayed dynamics. Therefore, using this augmented state-space, traditional algorithms
such as Soft Actor-Critic (SAC) (Haarnoja et al., 2018a)(Haarnoja et al., 2018b) will always work
in randomly delayed settings. However, their performance will still deteriorate because of the more
difficult credit assignment caused by delayed observations and rewards, on top of the exploration and
generalization burdens of delayed environments. We now analyze how to compensate for the credit
assignment difficulty by leveraging our knowledge about the delays’ dynamics.

One solution is to perform on-policy multi-step rollouts on sub-trajectories that are longer than the
considered delays. On the other hand, on-policy algorithms are known to be sample-inefficient and
therefore are not commonly used in real-world applications, where data collection is costly. This
motivates the development of off-policy algorithms able to reuse old samples, such as SAC.

Intuitively, in delayed environments, one should take advantage of the fact that actions only influence
observations and rewards after a number of time-steps relative to the beginning of their computation
(the total delay ω + α). Since the delay information is part of the state-space, it can be leveraged
to track the action influence through time. However, applying conventional off-policy algorithms
in delayed settings leads to the following issue: the trajectories used to perform the aforementioned
multi-step backups have been sampled under an outdated policy, and therefore contain outdated action
buffers. In this section, we propose a method to tackle this issue by performing partial trajectory
resampling. We make use of the fact that the delayed dynamics are known to simulate the effect they
would have had under the current policy, effectively transforming off-policy sub-trajectories into
on-policy sub-trajectories. This enables us to derive a family of efficient off-policy algorithms for
randomly delayed settings.

3.1 PARTIAL TRAJECTORY RESAMPLING IN DELAYED ENVIRONMENTS

One important observation implied by Figure 3 is that, given the delayed dynamics of RDMDPs , some
actions contained in the action buffer of an off-policy state did not influence the subsequent delayed

3

Published as a conference paper at ICLR 2021

Figure 4: Partial resampling of a small sub-trajectory. The action buffer is recursively resampled
according to the current policy π (rewards are not modified by σ and are omitted here).

observations and rewards for a number of time-steps. Therefore, if an off-policy sub-trajectory is
short enough, it is possible to recursively resample its action buffers with no influence on the return.
We propose the following transformation of off-policy sub-trajectories:

Definition 3. The partial trajectory resampling operator recursively updates action buffers as follows

σπn(s∗1, u
∗
1, ω
∗
1 , α
∗
1︸ ︷︷ ︸

x∗1

, r∗1 , τ
∗
n−1|x∗0; s1, u1, ω1, α1︸ ︷︷ ︸

x1

, r1, τn−1)

=δ((s∗1,ω
∗
1 ,α
∗
1,r
∗
1)−(s1,ω1,α1,r1))Ea0∼π(·|x∗0)[δ(u

∗
1−(a0,u

∗
0[1:−1]))] σπn−1(τ∗n−1|x∗1;τn−1) (2)

with trivial base case σ0(x∗0) = 1

This operator recursively resamples the most recent actions of each action buffer in an input sub-
trajectory τn, according to a new policy π. Everything else stays unchanged. A visual example
is provided in Figure 4 with n = 2 and an action buffer of two actions. When resampled actions
are delayed and would not affect the environment, they do not "invalidate" the sub-trajectory. The
resampled trajectories can then be considered on-policy.

Theorem 1. The partial trajectory resampling operator σπn (Def. 3) transforms off-policy trajectories
into on-policy trajectories

Eτn∼pµn(·|x0)
[σπn(τ

∗
n|x0;τn)]=pπn(τ∗n|x0) (3)

on the condition that none of the delayed observations depend on any of the resampled actions, i.e.

ω∗t + α∗t ≥ t (4)

where t indexes the trajectory τ∗n = (s∗1, u
∗
1, ω
∗
1 , α

∗
1 , r
∗
1 , . . . , s

∗
n, u
∗
n, ω

∗
n, α

∗
n , r
∗
n) from 1 to n.

The condition in Equation 4 can be understood visually with the help of Figure 3. In the constant
delay example it is fulfilled until the third time-step. After that, the observations would have been
influenced by the resampled actions (starting with a0).

3.2 MULTI-STEP OFF-POLICY VALUE ESTIMATION IN DELAYED ENVIRONMENTS

We have shown in Section 3.1 how it is possible to transform off-policy sub-trajectories into on-policy
sub-trajectories in the presence of random delays. From this, we can derive a family of efficient
off-policy algorithms for the randomly delayed setting. For this matter, we make use of the classic
on-policy Monte-Carlo n-step value estimator:

Definition 4. The n-step state-value estimator is defined as

v̂n(x0; x∗1, r
∗
1 , τ
∗
n−1︸ ︷︷ ︸

τ∗n

) = r∗1 + γv̂n−1(x∗1; τ∗n−1) =

n∑
i=1

γi−1r∗i + γnv̂0(x∗n). (5)

where v̂0 is a state-value function approximator (e.g. a neural network).

4

Published as a conference paper at ICLR 2021

Figure 5: Visual example in a 1D-world with random delays (K = 3). The original trajectory has
been sampled under the policy µ: ‘always go left’. The current policy is π: ‘always go right’.

Indeed, in γ-discounted RL, performing on-policy n-step rollouts to estimate the value function
reduces the bias introduced by the function approximator by a factor of γn:

Lemma 1. The n-step value estimator has the following bias:

bias(v̂n(x0, ·)) = γnE...,x∗n,r∗n∼pπn(·|x0)[bias(v̂0(x∗n))] (6)

A simple corollary of Lemma 1 is that the on-policy n-step value estimator is unbiased when
the function approximator v̂0 is unbiased. On the other hand, Theorem 1 provides a recipe for
transforming sub-trajectories collected under old policies into actual on-policy sub-trajectories. From
a given state in an off-policy trajectory, this is done by applying σπn to all the subsequent transitions
until we meet a total delay (ωi + αi) that is shorter than the length of the formed sub-trajectory.
Consequently, the transformed sub-trajectory can be fed to the on-policy n-step value estimator, where
n is the length of this sub-trajectory. This does not only provide a better value estimate than usual
1-step off-policy estimators according to Lemma 1, but it maximally compensates for the multi-step
credit assignment difficulty introduced by random delays. Indeed, the length of the transformed
sub-trajectory is then exactly the number of time-steps it took the first action of the sub-trajectory to
have an influence on subsequent delayed observations, minus one time-step.

As opposed to other unbiased n-step off-policy methods, such as importance sampling and Retrace
(Munos et al., 2016), this method doesn’t suffer from variance explosion. This is because the presence
of delays allows us to transform off-policy sub-trajectories into on-policy sub-trajectories, so that old
samples don’t need to be weighted by the policy ratio.

Although we use a multi-step state-value estimator, the same principles can be applied to action-value
estimation as well. In fact, the trajectory transformation described in Definition 3 enables efficient
off-policy n-step value estimation in any value-based algorithm that would otherwise perform 1-step
action-value backups, such as DQN, DDPG or SAC. In the next section, we illustrate this using SAC.

Figure 5 summarizes the whole procedure in a simple 1D-world example. The maximum possible
delay is K = 3 here, and the agent can only go ‘left’ or ‘right’. An initial augmented state x0

is sampled from the replay memory, along with the 3 subsequent augmented states and rewards.
The condition of Theorem 1 is satisfied for n ≤ 2. It follows that τn = τ2 = (x1, x2). This off-
policy trajectory fragment is partially resampled, which yields the corresponding on-policy trajectory
fragment τ∗n = τ∗2 . This on-policy trajectory fragment can then be used to compute an unbiased
n-step value estimate of the initial state x0 = x∗0.

5

Published as a conference paper at ICLR 2021

4 DELAY-CORRECTING ACTOR-CRITIC

We have seen in Section 3 how it is possible, in the delayed setting, to collect off-policy trajectories
and still use on-policy multi-step estimators in an unbiased way, which allows us to compensate for
the more difficult credit assignment introduced by the presence of random delays. We now apply this
method to derive Delay-Correcting Actor-Critic (DCAC), an improved version of Soft Actor-Critic
(Haarnoja et al., 2018a;b) for real-time randomly delayed settings.

4.1 VALUE APPROXIMATION

Like SAC, DCAC makes use of the entropy-augmented soft value function (Haarnoja et al., 2018a):

Lemma 2. In a RDMDP (E, pω, pα) the soft value function is:

vsoft(x∗0)=Ea∼π(·|x∗0)[Ex∗1 ,r∗1∼p̃(·|x∗0 ,a)[r
∗
1+γvsoft(x∗1)]−logπ(a|x∗0)] (7)

It can be estimated by augmenting the reward function in Definition 4 with an entropy reward:

Definition 5. The delayed on-policy n-step soft state-value estimator, i.e. the n-step state-value
estimator with entropy augmented rewards under the current policy π, is

v̂soft
n (x∗0; τ∗n)=r∗1+γv̂soft

n−1(x∗1;τ∗n−1)−Ea∼π(·|x∗0)[logπ(a|x∗0)] (8)

where v̂soft
0 is a state-value function approximator (e.g. a neural network).

Given the off-policy trajectory transformation proposed in Section 3, Definition 5 directly gives
DCAC’s value target. To recap, we sample an initial state x0 (= x∗0) and a subsequent trajectory
τn (= x1, r1, . . . xn, rn) from a replay memory. The sampling procedure ensures that n is the
greatest length so that the sampled trajectory τn does not contain any total delay ωi + βi < i. This
trajectory was collected under an old policy µ, but we need a trajectory compatible with the current
policy π to use v̂soft

n in an unbiased way. Therefore, we feed τn to the partial trajectory resampling
operator defined in Definition 3. This produces an equivalent on-policy sub-trajectory τ∗n with respect
to the current policy π according to Theorem 1, while maximally taking advantage of the bias
reduction described by Lemma 1. This partially resampled on-policy sub-trajectory is fed as input to
v̂soft
n (x0; τ∗n), which yields the target used in DCAC’s soft state-value loss:

Definition 6. The DCAC critic loss is

LDCAC
v (v) = E(x0,τn)∼D Eτ∗n∼σπn(·|x0;τn)[(vθ(x0)− v̂soft

n (x0; τ∗n))2] (9)

where x0, τn are a start state and following trajectory, sampled from the replay memory, and satisfying
the condition of Theorem 1.

4.2 POLICY IMPROVEMENT

In addition to using the on-policy n-step value estimator as target for our parametric value estimator,
we can also use it for policy improvement. As in SAC we use the reparameterization trick (Kingma &
Welling, 2013) to obtain the policy gradient from the value estimator. However, since we use our
trajectory transformation and a multi-step value estimator, this involves backpropagation through
time in the action buffer.

Definition 7. The DCAC actor loss is

LDCAC
π (π) = −E(x0,τn)∼D Eτ∗n∼σπn(·|x0;τn)[v̂

soft
n (x0; τ∗n)] (10)

where x0, τn are a start state and following trajectory, sampled from the replay memory, and satisfying
the condition of Theorem 1.

6

Published as a conference paper at ICLR 2021

Proposition 1. The DCAC actor loss is a less biased version of the SAC actor loss with

bias(LDCAC
π) = En[γn] bias(LSAC

π) (11)

assuming both are using similarly biased parametric value estimators to compute the loss, i.e.

bias(v̂soft
0 (x)) = Ea∼π(·|x)[bias(q̂soft

0 (x, a))] (12)

5 EXPERIMENTAL RESULTS

To evaluate our approach and make future work in this direction easy for the RL community, we
release as open-source, along with our code, a Gym wrapper that introduces custom multi-step delays
in any classical turn-based Gym environment. In particular, this enables us to introduce random
delays to the Gym MuJoCo continuous control suite (Brockman et al., 2016; Todorov et al.), which is
otherwise turn-based.

Compared algorithms. A naive version of SAC would only use the unaugmented delayed ob-
servations, which violates the Markov assumption in delayed settings as previously pointed out.
Consequently, naive SAC exhibits near-random results in delayed environments. A few such experi-
ments are provided in the Appendix for illustration (Figure 9).

In order to make a fair comparison, all other experiments compare DCAC against SAC in the same
RDMDP setting, i.e. all algorithms use the augmented observation space defined in Section 2.1. Since
SAC is the algorithm we chose to improve for delayed scenarios, comparing DCAC against it in the
same setting provides a like-for-like comparison. We also found it interesting to compare against
RTAC (Ramstedt & Pal, 2019). Indeed, DCAC reduces to this algorithm in the special case where
observation transmission is instantaneous (ω=0) and action computation and transmission constantly
takes one time-step (α=1). Whereas DCAC performs variable-length state-value backups with partial
trajectory resampling as explained in Section 4 , RTAC performs 1-step state-value backups, and SAC
performs the usual 1-step action-value backup described in its second version (Haarnoja et al., 2018b).
All hyperparameters and implementation details are provided in Section B of the Appendix.

For each experiment, we perform six runs with different seeds, and shade the 90% confidence
intervals.

Figure 6: ω = 2, α = 3 (constant delays). With a constant total delay of five time-steps, DCAC exhibits a very
strong advantage in performance. All tested algorithms use the same RDMDP augmented observations.

7

Published as a conference paper at ICLR 2021

Figure 7: α, ω ∼WiFi (random delays). DCAC clearly dominates the baselines. Ant became too difficult for all
tested algorithms. HalfCheetah also became difficult and only DCAC escapes from local minima.

Constant delays. Our first batch of experiments features simple, constantly delayed scenarios. Figure
6 displays the results of the most difficult of these experiments (i.e. where the delays are longest),
while the others are provided in Section D.2 of the Appendix. The advantage of using DCAC is
obvious in the presence of long constant delays. Note that DCAC reduces to the RTAC (Ramstedt &
Pal, 2019) algorithm when ω = 0 and α = 1 and behaves as an evolved form of RTAC in the presence
of longer constant delays.

Real-world random delays. Our second batch of experiments features random delays of different
magnitudes. The experiment we chose to present in Figure 7 is motivated by the fact that our approach
is designed for real-world applications. Importantly, it provides an example how to implement DCAC
in practice (see Appendix A and B for more details). We sample the communication delays for
actions and observations from our real-world WiFi dataset, presented in Figure 2. When action or
observation communications supersede previous communications, only the most recently produced
information is kept. In other words, when an action is received in the undelayed environment, its age
is compared to the action that is currently being applied. Then, the one that the agent most recently
started to produce is applied. Similarly, when the agent receives a new observation, it only keeps
the one that was most recently captured in the undelayed environment (see the right-hand side of
Figure 3 for a visual example). We discretize the communication delays by using a time-step of 20ms.
Importantly, note that Figure 2 has been cropped to 60ms, but the actual dataset contains outliers
that can go as far as 1s. However, long delays (longer than 80ms in our example) are almost always
superseded and discarded. Therefore, when such information is received, we clip the corresponding
delay with no visible impact in performance: in practice, the maximum acceptable delays are design
choices, and can be guided by existing probabilistic timing methods (Santinelli et al., 2017).

6 RELATED WORK

We trace our line of research back to Katsikopoulos & Engelbrecht (2003), who provided the
first discussion about Delayed Markov Decision Processes. In particular, they were interested in
asynchronous rewards, which provides interesting insights in relation to Appendix A.4. Walsh et al.
(2008) later re-introduced the notion of “Constantly Delayed Markov Decision Process”. While
recent advances in deep learning enable implementations of what the authors call an “augmented
approach”, this was considered intractable at the time because the size of the action buffer grows with
the considered delay length. Instead, they studied the case where observations are retrieved with a
constant delay and developed a model-based algorithm to predict the current state of the environment.
Similarly, Schuitema et al. (2010) developed “memory-less” approaches based on SARSA and vanilla

8

Published as a conference paper at ICLR 2021

Q-learning, taking advantage of prior knowledge about the duration of a constant control delay.
Hester & Stone (2013) adopted the action buffer-augmented approach to handle random delays, and
relied on a decision-tree algorithm to perform credit assignment implicitly. By comparison, our
approach relies on delay measurements to perform credit assignment explicitly. More recently, Firoiu
et al. (2018) introduced constant action delays to a video game to train agents whose reaction time
compares to humans. Similar to previous work, the authors used a state-predictive model, but based
on a recurrent neural network architecture. Ramstedt & Pal (2019) formalized the framework of
Real-Time Reinforcement Learning (RTRL) that we generalize here to all forms of real-time delays.
Initially designed to cope with the fact that inference is not instantaneous in real-world control, the
RTRL setting is equivalent to a constantly delayed MDP with α = 1 and ω = 0. Finally, Xiao et al.
(2020) adopted an alternative approach by considering the influence of the action selection time when
action selection is performed within the duration of a larger time-step. However, their framework
only allows delays smaller than one time-step, whereas large time-steps are not compatible with
high-frequency control.

7 CONCLUSION AND FUTURE WORK

We proposed a deep off-policy and planning-free approach that explicitly tackles the credit assignment
difficulty introduced by real-world random delays. This is done by taking advantage of delay
measurements in order to generate actual on-policy sub-trajectories from off-policy samples. In
addition, we provide a theoretical analysis that can easily be reused to derive a wide family of
algorithms such as DCAC, whereas previous work mostly dealt with finding approximate ways of
modelling the state-space in constantly delayed environments. The action buffer is fundamentally
required to define a Markovian state-space for RDMDPs , but it is of course possible to observe
this action buffer approximately, e.g. by compressing it in the hidden state of an RNN, which is
complementary to our work.

We have designed our approach with real-world applications in mind, and it is easily scalable to a
wide variety of scenarios. For practical implementation, see Section 5 and Sections A and B of the
Appendix. See also rtgym, a small python helper that we use in future work to easily implement
delayed environments in the real world.

To the best of our knowledge, DCAC is the first deep actor-critic approach to exhibit such strong
performance on both randomly and constantly delayed settings, as it makes use of the partially known
dynamics of the environment to compensate for difficult credit assignment. We believe that our
model can be further improved by making use of the fact that our critic estimates the state-value
instead of the action-value function. Indeed, in this setting, Ramstedt & Pal (2019) showed that it is
possible to simplify the model by merging the actor and the critic networks using the PopArt output
normalization (van Hasselt et al., 2016), which we did not try yet and leave for future work.

Our approach handles and adapts to arbitrary choices of time-step duration, although in practice
time-steps smaller than the upper bound of the inference time will require a few tricks. We believe
that this approach is close to time-step agnostic RL and will investigate this direction in future work.

ACKNOWLEDGMENTS

We thank Pierre-Yves Lajoie, Yoshua Bengio and our anonymous reviewers for their constructive
feedback, which greatly helped us improve the article. We also thank ElementAI and Compute
Canada for providing the computational resources we used to run our experiments.

9

https://github.com/yannbouteiller/rtgym

Published as a conference paper at ICLR 2021

REFERENCES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Vlad Firoiu, Tina Ju, and Joshua B. Tenenbaum. At human speed: Deep reinforcement learning with
action delay. CoRR, abs/1810.07286, 2018.

Florian Fuchs, Yunlong Song, Elia Kaufmann, Davide Scaramuzza, and Peter Duerr. Super-human
performance in gran turismo sport using deep reinforcement learning, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Yuan Ge, Qigong Chen, Ming Jiang, and Yiqing Huang. Modeling of random delays in networked
control systems. Journal of Control Science and Engineering, 2013, 2013.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Todd Hester and Peter Stone. Texplore: real-time sample-efficient reinforcement learning for robots.
Machine learning, 90(3):385–429, 2013.

Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco Hutter. Control of a quadrotor with
reinforcement learning. IEEE Robotics and Automation Letters, 2(4):2096–2103, 2017.

Konstantinos V Katsikopoulos and Sascha E Engelbrecht. Markov decision processes with delays
and asynchronous cost collection. IEEE transactions on automatic control, 48(4):568–574, 2003.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

A. Rupam Mahmood, Dmytro Korenkevych, Brent J. Komer, and James Bergstra. Setting up a
reinforcement learning task with a real-world robot, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Remi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 29, pp. 1054–1062. Curran Associates,
Inc., 2016.

Johan Nilsson, Bo Bernhardsson, and Björn Wittenmark. Stochastic analysis and control of real-time
systems with random time delays. Automatica, 34(1):57–64, 1998.

Simon Ramstedt and Christopher Pal. Real-time reinforcement learning. In NeurIPS, 2019.

L. Santinelli, F. Guet, and J. Morio. Revising measurement-based probabilistic timing analysis.
In 2017 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pp.
199–208, 2017.

Erik Schuitema, Lucian Busoniu, Robert Babuska, and Pieter Jonker. Control delay in reinforcement
learning for real-time dynamic systems: A memoryless approach. In International Conference on
Intelligent Robots and Systems, 2010.

10

Published as a conference paper at ICLR 2021

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
in 2012 ieee. In RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. arXiv preprint arXiv:1509.06461, 2015.

Hado P van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver. Learning
values across many orders of magnitude. In Advances in Neural Information Processing Systems,
pp. 4287–4295, 2016.

Thomas J. Walsh, Ali Nouri, Lihong Li, and Michael L. Littman. Learning and planning in en-
vironments with delayed feedback. Autonomous Agents and Multi-Agent Systems, 18:83–105,
2008.

Ted Xiao, Eric Jang, Dmitry Kalashnikov, Sergey Levine, Julian Ibarz, Karol Hausman, and Alexander
Herzog. Thinking while moving: Deep reinforcement learning with concurrent control. In
International Conference on Learning Representations, 2020.

11

Published as a conference paper at ICLR 2021

A PRACTICAL CONSIDERATIONS AND SCALABILITY

A.1 SELF-CORRELATED DELAYS

The separation between ω and α allows auto-correlated conditional distributions on both delays. This
is necessary to allow superseded actions and observations to be discarded. In RDMDPs , the agent
keeps the delayed observation that was most recently captured in the undelayed environment. Ideally,
it is also ensured by the undelayed environment that the applied action is the action that most recently
started being computed by the agent. In practice, this can be ensured by augmenting the actions with
timestamps corresponding to the beginning of their computation, and observations with timestamps
corresponding to the end of their capture. Thus, the undelayed environment and the agent can keep
track of the most recent received timestamp and discard outdated incoming information.

A.2 HOW TO MEASURE DELAYS

To measure the delays in practice, one possibility is to make use of the aforementioned timestamps.
In addition to the augmentations described in A.1, one can augment each observation sent by the
undelayed environment with the timestamp of the action that was applied before the end of observation
capture. When the agent receives an observation, this observation then contains two timestamps:
one that directly corresponds to an action in the buffer (agent’s clock), and one that corresponds
to when the observation finished being captured (undelayed environment’s clock). The identified
action in the buffer directly gives the total delay. If the agent and the undelayed environment have
e.g. synchronized clocks, the current timestamp minus the timestamp corresponding to observation
capture gives the observation delay (and thus we can deduce the action delay).

A.3 SCALABILITY OF THE ACTION BUFFER

As seen in our WiFi experiment, the maximum delays are design choices in practice. The actual
maximum delays can be prohibitively long (e.g. infinite when packets are lost) and would require a
long action buffer to be handled in the worst-case scenario. However, in random delays scenarios,
long delays are likely to be superseded by shorter delays. Therefore, observations reaching the agent
with a total delay that exceeds the chosen K value should simply be discarded, and a procedure
implemented to handle the unlikely edge-case where more than K such observations are received in a
row. Also note that, although we used a simple action buffer in this work, more clever representations
are possible in the presence of long delays, e.g. run-length encoding.

A.4 DELAYED REWARDS

We have implicitly made a choice when defining the rewards for RDMDPs . Indeed, keep in mind
that observations can be dropped (superseded) at the level of the agent. In such cases, we chose to
accumulate the rewards corresponding to the lost transitions. When an observation gets repeated
because no new observation is available, the corresponding reward is 0, and when a new observation
arrives, the corresponding reward contains the sum of intermediate rewards in lost transitions.

In practice, this is ensured for example by making the assumption that the remote robot (i.e. the
undelayed environment) can observe its own instantaneous reward. This allows the robot to compute
its cumulative reward and send it to the agent along with the observation. The agent can then compute
the difference between the last cumulative reward it received from the remote robot and the new
one for each incoming observation (NB: outdated observations are discarded so the agent only sees
cumulative rewards with time-increasing timestamps).

Alternatively, the practitioner can choose to repeat the delayed rewards along with the repeated
delayed observations at the level of the agent (this is what we use to do in earlier versions of the
paper). When a trick similar to the aforementioned cannot be implemented, this can be done instead,
with no impact on our analysis. However, the reward signal will inherently have a higher variance.

12

Published as a conference paper at ICLR 2021

A.5 LONG OBSERVATION CAPTURE

In practice, it is often the case that observation capture is not instantaneous. In such situation, one
should increase the size of the action buffer so that it always includes the actions for which it is
unclear whether they have influenced the observation yet or not. Indeed, when observation capture is
not instantaneous it is not possible to know which undelayed state(s) it describes. The length of the
multi-step backup performed by DCAC doesn’t need to be adapted, because it only cares about the
first action that is known to not have influenced the delayed observation.

A.6 COMBINED OBSERVATIONS

Equivalently, if observations are formed of several combined parts that were captured at different
times, the action buffer must be long enough to always include the first action that has not influenced
the oldest sub-observation yet (i.e. be as long as the maximum possible combined total delay).

B IMPLEMENTATION DETAILS

B.1 MORE INFORMATION AS INPUT TO THE MODEL

The action delay α identifies the action that was applied during the previous time-step. It is needed
to define RDMDPs and thus is used by DCAC. However, in practice we can include another piece
of information on top of α: the delay of the action that is going to be applied in the undelayed
environment when the captured observation is sent. We use this additional information as input of the
model for all tested algorithms.

B.2 MODEL ARCHITECTURE

The model we use in all our experiments is composed of two separate multi-layer perceptrons (MLPs):
a critic network, and an actor network. Both MLPs are built with the same simple architecture of
two hidden layers, 256 units each. The critic outputs a single value, whereas the actor outputs an
action distribution with the dimension of the action-space, from which actions are sampled with the
reparameterization trick. This architecture is compatible with the second version of SAC described
in Haarnoja et al. (2018b). The only difference from the DCAC model is that the SAC critic tracks
q(x), and not v(x). Indeed, differently from usual actor-critic algorithms, the output of DCAC’s critic
approximates the state-value v(x) (instead of the action-value q(x)), as it is sufficient to optimize
the actor loss described in Definition 7. Weights and biases are initialized with the default Pytorch
initializer. Both the actor and the critic are optimized by gradient descent with the Adam optimizer,
on losses LDCAC(π) (Equation 10) and LDCAC(v) (Equation 9), respectively. Classically, we use twin
critic networks (Van Hasselt et al., 2015; Fujimoto et al., 2018) with target weight tracking (Mnih
et al., 2015) to stabilize training.

B.3 HYPERPARAMETERS

Other than our neural network architecture, our implementations of SAC, RTAC and DCAC all share
the following hyperparameters:

13

Published as a conference paper at ICLR 2021

Table 1: Hyperparameters

Name Value

Optimizer Adam (Kingma & Ba, 2014)
Learning rate 0.0003
Discount factor (γ) 0.99
Batch size 128
Target weights update coefficient (τ) 0.005
Gradient steps / environment steps 1
Reward scale 5.0
Entropy scale 1.0
Replay memory size 1000000
Number of samples before training starts 10000
Number of critics 2

NB: the target weights are updated according to the following running average: θ ← τθ + (1− τ)θ

C VISUAL EXAMPLES

Figure 8: Left: Example of Constantly Delayed MDP, with an action delay of three time-steps and an
observation delay of two time-steps. Here, actions are indexed by the time at which they started being produced.

The augmented observation is composed of an action buffer of the last five computed actions along with the
delayed observation st−2. It will be used by the agent to compute action at. Meanwhile, in the undelayed

environment, action at−3 is received and observation st is captured. Right: Example of Random Delay MDP,
with α ≤ 3 time-steps and ω ≤ 2 time-steps. Actions and observations may be superseded due to random

delays. In such cases, only the most recently produced actions and observations are kept, the others are
discarded (crossed out).

14

Published as a conference paper at ICLR 2021

D ADDITIONAL EXPERIMENTS

D.1 IMPORTANCE OF THE AUGMENTED OBSERVATION SPACE

Figure 9: ω = 0, α = 1: We illustrate the importance of the augmented observation space in delayed
settings using our simplest task (constant 1-step action delay). Even with this small 1-step constant
delay, the delayed observations are not Markov and a naive algorithm using only these observations

(here: SAC naive) has near-random results. By comparison, an algorithm using the RDMDP
augmented observations instead (here: SAC) is able to learn in delayed environments.

D.2 CONSTANT DELAYS

Figure 10: ω = 0, α = 1: This specific setting is equivalent to the RTRL setting (Ramstedt & Pal,
2019), in which DCAC reduces to the vanilla RTAC algorithm (without output normalization and

merged networks). DCAC (RTAC) slightly outperforms SAC in this setting.

15

Published as a conference paper at ICLR 2021

Figure 11: ω = 1, α = 2: In this more difficult setting (total constant delay of 3 instead of 1), DCAC
starts really showing its potential, clearly outperforming all other approaches.

D.3 RANDOM DELAYS

Figure 12: ω ∈ [0; 2], α ∈ [1; 3] (uniformly sampled delays): This experiment is perhaps even more
difficult than the WiFi experiment featured in the main paper, because it gives equal probability to all
possible delays in the specified ranges (but delays are smaller here which makes it easier for RTAC,
because these delays are closer to 1). All tested approaches fail on randomly delayed Ant. For other

tasks, the advantage of DCAC is very clear over SAC.

16

Published as a conference paper at ICLR 2021

E DEFINITIONS

Definition 8. The n-step state-reward distribution for an environment E = (S,A, µ, p) and a policy
π is defined as

pπn+1(s′, r′, τn︸ ︷︷ ︸
τn+1

|s) = Ea∼π(·|s)[p
π
n(τn|s′)p(s′, r′|s, a)] =

∫
A

pπn(τn|s′)p(s′, r′|s, a)π(a|s)da (13)

with the base case pπ0 (s) = 1 and the first iterate pπ1 (s′, r′|s) =
∫
A
p(s′, r′|s, a)π(a|s)da.

Definition 9. A 1-step action-value estimator is defined as

q̂1(s,a; s′,r′)=r′+γ Ea′∼π(·|s′)[q̂0(s′,a′)]. (14)

Part of this estimator is usually another parametric estimator q̂0 (e.g. a neural network trained with
stochastic gradient descent).

F OTHER MATHEMATICAL RESULTS

F.1 LEMMA ON STEADY-STATE VALUE ESTIMATION BIAS

Lemma 3. The expected bias of the n-step value estimator under the steady-state distribution (if it
exists) is

Ex∼pπss
[bias v̂n(x)] = γnEx∼pπss

[bias v̂0(x)] (15)

Proof. We remind ourselves that the steady state distribution observes

pπss(xn) = Ex0∼pπss
[pπn(..., xn, rn|x0)]. (16)

According to Lemma 1 we then have

Ex0∼pπss
bias(v̂n(x0, ·)) =γnE...,x∗n,r∗n∼pπn(·|x0)[bias(v̂0(x∗n))] (17)

=γnEx∼pπss
[bias v̂0(x)]. (18)

F.2 LEMMA ON A DIRAC DELTA PRODUCT DISTRIBUTION

Lemma 4. For p(u, v) = δ(u− c)q(u, v) if q(u, v) <∞ for u = c then p(u, v) = δ(u− c)q(c, v).

Proof. If u = c then p(u, v) = δ(u− c)q(c, v), otherwise p(u, v) = 0 = δ(u− c)q(c, v)

F.3 LEMMA ON F

Lemma 5. The dynamics described by f depend neither on the input action nor on a range of actions
in the action buffer:

f∆(s∗1, α
∗
1, r
∗
1 |x0, a

µ
0) = f∆(s∗1, α

∗
1, r
∗
1 |x∗0, aπ0)

with x0 = s0, u0, ω0, α0 and x∗0 = s∗0, u
∗
0, ω
∗
0 , α
∗
0 , given that s0, ω0, α0 = s∗0, ω

∗
0 , α
∗
0 and given

u0[ω∗0 − δ + α∗1] = u∗0[ω∗0 − δ + α∗1] for all δ ∈ {∆,∆− 1, . . . , 0}

Proof. We prove by induction.

The base case (ω∗0 − ω∗1 = −1) is trivial since it does not depend on the inputs that differ.

17

Published as a conference paper at ICLR 2021

For the induction step we have

f∆(s∗1, α
∗
1, r
∗
1 |s0, u0, ω0, α0 , a

µ
0) =

Es̄,ᾱ,r̄∼f∆−1(·|s0,u0,ω0,α0 ,a
µ
0)[p(s

∗
1, r
∗
1 − r̄|s̄, u[ω0 −∆ + α∗1]) pα(α∗1|ᾱ)] (19)

Because of our condition on u0 and u∗0 and the fact that ω0 = ω∗0 this is equal to

Es̄,ᾱ,r̄∼f∆−1(·|s0,u0,ω0,α0 ,a
µ
0)[p(s

∗
1, r
∗
1 − r̄|s̄, u∗0[ω∗0 −∆ + α∗1]) pα(α∗1|ᾱ)]

We can now use the induction hypothesis since the conditions on s0, u0, ω0, α0 are still met when
∆← ∆− 1.

Es̄,ᾱ,r̄∼f∆−1(·|s∗0 ,u
∗
0 ,ω
∗
0 ,α
∗
0 ,a

π
0)[p(s

∗
1, r
∗
1 − r̄|s̄, u∗0[ω∗0 −∆ + α∗1]) pα(α∗1|ᾱ)]

= f∆(s∗1, α
∗
1, r
∗
1 |x∗0, aπ0) (20)

F.4 LEMMA ON PARTIAL RESAMPLING

Lemma 6. Partially resampling trajectories collected under a policy µ according to σπn transforms
them into trajectories distributed according to π.

Eτn∼pµn(·|x0)[σ
π
n(τ∗n|x∗0; τn)] = pπn(τ∗n|x∗0)

with x0 = s0, u0, ω0, α0 and x∗0 = s∗0, u
∗
0, ω
∗
0 , α
∗
0 , on the condition that s0, ω0, α0 = s∗0, ω

∗
0 , α
∗
0 and

on the condition that the actions in the initial action buffers u0 and u∗0 that are applied in the following
trajectory are the same, i.e.

u0[k : end] = u∗0[k : end] with k = min
i

(ω∗i+1 + α∗i+1 − i) for i ∈ {0, n− 1}

and for the trajectory τ∗n = (s∗1, u
∗
1, ω
∗
1 , α
∗
1, . . . , s

∗
n, u
∗
n, ω

∗
n, α

∗
n).

Proof. We start with the induction base for n = 0. The theorem is trivial in this case since we have
0-length trajectories () and pµ0 (()|x0) = σπ0 (()|x∗0; ()) = pπ0 (()|x∗0) = 1.

For the induction step we start with the left hand side of the lemma’s main equation.

Eτn∼pµn(·|x0)[σ
π
n(τ∗n|x∗0; τn)]

= Eaµ0∼µ(·|x0)[Ex1,r1∼p̃(x1,r1|x0,a
µ
0)[Eτn−1∼pµn−1(·|x1)[σ

π
n(τ∗n|x∗0;x1, r1, τn−1)]]] (21)

with

p̃(s1, u1, ω1, α1 , r1|s0, u0, ω0, α0 , a
µ
0) = fω0−ω1

(s1, α1, r1|s0, u0, ω0, α0 , a
µ
0) pω(ω1|ω0) pu(u1|u0, a

µ
0)

Plugging that and solving the integral over u1 yields

= Eaµ0∼µ(·|x0)[Eω1∼pω(·|ω0)[Es1,α1,r1∼fω0−ω1 (·|s0,u0,ω0,α0 ,a
µ
0)[

Eτn−1∼pµn−1(·|s1,(aµ0 ,u0[1:−1]),ω1,α1)[σ
π
n(τ∗n|x∗0; s1, (a

µ, u0[1 : −1]), ω1, α1 , r1, τn−1)]]]] (22)

Rolling out σπn by one step and integrating out s1, ω1, α1, r1 yields

18

Published as a conference paper at ICLR 2021

= Eaµ0∼µ(·|x0)[Eτn−1∼pµn−1(·|s∗1 ,(a
µ
0 ,u0[1:−1]),ω∗1 ,α

∗
1)[Eaπ0∼π(·|x∗0)[δ(u

∗
1 − (aπ0 , u

∗
0[1 : −1]))

σπn−1(τ∗n−1|s∗1, u∗1, ω∗1 , α∗1 ; τn−1)fω0−ω∗1 (s∗1, α
∗
1, r
∗
1 |s0, u0, ω0, α0 , a

µ
0) pω(ω∗1 |ω0)]]] (23)

Reordering terms and substituting s0, ω0, α0 = s∗0, ω
∗
0 , α
∗
0 yields

= pω(ω∗1 |ω∗0)Eaπ0∼π(·|x∗0)[δ(u
∗
1 − (aπ0 , u

∗
0[1 : −1]))

Eaµ0∼µ(·|x0)[fω∗0−ω∗1 (s∗1, α
∗
1, r
∗
1 |x0, a

µ
0)

Eτn−1∼pµn−1(·|s∗1 ,(a
µ,u0[1:−1]),ω∗1 ,α

∗
1)[σ

π
n−1(τ∗n−1|x∗1; τn−1)]]] (24)

We can substitute the f term according to Lemma 5 since the condition between x0 and x∗0 is met.
More precisely the condition on u0 and u∗0 is met because k ≤ ω∗0 −∆ + α∗1 = ω∗1 + α∗1. After the
substitution we have

= pω(ω∗1 |ω∗0)Eaπ0∼π(·|x∗0)[δ(u
∗
1 − (aπ0 , u

∗
0[1 : −1])) fω∗0−ω∗1 (s∗1, α

∗
1, r
∗
1 |x∗0, aπ0)

Eaµ0∼µ(·|x0)[Eτn−1∼pµn−1(·|s∗1 ,(a
µ,u0[1:−1]),ω∗1 ,α

∗
1)[σ

π
n−1(τ∗n−1|x∗1; τn−1)]]] (25)

We can substitute the induction hypothesis in the following form.

Eτn−1∼pµn−1(·|x1)[σ
π
n−1(τ∗n−1|x∗1; τn−1)] = pπn−1(τ∗n−1|x∗1)

on the condition that

u1[k : end] = u∗1[k : end] with k = min
i

(ω∗i+2 + α∗i+2 − i) for i ∈ {0, n− 2}

for the trajectory τ∗n−1 = (s∗2, u
∗
2, ω
∗
2 , α
∗
2, . . . , s

∗
n, u
∗
n, ω

∗
n, α

∗
n). To check that this condition is met

we observe that u1 = (aµ0 , u0[1 : −1]) and substitute u∗1 = (aπ0 , u
∗
0[1 : −1]) (made possible by

Lemma 4) which means that

u0[k − 1 : end] = u∗0[k − 1 : end] with k = min
i

(ω∗i+2 + α∗i+2 − i) for i ∈ {0, n− 2}

Substituting the induction hypothesis yields

= pω(ω∗1 |ω∗0)Eaπ0∼π(·|x∗0)[δ(u
∗
1−(aπ0 , u0[1 : −1])) fω∗0−ω∗1 (s∗1, α

∗
1, r
∗
1 |x∗0, aπ0) pπn−1(τ∗n−1|x∗1)]

(26)

which is

Eaπ0∼π(·|x∗0)[p
π
n−1(τ∗n−1|x∗1) p̃(x∗1, r

∗
1 |x∗0, aπ0)] = pπn(τ∗n|x∗0)

G PROOFS OF THE RESULTS FROM THE MAIN PAPER

A

Theorem 1. The partial trajectory resampling operator σπn (Def. 3) transforms off-policy trajectories
into on-policy trajectories

Eτn∼pµn(·|x0)
[σπn(τ

∗
n|x0;τn)]=pπn(τ∗n|x0) (3)

19

Published as a conference paper at ICLR 2021

on the condition that none of the delayed observations depend on any of the resampled actions, i.e.

ω∗t + α∗t ≥ t (4)

where t indexes the trajectory τ∗n = (s∗1, u
∗
1, ω
∗
1 , α

∗
1 , r
∗
1 , . . . , s

∗
n, u
∗
n, ω

∗
n, α

∗
n , r
∗
n) from 1 to n.

Proof. The theorem is a special case of Lemma 6 with x0 = x∗0. This allows us to simplify the
condition in the lemma as we show next.

Since u0 = u∗0 we can allow all k ≥ 1 which is the minimum allowed index for u. Therefore we
must ensure 1 ≤ mini(ω

∗
i+1 + α∗i+1 − i). Since the min must be larger than 1 then all arguments

must be larger than 1 which means this is equivalent to

1 ≤ ω∗i+1 + α∗i+1 − i for i ∈ {0, n− 1}.

This can be transformed into

ω∗t + α∗t ≥ t for t ∈ {1, n} (27)

Lemma 1. The n-step value estimator has the following bias:

bias(v̂n(x0, ·)) = γnE...,x∗n,r∗n∼pπn(·|x0)[bias(v̂0(x∗n))] (6)

Proof.

bias(v̂n(x0, ·)) = Eτ∗n∼pπn(·|x0)[v̂n(x0, τ
∗
n)− vπ(x0)] (28)

= Eτ∗n∼pπn(·|x0)[r
∗
1 + γv̂n−1(x∗1; τ∗n−1)]− Ea0∼π(·|x0)[Er∗1 ,x∗1∼p̃(·|x0,a0)[r

∗
1 + γvπ(x∗1)]] (29)

= Eτ∗n∼pπn(·|x0)[r
∗
1 + γv̂n−1(x∗1; τ∗n−1)− r∗1 − γvπ(x∗1)] (30)

= γEτ∗n∼pπn(·|x0)[v̂n−1(x∗1; τ∗n−1)− vπ(x∗1)] (31)

= . . . (32)
= γnEτ∗n∼pπn(·|x0)[v̂0(x∗n)− vπ(x∗n)] (33)

= γnE...,x∗n,r∗n∼pπn(·|x0)[bias(v̂0(x∗n))] (34)

B

Lemma 2. In a RDMDP (E, pω, pα) the soft value function is:

vsoft(x∗0)=Ea∼π(·|x∗0)[Ex∗1 ,r∗1∼p̃(·|x∗0 ,a)[r
∗
1+γvsoft(x∗1)]−logπ(a|x∗0)] (7)

Proof. The soft value function for an environment (X,A, µ̄, p̄) is defined as

vsoft(x∗0)=Ea∼π(·|x∗0)[q
soft(x∗0,a)−logπ(a|x∗0)] (35)

where
qsoft(x∗0, a) = Ex∗1 ,r∗1∼p̄(x∗0 ,a)[r

∗
1 + γvsoft(x∗1)] (36)

If (X,A, µ̄, p̄) = RDMDP(E, pω, pα) = (X,A, µ̃, p̃) with E = (S,A, µ, p) this is

qsoft(x∗0,a)=Ex∗1 ,r∗1∼p̃(·|x∗0 ,a)[r
∗
1+γvsoft(x∗1)] (37)

and
vsoft(x∗0) = Ea∼π(·|x∗0)[Ex∗1 ,r∗1∼p̃(·|x∗0)[r

∗
1 + γvsoft(x∗1)]− log π(a|x∗0)] (38)

20

Published as a conference paper at ICLR 2021

Proposition 1. The DCAC actor loss is a less biased version of the SAC actor loss with

bias(LDCAC
π) = En[γn] bias(LSAC

π) (11)

assuming both are using similarly biased parametric value estimators to compute the loss, i.e.

bias(v̂soft
0 (x)) = Ea∼π(·|x)[bias(q̂soft

0 (x, a))] (12)

Proof. Note that for simplicity, we also assume that the states in the replay memory are distributed
according to the steady-state distribution, i.e. D ∼ pπss. This assumption could be avoided by making
more complicated assumptions about the biases of the state-value and action-value estimators.

We now start with the bias of the DCAC loss with respect to an unbiased SAC loss using the true
action-value function,

bias(LDCAC
π) = LDCAC

π − LSAC -UB
π (39)

where

LDCAC
π =− Ex0,τn∼D Eτ∗n∼σπn(·|x0;τn)[v̂

soft
n (x0; τ∗n)] (40)

=− Ex0∼DEnEτ∗n∼pπn(·|x0)[v̂
soft
n (x0; τ∗n)] | Theorem 1 (41)

and

LSAC -UB
π =Ex0∼D[Ea∼π(·|x0)[log π(a|x0)− qsoft(x0, a)]] (42)

=Ex0∼D[vsoft(x0)]. (43)

Substituting these we have

bias(LDCAC
π) =Ex0∼DEn[v̂soft

n (x0; τ∗n)− vsoft(x0)] (44)

=Ex0∼DEn[bias(v̂soft
n (x0; ·)] (45)

=Ex0∼DEn[γnE...,xn,rn∼pπn(·|x0)[bias(v̂soft
0 (xn))]] | Lemma 1 (46)

=En[γn] Ex∼D[bias(v̂soft
0 (x))] | using D ∼ pπss and Lemma 3 (47)

=En[γn] Ex∼D[Ea∼π(·|x)[bias(q̂soft
0 (x, a))]] | Equation 12 (48)

=En[γn] Ex∼D[Ea∼π(·|x)[q̂
soft
0 (x, a)− qsoft(x, a)]] (49)

=En[γn] (LSAC
π − LSAC -UB

π) (50)
=En[γn] bias(LSAC

π) (51)

21

	Introduction
	Delayed Environments
	Random Delay Markov Decision Processes

	Reinforcement Learning in Delayed Environments
	Partial Trajectory Resampling in Delayed Environments
	Multi-step Off-Policy Value Estimation in Delayed Environments

	Delay-Correcting Actor-Critic
	Value Approximation
	Policy Improvement

	Experimental results
	Related work
	Conclusion and future work
	Practical considerations and scalability
	Self-correlated delays
	How to measure delays
	Scalability of the action buffer
	Delayed rewards
	Long observation capture
	Combined observations

	Implementation Details
	More information as input to the model
	Model Architecture
	Hyperparameters

	Visual examples
	Additional Experiments
	Importance of the augmented observation space
	Constant delays
	Random delays

	Definitions
	Other Mathematical Results
	Lemma on Steady-State Value Estimation Bias
	Lemma on a Dirac delta product distribution
	Lemma on f
	Lemma on partial resampling

	Proofs of the results from the main paper
	
	

