Online Inverse Reinforcement Learning with Learned
Observation Model

Saurabh Arora & Prashant Doshi Bikramyjit Banerjee
THINC Lab, Dept. of Computer Science School of CSCE
University of Georgia, Athens, GA Univ. Southern Mississippi, Hattiesburg, MS
United States of America United States of America
{sa08751, pdoshi}@uga.edu Bikramjit.Banerjee@usm.edu

Abstract: With the motivation of extending incremental inverse reinforcement
learning (I2RL) to real-world robotics applications with noisy observations as
well as an unknown observation model, we introduce a new method (RIMEO)
that approximates the observation model in order to best estimate the noise-free
ground truth underlying the observations. It learns a maximum entropy distribution
over the observation features governing the perception process, and then uses the
inferred observation model to learn the reward function. Experimental evaluation
is performed in two robotics tasks: (1) post-harvest vegetable sorting with a
Sawyer arm based on human demonstration, and (2) breaching a perimeter patrol
by two Turtlebots. Our experiments reveal that RIMEO learns a more accurate
policy compared to (a) a state-of-the-art IRL. method that does not directly learn
an observation model, and (b) a custom baseline that learns a less sophisticated
observation model. Furthermore, we show that RIMEO admits formal guarantees
of monotonic convergence and a sample complexity bound.

Keywords: Observation model, Inverse reinforcement learning, Maximum entropy

1 Introduction

Inverse reinforcement learning (IRL) methods learn the specification for a task that best explains
the observed behavior of an expert executing that task [1, 2], in the form of a reward function for a
Markov decision process [3]. IRL methods generally assume that the learner’s perception is noise-free
and that the learning occurs offline. However, real-world sensing is often noisy and agents may
need to learn incrementally because not all the training data is available in one batch. Motivated by
the challenging goal of bringing robotic automation to post-harvest processing lines for vegetables,
we consider examples of noisy perception by a robot learner observing a human sorting onions by
removing the blemished ones. To learn this complicated manipulation task from its observations,
the learner needs to unambiguously understand when is an onion considered blemished, and how
do the various locations of the expert’s hand help realize the task (e.g., hand hovering over table,
hand near eyes of the sorter); see Fig. 1(a). When the expert places a blemished onion in a bin for
bad onions, as the robot’s sensing is imperfect, the blemish may not be perceived correctly by the
learner’s camera. This introduces an error in the perceived state because the learner incorrectly sees
the human placing an unblemished onion in a destination meant for bad onions (see Fig. 1(b) top).
Another example of imperfect perception is shown in Fig. 1(b) bottom: although the expert is holding
an onion just above the table, the learner may incorrectly perceive it to be in the inspection (or eye)
region. This ambiguity occurs because these two regions are in close proximity.

Shahryari and Doshi [4] approach the problem of offline IRL under noisy observation using the
Robust IRL method, but they assume that the learner knows the observation (or sensor) model. This
assumption may not be pragmatic because the observation model is typically a function of obscure
variables including inaccuracies in sensing hardware and computer vision. Real-world robotic

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

U 2]
@ (b)

Figure 1: (a) (top) A human demonstrator picks an onion, inspects it closely to check if it is blemished, and
places it in the bin on finding it to be blemished. (bottom) The learner (Sawyer) robot uses the learned policy to
imitate the observed behavior. (b) (top) A blemished onion detected as being unblemished. (bottom-left) An
onion held in the hover region. (bottom-right) An onion held at the eye (or in inspection) region.

applications need a method that can learn the unknown observation model under noisy input and use
that model to learn a reward function.

When a learner passively watches the expert perform the task, the observations atrive as a continuous
stream of data over an extended period of time. However, methods such as Robust IRL require all
observations to be available together as a batch. Current IRL applications need a method that can
learn online from incremental noisy input without a’priori knowledge of the sensor model. To meet
this challenge, we present a method that generalizes the batch Robust IRL to the incremental setting,
and with an unknown observation model. Our method engages in robust incremental IRL with a
maximum entropy estimation of the observation model (labeled as RIMEQ), and is an instantiation
of the recent I2RL framework [5]. We formulate it as a sequence of incremental learning sessions
where each session is a two-step process — maximum entropy learning of the observation model of
the learner, followed by inversely learning the reward function of the expert by utilizing the learned
observation model.

Using noisy observations of a human engaged in sorting onions, we evaluate the performance of
RIMEOQ in a Gazebo sim of the onion-sorting domain in which Sawyer processes the observations
incrementally and eventually imitates the task of sorting the onions. We show that it generates a
significantly improved sorting performance compared to a recent end-to-end IRL baseline that accepts
raw images as input. As this and other IRL methods do not directly learn an observation model, we
also evaluate the comparative advantage of RIMEQ against a custom baseline which learns a less
sophisticated observation model. Similar results are observed in a second task of a Turtlebot learning
to breach a patrol by another. Furthermore, we formally show that RIMEQ’s data likelihood improves
monotonically with more sessions, and it admits a probabilistic bound for sample complexity.

2 Related Work

Observation noise is not widely addressed by the IRL literature, which tends to assume that the
state-action data is accurate. However, this assumption may not hold in robotic applications where
the learner is using (noisy) sensors to watch the expert (a paradigm called learn-from-observation
(LfO)). Robust IRL [4] was an early technique, which estimated the ground truth underlying the noisy
observations using a known observation model. But, it did not address cases where the observation
model is unknown, or when the data is only available incrementally. More recently, a hierarchical
Bayesian model [6] was presented to enable IRL in partially-controlled environments where elements
that confound the observations of the expert may be present. The model offers a way to sample the
source of each observation and a hyperprior over the observation models is defined. Bayesian IRL
has also recently been extended to contexts involving both occluded and noisy observations using
marginal maximum-a-posteriori inference [7]. However, the observation or sensor model is assumed
to be known in order to utilize this method.

We also note IRL methods that learn the stochastic transition dynamics, either by using importance
sampling [8] or by decomposing each transition into its component features and learning from
feature aggregates [9]. Adapting the former method for unknown observation models requires a
preexisting near-perfect base observation model, v&éhich may get unrealistic. We take inspiration from

the latter method, where, analogously to Bogert and Doshi [9], we decompose an observation into
its component observation features followed by learning the feature probabilities, and the learner
generalizes from that information.

3 Background

Inverse RL aims to find a reward function under which the observed behavior of the expert is optimal,
with the behavior modeled as an incomplete Markov decision process (MDP) (S, A, T) [10, 2].
Abeel and Ng [11] modeled the reward function as a linear combination of K binary features, ¢y,
each of which maps a state and an action to a value in {0,1}. The linearized reward function is

Ro(s,a) = 0T ¢(s,a) = Zle 01 - dr(s,a), where 0y, are the feature weights in 6. The learner’s
task is to find a O that makes the observed behavior optimal in the completed MDP (S, A, Rg, T').

Let = be the space of all possible ground truth trajectories of finite time-step length 7' (i.e., sequence
of T' (s, a) pairs) executable by the expert, and =, be the set of trajectories observed by the learner.
The cumulative value of any feature ¢, for trajectory £ is given by a function fi : = — R defined as
IGEDY (s.:a)0€E Yty ((s,a);), where t is the temporal index of a state-action pair in the trajectory.
Ziebart et al. [12] solves IRL by finding the probability distribution over = that exhibits the maximum
entropy and is constrained to match the observed feature expectations:

max (— > PO)log P(g)) subject to > _ P(€) = 1.and Ex[¢r] = divk = 1...K (1)

Here, A is the space of all distributions over the finite set =, and Exz[¢y] = > ee= P(E) fr(€). The
learner empirically estimates the true feature expectation as b = ﬁ > cezy Tk (€).

3.1 Robust IRL with a Known Observation Model

We define the observation model as a function that gives the likelihood of a perceived state-action
pair (s, a), given the demonstrated (ground truth) state-action pair (s, a), '. That is,

Ov((s,a),, (s,a),) = P({s,a), | (s, a),) @)

the RHS being the probability of the learner observing (s, a), when the expert actually demonstrated
(s,a) - Extending this observation model to trajectories, for a ground truth trajectory {; € =, the
probability of observing trajectory &, € 24 is

P(&l¢g) = II P((s,a), | (s, a),)- (©)

(5,0) o €80 (s.a) y EEq

The batch learning method of Robust IRL [4] uses this observation model to learn the reward function
under noisy observations. In the process, it estimates the k'” feature expectation as

- 1
Dok =2 Dz, D, ex PlEolE0iO)Ii(80) @
where P(£4|6,;0) = nP(£|€9)P(&g;0) and P(Ey; 0) is the probability of the generation of a
trajectory £, using a policy computed with 6. Then the program of (1) becomes
max (— > Pléogg)log P<so,£g>> subjectto > P(&o,&y) = 1 and Es[gr] = do.x Vk
E0E€EEY,Eg€EE §0€Eq,§g€EE
(5)

where Ez[dr] =D ¢ cz, D¢, ez P(80:&g) fr(&y). We extend this optimization problem to the case
of an unknown observation model and online learning in Sections 4 and 5, respectively.

3.2 12RL Framework

Arora et al. [5] formulate incremental IRL as a sequence of sessions with R; as the i*" session’s
estimate of the expert’s reward function. A formal definition of incremental IRL follows.

! Although we use a state-action pair as an observation, the robust-IRL method is generalizable to any form
of observations [4].

DEFN 3.1 (SESSION). A session of I2RL, (;(MDP/p,Zq,01:-1, Ri—1), 1 € N, takes as input
the expert’s incomplete MDP, the current (i*") demonstration, Ea,i» the sufficient statistic summarizing
previous i — 1 sessions (a1.;,—1), and the reward function estimated previously. It yields a revised
estimate of the expert’s reward function, R;.

DEFN 3.2 (I2RL). Incremental IRL is a sequence of learning sessions {(i(MDPg,
Ea,1,0,Ro), e(MDP/g,Zq2, 1.1, R1), (3. .., }, which continue indefinitely or until a stopping
criterion assessing convergence is met.

As a measure of how well the learned reward function explains the observed data, we may use the log
likelihood of the accumulated demonstration received up to the i** session.

4 Learning the Observation Model

Our overall approach is to approximate the unknown observation model using an underlying feature
set shared among observations, and then fit it to the noisy observations via maximum entropy
optimization. Let ¥ be this set of m observation features. Each feature, ¢o; € U, j € {1,2,...m}is
a predicate that is true if and only if a specific characteristic represented by that feature appears in
the observed state-action pair under consideration. Let ¢/?9 be the set of indicators, whose member
w;’g assumes a value based on comparing the value of a feature on ground truth pair (s, a) 9 and on

observation (s, a),: ¢! = Ly, ((s,a),)=w;((s,a),)> Where 1; € U and j € {1,2,...,m}.

We assume that the learner knows the feature set and that the features are independent. For each
(s,a), € Ea, (s,a), € E, we approximate the observation probability (Eg. 2) to be the product
of (unknown) probabilities of the features 7); according to the values taken by the corresponding
indicators w;’g ,

Ob(<3’a>o) <37a>g) ~ H P("/)]) : H P(J’]) (6)

P E\IJ,s.tﬂp_;”g:l zpjelf,s.t.w_;"gzo

Here P(1);) can be interpreted as the the probability of the jth feature being non-noisy, and P(v);) =
1 — P(v;). Though the learner knows the features, it cannot see the noise-free ground truth state-
action pairs and those pairs not included in the demonstration. Therefore, obtaining a complete
observation model requires inferring a distribution over observation features for all state-action pairs,
regardless of whether they are observed or not.

Maximum-Entropy Observation Model If deep neural network based models such as YOLO [13]
and SA-Net [14] are used to process raw videos of expert performing the task, we may obtain
stochastic confidence scores for the state-action labels which we denote using the function ¢((s, a))
(Fig. 2). The likelihood of an observation (s, a), given any ground truth (s, a), can be empirically
estimated as a running average of the confidence scores from observed trajectories:

- a 2tezq 2sapee, (S A Lis.a) (s,a)
O(<8aa>oa') = 1 .
D e, c5q 2ois ayee, Lis.a),=(s,a)

(7

Utilizing the principle of maximum entropy (a form of least commitment), the learner infers a unique
distribution over the observation features ¥ which has the maximum entropy, while satisfying the
constraint imposed by Eqs. 6 and 7: that the aggregated observation feature probabilities match the
corresponding empirical estimates of observation likelihoods. As the ground truth is not available
to the learner, it may instead consider possible state-action pairs that could have been in the input,
(s,a) 5 Where g is the estimated ground truth from the expert, rather than considering all possible

state-action pairs. The optimization problem is:

max — Zw»eqf (P(¢;)log P(1;) + P(1;) log P(1;)) subject to

II Pw) JI P@y) =0(s,a).-), ¥(s,a), € Za and P(y;) + P(yh;) = 1 Vo; € .

w;,.@:l w;-ﬁzo

The Lagrangian relaxation of the above program is:

cwvn) == (5, _, Plos)log Plus) + Pl og P(3))

+ v HP% HP% “O |+ 2 d ((POy) + PWy) 1)

(s,a),€2,(s,a) EEq P»oI=1 2 9=0 P; EW
®)
where v, A are vectors of multipliers v®9 and Ay, -

Notice that the same feature ¢); could be shared by multiple, distinct (s, a), and observation (s, a),
pairs, which then activate qu,g . Several of these active indicators for various j can be present in

the LHS of the first constraint and these receive a probability in aggregate from O. Bard [15] was
the first to note that a maximum entropy approach is beneficial when just the aggregate prob-
abilities are available. The critical points of a Lagrangian often occur at saddle points rather
than at local maxima or minima [16], and numerical optimization solvers may not find the sad-
dle points. Therefore, we modify the Lagrangian objective to make critical points occur at local

2 2
optima, £’ = \/ (%) + (%)2 + (a‘?\—ﬁ) , and use limited memory Broyden-Fletcher-
J i

Goldfarb-Shanno (L-BFGS) [17, 18] unconstrained optimization solver to learn the maximum-entropy
distribution P*. Equation 6 then obtains the observation model from this distribution, which paves the
way to obtain P(&,|{,) using Eq. 3 making it possible to apply the previous Robust IRL technique.

5 Robust Incremental IRL

To extend this process to an online setting, the learner uses P;* learned at the beginning of session %
to estimate the feature expectations:

a»;i,ké Z > Pl&6i0)fu(&0) = 1= Z D 0P (6ol€) P (6 0) fr(&9)- (9)

£o€~d1§q€~ €o€~d15q€~

Let Z4,1.; be the cumulative demonstration up to the it" session, and qﬁ},:f ., be the corresponding
cumulative feature expectations. The learner updates the latter from session to session as

SN 1 *
¢é1 | Z Z Pl I £g|€c)7 fk(gg) - ‘._ ‘ (Z Z Pl:i*l(é-g‘é-t?;e) fk:(é-g)
=d, 11 €0€Eq,1:; Eg€EE d,1:1 §0€E4,1:i—1 EgEE
* . — 1 =, plii—1 = bt
+ {D;Ed 69265 Py (&gl€0s 9)fk(§g)) = Bl + Bl (_d,m—ﬂ bgi—15, T |l ¢91,k) . 10)

5.1 The RIMEO Method

Following Def. 3.1, a session of RIMEO is Ci(MDP/R, Hd,is 0151, 0'~1) where sufficient statistic
aq.;—1 contains the summary up to the last session (¢ — 1), viz., camulative size of the demonstration
set (| Ha,1:i—1)s values from the optimization in Eq. 8, and the cumulative feature expec-
tations (ééffll). Specifically, a1.;—1 = (|2q,1:i-1], Pri_1, gfgészll). This information, together with
Ea,; and 01, is sufficient for Eq. 9 and thence Eq. 10. For demonstration = ; of the current session ¢,
the scores ¢((s, a)) for input (s, a) pairs are available from the perception pipeline. The process starts
by computing O using the scores and Eq. 7. The resulting Ois plugged into Eq. 8 to get VL', using
which Py, is updated by the L-BFGS gradient ascent starting with the initial value of P}, _,(¢). The
learned P};; are then used to compute the updated observation model probabilities P((s, a), | (s,a),)
(Egs. 2, 6). This extends to a corresponding update for full trajectories, Py.;(£,|€4, @) (Eq. 3). Solving
Eq. 9, the learner uses MCMC to sample ground truth trajectories from Py, (£4/&,, @) for computing

the feature expectations q@éi, followed by computation of (5(1;} via incremental update (Eq. 10). Finally,
the latter is used for the main Robust IRL optimization (Eq. 5) via L-BFGS gradient descent to learn

Perception of RGB-D Robust I2RL using MaxEnt with

streams learned obs. model
(s,a); ith session

Max-Entropy

1_» (s, a)y ' Ed/irc(sy a) _ P[, Learn obs. model

oA Robust-IRL IRL under noise
:d/,-,P[-((S,a)o|(s,a g) _’Rl’(sy a) with obs. model

(5,03

Figure 2: An overview of RIMEO. On the left is an image stream depicting the hidden ground truth, (s, a)g, of
the expert’s behavior. As the perception process is not perfect, the input to the learning algorithm is noisy. This
input is an array of possibly incorrect observations and corresponding (classification) scores, ¢((s, a)), that
measure possible match with unknown (s, a) .

the reward weights (6%) and corresponding policy ;. Due to space constraint, we present the detailed
algorithm with links to our GitHub code in Appendix A included in the supplementary file which is
available at http://thinc.cs.uga.edu/files/abdCoRL22-supp.pdf.

5.2 Convergence Properties of RIMEO

While some of the results in this section are analogous to those for I2RL [5], Lemma 2 is the main
original result of this paper since it incorporates the additional uncertainty due to noisy observations
and an unknown observation model. Due to space constraint, we present all proofs in the Appendix
B. The demonstration log-likelihood for session i is given by LL(0%Z,;, cv1.i—1,0°1).

LEMMA 1 (MONOTONICITY). The demonstration likelihood increases monotonically with each new
session, LL(02|Ed7“ a1:5—1, 01-71) — LL(Ozil |Ed,i—la O1:5—2, 02'72) > 0, when |Ed71;i_1| > |Ed,i|~

Note that feature expectations estimated under noisy perception with an estimated observation model,
A},}i i from Eq. 10, is an approximation of the expectations when the observation model is known
accurately. dg(l,fk is computed by sampling the hidden ground truth £, from P(§4|&,, 0'~1). This,
in turn, is an approximation of the expectations estimated under noise-free perception, ék:i. As
in I2RL [5], we assume that the latter estimation using n, samples obeys Hoeffding bounds, i.e.,
P(lpL — Aéﬁk| < &) > 1—§, where §5 = 2K exp(—2n4e?). Additionally for this paper, we
assume that our observation model estimation with n,, samples also obeys Hoeffding bounds as
P(max s 4, |O — O] <e,) > 1—6,/K, where O is the true observation model (of which O is an
estimate), and §, = 2K |¥| exp(—2n,e2). We also assume that all features in ¥ are observed in the
very first session. Then the following lemma holds.

LEMMA 2 (CONSTRAINT BOUND). Under the assumptions stated above, with probability at least
max(0,1 — 8,): ‘(1 —) (Bzlon] = 840)| < ek € {12 K}, where 8, = 5+ 6, + b,

er =€+ es+ L|V|e,, L is the longest trajectory length, and ¢, § are as defined in Theorem 1 in [5].

Lemma 2 allows us to probabilistically bound the error in the log likelihood for RIMEO, leading to
the main result below specifying the confidence in its convergence.

THEOREM 1 (CONFIDENCE). Let €,, 8, be as defined in Lemma 2, and ° be the solution of session

i for RIMEO. Then LL(0g|=q1::) — LL(0Y|Zg4,01.-1,071) < (2112‘?) with confidence at least

max (0,1 — 4,.), where O are the true weights of the expert.

6 Experiments

Our primary domain for evaluating RIMEO is the onion sorting illustrated in Fig 1. The expert aims
to identify blemished onions from a collection of onions on a table, and drop blemished ones in a bin
while allowing others to pass. A state of the task is composed of these features: onion location and
end-effector location {on table, picked up in hover region, at eye level (under inspection), or near the

http://thinc.cs.uga.edu/files/abdCoRL22-supp.pdf

0.7 RIMEO
06 RIFOM —— 08
g 05 L Method | TP,FP,FN,TN | Precision%, Recall%
S oal < 08 Expert | 7.0,12,5 100.00, 58.33
g 9 RIMEO | 8,1,11,4 88.89, 66.67
s 08y 04| RIFOM | 8.3.9,4 7273, 66.67
g 02r RIMEO AIRL 5,4,8,7 55.56, 41.67
0.1t 0-2 ¢ RIFOM —— MLIRL 7,3,9,5 70.00, 58.33
0 0 2 4 6 8 10 o MURL

o 2 4 6 8 10 12 14 16
Number of sessions Number of sessions

Figure 3: (left) Divergence between P(1)) and P()) for simulated onion sorting data. (middle) LBA of the
learned policy on the human demonstration data. (right) Column label TP denotes true positive (# blemished
onions in bin), FP is false positive (# good onions in bin), TN true negative (# good onions remaining on table),
and FN denotes false negatives (# blemished onions remaining on table).

bin for blemished onion}, and quality prediction {blemished, unblemished, or unknown}, resulting
in 22 states. The actions involve attending to a new onion on the table, picking it up, bringing the
grasped onion closer to eye and inspecting it, placing it in the bin, and placing it back on the table. We
utilize K = 11 predicates as reward features, ¢ (s, a), listed in Appendix C. To learn the observation
model, we use 8 binary predicates 1; as observation features, 2 also listed in Appendix C.

Baselines: We use MLIRL [19] and AIRL [20] as baselines to compare with RIMEO. AIRL is state-
of-the-art and incremental because the learned weights of the discriminator and generator nets are a
sufficient statistic. To our knowledge, no other IRL method infers an observation model. Therefore,
we create a custom baseline using the frequentist approach, which uses robust I2RL with a frequentist
estimation of the observation model (RIFOM). While RIMEO solves an optimization problem to
learn P}, RIFOM assumes that the ground truth is the same as the observation and learns P;* as the
running average of normalized frequencies of observation features activated in the demonstration.

Setup: We use videos of a human sorting onions (Fig. 1) as the training demonstration. We utilize
SA-Net [14] and YOLO [13] for identifying the sequences of states in the videos. The perception
pipeline considers the state with the highest prediction score ¢(s, a) as the current state in the input
trajectory £, € Z4. This noisy trajectory and the confidence scores are input to I2RL sessions of all
methods. The domain is simulated in Gazebo 7 (ROS Melodic) with the cobot Sawyer as the learner.
The experiments were run on a desktop with Intel Xeon CPU (E5-1603, 2.8GHz) and 16GB RAM.

Performance Results: We evaluate the divergence of the learned P*(v)) from a simulated dataset for
which the true distribution P(1) is known. We introduce noise as P(¢;((s, a},) # ¥;({s,a),) = 0.3
for j = BlemishedOnion, OnionToBin, OnionToTable, and 0 for other features. Figure 3(left) shows
the KL divergences between the distributions P(v)) and P;*(v) with sessions . Each data point is
averaged over 50 runs, and each session has 2 trajectories of size 3 as input. The divergence for
RIMEDO is significantly lower than that of RIFOM for all the sessions, indicating that RIMEO learns
a more accurate FP;*. Observe that the divergence starts stabilizing after the sixth session. As AIRL or
MLIRL do not directly learn an observation model, we do not report their divergence measures.

Next, we measure the learned behavior accuracy (LBA), which is the proportion of states in which
the action prescribed by the learned policy matches the actual action of the expert. Figure 3(middle)
shows the average LBA for our human demonstration data set as the number of sessions increases,
for all three methods. While AIRL’s LBA improves initially (until session 11), it flattens out to a
value (maximum 0.48) that is considerably lower than the other two methods. On average, AIRL is
also slower to converge (about 8 minutes) as compared to RIMEO (96.69 seconds). This performance
is likely due to the need of neural network based adversarial techniques for more training data and
that AIRL suffers when the training data (that is used by the discriminator) is noisy. Furthermore,
RIFOM’s LBA flattens out around 23% lower than RIMEO’s. This is because the maximum-entropy
optimization of the underlying observation features in RIMEO generalizes the learned information
across (s, a) pairs not present in the demonstration, but the frequentist baseline fails to generalize.
RIMEO eventually reaches an LBA of 96% whereas RIFOM’s stays around 70%. However, as

RIMEDO solves an additional optimization problem for learning P, it takes longer to converge (96.69
seconds, on average) compared to RIFOM’s (85.99 seconds). MLIRL’s LBA is similar to RIFOM’s,

2We used Pearson product-moment correlation (0.03 with p-value 0.04, averaged over all pairs of features
from demonstration) to confirm that these observation features are sufficiently independent.

1

0.5
s | RIMEO 08|
04l RIFOM —— ’ e
g . 06 -
f=4
g 03 s 04 -
9 ozl aJ o2t }\H—R
5 a * o |RIMEO
€ o1l RIFOM ——
0.2 L ARL
ol ‘ . " MLIRL —=—
0.4 h | . .
0 1 2 3 4 5 0 1 2 3 4 5
R] || Number of sessions Number of sessions

Figure 4: (left) Patroller (red) navigates hallways [21], and learner (green) aims to pass undetected. The 5
colored regions (long hallway, turning points, and three small divisions in small hallways on both sides) define
movement and turn-around features. S and G are start and goal locations for the learner. (middle) Divergence
between P(1) and P(v)), and (right) LBA of the learned policies on Gazebo simulation data of learner.

but its high variance and inability to improve its performance can be attributed to observation noise.
As it is not incremental (it was run with accumulating data in batch mode), runtime comparison is not
meaningful and hence not reported.

To evaluate sorting performance, Sawyer uses the learned policies to sort a fixed number of onions.
For object tracking and onion classification, we use a trained YOLO model with a simulated camera
in Gazebo. For all techniques, we execute the policy learned in the final session, to sort 6 moving
collections of 4 onions each (2 blemished and 2 good). The table in Fig. 3(right) shows the average
precision and recall of the expert and the 4 learning methods. As the expert aims to inspect every
onion whose blemish is not immediately visible, which is slow, it exhibits high precision but low
recall. RIMEOQ’s precision is closest to the expert’s due to lower false positives. AIRL performs
worse in both precision and recall having higher false positives and true negatives. This is consistent
with its low LBA, indicating its reduced ability to successfully sort onions under noise. Among the
two robust I2RL methods, as the steps after learning the observation model are the same, we attribute
the better precision of RIMEO to a more accurate observation model.

Perimeter Patrol Domain: To establish the generality of RIMEO, we evaluate it in a second domain:
a simplified version of the perimeter patrol domain [21]. It involves two Turtlebots (in Gazebo), one
patroller continuously navigates a hallway in cyclic trajectories; the other is a learner tasked with
reaching a goal location without being spotted by the patroller (Fig. 4). The learner must solve its
own distinct decision-making problem (modeled as another MDP), which is dependent on correctly
predicting the patrol. The latter can be estimated from inferring the patroller’s preferences given that
the learner knows its dynamics. The state of patroller in the MDP has three dimensions (x, y,),
which gives the x and y coordinates of the cell decomposition of the corridors and hallways, and
is the orientation of the patroller. The domain has 124 states. The patroller can execute one of four
possible actions: move-forward, turn left or turn right 90 degrees, and stop. The reward function
utilizes 6 binary state-action feature functions, described in Appendix D. The observation feature set
W contains 4 binary predicates also described in Appendix D.

We introduce noise as P(¢;((s,a),) # ¢;({s,a),) = 0.3 for j = MoveForward, TurnRight, and
0 for other features. The two figures (right) in Fig. 4 show the performance of both robust I12RL
methods in perimeter patrol. As in onion-sorting, KL divergence and LBA for RIMEO is better than
RIFOM, AIRL and MLIRL. These results in two unrelated tasks indicate that the presented method
is sufficiently general for broad applicability.

7 Conclusion

We introduced an online IRL method that accommodates noisy observations and infers the unknown
observation model by maximum entropy optimization. Not only does this method fill a gap in the
prior work on online IRL but it also makes online learning more pragmatic, as evaluated in two
robotics tasks of post-harvest onion sorting and breaching a patrol.

Limitations: The current set up restricts the observation features to binary functions. The assumption
of feature independence and the key approximation of Eq. 6 may not be easily satisfied, and could
have contributed to RIMEQO’s learned observation model not being accurate (KLD=0). To meet the
assumption that all ¢ are observed in the first session, it may need to contain more demonstrations.

Acknowledgments

We thank the anonymous reviewers for helpful comments and suggestions. This research was
supported in part by a grant from NSF #IIS-1830421 and a Phase 1 grant from the GA Research
Alliance to PD.

References

[1] S. Arora and P. Doshi. A Survey of Inverse Reinforcement Learning: Challenges, Methods and
Progress. Artificial Intelligence, 297:103500, 2021. doi:https://doi.org/10.1016/j.artint.2021.
103500.

[2] A.Ng and S. Russell. Algorithms for inverse reinforcement learning. In Seventeenth Interna-
tional Conference on Machine Learning, pages 663—-670, 2000.

[3] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., New York, NY, USA, Ist edition, 1994. ISBN 0471619779.

[4] S. Shahryari and P. Doshi. Inverse Reinforcement Learning Under Noisy Observations. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’17, Richland, SC, 2017. International Foundation for Autonomous Agents and Multiagent
Systems.

[5] S. Arora, P. Doshi, and B. Banerjee. I2RL: Online inverse reinforcement learning under
occlusion. Autonomous Agents and Multi-Agent Systems, 35(1):4, Nov 2020. ISSN 1573-7454.

[6] K. Bogert and P. Doshi. A hierarchical bayesian process for inverse rl in partially-controlled
environments. page 145-153, 2022.

[7] P. S. Suresh and P. Doshi. Marginal MAP estimation for inverse RL under occlusion with
observer noise. In Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial
Intelligence, volume 180, pages 1907-1916, 2022.

[8] A. Boularias, J. Kober, and J. Peters. Relative entropy inverse reinforcement learning. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, pages 182—-189, 2011.

[9] K. Bogert and P. Doshi. Toward Estimating Others’ Transition Models Under Occlusion for
Multi-robot IRL. In 24th International Joint Conference on Artificial Intelligence (IJCAI),
pages 1867-1873, 2015.

[10] S. Russell. Learning agents for uncertain environments (extended abstract). In Eleventh Annual
Conference on Computational Learning Theory, pages 101-103, 1998.

[11] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Twenty-first International Conference on Machine Learning (ICML), pages 1-8, 2004.

[12] B.D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In 23rd National Conference on Artificial Intelligence - Volume 3, pages 1433-1438,
2008.

[13] G. Jocher, A. Stoken, J. Borovec, C. Stan, L. Changyu, A. Hogan, L. Diaconu, Marc, Doug,
F. Ingham, Frederik, Guilhen, Hatovix, J. Poznanski, J. Fang, L. Yu, M. Wang, N. Gupta,
O. Akhtar, P. Dvoracek, and P. Rai. ultralytics/yolov5: v3.1, Oct. 2020.

[14] N. Soans, E. Asali, Y. Hong, and P. Doshi. SA-Net: Robust State-Action Recognition for Learn-
ing from Observations. In 2020 IEEE International Conference on Robotics and Automation,
ICRA, pages 2153-2159, 2020.

[15] Y. Bard. Estimation of state probabilities using the maximum entropy principle. IBM Journal
of Research and Development, 24(5):563-569, 1980.

[16] G.R. Walsh. Methods of optimization. Wiley, London, 1975. ISBN 0471919225.

http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103500
http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103500

[17] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1):503-528, 1989.

[18] J. Nocedal and N. Okazaki. libLBFGS: A library of Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) . https://github.com/chokkan/liblbfgs, 2013.

[19] M. C. Vroman. Maximum Likelihood Inverse Reinforcement Learning. PhD thesis, Rutgers,
The State University of New Jersey, 2014.

[20] J. Fu, K. Luo, and S. Levine. Learning Robust Rewards with Adverserial Inverse Reinforcement
Learning. In Proceedings of the 6th International Conference on Learning Representations
(ICLR), 2018. URL https://openreview.net/forum?id=rkHywl-A-.

[21] K. Bogert and P. Doshi. Multi-robot Inverse Reinforcement Learning Under Occlusion with

Interactions. In Proceedings of the 2014 International Conference on Autonomous Agents and
Multi-agent Systems, AAMAS ’14, pages 173-180, 2014.

10

https://github.com/chokkan/liblbfgs
https://openreview.net/forum?id=rkHywl-A-

	Introduction
	Related Work
	Background
	Robust IRL with a Known Observation Model
	I2RL Framework

	Learning the Observation Model
	Robust Incremental IRL
	The RIMEO Method
	Convergence Properties of RIMEO

	Experiments
	Conclusion

