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ABSTRACT

FedProx is a simple yet effective federated learning method that enables model
personalization via regularization. Despite remarkable success in practice, a rig-
orous analysis of how such a regularization provably improves the statistical ac-
curacy of each client’s local model hasn’t been fully established. Setting the reg-
ularization strength heuristically presents a risk, as an inappropriate choice may
even degrade accuracy. This work fills in the gap by analyzing the effect of reg-
ularization on statistical accuracy, thereby providing a theoretical guideline for
setting the regularization strength for achieving personalization. We prove that
by adaptively choosing the regularization strength under different statistical het-
erogeneity, FedProx can consistently outperform pure local training and achieve a
nearly minimax-optimal statistical rate. In addition, to shed light on resource al-
location, we design an algorithm, provably showing that stronger personalization
reduces communication complexity without increasing the computation cost over-
head. Finally, our theory is validated on both synthetic and real-world datasets and
its generalizability is verified in a non-convex setting.

1 INTRODUCTION

Federated Learning (FL) has emerged as an attractive framework for aggregating distributed data,
enabling clients to collaboratively train a shared global model while preserving data privacy. In the
currently prevalent paradigm (McMahan et al., 2017), FL is formulated as a finite sum minimization
problem focusing on a single shared model. Nevertheless, it has been well recognized that one of the
key challenges in FL is the statistical heterogeneity of the client datasets. As the participants collect
their own local data, it often reflects client-specific characteristics and is not identically distributed.
With high statistical heterogeneity, training a single model for all clients by minimizing their average
in-sample loss becomes questionable.

To address this challenge, one solution is to relax the common model constraint and solve alterna-
tively the following objective in FedProx (Li et al., 2020):

min
w(g),{w(i)}i∈[m]

∑
i∈[m]

pi

(
Li(w

(i), Si) +
λ

2
∥w(g) −w(i)∥2

)
, (1)

where Li(w
(i), Si) is the empirical risk of the i-th client, and Si is the local dataset of the i-th

client. The set {pi}i∈[m] is a collection of weights for the clients satisfying pi ≥ 0 and
∑

i pi = 1.
In (1), each client i learns a local personalized model w(i) by fitting its local data Si, while enabling
collaborative learning by shrinking all local models towards a common global one w(g) with inten-
sity controlled by λ. The smaller λ is, the weaker the coupling of the local models the formulation
would enforce thus the higher personalization is. Adjusting the strength of regularization controls
the extent to which the w(i)’s is adapted to client i’s local data, thus the degree of personalization.

The promising empirical performance of FedProx in learning under heterogeneous data (Li et al.,
2020; Donevski et al., 2021; He et al., 2021; An et al., 2023) has led to a sequence of works studying
the problem from a pure computation perspective, aiming at developing efficient algorithms under
various problem assumptions to reach a (local) solution (Hanzely & Richtárik, 2020; T Dinh et al.,
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2020; Li et al., 2021; Acar et al., 2021; Yuan & Li, 2022). However, the fundamental question of
how to characterize the accuracy of the models produced by (1) is largely unaddressed. As such,
for a given set of clients, it is not even clear if introducing personalization will be beneficial, out-
performing the baselines given by training a single global model or pure local training. In addition,
communication cost in FL is a critical bottleneck in resource-constrained environments. Therefore,
understanding when personalization will improve both training efficiency and statistical accuracy is
of paramount importance. We address these questions by providing a fine-grained analysis of the
effect of personalization in FedProx. Our contribution is summarized below:

• Minimax-optimal Statistical Accuracy. We analyze the statistical accuracy of the objective in
(1), taking statistical heterogeneity into account. For each of the models, we establish a state-of-the-
art convergence rateO(1/(mn))+O(1/n∧R2), where R characterizes the statistical heterogeneity
and n is the sample size on each client. The first termO(1/(mn)) represents the sample complexity
of training a single global model under homogeneity, which is attained by (1) when R is close to
zero, highlighting the benefit of FL. For the second term, the first component O(1/n) is the sample
complexity of purely local training, and the second component O(R2) demonstrates the flexibility
of FedProx under different statistical heterogeneity, implying the statistical accuracy of FedProx
never gets worse than purely local training’s. Such a rate matches the existing lower bound for
the problem. Therefore, to the best of our knowledge, this is the first work that demonstrates that
with a theoretically-informed adaptive choice of personalization degree characterized by λ, FedProx
achieves a minimax-optimal statistical accuracy across different levels of statistical heterogeneity.

• Provably Enhanced Communication Efficiency. As the objective (1) could be reformulated as a
bi-level problem, we propose an algorithm for (1) with an explicit computation cost assessment. We
establish the communication complexity asO(κ λ+µ

λ+L log 1
ε ) and the local computation complexity in

each communication round as Õ(λ+L
λ+µ ). With higher personalization degree, communication com-

plexity would decrease and the computation complexity per round would increase, demonstrating
that there is a trade-off between computation and communication costs. Our analysis concludes that
model personalization can reduce communication overhead without incurring additional computa-
tion expenses.

• Empirical Validation. We conduct numerical studies on logistic regression with synthetic data
and real-world data under our problem assumptions. The results corroborate our theoretical findings.
We further test the numerical performance of (1) for training CNNs, showing empirically the results,
although proved under the convexity assumption, generalize to nonconvex losses.

2 RELATED WORKS

In recent years, federated learning has become an attractive solution for training models locally on
distributed clients, rather than transferring data to centralized data centers (Mammen, 2021; Wen
et al., 2023; Beltrán et al., 2023). As each client generates its local data, statistical heterogeneity is
common with data being non-identically distributed between clients (Li et al., 2020; Ye et al., 2023).
Given the variability of data in network, model personalization is a natural strategy used to improve
learning accuracy for each client. Formulations enabling model personalization have been studied
independently from multiple fields. For example, meta-learning (Chen et al., 2018; Jiang et al.,
2019; Khodak et al., 2019; Fallah et al., 2020) assumes all models follow a common distribution.
By minimizing the average loss, these methods aim to learn a meta-model that generalizes well
to unseen new tasks. Multi-task learning methods (Agarwal et al., 2020; Liang et al., 2020) and
transfer learning methods (Li et al., 2022; He et al., 2024a;b) study formulation similar to (1), but the
statistical rate is established for either the average of all models or only the target model. Therefore,
it is not clear if all clients can benefit from the procedure and learn a more accurate model than purely
local training. Representation learning (Zhou et al., 2020; Wang et al., 2024), on the other hand,
focuses on a different model structure where the local models can be represented as the composition
of two parts, with one common to all clients and the other specific to each client.

In the FL community, personalized FL methods can be broadly divided into two main strands. Dif-
ferent from the works mentioned previously, studies here focus primarily on the properties of the
iterates computed by the algorithms. One line of works (Arivazhagan et al., 2019; Liang et al., 2020;
Singhal et al., 2021; Collins et al., 2021) is based on the representation learning formulation, where

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

both the algorithmic convergence and statistical accuracy of the iterates have been investigated. An-
other line of works (Smith et al., 2017; Li et al., 2020; Hanzely & Richtárik, 2020; Hanzely et al.,
2020; 2023), including FedProx, achieves personalization by relaxing the requirement of learning a
common global model through regularization techniques. In particular, algorithms and complexity
lower bounds specific to the FedProx objective were studied in works (Li et al., 2020; Hanzely et al.,
2020; T Dinh et al., 2020; Hanzely & Richtárik, 2020; Li et al., 2021), see Table 5 for a detailed
comparison. These works study the problem from a pure optimization perspective and cannot show
personalization improves learning accuracy.

There are only a few recent works we are aware of studying the statistical accuracy of regularization-
based PFL in the form of (1). Specifically, Cheng et al. (2023) investigates the asymptotic behav-
ior of the FedProx estimator under an over-parameterized linear regression model; neither a finite-
sample rate nor algorithm is provided. Chen et al. (2023c) studies the FedProx estimator under rather
strong assumptions like bounded parameter space. By defining a new notion of algorithmic stabil-
ity, they establish the non-asymptotic sample complexity for FedProx and induce minimax bound.
However, even with some overly strong assumptions, their analysis cannot match the statistical lower
bound in most cases.

Notation. [n] denotes the set of integers {1, 2, · · · , n} for any positive integer n. Let ∥ · ∥2 denote
the ℓ2 vector norm and the Frobenius matrix norm. For two non-negative sequences an, bn, we
denote an = O(bn) as an/bn −→ 1. Õ(·) hides logarithmic factors.

3 PRELIMINARIES

Considering there are m clients, each client has a collection of i.i.d data Si = {zij}j∈[ni] over
possibly different data distributions Di. For each client, the ultimate goal is to find the solution
that minimizes the local risk, i.e. w(i)

⋆ ∈ argminw Ez∼Diℓ(w, z). Here, ℓ(w, z) denotes the loss
function of interest and w

(i)
⋆ ∈ Rd is called the ground truth local model for client i. In this paper,

we assume the model dimension d is finite. Under such a setup, two commonly adopted approaches
are pure local training (LocalTrain) and pure global training (GlobalTrain):

LocalTrain: min
w(i)

Li(w
(i), Si), i ∈ [m], GlobalTrain: min

w(i)=w(g),
i∈[m]

m∑
i=1

piLi(w
(i), Si), (2)

where Li(w, Si) :=
∑ni

j=1 ℓ(w, zij)/ni denotes the empirical risk of client i. In LocalTrain, each
client individually minimizes its loss, whereas in GlobalTrain, all clients collaboratively minimize
their average loss. Compared to LocalTrain, GlobalTrain integrates information from all clients to
improve the learning performance of each client. When there are sufficient similarities between the
data distribution Di of different clients, GlobalTrain would be a better choice as more samples are
included. However, if Di’s are highly unrelated, LocalTrain will be a more robust choice.

In practice, the data distribution is neither totally the same nor completely unrelated across clients.
To handle the wide middle ground of the two extremes, FedProx solves the following problem

min
w(g),{w(i)}i∈[m]

m∑
i=1

pi

(
Li(w

(i), Si) +
λ

2
∥w(g) −w(i)∥2

)
.

The key feature of Fedprox is the incorporation of a proximal (regularization) term, which controls
the personalization degree. As λ → 0, the FedProx objective increasingly behaves like LocalTrain
with higher personalization degree and reduces to m separate LocalTrain problems in the end. On
the other hand, as λ → ∞, the local models w(i) are shrunk towards the global model w(g) with
lower personalization degree and eventually degenerate to optimize a single shared model. Thus,
by adjusting λ, FedProx interpolates between LocalTrain and GlobalTrain, allowing for a flexible
choice of personalization degree to achieve higher modeling accuracy. It’s noticeable that this choice
of λ also affects the optimization process of FedProx. With larger λ, more frequent communication
between clients is expected to ensure faster convergence, as local updates are more tightly coupled
to the global model. In contrast, smaller λ value allows for more independent updates, reducing
the need for communication. In the next few sections, we provide a theoretical guarantee for the
intuition provided above.
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In Section 4, we analyze when the personalization level, characterized by λ, would improve the
statistical accuracy of both the global model w(g) and the local models {w(i)}i∈[m]. This is in sharp
contrast to most of the existing works where the error is established for the sum of them. In Section
5, we explore how such a degree of personalization will affect communication complexity.

4 WHEN WILL PERSONALIZATION IMPROVE STATISTICAL ACCURACY

In this section, we analyze how the choice of λ, or the degree of personalization, would improve the
statistical accuracy of the solution obtained from the FedProx problem (1). Following the existing
literature (Li et al., 2023; Chen et al., 2023b;c; Duan & Wang, 2023), we define the statistical
heterogeneity as the Euclidean distance between the true local models w

(i)
⋆ and the true global

model w(g)
⋆ :=

∑m
i=1 piw

(i)
⋆ . Specifically, we adopt the following assumption:

Assumption 1 (Statistical Heterogeneity). There exists a nonnegative constant R such that we have
∥w(i)

⋆ −w
(g)
⋆ ∥2 ≤ R2,∀i ∈ [m].

Intuitively, a larger R indicates a greater divergence between the clients’ data distributions, thus
stronger statistical heterogeneity, and vice versa. Therefore, in the FedProx objective, the choice
of λ should be adjusted according to R. More discussion about Assumption 1 can be found in
Appendix A.1. Next, we introduce three standard assumptions.
Assumption 2 (Smoothness). The loss function ℓ(·, z) is L-smooth, i.e. for any x, y ∈ Rd

∥∇ℓ(x, z)−∇ℓ(y, z)∥ ≤ L∥x− y∥, ∀z. (3)

Assumption 3 (Strong Convexity). The loss function ℓ(·, z) is almost surely µ-strongly convex:
ℓ(x, z) ≥ ℓ(y, z) + ⟨∇ℓ(y, z), y − x⟩+ µ

2 ∥x− y∥2, ∀x, y ∈ Rd.

Assumption 4 (Bound Gradient Variance at Optimum). There exists a nonnegative constant ρ such
that ∀i ∈ [m], we have Ez∼Di

∥∇ℓ(w(i)
⋆ , z)∥2 ≤ ρ2.

Here, the strongly convex and smooth assumption is used to establish the estimation error and is
widely adopted in the theoretical analysis of regularization-based personalized federated learning
(T Dinh et al., 2020; Deng et al., 2020; Hanzely & Richtárik, 2020; Hanzely et al., 2020) and
theoretical analysis in federated learning (Chen et al., 2023c; Cheng et al., 2023). Assumption 4 is
used to quantify the observation noise, and is also standard in the literature (Duan & Wang, 2023;
Chen et al., 2023c).

Next, we establish a statistical rate of the optimal solution to the Fedprox problem (1) with a fine-
grained analysis. To facilitate the analysis, we first define some notations. Define {w̃(i)}mi=1 as
the optimal solution for local models w(i) in objective (1). A check on the optimality condition
implies that the optimal solution for the global model is w̃(g) =

∑m
i=1 piw̃

(i). In this paper, we use
global statistical error E∥w̃(g) −w

(g)
⋆ ∥2 and local statistical error E∥w̃(i) −w

(i)
⋆ ∥2 as the measure

of statstical accuracy. Here the expectation is taken with respect to all data. Note that some existing
literature adopts alternative metrics, such as average excess risk and individual excess risk (Chen
et al., 2023c) to measure the statistical error. The convergence rate of these two definitions is closely
related up to the smoothness constant and strong convexity constant. Define w̃GT as the optimal
solution for the GlobalTrain problem in (2). We first provide a lemma to cast light on the effect of λ
on the statistical error. See Appendix A.2 for the proof.
Lemma 1. Suppose Assumptions 1, 2 and 3 hold. We have

∥w̃(g) − w̃GT∥2 ≤
4 (1 + L/µ)

µ(µ+ λ)

∑
i∈[m]

pi∥∇Li(w̃
(g), Si)∥2, (4)

∑
i∈[m],j∈[ni]

pi
ni

(
µ∥w̃(i) −w

(i)
⋆ ∥2 + ⟨∇ℓ(w(i)

⋆ , zij), w̃
(i) −w

(i)
⋆ ⟩
)
≤ λ

2
R2. (5)

Lemma 1 establishes a relationship between the model estimation error and the tuning parameter λ.
From the bound (4), we can see that a larger λ will push the global model solution w̃(g) towards
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the GlobalTrain solution. On the other hand, from the bound (5), we can set a smaller λ ∝ 1/nR2

to obtain a rate O(1/n), independent of R. This suggests that λ can be chosen adaptively w.r.t. R
to achieve the optimal statistical rate. A detailed discussion can be found in Appendix A.3. In the
following theorem, we provide such a choice and establish a state-of-the-art statistical rate.
Theorem 1. Suppose Assumptions 1, 2, 3 and 4 hold and ni = n, ∀i ∈ [m]. Consider the FedProx

objective in (1) with pi =
1
m ,∀i ∈ [m]. If it takes λ ≥ max

{
64κ2L, (2κ ∨ 5)µ 2L2R2+ρ2/n

L2R2+ρ2/N

}
− µ

when R ≤ 1√
n

, and λ ≤ ρ2

nµR2 when R ≥ 1√
n

, the global model w̃(g) and local models {w̃(i)}mi=1

obtained from solving the objective (1) satisfy

E
∥∥∥w̃(g) −w

(g)
⋆

∥∥∥2 ≤ C1

N
+ C2

(
1

n
∧R2

)
, (6)

E
∥∥∥w̃(i) −w

(i)
⋆

∥∥∥2 ≤ C3

N
+ C4(

1

n
∧R2) for all i ∈ [m], (7)

where N = mn and

C1 = 32
ρ2

µ2
, C2 =

( (1 +√3)ρ
µ

)2 ∨ 32L2

µ2
, C3 =

192ρ2

µ2
, C4 =

(
ρ(1 + (4C2 + 5)

1
2 )

µ

)2

∨ 198L2

µ2
.

Proof. See Appendix A.3.

Theorem 1 shows that with an appropriate choice of λ, both the global and local models achieve a
fast statistical rate across a wide range of R. To interpret the result, we first analyze the error bound
provided in (6) and (7). The two error bounds have the same order and can be decomposed into two
key components. The first term, of order O(N−1), captures the benefit of collaborative learning,
as N = mn is the total sample size across m clients. This term reflects the sample efficiency
gained through collaborative learning. The second term, of order O(n−1 ∧ R2), measures the cost
of statistical heterogeneity. As R increases, the convergence rate gradually degrades, transitioning
fromO(N−1) toO(n−1). Notably, the guarantee is minimax-optimal, as the derived bound matches
the problem’s lower bound under the given assumptions (Chen et al., 2023c). Remark 2 in Appendix
A.3 discusses about how such an interpolation is achieved through different personalization degrees.

Table 1: Results Comparison. D := supw,w′∈D ∥w − w′∥ is diameter of the parameter space
(D ≥ R) and ∥ℓ∥∞ = inf{M ∈ R : ℓ(·, z) ≤ M, for any z} is an uniform upper bound on the loss
function. Statistical rate refers to E∥w(i)

⋆ − w̃(i)∥2, with constants neglected.

Source Assumption Paradigm Statistical Rate

R > 1√
n

1
m

√
n
< R ≤ 1√

n
R ≤ 1

m
√
n

Chen et al. (2023c) A1,2,3,4, D ∨ ∥ℓ∥∞ ≤ C Two-stage D2+∥ℓ∥∞
n

∥ℓ∥∞√
n
R ∥ℓ∥∞√

mn

Ours A1,2,3,4 One-stage 1
n R2 ∧ 1

mn
1

mn

Lower Bound - - 1
n R2 ∧ 1

mn
1

mn

We now compare our theoretical results with the result up to date (Chen et al., 2023c), as summarized
in Table 1. For a fair comparison, it is noticeable that we have transformed their result into our
metrics E∥w(i)

⋆ − w̃(i)∥2, by eliminating their optimization error and problem-dependent constant.
Our contribution can be summarized into three aspects:

• Our results are derived under more realistic assumptions. Chen et al. (2023c) imposes additional
stringent conditions including a bounded parameter space D and a uniform bound on the loss func-
tion ℓ(·, z). Such conditions are difficult to satisfy in practice. For example, even a simple linear
regression model with sub-Gaussian covariates would violate these assumptions.

• Our result is established for both global and local models with the same choice of λ. In contrast,
Chen et al. (2023c) proposes a two-stage process where the global model is first estimated, followed

5
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by an additional local training phase with a different choice of λ. This two-step approach is likely
the artifact of their analysis, as existing work on FedProx also shows that a single-stage optimization
with a chosen λ suffices to achieve the desired performance (T Dinh et al., 2020).

•We establish a state-of-the-art minimax statistical rate. As shown in Table 1, the established upper
bound matches the lower bound established in Chen et al. (2023c). In a heterogeneous case when
R ≥ n−1/2, Chen et al. (2023c) establishes a rate that is at least of the orderO

(
n−1R2

)
as D ≥ R.

This bound becomes increasingly loose with larger R. In contrast, our bound is O
(
n−1

)
, which

shows that properly-tuned FedProx is always no worse than LocalTrain, independent of R. In a
homogeneous case when R ≤ m−1n−1/2, they can only establish a rate slower thanO (1/(

√
mn)),

while our result achieves a rate of O (1/(mn)), leveraging all mn samples and matching the rate of
GlobalTrain on the IID data. As the client number could be extremely large (105 devices in Chen
et al. (2023a)), order of m is non-trivial. During the transition period when m−1n−1/2 < R <
n−1/2, we achieve a rate of O(R2), again matching the lower bound, and is strictly faster than the
rate O(n−1/2R) established in Chen et al. (2023c).

5 WHEN WILL PERSONALIZATION IMPROVE COMMUNICATION EFFICIENCY

Notice that if we define the local objective of each client i as hi(w
(i),w(g)) := Li(w

(i), Si) +
λ
2 ∥w

(g) −w(i)∥2, then the FedProx problem given by (1) can be rewritten in the following bilevel
(iterated minimization) form:

min
w(g)

F (w(g)) :=
1

m

m∑
i=1

Fi(w
(g)), where Fi(w

(g)) := min
w(i)

hi(w
(i),w(g)). (8)

The reformulation (8) is a finite-sum minimization problem, with each component Fi being the
Moreau envelope (Moreau, 1965; Yosida, 1964) of Li. Let w

(i)
⋆ (w(g)) be the minimizer of

hi( · ,w(g)), i.e.,

w
(i)
⋆ (w(g)) := proxLi/λ(w

(g)) = argmin
w(i)

hi(w
(i),w(g)). (9)

Based on Assumption 2 and the new notations in (8) and (9), the following lemma describes the
optimizing properties for Fi, hi and w

(i)
⋆ . The proof can be found in Appendix B.2.

Lemma 2. Under Assumption 3 and 2, Fi is µg-strongly convex and Lg-smooth, with µg = λµ
λ+µ

and Lg = λL
λ+L , each hi is µℓ-strongly convex and Lℓ-smooth, with µℓ = µ + λ and Lℓ = L + λ,

and the mapping w
(i)
⋆ : Rd → Rd is Lw-Lipschitz with Lw = λ

λ+µ .

Next, we recall the properties of the Moreau envelope to guide the algorithm design.
Lemma 3 (Lemaréchal & Sagastizábal (1997)). Under Assumption 3, each Fi : Rd → R is contin-
uously differentiable, and the gradient is given by∇Fi(w

(g)) = λ(w(g) −w
(i)
⋆ (w(g))).

From Lemma 2 and Lemma 3, it suggests applying a simple gradient algorithm to optimize w(g):

w
(g)
t+1 = w

(g)
t − γ · ∇F (w

(g)
t ) = w

(g)
t − γλ · 1

m

m∑
i=1

(
w

(g)
t −w

(i)
⋆ (w

(g)
t )
)
, (10)

where w
(g)
t is the update at the communication round t, γ > 0 is a step size to be properly set (cf.

Theorem 2). To implement (10), in each communication round t the server broadcasts w
(g)
t to all

clients, then each client i updates its local model w(i)
⋆ (w

(g)
t ) and upload to the server.

Note that executing (10) requires each client i computing the minimizer w(i)
⋆ (w

(g)
t ). In general, the

subproblem (9) does not have a closed-form solution. Therefore, computing the exact gradient ∇F
will incur a high computation cost as well as high latency for the learning process. Leveraging recent
advancements in bilevel optimization algorithm design (Ji et al., 2022), we address this issue by
approximating w

(i)
⋆ (w

(g)
t ) with a finite number of K gradient steps. Specifically, we let each client

6
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i maintain a local model w(i)
t,k. Per communication round t, w(i)

t,k is initialized to be w
(i)
t,0 = w

(i)
t−1,K

as a warm start, and updated according to

w
(i)
t,k+1 = w

(i)
t,k − η∇hi(w

(i)
t,k,w

(g)
t ), ∀ k = 0, . . . ,K − 1, (11)

where ∇hi(w
(i)
t,k,w

(g)
t ), for notation simplicity, denotes the partial gradient of hi with respect to

w(i). The overall procedure is summarized in Alg. 1, see Appendix B.1.
Remark 1. Alg. 1 is a customization of the general bi-level problem (Ji et al., 2022). While the
algorithm design is not new, our contribution lies in analyzing how the personalization degree influ-
ences the trade-off between communication and local computation leveraging the FedProx problem
structure. Extending to noisy settings to consider stochastic gradient or variance reduction would
be interesting future work, which requires additional technical effort.

Theorem 2. Suppose Assumptions 3 and 2 hold. Let {w(g)
t }t≥0 and {w(i)

t,K}t≥0 be the sequence
generated by Algorithm 1 with γ < 1/Lg , η ≤ 1/Lℓ, and the inner loop iteration number satisfying(

2 + 64L2
w(1/µg)

2λ2
)
(1− ηµℓ)

K ≤ (1− γLg)
4, (12)

then w
(g)
t converges to w̃(g) linearly at rate 1 − (γµg)/2 − (γµg)

2/2, and w
(i)
t,0 converges to w̃(i)

linearly at the same rate for any i ∈ [m].

Proof. See Appendix B.3 and B.5.

Theorem 2 shows under the step size constraint γ < 1/Lg , w(g)
t converges to w̃(g) at the same

rate as the iteration (10) with exact gradient computation. Furthermore, the larger γ is, the larger
K should be chosen so as to satisfy (12). This indicates a tradeoff between communication and
computation: the fewer communication rounds are performed, then the more local computation is
required for the algorithm to converge.

To better interpret the result and obtain insights on the influence of λ on the convergence, we pro-
vide the communication and computation complexity under specific choices the algorithm’s tuning
parameters, as described in the following Corollary 1. See Appendix B.4 for the proof.
Corollary 1. In the same setting as Theorem 2, if choosing the step size η = 1/Lℓ = (λ + L)−1,

γ = 1/(2Lg) =
λ+L
2λL , and the inner loop iteration number K = Õ

(
λ+L
λ+µ

)
, then the communication

complexity and computation complexity for Algorithm 1 to find an ε-solution (i.e., ∥w(g)
T −w̃(g)∥2 ≤

ε and ∥w(i)
T,0 − w̃(i)∥2 ≤ ε) are as follows (κ := L/µ):

(i) # communication rounds = O
(
κg log(1/ε)

)
= O

(
κ · λ+ µ

λ+ L
· log 1

ε

)
, (13)

(ii) # gradient evaluations = Õ
(
κ · log 1

ε

)
. (14)

• Communication cost. Corollary 1 shows as λ increases from 0 to∞, the communication com-
plexity increases from Õ(1) to Õ(κ). The result reveals a higher personalization degree requires
less communication cost to collaboratively learn the models. In the full personalization limit with
λ → 0, the order of the communication cost reduces to near constant Õ(1), which corresponds to
pure local training. It is worth noting that even personalization can reduce communication complex-
ity, as our ultimate goal is to accurately estimate each model so we can not simply pursue higher
communication efficiency.

• Computation cost. In contrast to the communication complexity, the gradient evaluations per
round K decrease with λ increasing. Therefore, a higher degree of personalization requires a more
intensive update of the local models once receiving a new global model w(g), so as to adapt to each
client’s local data set. Note that although a small λ requires a larger K, the overall computation cost
given by (14) is independent of λ. As such, model personalization (small λ) can provably reduce
the communication cost without any extra computation overhead.
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Table 2: Comparison of the communication and computation complexity in existing works of
analyzing the objective in (1) (cvx denotes convexity and s-cvx denotes strong convexity).

Methods Convexity Bounded Domain Computation Cost
per Round

Communication
Cost

FedProx
(Li et al., 2020) cvx ✘ –(1) O(∆/(ρε))

pFedMe
(T Dinh et al., 2020) s-cvx ✘ –(2) O(1/(mRε))

Ditto
(Li et al., 2021) s-cvx ✘ O(1) O(1/ε)

L2GD
(Hanzely & Richtárik, 2020) s-cvx ✘ O(1 + L

λ ) O( 2λκ
λ+L log( 1ε ))

Algorithm 3
(Chen et al., 2023c) s-cvx ✔ O(λ/ε) O((λ ∨ 1)/ε)

Our Result s-cvx ✘ O(λ+L
λ+µ ) O(κ λ+µ

λ+L log 1
ε )

(1) Controlled by the precision of inexact solution. ρ > 0 measures the subproblem solution accuracy.
(2) Related to the subiteration number R and the precision v.

We end this section with a comparison between our results and the existing algorithms for solving
FedProx, as reported in Table 5. Our result shows how the personalization degree trades off the com-
munication cost and local computation cost, whereas most of the existing works either don’t explic-
itly analyze the local computational cost (Li et al., 2020; T Dinh et al., 2020), or fail to demonstrate
such a trade-off (Chen et al., 2023c). Hanzely & Richtárik (2020) also reveals similar tradeoffs, but
their work is a randomized method that requires more coordination between server and clients, and
more importantly, when λ is small, the computation cost per round is unbounded.

6 SIMULATION

In this section, we provide empirical validation for our theoretical results, evaluating FedProx on
both synthetic and real datasets with convex and non-convex loss functions. We first examine the
effect of personalization on statistical accuracy under different levels of heterogeneity (Section 6.2),
followed by an analysis of its impact on communication efficiency (Section 6.3). Detailed descrip-
tions of the experimental setup are available in Section 6.1 and Appendix C, and the complete
anonymized codebase is accessible at https://anonymous.4open.science/r/fedprox-bilevel.

6.1 EXPERIMENTAL DETAILS

Synthetic Dataset. To generate the synthetic data, we follow a similar procedure to prior works
(Li et al., 2020) but with some modifications to align with the setup in this paper. Specifically, for
each client we generate samples (Xk,yk), where the labels yk are produced by a logistic regression
model yk = argmax(σ(w⊤

k Xk)), with σ being the sigmoid function. The feature vectors Xk are
drawn from a multivariate normal distribution N (vk,Σ), where vk ∼ N (0, 1) and the covariance
matrix Σ follows a diagonal structure Σj,j = j−1.2. The heterogeneity is introduced by sampling
the model weights wk for each client from a normal distributionN (0, R), where R ∈ [0, 3] controls
the degree of variation (statistical heterogeneity) across clients’ data distributions.

Real Dataset. We use the MNIST, EMNIST, and CIFAR10 datasets for the real dataset analysis. We
first formulate the problem as a convex classification task using multinomial logistic regression, then
test the generalization of our theory to a more general, non-convex scenario by conducting experi-
ments using different CNN classifiers. Following Li et al. (2020), to impose statistical heterogeneity,
we distribute the data across clients in the way that each client only has access to a fixed number
of classes. The fewer classes each client has access to, the higher the statistical heterogeneity. The
detail of data processing to set data heterogeneity for each dataset can be found in Appendix C.

Implementation and Evaluation. For each setup, we evaluate the FedProx algorithm with three
different choices of λ: small, medium, and large, with specific values varying based on the dataset
(details provided in Appendix C). For the synthetic dataset, in alignment with theorem 2, we imple-
ment Algorithm 1 using a global step size γ = (λ+ L)/(λL) and a local step size η = (L+ λ)−1.
For the real dataset, since L is unknown, we implement the same algorithm with a global step size
γ set to 1/(λ), while the local step size is determined via grid search. In terms of evaluation, for

8
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Figure 1: Statistical and total error of different methods. In the top row, subfigures (a), (b), and
(c) represent statistical error, showing the difference between the minimizer and the underlying true
model for Synthetic-Logit (logistic regression on synthetic data), MNIST-Logit (logistic regression
on MNIST), and MNIST-CNN (CNN on MNIST), respectively. In the bottom row, subfigures (d),
(e), and (f) represent total error, showing the error between the model at each round and the true
model for the same datasets. (1) FedProx adapts between GlobalTrain and LocalTrain, achieving
low error across varying levels of heterogeneity with a properly chosen λ; (2) Larger λ (less person-
alization) requires more communication to converge, and vice versa.

the synthetic dataset, we evaluate by tracking the ground-truth models and measuring error as the
distance from these true models. For the real dataset, we report training loss and testing accuracy.
Additional details, including hyperparameter setting and evaluation metric definition, can be found
in Appendix C.

6.2 STATISTICAL ASPECT: BALANCING LOCAL AND GLOBAL LEARNING

We now explore how FedProx balances between GlobalTrain and LocalTrain by achieving differ-
ent levels of personalization. For comparison, in addition to implementing FedProx with different
choices of λ, we also implemented LocalTrain and GlobalTrain, with details specified in Appendx
C. We run all methods to a stable convergence and measure the statistical error. The top row of
Figure 1 shows the performance of these methods under different impact of statistical heterogeneity.

From Figure 1(a), in a controlled convex setting, we observe that FedProx consistently interpolates
between GlobalTrain and LocalTrain. As λ increases, FedProx transitions from behaving simi-
larly to LocalTrain towards GlobalTrain. When statistical heterogeneity is low, both GlobalTrain
and FedProx with larger λ values achieve better statistical performance. However, as heterogene-
ity increases, LocalTrain and FedProx with smaller λ values show better results. The figure also
demonstrates that with an adaptive choice of λ in theoretical analysis outlined in Theorem 1, Fed-
Prox consistently achieves a low error across varying levels of heterogeneity. See more results and
discussion in Appendix C. Note that as statistical heterogeneity increases, LocalTrain experiences
a slight rise in error due to the increased difficulty of the statistical problem. However, it remains
the least affected by heterogeneity since it relies solely on local data. In Figure 1(b) and 1(c), for
the MNIST dataset, which includes both convex logistic regression and non-convex CNN settings,
we observe similar patterns. FedProx again strikes a balance between GlobalTrain and LocalTrain,

9
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adapting its performance as λ changes. While GlobalTrain performs best in this scenario due to
the relatively weak statistical heterogeneity, FedProx, with increasing λ, moves closer to Global-
Train performance. In Figure 4 in Appendix C, we also evaluate the local model’s statistical error
and observe that as statistical heterogeneity increases, FedProx with smaller λ values can surpass
GlobalTrain.

Figure 2: Effect of local updates on FedProx performance. Smaller λ reduces communication with
more local updates, while larger λ benefits marginally from increasing local updates and requires
more frequent communication.

6.3 OPTIMIZATION ASPECT: COMMUNICATION-COMPUTATION TRADE-OFF

In this section, we explore the trade-off between communication and computation in FedProx, con-
trolled by varying the personalization degree.

Communication Cost. In the bottom row of Figure 1, we show the change in the total error of
the algorithm (i.e., the difference of the model in tth round between the true underlying model)
over communication rounds. The first observation is that as λ increases, the convergence rate w.r.t.
communication rounds slows across all settings. FedProx with a large λ (closer to GlobalTrain)
needs the most communication rounds to converge, while smaller λ values (closer to LocalTrain)
result in faster convergence. This result aligns with our theory (c.f. Corollary 1), showing that
Fedprox with less personalization relies more heavily on communication. On the statistical side,
Figure 1(d) shows that when statistical heterogeneity is low, larger λ leads to the smallest total error.
As R increases, smaller λ (more personalization) results in better performance.

Computation Cost. In Figure 2, we investigate how the number of local updates per communication
round impacts the performance of FedProx at different personalization degree. Additional results in
the non-convex setting can be found in Appendix C. Notice that for models with smaller λ (higher
personalization), increasing the number of local updates significantly improves convergence, mak-
ing the algorithm less dependent on frequent communication. This aligns with our analysis: more
personalized models rely less on communication and benefit more from local computation.

7 CONCLUSION

In this paper, we analyzed of the effect of personalization in FedProx. With a theoretically-informed
adaptive choice of personalization degree, FedProx achieves a minimax-optimal statistical accuracy
under different statistical heterogeneity degrees and consistently outperforms pure local training. As
a minor contribution, we provably show that personalization reduces communication costs without
increasing the computation overhead. The results are validated through extensive experiments.
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A PROOF OF STATISTICAL CONVERNGENCE

To facilitate our analysis, we denote

∆̃
(g)
stat = w

(g)
⋆ − w̃(g), (15)

∆̃
(i)
stat = w

(i)
⋆ − w̃(i) ∀i ∈ [m], (16)

where ∆̃
(g)
stat is the difference between the true global model and the optimal solution of the global

model in (1) and ∆̃
(i)
stat is the difference between the true local model and the optimal solution of

the local model in (1) for any i ∈ [m]. The statistical error bound is established as E∥∆̃(g)
stat∥2 and

E∥∆̃(i)
stat∥2, where the expectation is taken over all the data.

And we also denote

δ
(i)
⋆ := w

(g)
⋆ −w

(i)
⋆ , δ̃(i) := w̃(g) − w̃(i), (17)

where δ
(i)
⋆ measures the difference between the true global model w(g)

⋆ and the true local model
w

(i)
⋆ , and δ̃(i) is the estimator of such a difference.

A.1 DISCUSSION ON ASSUMPTION 1

When assuming the statistical heterogeneity of each client is different (R is related to the client
index i), it would provide a more delicate description of statistical heterogeneity, and it also requires
different personalization degree per client. Therefore, it is better to consider the objective (18),
where the i-th client will be shrunk to the global with strength λi. Therefore, solving (18) will
consider different personalization degree for different clients. Solving the objective (18) would be
open for future work.

min
w(g),{w(i)}i∈[m]

m∑
i=1

pi

(
Li(w

(i), Si) +
λi

2
∥w(g) −w(i)∥2

)
, (18)

Under Assumptions 2 and 3 as we assume, Assumption 1 about statistical heterogeneity would be
equivalent to many other similar assumptions for statistical heterogeneity, like B-dissimilarity (Li
et al., 2020), parameter difference (Chen et al., 2023c) and gradient diversity (T Dinh et al., 2020;
Deng et al., 2020).

A.2 LEMMAS AND THE PROOF

To facilitate the proof of the theorem, we first present two additional lemmas and provide their proof.
Lemma 4. Under Assumption 3, for the optimal solution w̃(g) and w̃(i)’s in Problem (1), we have

∥w̃(g) − w̃(i)∥2 ≤
2∥∇Li(w̃

(g), Si)∥2
µ+ λ

.

By the µ-strongly convexity of ∇Li, we have that for any w ∈ Rd,

Li(w, Si) +
λ

2
∥w − w̃(g)∥2 ≥ Li(w̃

(g), Si) +
〈
∇Li(w̃

(g), Si),w − w̃(g)
〉
+

µ+ λ

2
∥w − w̃(g)∥2

≥ Li(w̃
(g), Si) + ∥w − w̃(g)∥

(
µ+ λ

2
∥w − w̃(g)∥ − ∥∇Li(w̃

(g), Si)∥
)
,

(19)

where in the last step we used the Cauchy inequality.

In addition, notice that w̃(i) is the optimal solution for the local model w(i) in the FedProx problem
(1), thus we have

w̃(i) = argmin
w

{
Li(w, Si) +

λ

2
∥w − w̃(g)∥2

}
.
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This result together with (19) implies that

Li(w̃
(g), Si) = Li(w̃

(g), Si) +
λ

2
∥w̃(g) − w̃(g)∥2 ≥ Li(w̃

(i), Si) +
λ

2
∥w̃(i) − w̃(g)∥2

≥ Li(w̃
(g), Si) + ∥w̃(i) − w̃(g)∥

(
µ+ λ

2
∥w̃(i) − w̃(g)∥ − ∥∇Li(w̃

(g), Si)∥
)
.

Therefore, since µ+ λ > 0 and ∥w̃(i) − w̃(g)∥ ≥ 0, rearranging the terms leads to

∥w̃(g) − w̃(i)∥ ≤ 2∥∇Li(w̃
(g), Si)∥

µ+ λ
, (20)

as claimed.

Lemma 5. Under Assumption 1, 2, 3, 4, for w̃GT, the solution of the GlobalTrain problem in (2),
we have

E∥w̃GT −w
(g)
⋆ ∥ ≤

ρ/
√
N + LR

µ/2
.

By the optimality condition of the GlobalTrain problem in (2) and the strong convexity of Li’s, we
have

0 ≥
∑
i∈[m]

pi

(
Li(w̃GT, Si)− Li(w

(g)
⋆ , Si)

)
≥
∑
i∈[m]

pi

〈
∇Li(w

(g)
⋆ , Si), w̃GT −w

(g)
⋆

〉
+

µ

2
∥w̃GT −w

(g)
⋆ ∥2

≥
∥∥∥ ∑

i∈[m]

pi∇Li(w
(g)
⋆ , Si)

∥∥∥∥∥∥w̃GT −w
(g)
⋆

∥∥∥+ µ

2
∥w̃GT −w

(g)
⋆ ∥2.

Therefore, we have

∥w̃GT −w
(g)
⋆ ∥ ≤

∥∥∥∑i∈[m] pi∇Li(w
(g)
⋆ , Si)

∥∥∥
µ/2

≤

∥∥∥∑i∈[m] pi∇Li(w
(i)
⋆ , Si)

∥∥∥+∑i∈[m] pi

∥∥∥∇Li(w
(g)
⋆ , Si)−∇Li(w

(i)
⋆ , Si)

∥∥∥
µ/2

(21)

By the L-smoothness property of Li’s in Assumption 2 and the bounded gradient property listed in
Assumption 4, we have∑

i∈[m]

pi

∥∥∥∇Li(w
(g)
⋆ , Si)−∇Li(w

(i)
⋆ , Si)

∥∥∥ ≤ ∑
i∈[m]

piL∥w(g)
⋆ −w

(i)
⋆ ∥ ≤ LR,

E
∥∥∥ ∑

i∈[m]

pi∇Li(w
(i)
⋆ , Si)

∥∥∥ = E
∥∥∥ ∑

i∈[m]

∑
j∈[ni]

pi
ni
∇ℓ(w̃(i), zij)

∥∥∥ ≤ ρ√
N

.

These results together with (21) implies

E∥w̃GT −w
(g)
⋆ ∥ ≤

ρ/
√
N + LR

µ/2

as claimed.
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A.3 PROOF OF LEMMA 1 AND THEOREM 1

A.3.1 PROOF OF LEMMA 1

Lemma 1 is a direct consequence of the proof of Theorem 1. To see this, from (46) and the fact that
(µ+ λ)2 ≥ µ(µ+ λ), we have

∥w̃(g) − w̃GT∥2 ≤
4

µ

(
1

µ+ λ
+

L

(µ+ λ)2

)∑
i

pi∥∇Li(w̃
(g), Si)∥2

≤ 4(1 + L/µ)

µ(µ+ λ)

∑
i

pi∥∇Li(w̃
(g), Si)∥2,

thus (4) holds. In addition, with the fact that ∥δ̃(i)∥2 ≥ 0, from (28) we find

0 ≥ −
∑
i

∑
j

pi
ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
+

µ

2

∑
i

∑
j

pi
ni

∥∥∥∆̃(i)
stat

∥∥∥2 + λ

2

∑
i

pi

∥∥∥δ̃(i)∥∥∥2 − λ

2
R2

≥ −
∑
i

∑
j

pi
ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
+

µ

2

∑
i

∑
j

pi
ni

∥∥∥∆̃(i)
stat

∥∥∥2 − λ

2
R2.

which implies the result in (5).

A.3.2 PROOF OF GLOBAL STATISTICAL ERROR BOUND IN THEOREM 1

Case 1: We first consider the case when R >
√∑

i
pi

ni
.

Recall that w̃(g) and {w̃(i)}i∈[m] are the minimizers of the objective (1). According to the first-order
condition, we have

∇w(i)Li

(
w(i), Si

) ∣∣
w(i)=w̃(i) = λ

(
w̃(g) − w̃(i)

)
, (22)

w̃(g) =
∑
i

piw̃
(i). (23)

we start with the optimality condition of w̃(i) and w̃(g), which yields

0 ≥
∑
i∈[m]

pi

[
Li(w̃

(i), Si) +
λ

2
∥w̃(g) − w̃(i)∥2

]
−
∑
i∈[m]

pi

[
Li(w

(i)
⋆ , Si) +

λ

2
∥w(g)

⋆ −w
(i)
⋆ ∥2

]
.

(24)

Reorganizing the terms, we obtain

0 ≥
∑
i∈[m]

∑
j∈[ni]

pi
ni

(
ℓ(w̃(i), zij)− ℓ(w

(i)
⋆ , zij)

)
+
∑
i∈[m]

pi
λ

2
∥w̃(g) − w̃(i)∥2 −

∑
i∈[m]

pi
λ

2
∥w(g)

⋆ −w
(i)
⋆ ∥2.

(25)

For the first term on the RHS in (25), apply the µ-strongly convexity of the loss function ℓ (cf.
Assumption 3), we then have

∑
i∈[m]

∑
j∈[ni]

pi
ni

(
ℓ(w̃(i), zij)− ℓ(w

(i)
⋆ , zij)

)
≥ −

∑
i∈[m]

∑
j∈[ni]

pi
ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
+

µ

2

∑
i∈[m]

∑
j∈[ni]

pi
ni

∥∥∥∆̃(i)
stat

∥∥∥2 , (26)

where we use the definition of ∆̃(i)
stat in (16).

Plugging (26) back into (25), it yields
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0 ≥ −
∑
i

∑
j

pi
ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
+

µ

2

∑
i

∑
j

pi
ni

∥∥∥∆̃(i)
stat

∥∥∥2
+
∑
i∈[m]

pi
λ

2
∥w̃(g) − w̃(i)∥2 −

∑
i∈[m]

pi
λ

2
∥w(g)

⋆ −w
(i)
⋆ ∥2.

(27)

Recall the definition in (17) and the Assumption 1 about statistical heterogeneity

0 ≥ −
∑
i

∑
j

pi
ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
+

µ

2

∑
i

∑
j

pi
ni

∥∥∥∆̃(i)
stat

∥∥∥2 + λ

2

∑
i

pi

∥∥∥δ̃(i)∥∥∥2 − λ

2
R2.

(28)

Applying Cauchy inequality on the first term of (28), it yields

∑
i

∑
j

pi
ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
=
∑
i

pi

〈∑
j

1

ni
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉

≤
∑
i

pi

∥∥∥∥∥∥
∑
j

1

ni
∇ℓ(w(i)

⋆ , zij)

∥∥∥∥∥∥
2

∥∥∥∆̃(i)
stat

∥∥∥
2
.

(29)

Consider the Assumption 4 and zij are i.i.d dataE

∥∥∥∥∥∥
∑
j

1

ni
∇ℓ(w(i)

⋆ , zij)

∥∥∥∥∥∥
2

2

≤ E

∥∥∥∥∥∥
∑
j

1

ni
∇ℓ(w(i)

⋆ , zij)

∥∥∥∥∥∥
2

≤ ρ2

ni
. (30)

Combining (29) and (30), it yields

∑
i

∑
j

pi
ni

E
〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
≤
∑
i

ρ
pi√
ni
∥∆̃(i)

stat∥2. (31)

Plugging (31) back to (28) yields

0 ≥ −ρ
∑
i

pi√
ni

E
∥∥∥∆̃(i)

stat

∥∥∥
2
+

µ

2

∑
i

piE
∥∥∥∆̃(i)

stat

∥∥∥2 + λ

2

∑
i

piE
∥∥∥δ̃(i)∥∥∥2 − λ

2
R2. (32)

After dropping the third term and applying Cauchy inequality, we obtain

0 ≥ −ρ

( ∑
i∈[m]

pi
ni

)(∑
i

piE
∥∥∥∆̃(i)

stat

∥∥∥2 )
 1

2

+
µ

2

∑
i

piE
∥∥∥∆̃(i)

stat

∥∥∥2 − λ

2
R2. (33)

The equation (33) would be regarded as a quadratic function of E
∑

i pi

∥∥∥∆̃(i)
stat

∥∥∥2. If we set the λ as

λ≤ ρ2

µR2

∑
i∈[m]

pi
ni

, (34)

then solving the inequality in (33) w.r.t
∑

i pi

∥∥∥∆̃(i)
stat

∥∥∥2 yields
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E
∥∥∥∆̃(g)

stat

∥∥∥
2
≤

(∑
i

piE
∥∥∥∆̃(i)

stat

∥∥∥2) 1
2

≤ 1

µ

ρ

∑
i∈[m]

pi
ni

 1
2

+

ρ2
∑
i∈[m]

3pi
ni

 1
2


=

(1 +
√
3)ρ

µ

∑
i∈[m]

pi
ni

 1
2

.

(35)

Case 2: Then we consider R ≤
√∑

i
pi

ni
. Recall the definition of the global minimizer of Global-

Training w̃GT = argminw
∑

i piLi(w;Si), based on the optimality condition of w̃i, w̃g , i ∈ [m],
we obtain

∑
i

pi

(
Li(w̃

(i), Si) +
λ

2
∥w̃(i) − w̃(g)∥2

)
≤
∑
i

pi

(
Li(w̃GT, Si) +

λ

2
∥ w̃GT − w̃GT∥2

)
=
∑
i

piLi(w̃GT, Si).
(36)

Therefore, we obtain ∑
i

piLi(w̃GT, Si) ≥
∑
i

piLi(w̃
(i), Si). (37)

In addition, applying the smoothness assumption in Assumption 2 yields

∣∣∣Li(w̃
(i), Si)− Li(w̃

(g), Si)−∇Li(w̃
(g), Si)

T (w̃(i) − w̃(g))
∣∣∣ ≤ L

2
∥w̃(i) − w̃(g)∥2. (38)

Combining (37) and (38), we have

∑
i

piLi(w̃GT, Si) ≥
∑
i

piLi(w̃
(i), Si) (39)

≥
∑
i

piLi(w̃
(g), Si) +

∑
i

pi∇Li(w̃
(g), Si)

⊤(w̃(i) − w̃(g))−
∑
i

pi
L

2
∥w̃(i) − w̃(g)|2.

(40)

Using Cauchy inequality on the second term of the R.H.S.,

∑
i

piLi(w̃GT, Si) ≥
∑
i

piLi(w̃
(g), Si)−

∑
i

pi∥∇Li(w̃
(g), Si)∥2∥w̃(i) − w̃(g)∥2

−
∑
i

pi
L

2
∥w̃(i) − w̃(g)∥2. (41)

On the other hand, note that the optimality condition of w̃GT is

∑
i

pi∇Li(w̃GT, Si) = 0, (42)
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Using the strong-convexity assumption in Assumption 3, we can show that∑
i

pi

{
Li(w̃

(g), Si)− Li(w̃GT, Si)−∇Li(w̃GT, Si)
T (w̃(g) − w̃GT)

}
=
∑
i

pi

{
Li(w̃

(g), Si)− Li(w̃GT, Si)
}

≥
∑
i

pi
µ

2
∥w̃(g) − w̃GT∥2

=
µ

2
∥w̃(g) − w̃GT∥2. (43)

Combining the results (41) and (43), it yields

∑
i

piLi(w̃GT, Si) ≥
∑
i

piLi(w̃GT, Si) +
µ

2
∥w̃(g) − w̃GT∥2

−
∑
i

pi∥∇Li(w̃
(g), Si)∥2∥w̃(i) − w̃(g)∥2 −

∑
i

pi
L

2
∥w̃(i) − w̃(g)∥2. (44)

Reorganizing these terms yields

µ

2
∥w̃(g) − w̃GT∥2 ≤

∑
i

pi

{
∥∇Li(w̃

(g), Si)∥2∥w̃(i) − w̃(g)∥2 +
L

2
∥w̃(i) − w̃(g)∥2

}
. (45)

Using Lemma 4 to bound the term ∥w̃(i) − w̃(g)∥2, we have

∥w̃(g) − w̃GT∥2 ≤
2

µ

∑
i

pi

[
2

µ+ λ
+

2L

(µ+ λ)2

]
∥∇Li(w̃

(g), Si)∥2

=
4

µ

(
1

µ+ λ
+

L

(µ+ λ)2

)∑
i

pi∥∇Li(w̃
(g), Si)∥2. (46)

Note that by the smoothness Assumption and triangle inequality,

∥∇Li(w̃
(g), Si)∥22 ≤ 2∥∇Li(w̃

(g), Si)−∇Li(w
(i)
⋆ , Si)∥2 + ∥∇Li(w

(i)
⋆ , Si)∥2

≤ 2L2∥w̃(g) −w
(i)
⋆ ∥2 + 2∥∇Li(w

(i)
⋆ , Si)∥2. (47)

Take expectation w.r.t Si and use Assumption 1 and 4, then we have

E[∥∇Li(w̃
(g), Si)∥2] ≤ 2L2E[∥w̃(g) −w

(i)
⋆ ∥2] + 2E


∥∥∥∥∥∥ 1

ni

ni∑
j=1

∇L(w(i)
⋆ , zij)

∥∥∥∥∥∥
2


≤ 4L2E[∥w̃(g) −w
(g)
⋆ ∥2] + 4L2R2 + 2

ρ2

n
, (48)

where the last term comes from (30).

Plugging (48) back into (46), it yields

E[∥w̃(g) − w̃GT∥2] ≤
4

µ

(
1

µ+ λ
+

L

(µ+ λ)2

){
4L2E[∥w̃(g) −w

(g)
⋆ ∥2] + 4L2R2 + 2

ρ2

n

}
.

(49)
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Next, we are ready to establish the global error bound. Using the result (49) and Lemma 5, we obtain

E[∥w̃(g) −w
(g)
⋆ ∥2] ≤ E[∥w̃(g) − w̃GT∥2] + E[∥w̃GT −w

(g)
⋆ ∥2]

≤ 4

µ

(
1

µ+ λ
+

L

(µ+ λ)2

){
4L2E[∥w̃(g) −w

(g)
⋆ ∥2] + 4L2R2 + 2

ρ2

n

}
+

8ρ2

µ2

1

N
+

8L2

µ2
R2. (50)

Let’s define g(λ) = 4
µ

(
1

µ+λ + L
(µ+λ)2

)
and reorganize (50), which yields

E[∥w̃(g) −w
(g)
⋆ ∥2] ≤

g(λ)
(
4L2R2 + 2ρ2

n

)
+ 8ρ2

µ2
1
N + 8L2

µ2 R2

1− 4L2g(λ)
. (51)

If we assume

g(λ) ≤ 1

8L2
∧
((

4ρ2

µ2N
+

4L2R2

µ2

)/(
2L2R2 +

ρ2

n

))
, (52)

we have

E∥w̃(g) −w
(g)
⋆ ∥2 ≤ 32

(
ρ2

µ2

1

N
+

L2

µ2
R2

)
. (53)

Furthermore, we can get a simplified condition for λ as

λ ≥ 8κ

µ

{
8L2 ∨

((
2L2R2 +

ρ2

n

)/( 4ρ2

µ2N
+

4L2R2

µ2

))}
− µ (54)

where κ = L
µ ≥ 1 and the condition that λ is non-negative holds trivially as κL2

µ = κ2L ≥ µ.

Combine two-case arguments, we have

⇒ E∥w̃(g) −w
(g)
⋆ ∥2 ≤


(

(1+
√
3)ρ

µ

)2∑
i∈[m]

pi

ni
R >

√∑
i
pi

ni

32
(

ρ2

µ2
1
N + L2

µ2 R
2
)

R ≤
√∑

i
pi

ni
.

(55)

Thus it yields a one-line rate

E∥w̃(g) −w
(g)
⋆ ∥2 ≤ C1

1

N
+ C2(

∑
i∈[m]

pi
ni
∧R2), (56)

where

C1 = 32
ρ2

µ2
,

C2 =

(
(1 +

√
3)ρ

µ

)2

∨ 32L2

µ2
.

(57)

Moreover, if we assume data balanced, i.e ni = n, ∀i ∈ [m] and pi =
1
m , we obtain

E∥w̃(g) −w
(g)
⋆ ∥2 ≤ C1

1

N
+ C2

(
1

n
∧R2

)
, (58)

as claimed.
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A.3.3 PROOF OF LOCAL STATISTICAL ERROR BOUND IN THEOREM 1

Case 1: first we consider the case when R >
√∑

i
pi

ni
.

To prove the local statistical error bound, we start with the optimality condition of w̃(i) and w̃(g) for
a single client, which yields that for i ∈ [m],

0 ≥ Li

(
w̃(i), Si

)
+

λ

2

∥∥∥w̃(g) − w̃(i)
∥∥∥2 − Li

(
w

(i)
⋆ , Si

)
− λ

2

∥∥∥w̃(g) −w
(i)
⋆

∥∥∥2 . (59)

Reorganized the terms, we obtain

0 ≥
∑

j∈[ni]

1

ni

(
ℓ
(
w̃(i), zij

)
− ℓ

(
w

(i)
⋆ , zij

))
+

λ

2

∥∥∥w̃(g) − w̃(i)
∥∥∥2 − λ

2

∥∥∥w̃(g) −w
(i)
⋆

∥∥∥2 . (60)

For the first term on the RHS, applying the µ-strongly convex of the loss function ℓ (cf. Assumption
3) yields

∑
j∈[ni]

1

ni

(
ℓ(w̃(i), zij)− ℓ(w

(i)
⋆ , zij)

)
≥ −

∑
j∈[ni]

1

ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
+

µ

2

∑
j∈[ni]

1

ni

∥∥∥∆̃(i)
stat

∥∥∥2 ,
(61)

where we use the definition of ∆̃(i)
stat in (16).

Pluggging (61) back into (60), it yields

0 ≥ −
∑
j

1

ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
+

µ

2

∑
j

1

ni

∥∥∥∆̃(i)
stat

∥∥∥2 + λ

2
∥w̃(g) − w̃(i)∥2 − λ

2
∥w̃(g) −w

(i)
⋆ ∥2.

(62)

Apply Cauchy inequality on the first term of (62)

∑
j

1

ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
=

〈∑
j

1

ni
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉

≤

∥∥∥∥∥∥
∑
j

1

ni
∇ℓ(w(i)

⋆ , zij)

∥∥∥∥∥∥
2

∥∥∥∆̃(i)
stat

∥∥∥
2
.

(63)

Consider the Assumption 4 and zij are i.i.d dataE

∥∥∥∥∥∥
∑
j

1

ni
∇ℓ(w(i)

⋆ , zij)

∥∥∥∥∥∥
2

2

≤ E

∥∥∥∥∥∥
∑
j

1

ni
∇ℓ(w(i)

⋆ , zij)

∥∥∥∥∥∥
2

≤ ρ2

ni
. (64)

Combining (63) and (64), it yields

∑
j

1

ni
E
〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
≤ ρ

1
√
ni

E∥∆̃(i)
stat∥2. (65)

Plugging (65) back to (62) yields
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0 ≥ −ρ 1
√
ni

E
∥∥∥∆̃(i)

stat

∥∥∥
2
+

µ

2
E
∥∥∥∆̃(i)

stat

∥∥∥2 + λ

2
E∥w̃(g) − w̃(i)∥2 − λ

2
E∥w̃(g) −w

(i)
⋆ ∥2. (66)

To utilize the statistical global convergence rate shown in Appendix A.3.2, we need to discuss R in
the same way. Recalling the upper bound of ∆̃(g)

stat in (58):

E∥∆̃(g)
stat∥2 ≤

{
C2

n R > 1√
n

C1

N + C2R

n
1
2

R ≤ 1√
n
.

(67)

For simplicity, in the following arguments, we denote the upper bound of E∥∆̃(g)
stat∥2 as U0.

Note that

−∥w̃(g) −w
(i)
⋆ ∥2 = −

∥∥∥w̃(g) −w
(g)
⋆ +w

(g)
⋆ −w

(i)
⋆

∥∥∥2
= −∥∆̃(g)

stat∥2 − ∥w
(g)
⋆ −w

(i)
⋆ ∥2 − 2∥w(g)

⋆ −w
(i)
⋆ ∥2

∥∥∥∆̃(g)
stat

∥∥∥
2

≥ −∥∆̃(g)
stat∥2 −R2 − 2R

∥∥∥∆̃(g)
stat

∥∥∥
2
.

(68)

Plug (68) into (66)

0 ≥− ρ
√
ni

E
∥∥∥∆̃(i)

stat

∥∥∥
2
+

µ

2
E
∥∥∥∆̃(i)

stat

∥∥∥2 + λ

2
E
∥∥∥δ̃(i)∥∥∥2 − λ

2
E
∥∥∥w̃(g) −w

(g)
⋆ +w

(g)
⋆ −w

(i)
⋆

∥∥∥2
=− ρ

√
ni

E
∥∥∥∆̃(i)

stat

∥∥∥
2
+

µ

2
E
∥∥∥∆̃(i)

stat

∥∥∥2 + λ

2
E
∥∥∥δ̃(i)∥∥∥2 − λ

2
E
∥∥∥∆̃(g)

stat

∥∥∥2 − λ

2
R2 − λRE

∥∥∥∆̃(g)
stat

∥∥∥
2
.

(69)

Putting (67) into (69) and reorganizing, we obtain

0 ≥− ρ
√
ni

E
∥∥∥∆̃(i)

stat

∥∥∥
2
+

µ

2
E
∥∥∥∆̃(i)

stat

∥∥∥2 + λ

2
E
∥∥∥δ̃(i)∥∥∥2 − λ

2
U2
0 −

λ

2
R2 − λR U0

≥µ

2
E
∥∥∥∆̃(i)

stat

∥∥∥2 − ρ
√
ni

E
∥∥∥∆̃(i)

stat

∥∥∥
2
− λ

2
(U0 +R)

2
.

(70)

In addition, recall that in this case we set λ⋆ ≤ ρ2

µR2

∑
i∈[m]

pi

ni
in the statistical convergence analysis

of the global model. If we assume data balanced, i.e. pi = 1
m and ni = n, ∀i ∈ [m], it yields

λ⋆ ≤ ρ2

µnR2

E∥∆̃(i)
stat∥2 ≤

1

µ

[
ρ√
n
+

(
ρ2

n
+

2ρ2

nR2
(U0 +R)

2

) 1
2

]
.

=
1√
n

1

µ

(
ρ+

(
ρ2 +

2ρ2

R2
(U0 +R)2

) 1
2

)

≤ 1√
n

ρ+ (ρ2 + 4ρ2(C2 + 1))
1
2

µ

≤ 1√
n

ρ(1 + (1 + 4(C2 + 1))
1
2 )

µ
.

(71)

Case 2: we then consider the case when R ≤
√∑

i
pi

ni
.
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E[∥w̃(i) −w
(i)
⋆ ∥2]

≤ 3E[∥w̃(i) − w̃(g)∥2] + 3E[∥w̃(g) −w
(g)
⋆ ∥2] + 3E[∥w(g)

⋆ −w
(i)
⋆ ∥2]

(a)

≤ 12

(µ+ λ)2
E[∥∇Li(w̃

(g))∥2] + 3E[∥w̃(g) −w
(g)
⋆ ∥2] + 3R2

(b)

≤ 12

(µ+ λ)2

[
4L2E[∥w̃(g) −w

(g)
⋆ ∥2] + 4L2R2 + 2

ρ2

n

]
+ 3E[∥w̃(g) −w

(g)
⋆ ∥2] + 3R2

(c)

≤ 12

(µ+ λ)2

[
128L2

(
ρ2

µ2

1

N
+

L2

µ2
R2

)
+ 4L2R2 + 2

ρ2

n

]
+ 96

(
ρ2

µ2

1

N
+

L2

µ2
R2

)
+ 3R2

=
12

(µ+ λ)2

[
128L2ρ2

µ2

1

N
+ (128L4/µ2 + 4L2)R2 + 2

ρ2

n

]
+

96ρ2

µ2

1

N
+ (96

L2

µ2
+ 3)R2

(72)

where step (a) comes from Assumption 1 and Lemma 4, step (b) comes from result (48) and step (c)
is a direct result of applying the error bound of E∥∆̃(g)

stat∥2.

If we assume λ satisfies the following condition

12

(µ+ λ)2
≤ 96ρ2/(µ2N) + 99κ2R2

128ρ2/N + 132L2R2 + 2ρ2/n
(73)

we have

E[∥w̃(i) −w
(i)
⋆ ∥2] ≤

192ρ2

µ2

1

N
+ 198κ2R2 (74)

Furthermore, we can get a simplified condition for λ as

λ ≥

√
8(64ρ2/N + 66L2R2 + ρ2/n)

32ρ2/(µ2N) + 33κ2R2
− µ (75)

Combining two-case arguments, we have:

⇒ E
∥∥∥∆̃(i)

stat

∥∥∥2 ≤


1
n

(
ρ(1+(1+4(C2+1))

1
2 )

µ

)2

R >
√

m
N

192ρ2

µ2
1
N + 198κ2R2 R ≤

√
m
N

. (76)

And it yields a one-line rate

E
∥∥∥∆̃(i)

stat

∥∥∥2 ≤ C3
1

N
+ C4(R

2 ∧ 1

n
), (77)

where

C3 =
192ρ2

µ2
, (78)

C4 =

(
ρ(1 + (4C2 + 5)

1
2 )

µ

)2

∨ 198κ2, (79)

(80)
and C2 are specified in (57).

Combining the results in A.3.2 and A.3.3, we leave a remark below to further interpret the effect of
personalization in obj (1) and discuss how to incorporate the conditions of λ when establishing the
global and local statistical accuracy.
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Remark 2. To better understand how such an interpolation is achieved through an adaptive person-
alization degree, we examine the role of λ in navigating between the two extreme cases: GlobalTrain
and LocalTrain. As the statistical heterogeneity R → ∞, we have λ → 0, leading to a high degree
of personalization. The statistical error bound becomes O(n−1), matching the rate of LocalTrain;
as the statistical heterogeneity R→ 0, λ increases, leading to a low degree of personalization. The
statistical error bound eventually converges to O(N−1), matching the rate of GlobalTrain under a
homogeneous setting. As R ∈ (0,∞), λ transits between the two extremes, making FedProx perform
no worse than LocalTrain while benefiting from global training when clients share similarities.

To make the global statistical error bound and local statistical error bound hold simultaneously, we
should be aware about the condition of the adaptive strategy of λ specified in our proof. It could be
summarized as {

λ ≥ max(a1, a2) R <
√

m
N

λ ≤ ρ2

nµR2 R ≥
√

m
N

, (81)

where

a1 =
8κ

µ

{
8L2 ∨

(
2L2R2 + ρ2/n

4ρ2/(µ2N) + 4κ2R2

)}
− µ,

and

a2 =

√
8(64ρ2/N + 66L2R2 + ρ2/n)

32ρ2/(µ2N) + 33κ2R2
− µ.

We can induce a sufficient condition of λ for R < 1√
n

as

λ ≥ max
{
64κ2L, (2κ ∨ 5)µ

2L2R2 + ρ2/n

L2R2 + ρ2/N

}
− µ. (82)
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B OPTIMIZATION CONVERGENCE RATE

B.1 ALGORITHM

Algorithm 1: One-stage FedProx

Input: Initial global model w(g)
1 , initial local models {w(i)

0,K}i∈[m], global rounds T , global
step sizes γ, local rounds K, local step sizes η

Output: Local models {w(i)
T,K}i∈[m] and global model w(g)

T

for t = 1, . . . , T do
The server sends w(g)

t to client i, ∀i ∈ [m]

Set w(i)
t,0 = w

(i)
t−1,K ;

for k = 0, . . . ,K − 1 do
w

(i)
t,k+1 = w

(i)
t,k −

η
ni

∑
j∈[ni]

{
∇ℓ(w(i)

t,k, zi,j) + λ
(
w

(i)
t,k −w

(g)
t

)}
Push ∇̂Fi(w

(g)
t ) = λ(w

(g)
t −w

(i)
t,K) to the server;

w
(g)
t+1 ← w

(g)
t − γ

m

∑
i∈[m] ∇̂Fi(w

(g)
t );

B.2 PROOF OF LEMMAS

B.2.1 PROOF OF LEMMA 2

To facilitate our analysis, we state a claim first.

Claim: If f is µ-strongly-convex, then the proximal operator

proxf/λ(x) = argmin
v

(
f(v) +

λ

2
∥x− v∥2

)
, (83)

is Lw- Lipschitz continuous with Lw = λ
λ+µ .

Proof. Based on the definition of proxf/λ(x), it will satisfy the first order condition

∇f(prox 1
λ f (x))− λ(x− prox 1

λ f (x)) = 0. (84)

Then we have

∇f(x1)− λ(v1 − x1) = 0 where x1 = prox 1
λ f (v), (85)

∇f(x2)− λ(v2 − x2) = 0 where x2 = prox 1
λ f (v2). (86)

Based on the µ-strongly convexity of f , we have

⟨∇f(x1)−∇f(x2), x1 − x2⟩ ≥ µ∥x1 − x2∥2 (87)

⇒ ∥prox 1
λ f (x1)− prox 1

λ f (x2)∥ ≤
1

1 + µ
λ

∥x1 − x2∥. (88)

Now, we are ready to prove Lemma 2.

First, from Mishchenko et al. (2023), we can directly obtain the analytic properties of Fi. Next, the
analytic properties of hi are direct results from Assumption 3 and 2. Finally, to analyze the property
of the mapping w

(i)
⋆ , we just need to use the result from the above claim as we know the definition

of w(i)
⋆ (·) in (9).
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B.2.2 INNER LOOP CONVERGENCE

Lemma 6 ((Ji et al., 2022), Inner Loop Error Contraction). Suppose Assumption 3 and 2 hold, then
if η ≤ 1/Lℓ, for all t ≥ 0 and ϵ > 0, the inner loop error bound of all clients can be formulated as:

e
(i)
t+1 := ∥w(i)

t+1,K −w
(i)
t+1,⋆∥2 ≤ (1 + ϵ)(1− ηµℓ)

Ke
(i)
t +

(
1 +

1

ϵ

)
(1− ηµℓ)

K∥w(i)
t,⋆ −w

(i)
t−1,⋆∥2.

(89)

Proof. The proof can be found in Lemma 2 (Ji et al., 2022).

B.2.3 OUTER LOOP CONVERGENCE

Lemma 7 (Outer Loop Error Contraction). Suppose Assumption 3 and 2 hold, then if γ ≤ Lg , we
have for all t > 0 and ϵg > 0:

∥w(g)
t+1 − w̃(g)∥2 ≤ (1− γµg + γϵg)∥w(g)

t − w̃(g)∥2 − γ2∥∇F (w
(g)
t )∥2

+ (γ3Lg)∥∇̂F (w
(g)
t )∥2 +

(
γ

ϵg
+ γ2

)
∥∇F (w

(g)
t )− ∇̂F (w

(g)
t )∥2.

(90)

Proof. Note

∇̂Fi(w
(g)
t ) = λ(w

(g)
t −w

(i)
t,K). (91)

We define

∇̂F (w
(g)
t ) :=

1

m

∑
i∈[m]

∇̂Fi(w
(g)
t ) =

1

m

∑
i∈[m]

λ(w
(g)
t −w

(i)
t,K). (92)

Thus the global update rule can be written as w(g)
t+1 = w

(g)
t − γ∇̂F (w

(g)
t ). For the outer loop,

∥w(g)
t+1 − w̃(g)∥2

=∥w(g)
t − w̃(g) − γ∇̂F (w

(g)
t )∥2

=∥w(g)
t − w̃(g)∥2 − 2γ⟨w(g)

t − w̃(g), ∇̂F (w
(g)
t )⟩+ γ2∥∇̂F (w

(g)
t )∥2

≤(1 + ϵgγ)∥w(g)
t − w̃(g)∥2 − 2γ⟨w(g)

t − w̃(g),∇F (w
(g)
t )⟩+ γ2∥∇̂F (w

(g)
t )∥2

+

(
γ

ϵg

)
∥∇̂F (w

(g)
t )−∇F (w

(g)
t )∥2,

(93)

where we apply the Young’s inequality with ϵg > 0 in the last line.

Next, we bound the inner product term in the last line using the µg-strong convexity of F :

−γ⟨w(g)
t − w̃(g),∇F (w

(g)
t )⟩ ≤ −γ

(
F (w

(g)
t )− F̂ +

µg

2
∥w(g)

t − w̃(g)∥2
)

= −γ(F (w
(g)
t+1)− F̂ )− γµg

2
∥w(g)

t − w̃(g)∥2 + γ
(
F (w

(g)
t+1)− F (w

(g)
t )
)
.

(94)

where F̂ := F (w̃(g)) and the last term F (w
(g)
t+1) − F (w

(g)
t ) can be upper bounded using the Lg-

smoothness of F :

F (w
(g)
t+1) ≤F (w

(g)
t )− γ⟨∇F (w

(g)
t ), ∇̂F (w

(g)
t )⟩+ Lgγ

2

2
∥∇̂F (w

(g)
t )∥2

(a)
=F (w

(g)
t ) +

γ

2

(
∥∇F (w

(g)
t )− ∇̂F (w

(g)
t )∥2 − ∥∇F (w

(g)
t )∥2 − ∥∇̂F (w

(g)
t )∥2

)
+

Lgγ
2

2
∥∇̂F (w

(g)
t )∥2

=F (w
(g)
t )− γ

2
∥∇F (w

(g)
t )∥2 −

(
γ

2
− Lgγ

2

2

)
∥∇̂F (w

(g)
t )∥2 + γ

2
∥∇F (w

(g)
t )− ∇̂F (w

(g)
t )∥2,

(95)
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where the step (a) uses the fact −⟨a, b⟩ = 1
2∥a− b∥2 − 1

2∥a∥
2 − 1

2∥b∥
2.

Substituting (94) and (95) into (93) leads to

∥w(g)
t+1 − w̃(g)∥2

≤(1 + ϵgγ)∥w(g)
t − w̃(g)∥2 + γ2∥∇̂F (w

(g)
t )∥2 +

(
γ

ϵg

)
∥∇̂F (w

(g)
t )−∇F (w

(g)
t )∥2

− 2γ(F (w
(g)
t+1)− F̂ )− γµg∥w(g)

t − w̃(g)∥2

− γ2∥∇F (w
(g)
t )∥2 − γ

(
γ − Lgγ

2
)
∥∇̂F (w

(g)
t )∥2 + γ2∥∇F (w

(g)
t )− ∇̂F (w

(g)
t )∥2

≤(1− γµg + γϵg)∥w(g)
t − w̃(g)∥2 − γ2∥∇F (w

(g)
t )∥2 + (γ3Lg)∥∇̂F (w

(g)
t )∥2

+

(
γ

ϵg
+ γ2

)
∥∇F (w

(g)
t )− ∇̂F (w

(g)
t )∥2.

(96)

B.3 PROOF OF THEOREM 2

Recall the definition of e(i)t in Lemma 6, we define

et =
1

m

∑
i∈[m]

e
(i)
t . (97)

Recall the definition ∇F (w
(g)
t ), ∇̂F (w

(g)
t ) in Lemma 3 and eq (92), the gradient approximation

error is

∥∇F (w
(g)
t )− ∇̂F (w

(g)
t )∥2 = λ2

∥∥∥ 1

m

m∑
i=1

(
w

(i)
t,K −w

(i)
t,⋆

)∥∥∥2 ≤ λ2et. (98)

Therefore, the recursion of optimization error given by Lemma 7 can be further bounded as:

∥w(g)
t+1 − w̃(g)∥2

(a)

≤ (1− γµg + γϵg)∥w(g)
t − w̃(g)∥2 −

(
γ2 − γ3Lg(1 + ζ)

)
∥∇F (w

(g)
t )∥2

+

(
γ

ϵg
+ γ2 + Lgγ

3(1 + ζ−1)

)
∥∇F (w

(g)
t )− ∇̂F (w

(g)
t )∥2

(b)

≤(1− γµg + γϵg)∥w(g)
t − w̃(g)∥2 − γ2

(
1− γLg(1 + ζ)

)
∥∇F (w

(g)
t )∥2

+

(
γ

ϵg
+ γ2(2 + ζ−1)

)
λ2et,

(99)

where the step (a) comes from the Young’s inequality with ζ > 0 to be chosen and the step (b)
follows from the step size condition γ ≤ 1/Lg .

Invoking Lemma 2 and Lemma 6, the inner loop optimization error is updated as

et+1 ≤ (1 + ϵ)(1− ηµℓ)
Ket +

(
1 +

1

ϵ

)
(1− ηµℓ)

K 1

m

m∑
i=1

∥w(i)
t+1,⋆ −w

(i)
t,⋆∥2

(a)

≤ (1 + ϵ)(1− ηµℓ)
Ket +

(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
w∥w

(g)
t −wg

t+1∥2
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Ket +

(
1 +

1

ϵ

)
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KL2
wγ

2∥∇̂F (w
(g)
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(c)

≤ (1 + ϵ)(1− ηµℓ)
Ket +

(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
wγ

2
(
2∥∇F (w

(g)
t )∥2 + 2λ2et

)
=
(
1 + ϵ+ 2(1 + ϵ−1)L2

wγ
2λ2
)
(1− ηµℓ)

K︸ ︷︷ ︸
:=q

et + 2

(
1 +

1

ϵ

)
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KL2
wγ
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(100)
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where step (a) is due to Lemma 2, step (b) uses the global update: w(g)
t+1 − w

(g)
t = −γ∇̂F (w

(g)
t )

and in step (c), we just apply Cauchy inequality instead of Young’s inequality.

Under η ≤ 1/Lℓ, we have 1 − ηµℓ < 1. Therefore, by choosing a large K we can always drive q
arbitrarily small. Let K be such that

q ≤ 1− γµg ≤ 1− γµg + γϵg. (101)

Then, we can rewrite (100) as:

et+1 ≤
1− γµg + γϵg + q

2
et −

1− γµg + γϵg − q

2
et

+ 2

(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
wγ

2∥∇F (w
(g)
t )∥2.

(102)

Letting c1 = 2
1−γµg+γϵg−q ·

(
γ
ϵg

+ γ2(2 + ζ−1)
)
λ2, we can combine (102) with (99) and obtain

∥w(g)
t+1 − w̃(g)∥2 + c1 · et+1

≤(1− γµg + γϵg)
(
∥w(g)

t − w̃(g)∥2 + c1 · et
)
− γ2

(
1− γLg(1 + ζ)

)
∥∇F (w

(g)
t )∥2

+

(
2

1− γµg + γϵg − q
·
(

γ

ϵg
+ γ2(2 + ζ−1)

)
λ2

)
· 2
(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
wγ

2∥∇F (w
(g)
t )∥2.

(103)

Therefore, if the condition (101) and

4λ2γ

1− γµg + γϵg − q

(
1

ϵg
+ γ(2 + ζ−1)

)(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
w ≤ 1− γLg(1 + ζ) (104)

hold then (103) implies both ∥w(g)
t − w̃(g)∥2 and et converge to zero at rate 1− γµg + γϵg .

It remains to specify the free parameters (ϵg, ϵ, ζ) in (101), (104) and others listed in Lemma 7 and
Lemma 6.

• Convergence Rate For the connection term in (103), if we set

ϵg =
µg

2
· (1− γµg) > 0, (105)

which, substituting into 1− γµg + γϵg , gives the convergence rate

r := 1− γµg

2
− (γµg)

2

2
. (106)

Under condition γ ≤ 1/Lg , one can verify that r ∈ (0, 1).

• Step size conditions. Under the requirement (101), we have

1− γµg + γϵg − q ≥ γϵg, (107)

which gives the following sufficient condition for (104):

2

ϵg
·
(

1

ϵg
+ γ(2 + ζ−1)

)
λ2 · 2

(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
w ≤ 1− γLg(1 + ζ). (108)

Further restricting γ such that

γ(2 + ζ−1)
µg

2
≤ 1 =⇒ γ(2 + ζ−1) ≤ 1

ϵg
, (109)

it suffices to require the following for (108) to hold:(
2

ϵg

)2

λ2 · 2
(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
w ≤ 1− γLg(1 + ζ). (110)
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Letting ϵ = 1 and ζ = 1 − γLg > 0, we collect all the conditions (105), (110) and (101) on γ
respectively as follows:

1− γLg > 0, 1− γµg > 0, (111)

(1− γµg)
2
(1− γLg)

2 ≥ 4λ2 · 4(1− ηµℓ)
KL2

w ·
(

2

µg

)2

, (112)

1− γµg ≥
(
2 + 4L2

wγ
2λ2
)
(1− ηµℓ)

K . (113)

Using the fact that µg ≤ Lg , the above conditions simply to

γ < 1/Lg,
(
2 + 64L2

w(1/µg)
2λ2
)
(1− ηµℓ)

K ≤ (1− γLg)
4. (114)

B.4 PROOF OF COROLLARY 1

With η = 1/Lℓ = (λ + L)−1, γ = 1/(2Lg) = λ+L
2λL , and using the fact that Lw = λ

λ+µ and

µg = λµ
λ+µ (cf. Lemma 2), condition (114) for K becomes(

2 + 64L2
w(1/µg)

2λ2
)
(1− ηµℓ)

K

=

(
2 + 64

λ2

(λ+ µ)2
(λ+ µ)2

(λµ)2
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)(
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)K

=

(
2 + 64

λ2
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)(
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λ+ L

)K

≤ 1

16
.

(115)

If L = µ, then the above condition trivially holds. Otherwise, a sufficient condition for it is

66κ2

(
L− µ

λ+ L

)K−2

≤ 1

16
, (116)

where we have used the fact that

λ2

µ2

(
L− µ

λ+ L

)K

=

(
λ

λ+ L

)2

·
(
L− µ

µ

)2(
L− µ

λ+ L

)K−2

≤ κ2

(
L− µ

λ+ L

)K−2

(117)

and κ := L/µ ≥ 1. Finally, using the inequality log(1/x) ≥ 1− x for 0 < x ≤ 1 we obtain

K ≥ 2 +
λ+ L

λ+ µ
· log(1056κ2). (118)

B.5 PROOF OF THE LOCAL MODEL CONVERGENCE RATE IN THEOREM 2

Proof. Note that

∥w(i)
t,K − w̃(i)∥2 ≤ 2∥w(i)

t,K −w
(i)
t,⋆∥2 + 2∥w(i)

t,⋆ − w̃(i)∥2. (119)

For the first part on the right-hand side, recalling the definition of e(i)t in Lemma 6

2∥w(i)
t,K −w

(i)
t,⋆∥2 = 2∥e(i)t ∥2. (120)

For the second term on the right-hand side, first, note the property in (9)

w
(i)
t,⋆ = proxLi/λ(w

(g)
t ). (121)

Based on the first order condition of (1)

w̃(i) = proxLi/λ(w̃
(g)). (122)
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Next, plugging (121) and (122) into (119), it yields

∥w(i)
t,K − w̃(i)∥2 ≤ 2∥e(i)t ∥2 + 2∥ proxLi/λ(w

(g))− proxLi/λ(w̃
(g))∥2

≤ 2∥e(i)t ∥2 + 2L2
w∥w

(i)
t,⋆ − w̃(i)∥2,

(123)

where the last we use Lemma 2.

In the proof of Theorem 2, we have established that both ∥w(g)
t − w̃(g)∥2 and et converges to zero

linearly at rate 1− γµg/2− (γµg)
2/2, combining with (123), the proof is finished.

C ADDITIONAL EXPERIMENT DETAILS AND RESULTS

C.1 ADDITIONAL EXPERIMENT DETAILS

In this section, we provide more details on the implementation of the methods used in the empirical
analysis.

Real Dataset. The MNIST dataset consists of 70,000 grayscale images of handwritten digits, each
28x28 pixels, classified into 10 classes (digits 0-9). The EMNIST dataset extends MNIST, including
handwritten letters and digits. The Balanced split contains 131,600 28x28 grayscale images across
47 balanced classes (digits and uppercase/lowercase letters). And the CIFAR-10 dataset contains
60,000 color images (32x32 pixels, 3 RGB channels), categorized into 10 classes representing real-
world objects (e.g., airplane, car, and dog).

Algorithms. To fully investigate the effect of personalization in FedProx with the Algorithm B.1,
we compare the two extreme algorithms (GlobalTraining and LocalTraining). Furthermore, since
there exist other methods solving the objective (1) to do personalized federated learning, we also
try to investigate the effect of personalization in other methods, like pFedMe (T Dinh et al., 2020).
The algorithm pFedMe has a similar design with a double loop to solve the subproblem in each
communication round.

Selection of λ. For the logistic regression on the synthetic dataset, we selected three values for
λ: small λ = 0.02, medium λ = 0.1, and large λ = 0.5. For logistic regression on the MNIST
dataset, we used small λ = 0.5, medium λ = 1.5, and large λ = 2.5. For CNN on the MNIST
dataset, we used small λ = 0.2, medium λ = 0.5, and large λ = 2.5. Such a choice is to make sure
that each line in the figure is clearly separable. Additionally, we implemented an adaptive choice
of λ following the formula outlined in Theorem 1, with ρ set to 2. The value of ρ was determined
through grid search over the range [1, 10] to ensure optimal performance. For other real datasets, the
regularization term λ is set as small λ = 0.1, medium λ = 0.5, and large λ = 1.

Selection of Step Size. For the synthetic dataset, aligned with Theorem 2, we set the global step
size γ = λ+L

λL and the local step size η = 1
L+λ . The smoothness constant L is computed as the

upper bound of the L-smoothness constant for logistic regression, specifically 4−1Λmax, where Λmax
denotes the largest eigenvalue of the Gram matrix X⊤X . The local step size for the synthetic
dataset was further tuned through grid search in {0.001, 0.01, 0.1}. For the real dataset, the global
learning rate was set to 1

λ , while the local learning rate was set to 0.01, chosen via grid search.
For both GlobalTrain and LocalTrain training baselines, the learning rate was also chosen via grid
search within the range {0.001, 0.01, 0.1}. LocalTrain is implemented using a local (S)GD, and
GlobalTrain is implemented using FedAvg (McMahan et al., 2017).

Selection of Hyperparameters and Convolutional Neural Network Model. For the MNIST
dataset, we implemented logistic regression using the SGD solver with 5 epochs, a batch size of 32,
and 20 total runs, and the same hyperparameter setup was used, except the batch size was reduced
to 16 to ensure stable convergence in CNN with two convolution layers. To make our experiment
more comprehensive, we also utilized a five-layer CNN to train the MNIST dataset with 10 epochs, a
batch size of 16, and 50 total runs. For the EMNIST dataset, we used the same five-layer CNN with
the same settings. And for CIFAR10, we implemented a three-layer CNN with 10 epochs, a batch
size of 16, and 50 total runs. To study the data heterogeneity, we set the number of classes for each
client in the MNIST, EMNIST, and CIFAR10 datasets as {2, 6, 10}, {30, 40, 47}, and {2, 6, 10},
respectively.
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Optimizer. For the synthetic dataset, following the analysis in the paper, the loss function is opti-
mized using gradient descent (GD). For the MNIST dataset, all models are implemented in PyTorch,
and optimization is performed using the stochastic gradient descent (SGD) solver.

Evaluation Criterion. In terms of evaluation, for the synthetic dataset, we track the ground-truth
global model w(g)

⋆ and local model w(i)
⋆ . We compute the global statistical error as ∥w̃(g)−w

(g)
⋆ ∥2

and the local statistical error as ∥w̃(i) − w
(i)
⋆ ∥2. To capture the total error at the t-th iteration, we

report both the global total error ∥w(g)
t − w

(g)
⋆ ∥2 and the local total error ∥w(i)

t,0 − w
(i)
⋆ ∥2, which

combine both optimization and statistical errors. For the MNIST dataset, we report test accuracy on
the MNIST testing set as a measure of the statistical error, and training loss for each client’s training
set as total error at the t-th iteration.

C.2 ADDITIONAL EXPERIMENT RESULTS

Figure 3: Performance of the FedProx algorithm with an adaptive choice of λ (from Theorem 1)
under varying levels of statistical heterogeneity.

In Figure C.2, Statistical error of the FedProx algorithm with an adaptive choice of λ (from Theo-
rem 1) under varying levels of statistical heterogeneity. With the adaptive choice of λ as defined in
Theorem 1, FedProx consistently achieves the lowest statistical error across most scenarios, outper-
forming both GlobalTrain and LocalTrain baselines. This is particularly evident under moderate and
high levels of statistical heterogeneity. However, as R approaches very small values, the global base-
line performs slightly better, which aligns with the slower rate of FedProx with small R described
in our theoretical results. Overall, these results validate our choice of adaptive λ and confirm the
statistical rate provided by our analysis.

In Figure 4(a), we compare FedProx, LocalTrain, and GlobalTrain on the MNIST dataset by plotting
testing accuracy against varying levels of statistical heterogeneity. As heterogeneity increases, each
client has access to fewer classes, resulting in fewer classification tasks. This change simplifies
the problem, which explains why all methods show improved evaluation accuracy as the number
of classes decreases. However, this does not diminish the insights from the relative comparison
between methods. GlobalTrain and FedProx with larger λ perform better at lower heterogeneity
levels, while LocalTrain and FedProx with smaller λ perform better as heterogeneity increases.

In Figure 4(b), we track testing loss as a function of communication rounds. Across all sub-figures,
FedProx with smaller λ (higher personalization) demonstrates faster convergence, especially in the
early stages of training. The final training loss achieved by different methods also aligns with the
results shown in Figure 4(a) and Figure 1.
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Figure 4: (a) Testing accuracy of different methods (FedProx, LocalTrain, GlobalTrain) versus sta-
tistical heterogeneity levels on the MNIST dataset (logistic regression). (b) Training loss versus
communication rounds for the same methods.

Figure 5: Performance of FedProx with 100 clients (top row) and 1,000 clients (bottom row) with
10% client sampling under different levels of statistical heterogeneity (R).
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In Figure 5, the top row shows results for 100 clients, and the bottom row shows results for 1,000
clients, and in both results we adopt a client sampling of 10% in each communication round. This
tests the scalability and generalizability of the our results under typical federated learning setups.
Consistent with the findings from Figure 1, FedProx with smaller λ (greater personalization) con-
sistently achieves faster convergence at the early stages of training, while FedProx with larger λ
(less personalization) takes more communication rounds to converge. As statistical heterogeneity
increases (measured by R), FedProx with smaller λ gradually outperforms models with larger λ,
showcasing the adaptability of FedProx to different levels of heterogeneity. These results further
validate the theoretical insights from Theorem 1 and Theorem 2, highlighting the influence of per-
sonalization on statistical and optimization performance in federated setups with larger numbers of
clients.

Figure 6: Effect of local updates on FedProx performance for local models in MNIST logistic re-
gression and global models ni MNIST CNN, complementing the results shown in Figure 2.

Figure 6 demonstrates the impact of varying the number of local updates on FedProx performance,
complementing the results shown in Figure 2. For FedProx with smaller λ (higher personalization),
increasing the number of local updates notably reduces the need for communication, leading to
faster convergence. In contrast, for FedProx with larger λ (lower personalization), increasing local
updates yields minimal benefit and only adds to computation costs without reducing communica-
tion demands. The results indicate that for larger λ , the optimal strategy is to prioritize frequent
communication rather than increasing local computation. This highlights the trade-off between local
computation and communication efficiency under different levels of personalization, validating our
theoretical findings in Corollary 1.

Dataset Client Class
One-stage FedProx GlobalTrain LocalTrain pFedMe

(small) (medium) (large) (small) (medium) (large)

MNIST CNN2
2 0.3567 0.4721 0.6019 0.6123 0.3019 0.3973 0.5828 0.6172
6 0.7001 0.7833 0.7843 0.8092 0.6231 0.7918 0.8093 0.8312
10 0.8753 0.8893 0.9032 0.9098 0.8194 0.8756 0.8771 0.8749

MNIST CNN5
2 0.8891 0.9000 0.9333 0.9377 0.6536 0.9000 0.9003 0.9380
6 0.8451 0.8941 0.9392 0.9446 0.7333 0.9288 0.9186 0.9306
10 0.9091 0.9102 0.9421 0.9433 0.7633 0.9340 0.9385 0.9440

EMNIST CNN5
30 0.6084 0.6089 0.6011 0.6102 0.5583 0.6133 0.6129 0.6122
40 0.6097 0.6123 0.6357 0.6423 0.5644 0.6012 0.6102 0.6134
47 0.6278 0.6415 0.6672 0.6611 0.6111 0.6345 0.6532 0.6717

CIFAR10 CNN3
2 0.6101 0.6292 0.6340 0.6444 0.5801 0.6056 0.6012 0.6033
6 0.6211 0.6311 0.6712 0.6949 0.5623 0.6163 0.6163 0.6439
10 0.6102 0.6712 0.7302 0.8041 0.6238 0.6744 0.7443 0.7732

Table 3: Evaluation accuracy of algorithms (FedProx, GlobalTrain, LocalTrain, and pFedMe) across
datasets and client classes. (CNNk means the CNN has k convolutional layers and small, medium,
and large indicate different values of λ, and client class indicates the number of class on each client)

To further validate our conclusions about the effect of personalization on the statistical accuracy of
FedProx (Objective 1), we conduct additional experiments on real datasets, including EMNIST and
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CIFAR-10. For each dataset, we explore three levels of statistical heterogeneity, controlled by vary-
ing the number of classes each client has access to, which follows a widely used setup in federated
learning literature. The models are trained using different convolutional neural network (CNN) ar-
chitectures, denoted as CNN2 and CNN5, where the numbers indicate the number of convolutional
layers in the network. As the true underlying model is not accessible for these real datasets, we
evaluate model performance based on classification accuracy on the test set, as shown in Tables 3
and 4. We also conduct experiments another regularization-based personalization method, pFedMe
(T Dinh et al., 2020), to demonstrate that our results could be generalized to other regularization-
based personalized federated learning methods as well. For the columns corresponding to One-stage
FedProx and pFedMe, we conduct experiments with varying regularization parameter λ, investigat-
ing the role of personalization in the algorithms. Specifically, we experiment with small, medium,
and large λ values (see Appendix C.1 for detailed parameter settings).

In Table 3, we can see that consistently across datasets, as λ decreases (indicating a higher degree of
personalization), the accuracy approaches that of LocalTrain, which trains separate models for each
client. Conversely, as λ increases (indicating lower personalization and more collaboration), the
accuracy approaches that of GlobalTrain, which represents purely global training. This interpolation
behavior between LocalTrain and GlobalTrain, enabled by FedProx’s personalized objective, aligns
well with our theoretical results in Theorem 1 and highlights the adaptive capability of the FedProx
method.

Moreover, as dataset homogeneity increases (i.e., clients share more similar data distributions), we
observe a general improvement in accuracy across all methods, regardless of the level of personal-
ization. This result demonstrates that while personalization offers significant benefits in highly het-
erogeneous settings, its necessity diminishes as heterogeneity decreases. Additionally, experiments
with different CNN architectures confirm the robustness of these findings across model designs. Al-
though we did not provide a theoretical analysis for pFedMe in this paper, our results suggest that
the empirical behavior of pFedMe is consistent with the theoretical insights derived for FedProx.
In particular, we observe that pFedMe also exhibits interpolation between local and global learning
under varying levels of data heterogeneity.

Dataset Client Class One-stage FedProx (small λ) One-stage FedProx (large λ) Dichotomous Strategy

MNIST CNN2 2 0.4721 0.6019 0.2567
MNIST CNN2 6 0.7833 0.7843 0.7001
MNIST CNN2 10 0.8893 0.9032 0.8753
MNIST CNN5 2 0.8891 0.9333 0.7032
MNIST CNN5 6 0.8451 0.8941 0.7941
MNIST CNN5 10 0.9091 0.9102 0.8922

EMNIST CNN5 30 0.6084 0.6089 0.5291
EMNIST CNN5 40 0.6097 0.6123 0.5732
EMNIST CNN5 47 0.6278 0.6415 0.5856

Table 4: Comparison of evaluation accuracy for One-stage FedProx with different values of λ and
Dichotomous Strategy across various datasets and client classes.

C.3 COMPARISON OF FEDPROX WITH A DICHOTOMOUS STRATEGY

A simple baseline in personalized federated learning is the dichotomous strategy, where the dataset
on each client is split into two subsets: one is used for global training (GlobalTrain) with pooled
client data, while the other is used for purely local training (LocalTrain). After training, the two
models are compared on the test set, and the best-performing model is selected for each client. Such
a strategy is known to achieve minimax-optimal statistical accuracy under certain conditions; see
Chen et al. (2023c) for a detailed discussion.

Even though the convergence rate coincides with such a dichotomous strategy, we may reiterate that
the key contribution of our work lies in the fine-grained analysis of the FedProx method—a method
that has demonstrated strong empirical performance in federated learning [2]. Through our analysis,
we have, for the first time, established the minimax optimality of FedProx, showing that its statistical
performance matches the lower bound of the estimation problem. If one seeks to understand why
FedProx could be advantageous over the dichotomous strategy in practice, here are some of the
reasons:
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• Stability in Heterogeneous Environments: Empirical studies [1] demonstrate that Fed-
Prox achieves more stable convergence compared to methods such as FedAvg, especially
in settings with significant in a heterogeneous network.

• Adaptivity and Flexibility: FedProx seamlessly interpolates between the extremes of
global training and local training by tuning a single regularization parameter, λ. This adapt-
ability allows practitioners to dynamically balance the trade-off between bias and variance
based on the level of statistical heterogeneity, without the need for fixed, hard decisions
inherent in the dichotomous strategy.

To further compare FedProx with the dichotomous strategy, we conduct a simple experiment. In the
dichotomous setup, each client’s dataset is partitioned into two subsets: one subset is used for local
training (LocalTrain), where each client trains independently, and the other subset is pooled across
all clients for global training (GlobalTrain). The accuracy of the two resulting models is evaluated
on a test set, and the better-performing model is reported for each client. By contrast, FedProx is
implemented using the experimental setup described earlier, leveraging the full dataset. As shown in
Table 4, FedProx consistently outperforms the dichotomous strategy across various configurations.
This performance gap can be attributed to the inefficiency of the dichotomous approach, which
sacrifices valuable data during the sample splitting process, resulting in reduced sample efficiency.

Even in a hypothetical scenario where the full sample is used for both LocalTrain and GlobalTrain
in the dichotomous strategy, the results in Table 3 demonstrate that FedProx achieves a continuous
interpolation between the two extremes of LocalTrain and GlobalTrain by adjusting its regularization
parameter λ. This aligns with our theoretical findings.
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