
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ITEM LANGUAGE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Embeddings are extensively used in many domains to represent information about
domain entities in a compressed manner. In recommendation systems, these
embeddings are trained to extract meaningful information about items or users
from behavioral data consisting of users’ ratings or users’ implicit feedback. These
behavioral embeddings are usually not trained on data from a language domain,
but they encode useful behavioral information which cannot be easily described
using language. In contrast, Large Language Models (LLMs) do not have good
representations for either behavioral data or behavioral entities(items or users), as
these are usually not textual and the data is specific to a recommendation system.
Bridging this gap between behavioral understanding and language understanding
can enable new item and language interleaved tasks. In our work we show how we
can efficiently adapt rich behavioral embeddings for use as input representation
in pre-trained LLMs. To achieve this we adapt a Querying Transformer with a
new item-item contrastive loss and show improved item-text joint understanding in
PALM-2 and also demonstrate improved capabilities in recommendation domain
compared to using the behavioral embeddings directly as input to PALM-2.

1 INTRODUCTION

Large Language Models (LLMs), trained on web-scale data using a very large number of parameters,
have shown remarkable emergent capabilities, such as in-context learning, reasoning, coding (Brown
et al., 2020; Chowdhery et al., 2022; Google, 2023). Recently, those abilities have been extended to
multimodal domains, including image, audio, and video (OpenAI, 2024; Gemini Team, 2024a;b).
On various professional and academic benchmarks, those models achieve or surpass human-level
performance (Hosking et al., 2024). By contrast, the capabilities of pre-trained LLMs in recommen-
dation domain have not derived similar breakthroughs. Traditional recommenders such as matrix
factorization (Koren et al., 2009) and sequential item recommenders (Kang & McAuley, 2018) still
outperform pre-trained LLMs like Llama (Touvron et al., 2023) by a large margin in domain specific
tasks, even after finetuning. One reason is the difference in characteristics of recommendation data
and language data. For example, a video recommender system typically recommends videos to
users based on their past history of watched or skipped videos, with users rarely providing natural
language feedback. We call this behavioral interaction data. Recommendation is dependent on this
interaction data to train models for recommendation tasks, this data is specifically obtained from the
recommender while users are interacting with it. In its native form this data is not textual and most is
not available freely on the web, hence off-the-shelf LLMs do not have sufficient understanding of
recommendations items & users. Large scale recommendation systems deal with a varied number
of items and users, and the interaction data has a very sparse coverage of this large domain-specific
vocabulary. Specifically, each user only interacts with a very small set of the full item vocabulary,
making it hard to learn representations for the items & users directly using a language model with
fine-tuning. For instance, a user will only watch and rate a smaller set of movies from the full catalog
of movies.

The sparse nature of this past interaction data makes traditional collaborative filtering (CF) models
suitable for tasks in this domain. For example, CF models are good at inferring that if many users have
viewed both v1 and v2, then a user who likes v1 may also like v2. Traditional recommenders such as
matrix factorization and sequential recommenders outperform very large pre-trained LLMs in such
tasks. However, these traditional recommenders do not have good natural language understanding.
We expect that combining the language understanding of LLMs and behavioral understanding of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

traditional recommenders can help us learn new tasks that utilize language relevant to the domain and
vocabulary of domain entities in a unified manner.

Our goal is to improve upon language generation tasks using both behavioral and textual information
about an item. We propose Item-Language Model, (ILM, hereafter) a framework that learns new
input representation that bridge the gap between language domain and recommendation domain to
enable new tasks that can utilize both language and behavioral input representations interchangeably
in an interleaved manner. Our contribution is adapting Querying Transformer to bridge the gap
between language modality and behavioral modality and a new item-item contrastive component in
the Querying Transformer to extract behavioral understanding.

2 RELATED WORK

Behavioral representation in LLMs Efficiently representing users and items in recommender sys-
tems is a rich field with years of work using traditional techniques such as Matrix Factorization (Koren
et al., 2009; Rendle et al., 2022). These learn an embedding representation from past interaction data
and other metadata about the items. The embedding represents meaningful information extracted
about the items & users and projects them in an N -dimensional space, with the goal that items &
users close together in this space are similar. Let’s look at some existing work on representing items
& users in LLMs. Using text representation, such as the title of an item or a random identifier to
represent recommender users is a straightforward input representation. ELM (Tennenholtz et al.,
2024) shows how to interpret input embedding spaces by feeding semantic embeddings and behavioral
embeddings to LLM with a Multi-Layer Perceptron (MLP) projection to adapt it to text token space.
Similarly, CoLLM (Zhang et al., 2023) feeds user and item collaborative filtering embeddings to LLM
to improve quality in recommendation tasks. OpenP5 (Xu et al., 2023; Hua et al., 2023) introduces
collaborative indexing techniques that use the structure of the assigned identifier to encode some
preprocessed collaborative information. These identifiers are passed, without modification, to the
text tokenizer of LLM to improve recommendation tasks. Recently, USER-LLM (Ning et al., 2024)
integrates user embeddings within LLMs through a “perceiver” adaptor (Jaegle et al., 2021; Alayrac
et al., 2022). This prior work shows that it is hard to improve the pure recommendation capability
of LLMs like Llama to match the performance of traditional recommendation-specific models that
contain a few transformer layers, trained specifically for recommendation task. Specifically, our work
does not tackle the goal of having an LLM beat recommendation task benchmarks. We are interested
in enabling new language generation tasks that can use both language and behavioral representations
in a unified manner.

Vision language models Work done in computer vision, and specifically, vision-based representa-
tions show an alternate approach. Here, vision and language are two different modalities, and the
foundation models are trained with both modalities for generative and contrastive learning objectives.
Existing work like BLIP-2 (Li et al., 2023), CoCa (Yu et al., 2022), and MaMMUT (Kuo et al., 2023),
achieve state-of-the-art performance on vision-language tasks. While these approaches are promising,
item representations for recommenders require behavioral data that is usually not public, and thus
cannot be used in LLM pretraining. To alleviate this, we adopt a two-phase workflow, similar to the
two-phase workflow of BLIP-2, including pretraining a recommender item-adapter in phase-1 and
task fine-tuning in phase-2. In addition, we adapt it to include a collaborative item-item contrastive
loss.

3 PROBLEM SETTING

Please refer to Table 1 for all symbols used in this paper. Consider H = (H1, ...,HN) to denote
a sequence of inputs to the model. The input data consists of two modalities, text tokens with
vocabulary V or entities (recommendation items I and users U) with vocabulary I ∪ U . Each item
and user is assigned a random identifier and the assigned item ID and user ID are used in the input.
Hi ∈ V ∪ I ∪ U is the input at position i. The order of tokens in the sequential input H contains
meaningful information. We want to do well at language tasks by extracting information from the
external domain IDs in H and use it by combining with other text inputs. These language tasks are
dependent on the IDs. Formally, we want to generate output tokens O = (O1, ..., OM), O ∈ V , such
that O performs language tasks using unified understanding of item IDs, user IDs and text inputs in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Symbol Description

V vocabulary of text tokens (from off-the-shelf LLM)
Ev ∈ R|V|×d embeddings of all text tokens (from off-the-shelf LLM)
d dimension of text token embedding
I vocabulary of recommendation items (eg, movies)
Ei ∈ R|I|×k pre-trained behavioral embeddings for all items
U set of recommendation users
Eu ∈ R|U|×k pre-trained behavioral embeddings for all users
k dimension of behavioral embedding
H input sequence, H = (H1, H2, . . . ,HN)
O output sequence, O = (O1, O2, . . . , OM)

Table 1: Symbols

ILM

The film is about a young man
who is released from prison and
tries to adjust to life on the
outside…

["family", "childhood",
 "cartoon", …]

4.0

Write a long summary of the movie
The Shoe (1998) {item}. Do not use
the movie’s name in your answer.

What properties, represented by
genome tags, does the film {item}
exhibit?

Based on the user's rating and tag
history of {history}, what would
their anticipated rating be for
{item}? The rating should be in the
range of 0-5

user_123 {user} has interacted with
items {history}. What is the next
recommendation for the user ? item_789

…

…

Figure 1: Example tasks in ILM. Recommender domain entities, marked by placeholders in the input,
are interleaved with text as input to the model. Where {history} is a sequence of domain items. Some
sample outputs are presented respectively for each input

H . We assume the pre-trained LLM, a mapping from its text vocabulary V to text embeddings Ev,
external domain entities I and U are all available to us.

Our technique can be generally applied to any domain by learning embeddings to represent I and U
from relevant domain data. For the recommendation domain, we learn behavioral embeddings for I
and U using behavioral information as described in 3.2. These embeddings map I to Ei and U to Eu.
By doing this, we will be able to solve tasks like the ones in Figure 1.

3.1 LANGUAGE MODEL

An LLM is trained on large amounts of data, such as billions of words, to learn statistical relationships
between words and phrases. This allows them to perform natural language processing tasks, such
as generating text, summarizing documents, answering questions, classifying text and learning
meaningful representations for text.

In an off-the-shelf LLM the input text is usually broken down into a sequence of language tokens,
l ∈ V , each token is converted into numerical representations called embeddings, el ∈ Rd. The
sequence of input embeddings is passed through a stack of decoder layers that are part of a pre-trained
LLM and the LLM generates one output token Oi ∈ V at a time until a special end-of-sentence token
is generated.

In ILM, the input can also be recommendation IDs, r ∈ U ∪ I. er ∈ Rk is also available from the
recommendation domain. These IDs and text tokens are mixed and appear interchangeably in the
input. The spaces Rk and Rd are different, and mapping between them is handled in our QFormer

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

adapter. The QFormer maps ID inputs to language inputs, passed to the LLM. The decoder layers
and generation of output tokens Oi are unchanged and reused from off-the-shelf LLM. We introduce
technique to generate the embeddings er for items and users using behavioral data in next section.

3.2 BEHAVIORAL EMBEDDINGS (CF EMBEDDING)

We can swap any embeddings from an external domain. For this paper we utilize collaborative filtering
trained using Alternating Least Squares (Rendle, 2022) to generate embedding representations of
recommendation items and users. In the recommendation domain, a user u ∈ U interacts with item i
from a catalog I. We consider all such pairs of < u, i > as a positive interaction examples and all
pairs when the user did not interact with the item as negative interaction examples. This data forms a
binary matrix of interactions, A ∈ R|U|×|I|

Formally, collaborative filtering (CF, hereafter) does the following, given a matrix of behavioral
interactions between users and items, A ∈ R|U|×|I|, we seek to find matrices B and C such that:

A ≈ BC, (1)

where: B ∈ R|U|×k, C ∈ Rk×|I|

Typically, the scale of |U| and |I| varies depending on the domain. The value k is chosen to be
much smaller than both |U| and |I|, resulting in a compressed representation of the original matrix A.
Hence, these latent representations of the users and items encode rich behavioral information which
we will use in our formulation of the ILM to represent recommender items and users.

er ∈ Rk represents the latent vector for recommender entity r (user ID or item ID).

3.3 CO-INTERACTED ITEMS

We define two items x and y as “co-interacted” if the at least one user has interacted with both items,
and hence these items have similar representations in the embedding space Ei. One interpretation of
CF is that the dot-product ex.ey represents how similar the two items are. We use this co-interaction
signal and the CF embeddings in QFormer as described in the next section.

4 ITEM LANGUAGE MODEL

4.1 QUERYING TRANSFORMER

We adapt the Querying transformer (QFormer, hereafter) of BLIP-2 (Li et al., 2023) as depicted
in our Figure 2(a) for the problem of bridging the gap between recommender items modality and
text modality. The new component we add to the QFormer is a novel item-item contrastive loss and
user-item contrastive loss that preserves the behavioral information in CF embeddings while adapting
them to the text modality as depicted in Figure 2(b). The effects of the new component are depicted
in Figure 2(c). Our QFormer has 4 training tasks. The first 3 tasks are adapted as-is from BLIP-2 and
the fourth task is added to extract behavioral information. The possible inputs are pre-trained item
CF embedding and/or textual metadata about the item. The actual input and output varies for each
task. Our tasks are:

1. Unimodal encoder, which separately encodes an item and text (Unimodal - text is one
modality, item ID is another modality). The input is a set of positive item-text pairs,
generated from metadata about the item. For example, given a movie and its genre, the
movie-genre pairs are “positive” item-text pair. Text from other examples in the batch are
used to sample “negative” item-text pairs, for example a movie and a genre that does not
belong to it. The text encoder is the same as BERT (Devlin et al., 2019), where a [CLS] token
is appended to the beginning of the text input to summarize the text. Item-Text Contrastive
loss (ITC, hereafter) is a contrastive loss that aligns the feature space of the item transformer
and the text transformer by encouraging positive item-text pairs to have similar encoded
representation in contrast to the negative pairs.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: (a) Original QFormer: The original item-text contrastive, item-grounded text generation
and item-text matching losses. (b) The new item-item contrastive loss we introduced in QFormer.
For user-item contrastive learning, we simply replace item CF embedding with user CF embedding.
(c) A schematic of how QFormer text-aligns the CF item representations. (d) ILM - Interleaved item
and text as input to LLM with QFormer output as item/user representation. Blue boxes mark the
parameters that are frozen during our training

2. Item-grounded text encoder, which injects recommender item information by inserting
one additional cross-attention layer between the self-attention layer and the Feed Forward
Network for each transformer block of the text encoder. A task-specific [Encode] token is
appended to the text, and the output embedding of [Encode] is used as the representation of
the item-text pair. Item-Text Matching loss (ITM, hereafter) aims to learn item-text cross-
domain representation that captures the fine-grained alignment between recommendation
items and language. ITM is a binary classification task, where the model uses an ITM
head (a linear layer) to predict whether an item-text pair is positive (matched) or negative
(unmatched) given their input features. For example, this is trained to predict if a movie
matches a given genre.

3. Item-grounded text decoder, which replaces the bidirectional self-attention layers in the
item-grounded text encoder with causal self-attention layers. A [Decode] token is used
to signal the beginning of a sequence, and an end-of-sequence token is used to signal its
end. The Language Modeling loss, also called Item-Text Generative loss (ITG, hereafter)
activates this decoder, which aims to generate textual descriptions given an item. It optimizes
a cross entropy loss which trains the model to maximize the likelihood of the text in an
auto-regressive manner. For example, given a movie generate the genre tags associated with
it or given a movie generate its title.

4. Item-Item unimodal encoder is the new component we add, which separately encodes two
co-interacted items and provides one output token per item. Item-Item Contrastive (IIC,
hereafter) loss aims to preserve behavioral information by encouraging positive item-item
co-interacted pairs to have similar representations in contrast to the negative pairs. For
example, given a co-interacted pair of movies, their encoder output are trained to be similar

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and a pair of unrelated movies are trained to have very different encoder output. This
component is reused for User-Item Contrastive loss (UIC, hereafter) loss by just replacing
the item embedding input with user embedding input. The data for UIC are pairs of <user,
item> positive interactions and negative interactions. In our experiments we are focusing on
recommender items, but we also show how the framework can be reused for users in the
Appendix A.1.

Formally our Item-Item Constrastive loss is given by,

L =
1

2N

N∑
i=1

[
yid(xi, x

′
i)

2 + (1− yi) max(0,m− d(xi, x′i))2
]
, (2)

where:

• N is the number of items
• xi and x′i are QFormer encoder output of two items (co-interacted or unrelated)
• yi is a binary label indicating co-interacted(yi = 1) or dissimilar(yi = 0)
• d(xi, x′i) is the Euclidean distance between xi and x′i
• m is the margin hyperparameter that defines the minimum distance between dissimilar

items.

We can use one or more learned queries per item. Learned queries are tokens that are trainable and
meant to extract different aspects of information from the item CF embeddings. After this phase,
given a CF embedding as input the QFormer will output new representation that is better aligned with
language tokens. For each item ID in input the QFormer will output tokens that replace the item ID.

4.2 TRAINING

We use pre-trained CF embeddings to represent the domain items and adapt them using QFormer to
obtain text aligned input tokens for recommender items. In phase-1 of training, the query tokens in
QFormer and the other QFormer layers are trained as part of the four tasks to adapt the frozen CF
embeddings to the language domain. We use textual metadata of the items to train these losses, for
example the movie title/genre and the movie CF embedding and the co-interacted item pairs to train
the QFormer.

Phase-2 trains the full setup including the LLM on language generation tasks as depicted in Figure 2(d).
In the item-text mixed input H = (H1, ...,HN), item inputs are replaced by the QFormer output
tokens. Text inputs are passed directly to pre-trained LLM and tokenized using built-in language
tokenizer. Let θ be the trainable parameters of ILM. Given a downstream loss function L we can
differentially optimize the ILM model by solving argmin

θ
L(ILM(H)).

5 EXPERIMENTS

To assess the method described above, we run a set of experiments on existing baselines to evaluate
the generative capability of the Palm-2 LLM with ILM.

Dataset We demonstrate the generative capabilities of ILM using all 24 tasks from ELM (Tennenholtz
et al., 2024). These tasks are created from the MovieLens 25M dataset (Harper & Konstan, 2015) and
consist of 24 movie-focused tasks. The tasks include single movie semantic tasks, such as describing
a movie plot or summarizing a movie; single movie subjective tasks, such as writing positive or
negative reviews for a movie, and movie pair subjective tasks, such as comparing characteristics of
movies. Appendix E in Tennenholtz et al. (2024) provides a complete description of all 24 tasks.

Setup We generate two embeddings to represent the items, the CF embedding provides a behavioral
embedding of the item, this is described in section 3.2, and SentenceT5 (Ni et al., 2022) to obtain a
semantic embedding of the item. The title and tags for each movie are used as input to SentenceT5.
We then average the resulting output vectors to generate a single semantic embedding for each
item. A combined representation of the item using these behavioral and semantic embeddings is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Semantic Consistency of ELM (baseline) versus ILM fully finetuned model, using semantic
item embedding, behavioral item embedding and combined semantic & behavioral embeddings. Best
numbers bolded, next-best underlined

Tasks
Item Encoder

ELM ILM-Semantic ILM-Behavioral ILM-Combined

summary 81.53 82.15 74.06 82.66
positive review 88.12 87.70 79.09 87.89
neutral review 84.41 85.10 79.44 85.48
five pos char. 86.41 90.99 82.73 91.19
five neg char. 84.89 93.64 84.70 93.89
long description 80.81 81.15 72.58 81.58
funnier 75.52 76.10 69.43 76.78
sadder 77.86 78.66 72.04 79.39
scarier 76.77 77.96 71.99 78.50
improve 83.30 84.34 79.50 84.67
movie to viewer 84.72 88.01 79.38 88.44
pitch 87.96 88.92 83.60 89.01
criticize 83.04 84.78 80.21 85.01
convince1 83.02 83.66 79.20 83.60
convince2 81.82 85.07 78.00 84.97
convince3 80.54 84.97 77.07 85.14
dissuade1 80.97 81.77 78.57 81.84
dissuade2 80.69 85.64 79.12 85.77
similarities 84.53 90.16 80.87 90.48
interpolation 75.94 77.85 71.92 78.38
why like nn 82.22 87.61 80.57 88.72
diff than nn 84.70 92.57 86.51 93.28
common with nn 79.71 88.32 80.01 88.90
all 82.15 85.08 78.43 85.44

paired with textual metadata and co-interacted items to train the phase-1 QFormer tasks ITC, ITG,
ITM and IIC with 8 learned query tokens. The phase-2 tasks train the full ILM model along with
QFormer model as an adapter for item input, the QFormer generates 8 tokens for each item input.
Text inputs are processed by the default PALM 2 text input tokenizer. ILM is trained using the default
language model loss and dataset of 24 tasks from ELM. For comparison, the original ELM work used
a Multi-Layer Perceptron (MLP) adapter to adapt the item embeddings to language space. In phase-1
they train only the adapter and keep the LLM frozen. In phase-2 they fully train all the parameters in
the LLM and adapter.

Results We experiment with 3 variants of the setup using semantic embedding of items, behavioral
embedding of items and a combination of both semantic and behavioral embedding of items. The
results in Table 2 show that semantic embeddings alone perform better than behavioral embeddings,
but a combination of both embeddings perform significantly better than semantic embeddings alone.
Using behavioral embeddings alone results in poor performance on semantic consistency tasks since
behavioral embeddings lack semantic understanding.

In Table 3 we evaluate combined semantic and behavioral embedding model in four different settings,

1. ILM-MLP We replace the QFormer with a simple MLP of similar parameter size to evaluate
the value of the QFormer architecture, versus a naïve MLP. This is same as the ELM setup,
with just one phase of training. Not surprisingly, this performed worse than the original
ELM work, as the LLM is frozen.

2. ILM-Qformer-random We initialize the QFormer to random values, directly training the
output of the QFormer as input of an existing LLM for the final task. We use PALM-2 as
the LLM. Note that the LLM is frozen in this setup and there is only one phase of training.
This performs better than ILM-MLP, while still worse than the original ELM paper. This

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Results with various architecture choices. ILM-Qformer-fullyfinetune is costlier but performs
the best. ILM-Qformer is a good tradeoff between training cost and performance. Best results bolded

Tasks Item Encoder

ELM ILM-MLP ILM-QFormer-
random

ILM-Qformer ILM-Qformer-
fullyfinetune

summary 81.53 78.44 80.99 81.45 82.66
positive review 88.12 85.25 85.83 85.69 87.89
neutral review 84.41 81.47 83.96 84.24 85.48
five pos char. 86.41 85.06 85.71 85.91 91.19
five neg char. 84.89 86.77 85.35 84.07 93.89
long description 80.81 77.83 80.05 80.19 81.58
funnier 75.52 73.42 75.23 75.93 76.78
sadder 77.86 76.06 78.12 78.18 79.39
scarier 76.77 75.24 76.99 77.08 78.50
improve 83.30 77.94 82.84 83.40 84.67
movie to viewer 84.72 80.70 84.37 84.43 88.44
pitch 87.96 85.26 88.08 88.23 89.01
criticize 83.04 79.30 83.00 82.96 85.01
convince1 83.02 80.74 83.46 83.03 83.60
convince2 81.82 79.62 82.45 82.09 84.97
convince3 80.54 77.69 81.07 80.79 85.14
dissuade1 80.97 79.72 81.09 80.96 81.84
dissuade2 80.69 80.22 81.38 80.72 85.77
similarities 84.53 83.51 85.43 85.85 90.48
interpolation 75.94 73.86 76.95 76.78 78.38
why like nn 82.22 79.33 83.92 84.14 88.72
diff than nn 84.70 85.09 85.48 84.54 93.28
common with nn 79.71 80.85 81.84 81.65 88.90
all 82.15 80.27 82.39 82.34 85.44

demonstrates that while the QFormer has benefit, it alone is not sufficient to beat the existing
baseline.

3. ILM-Qformer We initialize the QFormer with a phase-1 training. In phase-1, we train
the QFormer on ITC, ITG, IIC and ITM losses mentioned earlier. In phase-2, we train the
along with a frozen off-the-shelf PALM-2. This performs as well as the ELM model. Note
that in the ELM work, all the parameters of the PALM-2 model are fully finetuned. This
as a novelty of our paper: the QFormer phase-1 training allows us to skip finetuning the
parameters of the LLM, achieving comparable performance at a lower training cost.

4. ILM-Qformer-fullyfullyfinetune Similar to ILM-Qformer, but fully finetuning the param-
eters of the LLM. This performs the best on the evaluation tasks.

These results are consistently observed for semantic embedding model and behavioral embedding
model and are attached in the Appendix A.4

To compute Semantic consistency (SC), we use the cosine similarity of semantic embeddings of
the original target text labels and ILM generated text tokens. Semantic embeddings of the text is
obtained by passing the target text labels to Sentence-T5 11B model (Ni et al., 2022). This is based
on the original setup described in the ELM paper evaluation setup. The ELM paper does not release
its model or evaluation code, hence we reproduce the ELM model and re-report baselines by running
the evaluation described in the original paper.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6 CONCLUSION

We presented ILM, a novel item-language unified model. We had traditional representations that
encode rich information in the recommendation domain and we had language models that provide
language understanding, we have shown how we can unify both and learn new tasks that interpolate
between these domains and can utilize items and text in a unified fashion. A pre-training step to
generate behavioral embeddings is required to ensure our technique performs best. We have shown
that we do better when we combine these two domains using semantic consistency tasks from ELM.
In Appendix A.1, we used our model designed for language generation task to evaluate hardcore
recommendation tasks and show reasonable performance, however the existing baselines for those
tasks use different backbone LLMs and are trained to perform well specifically on recommendation
tasks and not language generation. We also note that our technique is agnostic to the domain and can
be applied to any new domain that has rich embedding representations of domain entities.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza
Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Mon-
teiro, Jacob L Menick, Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Shar-
ifzadeh, Mikoł aj Bińkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén
Simonyan. Flamingo: a visual language model for few-shot learning. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 23716–23736. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, et al. Palm: Scaling language modeling with
pathways, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Google Gemini Team. Gemini: A family of highly capable multimodal models, 2024a.

Google Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context, 2024b.

Google. Palm 2 technical report, 2023.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4), dec 2015. ISSN 2160-6455. doi: 10.1145/2827872. URL
https://doi.org/10.1145/2827872.

Tom Hosking, Phil Blunsom, and Max Bartolo. Human feedback is not gold standard. ICLR poster,
2024.

Wenyue Hua, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. How to index item ids for recom-
mendation foundation models. SIGIR-AP, 2023.

9

https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/2827872

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Car-
reira. Perceiver: General perception with iterative attention. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 4651–4664. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/jaegle21a.html.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
International Conference on Data Mining (ICDM), pp. 197–206. IEEE, 2018. URL https:
//arxiv.org/abs/1808.09781.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009. doi: 10.1109/MC.2009.263.

Weicheng Kuo, AJ Piergiovanni, Dahun Kim, Xiyang Luo, Ben Caine, Wei Li, Abhijit Ogale,
Luowei Zhou, Andrew Dai, Zhifeng Chen, Claire Cui, and Anelia Angelova. Mammut: A simple
architecture for joint learning for multimodal tasks, 2023.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel Cer, and Yin-
fei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2022, pp. 1864–1874, Dublin, Ireland, May 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.146. URL
https://aclanthology.org/2022.findings-acl.146.

Lin Ning, Luyang Liu, Jiaxing Wu, Neo Wu, Devora Berlowitz, Sushant Prakash, Bradley Green,
Shawn O’Banion, and Jun Xie. User-llm: Efficient llm contextualization with user embeddings,
2024.

OpenAI. Gpt-4 technical report, 2024.

Steffen Rendle. Item Recommendation from Implicit Feedback, pp. 143–171. Springer US, New
York, NY, 2022. ISBN 978-1-0716-2197-4. doi: 10.1007/978-1-0716-2197-4_4. URL https:
//doi.org/10.1007/978-1-0716-2197-4_4.

Steffen Rendle, Walid Krichene, Li Zhang, and Yehuda Koren. Revisiting the performance of
ials on item recommendation benchmarks. In Proceedings of the 16th ACM Conference on
Recommender Systems, RecSys ’22, pp. 427–435, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450392785. doi: 10.1145/3523227.3548486. URL
https://doi.org/10.1145/3523227.3548486.

Guy Tennenholtz, Yinlam Chow, ChihWei Hsu, Jihwan Jeong, Lior Shani, Azamat Tulepbergenov,
Deepak Ramachandran, Martin Mladenov, and Craig Boutilier. Demystifying embedding spaces
using large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=qoYogklIPz.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Shuyuan Xu, Wenyue Hua, and Yongfeng Zhang. Openp5: Benchmarking foundation models for
recommendation. arXiv:2306.11134, 2023.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
Coca: Contrastive captioners are image-text foundation models, 2022.

Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan Wang, and Xiangnan He. Collm: Integrating
collaborative embeddings into large language models for recommendation, 2023.

10

https://proceedings.mlr.press/v139/jaegle21a.html
https://arxiv.org/abs/1808.09781
https://arxiv.org/abs/1808.09781
https://aclanthology.org/2022.findings-acl.146
https://doi.org/10.1007/978-1-0716-2197-4_4
https://doi.org/10.1007/978-1-0716-2197-4_4
https://doi.org/10.1145/3523227.3548486
https://openreview.net/forum?id=qoYogklIPz

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 RECOMMENDATION CAPABILITIES IN LLM

In addition to the main semantic consistency task, we are interested in knowing the domain capabilities
added to the LLM as a result of this Item-Language unified architecture. We use a dataset designed
for evaluating traditional recommender models. Especially, we are interested in evaluating which
aspects of our work contribute to learning domain specific tasks using LLMs.

OpenP5 (Xu et al., 2023; Hua et al., 2023) is a dataset for LLM-based Recommendation development,
finetuning, and evaluation. It provides 10 popular preprocessed public datasets, and each dataset
contains two kinds of tasks: Sequential Recommendation and Straightforward Recommendation.
We select the MovieLens-1M and Beauty datasets for our benchmarks. The training target for each
example is the ground truth item ID. For training inputs, we append each item’s random indexing
ID with its behavioral embedding on the user sequence training set. We use the provided train,
development, and test split in the OpenP5 dataset, which uses the last item in the user sequence
for testing and the second from the last item in the user interaction sequence for development. For
OpenP5 tasks, we report top-k Hit Rate (HR@K) and Normalized Discounted Cumulative Gain
(NDCG@K) with K = 5, 10 to evaluate the recommendation performance. Since the outputs for the
tasks in this dataset are only from the recommender item vocabulary I, to compute those metrics,
we use beam search to generate 10 outputs for each example, and remove invalid outputs that do not
match the regular expression “.*item_(\d+)$”.

A.2 EFFECTS OF QFORMER PHASE 1 TRAINING.

As shown in Table ?? and Table 7, ILM consistently outperforms ILM-rand by a noticeable margin
across all metrics on all benchmarks, which suggests the importance of the QFormer phase-1 training.
For the OpenP5 dataset, we experiment with different combinations of phase-1 training losses

1. Only using Item-Text losses (ILM-IT)
2. Combine Item-Text losses with an Item-Item contrastive loss (ILM-IT-II)
3. Combine Item-Text losses with an User-Item contrastive loss (ILM-IT-UI)

We generate item-item pair data for (2) as follows. For each user, we treat two consecutive items in
the history sequence as a positive pair, then we perform de-duplication to get all unique pairs as the
item-item pair data. The number of pairs generated are shown in Table 5.

The results for the above models are shown in Table 4. We observe that for the Movie Lens 1 Million
(ML1M) dataset (Harper & Konstan, 2015), introducing user-item or item-item contrastive losses can,
in general, lead to performance gains, while for Beauty there are no obvious gains. We hypothesize
this is due to ML1M’s item-text pair data being scarce and user interactions are much more richer
than in the other two datasets. As can be seen in Table 5, comparing with other datasets, the ML1M
dataset contains many fewer users and items, but many more user-item interactions. This supports our
hypothesis, and suggests exploring user-interaction signals in the phase 1 representation learning can
be beneficial for datasets like ML1M. To demonstrate the regularization effects of the item-item and
user-item contrastive losses, we showed the phase 1 final train and eval item-grounded text generation
losses in Table 8. We observe that adding item-item or user-item contrastive losses in phase 1 indeed
can help to reduce the eval loss and close the train-eval gap.

A.3 EFFECTS OF NUMBER OF QUERY TOKENS

Another key aspect of our ILM approach is we used multiple learned queries to generate multiple em-
beddings in QFormer output as item representation to feed into LLM. Existing methods (Tennenholtz
et al., 2024; Zhang et al., 2023) typically use one embedding as the item-representation to feed into
LLM. We show ILM results using different numbers of queries tokens and a randomly initialized
QFormer in Figure 3. In order to better understand the gains of our approach, we also use the MLP
approach to project the input embedding into a same number of embeddings. For both approaches, as
the number of query tokens increases, the performance first increases then decreases. For most of the
query lengths, our method outperforms the MLP approach. Based on this investigation, we chose 8
tokens to present all our results.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Table 4: Effects of phase 1 item-item and user-item contrastive losses on OpenP5 benchmarks

Methods ML1M Beauty

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

ILM-ITC(seen) 0.0719 0.0474 0.1088 0.0594 0.0212 0.0160 0.0262 0.0177
ILM-ITC-IIC(seen) 0.0712 0.0479 0.1093 0.0602 0.0210 0.0160 0.0261 0.0177
ILM-ITC-UIC(seen) 0.0724 0.0485 0.1064 0.0595 0.0213 0.0164 0.0270 0.0182

ILM-ITC(unseen) 0.0700 0.0470 0.1071 0.0589 0.0218 0.0163 0.0275 0.0182
ILM-ITC-IIC(unseen) 0.0701 0.0472 0.1078 0.0594 0.0216 0.0162 0.0269 0.0180
ILM-ITC-UIC(unseen) 0.0717 0.0481 0.1086 0.0600 0.0213 0.0162 0.0269 0.0181

Figure 3: Effects of Number of Query Tokens

Table 5: OpenP5 phase 1 and phase 2 dataset statistics

Datasets Phase 1 Phase 2

Item-text Item-item User-item Train Test # Users # Items

ML1M 3079 479664 888696 19629820 12080 6040 3416
Beauty 10879 103268 138521 2628260 44726 22363 12101

Table 6: Results on OpenP5 sequential recommendation tasks using item behavioral embedding

Methods ML1M Beauty

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

OpenP5-T5(seen) 0.2066 0.1400 0.2945 0.1683 0.0457 0.0336 0.0622 0.0389
OpenP5-Llama(seen) 0.0714 0.0466 0.1094 0.0587 0.0022 0.0036 0.0024 0.0017

ILM-Qformer-pretrained(seen) 0.1357 0.0910 0.1922 0.1092 0.0227 0.0174 0.0282 0.0192

OpenP5-T5(unseen) 0.2055 0.1386 0.2940 0.1672 0.0452 0.0332 0.0613 0.0384
OpenP5-Llama(unseen) 0.0556 0.0364 0.0877 0.0467 0.0029 0.0017 0.0045 0.0022

ILM-Qformer-pretrained(unseen) 0.1338 0.0902 0.1919 0.1090 0.0220 0.0168 0.0275 0.0186

A.4 SEMANTIC CONSISTENCY RESULTS

We also evaluated ILM model with semantic embedding only and ILM model with behavioral
embedding only similar to the results in main section Table 3 on combined embedding model.
These results are consistent with the observations on the combined model. ILM-Qformer performs
reasonably for a cheaper training cost and ILM-Qformer-fulyfinetune performs the best. We also
include the results for semantic only models and behavioral only model in Table 9 and Table 9.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 7: Results on OpenP5 straightforward recommendation tasks using item behavioral embedding

Methods ML1M Beauty

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10
HR@5

OpenP5-T5(seen) 0.0347 0.0224 0.0618 0.0309 0.0317 0.0239 0.0437 0.0277
OpenP5-Llama(seen) 0.0106 0.0066 0.0210 0.0104 0.0050 0.0035 0.0065 0.0040

ILM-Qformer-pretrained(seen) 0.0114 0.0070 0.0241 0.0111 0.0211 0.0161 0.0263 0.0177

OpenP5-T5(unseen) 0.0210 0.0134 0.0303 0.0164 0.0139 0.0089 0.0226 0.0117
OpenP5-Llama(unseen) 0.0098 0.0066 0.0195 0.0097 0.0047 0.0032 0.0062 0.0038

ILM-Qformer-pretrained(unseen) 0.0115 0.0067 0.0250 0.0110 0.0215 0.0162 0.0271 0.0180

Table 8: Effects of phase 1 item-item and user-item contrastive losses on OpenP5 phase 1 final train
and eval item-grounded text generation losses

Methods ML1M Beauty

Train Eval Train Eval

ILM-IT 0.0000 4.1699 1.0441 4.2643
ILM-IT-II 0.1552 3.8675 2.0232 3.2567
ILM-IT-UI 0.0089 4.0663 2.3420 3.3724

Table 9: Semantic Consistency (SC) metrics on the ELM 24 tasks using item semantic embedding
(PALM2-XS). We define SC as the semantic embedding cosine similarity between the decoded text
and original text. We adopt the Sentence-T5 11B model (Ni et al., 2022) for computing semantic
embeddings

Tasks Item Encoder

ELM ILM-MLP ILM-QFormer-
random

ILM-Qformer ILM-Qformer-
fullyfinetune

summary 81.53 77.42 81.35 80.98 82.15
positive review 88.12 84.67 86.12 86.14 87.70
neutral review 84.41 80.16 84.12 83.80 85.10
five pos char. 86.41 85.02 85.58 86.17 90.99
five neg char. 84.89 86.14 84.43 84.66 93.64
long description 80.81 76.76 80.37 80.21 81.15
funnier 75.52 72.41 75.89 75.37 76.10
sadder 77.86 74.90 78.17 77.82 78.66
scarier 76.77 74.61 77.15 77.01 77.96
improve 83.30 79.46 83.08 82.97 84.34
movie to viewer 84.72 80.05 84.19 84.40 88.01
pitch 87.96 85.35 88.24 88.17 88.92
criticize 83.04 79.41 83.10 82.86 84.78
convince1 83.02 79.86 83.31 83.23 83.66
convince2 81.82 79.71 82.41 82.19 85.07
convince3 80.54 77.57 81.20 80.60 84.97
dissuade1 80.97 79.36 81.33 81.08 81.77
dissuade2 80.69 80.17 81.25 81.03 85.64
similarities 84.53 82.67 85.86 85.66 90.16
interpolation 75.94 73.68 76.79 76.74 77.85
why like nn 82.22 76.95 84.15 83.97 87.61
diff than nn 84.70 82.68 84.38 85.47 92.57
common with nn 79.71 79.22 82.02 82.23 88.32
all 82.15 79.60 82.44 82.37 85.08

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 10: Semantic Consistency (SC) metrics on the ELM 24 tasks using item behavioral embedding
(PALM2-XS). We define SC as the semantic embedding cosine similarity between the decoded text
and original text. We adopt the Sentence-T5 11B model (Ni et al., 2022) for computing semantic
embeddings. Best results bolded

Tasks Item Encoder

ELM ILM-MLP ILM-QFormer-
random

ILM-Qformer ILM-Qformer-
fullyfinetune

summary 81.53 71.47 76.09 78.81 74.06
positive review 88.12 76.39 80.79 82.75 79.09
neutral review 84.41 73.85 79.99 82.54 79.44
five pos char. 86.41 80.20 83.26 84.98 82.73
five neg char. 84.89 83.43 84.46 83.70 84.70
long description 80.81 70.71 75.02 77.98 72.58
funnier 75.52 68.73 71.41 73.50 69.43
sadder 77.86 70.32 73.73 75.90 72.04
scarier 76.77 70.26 73.31 75.21 71.99
improve 83.30 75.60 79.43 81.44 79.50
movie to viewer 84.72 75.71 79.97 82.20 79.38
pitch 87.96 80.52 84.51 86.29 83.60
criticize 83.04 76.21 80.38 81.89 80.21
convince1 83.02 75.60 80.87 82.69 79.20
convince2 81.82 75.31 79.94 81.77 78.00
convince3 80.54 73.88 78.47 80.35 77.07
dissuade1 80.97 76.15 79.50 80.23 78.57
dissuade2 80.69 77.36 80.58 80.92 79.12

similarities 84.53 79.05 80.50 84.00 80.87
interpolation 75.94 71.14 71.61 74.75 71.92
why like nn 82.22 75.76 77.52 81.06 80.57
diff than nn 84.70 80.59 81.89 84.10 86.51
common with nn 79.71 76.51 78.76 80.57 80.01

all 82.15 75.59 78.92 80.87 78.43

14

	Introduction
	Related work
	Problem setting
	Language model
	Behavioral embeddings (CF embedding)
	Co-interacted items

	Item Language Model
	Querying transformer
	Training

	Experiments
	Conclusion
	Appendix
	Recommendation capabilities in LLM
	Effects of QFormer Phase 1 Training.
	Effects of Number of Query Tokens
	Semantic Consistency results

