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ABSTRACT

Embeddings are extensively used in many domains to represent information about
domain entities in a compressed manner. In recommendation systems, these
embeddings are trained to extract meaningful information about items or users
from behavioral data consisting of users’ ratings or users’ implicit feedback. These
behavioral embeddings are usually not trained on data from a language domain,
but they encode useful behavioral information which cannot be easily described
using language. In contrast, Large Language Models (LLMs) do not have good
representations for either behavioral data or behavioral entities(items or users), as
these are usually not textual and the data is specific to a recommendation system.
Bridging this gap between behavioral understanding and language understanding
can enable new item and language interleaved tasks. In our work we show how we
can efficiently adapt rich behavioral embeddings for use as input representation
in pre-trained LLMs. To achieve this we adapt a Querying Transformer with a
new item-item contrastive loss and show improved item-text joint understanding in
PALM-2 and also demonstrate improved capabilities in recommendation domain
compared to using the behavioral embeddings directly as input to PALM-2.

1 INTRODUCTION

Large Language Models (LLMs), trained on web-scale data using a very large number of parameters,
have shown remarkable emergent capabilities, such as in-context learning, reasoning, coding (Brown
et al., 2020; Chowdhery et al., 2022; Google, 2023). Recently, those abilities have been extended to
multimodal domains, including image, audio, and video (OpenAI, 2024; Gemini Team, 2024a;b).
On various professional and academic benchmarks, those models achieve or surpass human-level
performance (Hosking et al., 2024). By contrast, the capabilities of pre-trained LLMs in recommen-
dation domain have not derived similar breakthroughs. Traditional recommenders such as matrix
factorization (Koren et al., 2009) and sequential item recommenders (Kang & McAuley, 2018) still
outperform pre-trained LLMs like Llama (Touvron et al., 2023) by a large margin in domain specific
tasks, even after finetuning. One reason is the difference in characteristics of recommendation data
and language data. For example, a video recommender system typically recommends videos to
users based on their past history of watched or skipped videos, with users rarely providing natural
language feedback. We call this behavioral interaction data. Recommendation is dependent on this
interaction data to train models for recommendation tasks, this data is specifically obtained from the
recommender while users are interacting with it. In its native form this data is not textual and most is
not available freely on the web, hence off-the-shelf LLMs do not have sufficient understanding of
recommendations items & users. Large scale recommendation systems deal with a varied number
of items and users, and the interaction data has a very sparse coverage of this large domain-specific
vocabulary. Specifically, each user only interacts with a very small set of the full item vocabulary,
making it hard to learn representations for the items & users directly using a language model with
fine-tuning. For instance, a user will only watch and rate a smaller set of movies from the full catalog
of movies.

The sparse nature of this past interaction data makes traditional collaborative filtering (CF) models
suitable for tasks in this domain. For example, CF models are good at inferring that if many users have
viewed both v1 and v2, then a user who likes v1 may also like v2. Traditional recommenders such as
matrix factorization and sequential recommenders outperform very large pre-trained LLMs in such
tasks. However, these traditional recommenders do not have good natural language understanding.
We expect that combining the language understanding of LLMs and behavioral understanding of
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traditional recommenders can help us learn new tasks that utilize language relevant to the domain and
vocabulary of domain entities in a unified manner.

Our goal is to improve upon language generation tasks using both behavioral and textual information
about an item. We propose Item-Language Model, (ILM, hereafter) a framework that learns new
input representation that bridge the gap between language domain and recommendation domain to
enable new tasks that can utilize both language and behavioral input representations interchangeably
in an interleaved manner. Our contribution is adapting Querying Transformer to bridge the gap
between language modality and behavioral modality and a new item-item contrastive component in
the Querying Transformer to extract behavioral understanding.

2 RELATED WORK

Behavioral representation in LLMs Efficiently representing users and items in recommender sys-
tems is a rich field with years of work using traditional techniques such as Matrix Factorization (Koren
et al., 2009; Rendle et al., 2022). These learn an embedding representation from past interaction data
and other metadata about the items. The embedding represents meaningful information extracted
about the items & users and projects them in an N -dimensional space, with the goal that items &
users close together in this space are similar. Let’s look at some existing work on representing items
& users in LLMs. Using text representation, such as the title of an item or a random identifier to
represent recommender users is a straightforward input representation. ELM (Tennenholtz et al.,
2024) shows how to interpret input embedding spaces by feeding semantic embeddings and behavioral
embeddings to LLM with a Multi-Layer Perceptron (MLP) projection to adapt it to text token space.
Similarly, CoLLM (Zhang et al., 2023) feeds user and item collaborative filtering embeddings to LLM
to improve quality in recommendation tasks. OpenP5 (Xu et al., 2023; Hua et al., 2023) introduces
collaborative indexing techniques that use the structure of the assigned identifier to encode some
preprocessed collaborative information. These identifiers are passed, without modification, to the
text tokenizer of LLM to improve recommendation tasks. Recently, USER-LLM (Ning et al., 2024)
integrates user embeddings within LLMs through a “perceiver” adaptor (Jaegle et al., 2021; Alayrac
et al., 2022). This prior work shows that it is hard to improve the pure recommendation capability
of LLMs like Llama to match the performance of traditional recommendation-specific models that
contain a few transformer layers, trained specifically for recommendation task. Specifically, our work
does not tackle the goal of having an LLM beat recommendation task benchmarks. We are interested
in enabling new language generation tasks that can use both language and behavioral representations
in a unified manner.

Vision language models Work done in computer vision, and specifically, vision-based representa-
tions show an alternate approach. Here, vision and language are two different modalities, and the
foundation models are trained with both modalities for generative and contrastive learning objectives.
Existing work like BLIP-2 (Li et al., 2023), CoCa (Yu et al., 2022), and MaMMUT (Kuo et al., 2023),
achieve state-of-the-art performance on vision-language tasks. While these approaches are promising,
item representations for recommenders require behavioral data that is usually not public, and thus
cannot be used in LLM pretraining. To alleviate this, we adopt a two-phase workflow, similar to the
two-phase workflow of BLIP-2, including pretraining a recommender item-adapter in phase-1 and
task fine-tuning in phase-2. In addition, we adapt it to include a collaborative item-item contrastive
loss.

3 PROBLEM SETTING

Please refer to Table 1 for all symbols used in this paper. Consider H = (H1, ...,HN ) to denote
a sequence of inputs to the model. The input data consists of two modalities, text tokens with
vocabulary V or entities (recommendation items I and users U) with vocabulary I ∪ U . Each item
and user is assigned a random identifier and the assigned item ID and user ID are used in the input.
Hi ∈ V ∪ I ∪ U is the input at position i. The order of tokens in the sequential input H contains
meaningful information. We want to do well at language tasks by extracting information from the
external domain IDs in H and use it by combining with other text inputs. These language tasks are
dependent on the IDs. Formally, we want to generate output tokens O = (O1, ..., OM ), O ∈ V , such
that O performs language tasks using unified understanding of item IDs, user IDs and text inputs in
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Symbol Description

V vocabulary of text tokens (from off-the-shelf LLM)
Ev ∈ R|V|×d embeddings of all text tokens (from off-the-shelf LLM)
d dimension of text token embedding
I vocabulary of recommendation items (eg, movies)
Ei ∈ R|I|×k pre-trained behavioral embeddings for all items
U set of recommendation users
Eu ∈ R|U|×k pre-trained behavioral embeddings for all users
k dimension of behavioral embedding
H input sequence, H = (H1, H2, . . . ,HN )
O output sequence, O = (O1, O2, . . . , OM )

Table 1: Symbols

ILM

The film is about a young man 
who is released from prison and 
tries to adjust to life on the 
outside…

["family", "childhood", 
 "cartoon", …]

4.0

Write a long summary of the movie 
The Shoe (1998) {item}. Do not use 
the movie’s name in your answer.

What properties, represented by 
genome tags, does the film {item} 
exhibit?

Based on the user's rating and tag 
history of {history}, what would 
their anticipated rating be for 
{item}? The rating should be in the 
range of 0-5

user_123 {user} has interacted with 
items {history}. What is the next 
recommendation for the user ? item_789

…

…

Figure 1: Example tasks in ILM. Recommender domain entities, marked by placeholders in the input,
are interleaved with text as input to the model. Where {history} is a sequence of domain items. Some
sample outputs are presented respectively for each input

H . We assume the pre-trained LLM, a mapping from its text vocabulary V to text embeddings Ev,
external domain entities I and U are all available to us.

Our technique can be generally applied to any domain by learning embeddings to represent I and U
from relevant domain data. For the recommendation domain, we learn behavioral embeddings for I
and U using behavioral information as described in 3.2. These embeddings map I to Ei and U to Eu.
By doing this, we will be able to solve tasks like the ones in Figure 1.

3.1 LANGUAGE MODEL

An LLM is trained on large amounts of data, such as billions of words, to learn statistical relationships
between words and phrases. This allows them to perform natural language processing tasks, such
as generating text, summarizing documents, answering questions, classifying text and learning
meaningful representations for text.

In an off-the-shelf LLM the input text is usually broken down into a sequence of language tokens,
l ∈ V , each token is converted into numerical representations called embeddings, el ∈ Rd. The
sequence of input embeddings is passed through a stack of decoder layers that are part of a pre-trained
LLM and the LLM generates one output token Oi ∈ V at a time until a special end-of-sentence token
is generated.

In ILM, the input can also be recommendation IDs, r ∈ U ∪ I. er ∈ Rk is also available from the
recommendation domain. These IDs and text tokens are mixed and appear interchangeably in the
input. The spaces Rk and Rd are different, and mapping between them is handled in our QFormer
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adapter. The QFormer maps ID inputs to language inputs, passed to the LLM. The decoder layers
and generation of output tokens Oi are unchanged and reused from off-the-shelf LLM. We introduce
technique to generate the embeddings er for items and users using behavioral data in next section.

3.2 BEHAVIORAL EMBEDDINGS (CF EMBEDDING)

We can swap any embeddings from an external domain. For this paper we utilize collaborative filtering
trained using Alternating Least Squares (Rendle, 2022) to generate embedding representations of
recommendation items and users. In the recommendation domain, a user u ∈ U interacts with item i
from a catalog I. We consider all such pairs of < u, i > as a positive interaction examples and all
pairs when the user did not interact with the item as negative interaction examples. This data forms a
binary matrix of interactions, A ∈ R|U|×|I|

Formally, collaborative filtering (CF, hereafter) does the following, given a matrix of behavioral
interactions between users and items, A ∈ R|U|×|I|, we seek to find matrices B and C such that:

A ≈ BC, (1)

where: B ∈ R|U|×k, C ∈ Rk×|I|

Typically, the scale of |U| and |I| varies depending on the domain. The value k is chosen to be
much smaller than both |U| and |I|, resulting in a compressed representation of the original matrix A.
Hence, these latent representations of the users and items encode rich behavioral information which
we will use in our formulation of the ILM to represent recommender items and users.

er ∈ Rk represents the latent vector for recommender entity r (user ID or item ID).

3.3 CO-INTERACTED ITEMS

We define two items x and y as “co-interacted” if the at least one user has interacted with both items,
and hence these items have similar representations in the embedding space Ei. One interpretation of
CF is that the dot-product ex.ey represents how similar the two items are. We use this co-interaction
signal and the CF embeddings in QFormer as described in the next section.

4 ITEM LANGUAGE MODEL

4.1 QUERYING TRANSFORMER

We adapt the Querying transformer (QFormer, hereafter) of BLIP-2 (Li et al., 2023) as depicted
in our Figure 2(a) for the problem of bridging the gap between recommender items modality and
text modality. The new component we add to the QFormer is a novel item-item contrastive loss and
user-item contrastive loss that preserves the behavioral information in CF embeddings while adapting
them to the text modality as depicted in Figure 2(b). The effects of the new component are depicted
in Figure 2(c). Our QFormer has 4 training tasks. The first 3 tasks are adapted as-is from BLIP-2 and
the fourth task is added to extract behavioral information. The possible inputs are pre-trained item
CF embedding and/or textual metadata about the item. The actual input and output varies for each
task. Our tasks are:

1. Unimodal encoder, which separately encodes an item and text (Unimodal - text is one
modality, item ID is another modality). The input is a set of positive item-text pairs,
generated from metadata about the item. For example, given a movie and its genre, the
movie-genre pairs are “positive” item-text pair. Text from other examples in the batch are
used to sample “negative” item-text pairs, for example a movie and a genre that does not
belong to it. The text encoder is the same as BERT (Devlin et al., 2019), where a [CLS] token
is appended to the beginning of the text input to summarize the text. Item-Text Contrastive
loss (ITC, hereafter) is a contrastive loss that aligns the feature space of the item transformer
and the text transformer by encouraging positive item-text pairs to have similar encoded
representation in contrast to the negative pairs.
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Figure 2: (a) Original QFormer: The original item-text contrastive, item-grounded text generation
and item-text matching losses. (b) The new item-item contrastive loss we introduced in QFormer.
For user-item contrastive learning, we simply replace item CF embedding with user CF embedding.
(c) A schematic of how QFormer text-aligns the CF item representations. (d) ILM - Interleaved item
and text as input to LLM with QFormer output as item/user representation. Blue boxes mark the
parameters that are frozen during our training

2. Item-grounded text encoder, which injects recommender item information by inserting
one additional cross-attention layer between the self-attention layer and the Feed Forward
Network for each transformer block of the text encoder. A task-specific [Encode] token is
appended to the text, and the output embedding of [Encode] is used as the representation of
the item-text pair. Item-Text Matching loss (ITM, hereafter) aims to learn item-text cross-
domain representation that captures the fine-grained alignment between recommendation
items and language. ITM is a binary classification task, where the model uses an ITM
head (a linear layer) to predict whether an item-text pair is positive (matched) or negative
(unmatched) given their input features. For example, this is trained to predict if a movie
matches a given genre.

3. Item-grounded text decoder, which replaces the bidirectional self-attention layers in the
item-grounded text encoder with causal self-attention layers. A [Decode] token is used
to signal the beginning of a sequence, and an end-of-sequence token is used to signal its
end. The Language Modeling loss, also called Item-Text Generative loss (ITG, hereafter)
activates this decoder, which aims to generate textual descriptions given an item. It optimizes
a cross entropy loss which trains the model to maximize the likelihood of the text in an
auto-regressive manner. For example, given a movie generate the genre tags associated with
it or given a movie generate its title.

4. Item-Item unimodal encoder is the new component we add, which separately encodes two
co-interacted items and provides one output token per item. Item-Item Contrastive (IIC,
hereafter) loss aims to preserve behavioral information by encouraging positive item-item
co-interacted pairs to have similar representations in contrast to the negative pairs. For
example, given a co-interacted pair of movies, their encoder output are trained to be similar
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and a pair of unrelated movies are trained to have very different encoder output. This
component is reused for User-Item Contrastive loss (UIC, hereafter) loss by just replacing
the item embedding input with user embedding input. The data for UIC are pairs of <user,
item> positive interactions and negative interactions. In our experiments we are focusing on
recommender items, but we also show how the framework can be reused for users in the
Appendix A.1.

Formally our Item-Item Constrastive loss is given by,

L =
1

2N

N∑
i=1

[
yid(xi, x

′
i)

2 + (1− yi) max(0,m− d(xi, x′i))2
]
, (2)

where:

• N is the number of items
• xi and x′i are QFormer encoder output of two items (co-interacted or unrelated)
• yi is a binary label indicating co-interacted(yi = 1) or dissimilar(yi = 0)
• d(xi, x′i) is the Euclidean distance between xi and x′i
• m is the margin hyperparameter that defines the minimum distance between dissimilar

items.

We can use one or more learned queries per item. Learned queries are tokens that are trainable and
meant to extract different aspects of information from the item CF embeddings. After this phase,
given a CF embedding as input the QFormer will output new representation that is better aligned with
language tokens. For each item ID in input the QFormer will output tokens that replace the item ID.

4.2 TRAINING

We use pre-trained CF embeddings to represent the domain items and adapt them using QFormer to
obtain text aligned input tokens for recommender items. In phase-1 of training, the query tokens in
QFormer and the other QFormer layers are trained as part of the four tasks to adapt the frozen CF
embeddings to the language domain. We use textual metadata of the items to train these losses, for
example the movie title/genre and the movie CF embedding and the co-interacted item pairs to train
the QFormer.

Phase-2 trains the full setup including the LLM on language generation tasks as depicted in Figure 2(d).
In the item-text mixed input H = (H1, ...,HN ), item inputs are replaced by the QFormer output
tokens. Text inputs are passed directly to pre-trained LLM and tokenized using built-in language
tokenizer. Let θ be the trainable parameters of ILM. Given a downstream loss function L we can
differentially optimize the ILM model by solving argmin

θ
L(ILM(H)).

5 EXPERIMENTS

To assess the method described above, we run a set of experiments on existing baselines to evaluate
the generative capability of the Palm-2 LLM with ILM.

Dataset We demonstrate the generative capabilities of ILM using all 24 tasks from ELM (Tennenholtz
et al., 2024). These tasks are created from the MovieLens 25M dataset (Harper & Konstan, 2015) and
consist of 24 movie-focused tasks. The tasks include single movie semantic tasks, such as describing
a movie plot or summarizing a movie; single movie subjective tasks, such as writing positive or
negative reviews for a movie, and movie pair subjective tasks, such as comparing characteristics of
movies. Appendix E in Tennenholtz et al. (2024) provides a complete description of all 24 tasks.

Setup We generate two embeddings to represent the items, the CF embedding provides a behavioral
embedding of the item, this is described in section 3.2, and SentenceT5 (Ni et al., 2022) to obtain a
semantic embedding of the item. The title and tags for each movie are used as input to SentenceT5.
We then average the resulting output vectors to generate a single semantic embedding for each
item. A combined representation of the item using these behavioral and semantic embeddings is

6
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Table 2: Semantic Consistency of ELM (baseline) versus ILM fully finetuned model, using semantic
item embedding, behavioral item embedding and combined semantic & behavioral embeddings. Best
numbers bolded, next-best underlined

Tasks
Item Encoder

ELM ILM-Semantic ILM-Behavioral ILM-Combined

summary 81.53 82.15 74.06 82.66
positive review 88.12 87.70 79.09 87.89
neutral review 84.41 85.10 79.44 85.48
five pos char. 86.41 90.99 82.73 91.19
five neg char. 84.89 93.64 84.70 93.89
long description 80.81 81.15 72.58 81.58
funnier 75.52 76.10 69.43 76.78
sadder 77.86 78.66 72.04 79.39
scarier 76.77 77.96 71.99 78.50
improve 83.30 84.34 79.50 84.67
movie to viewer 84.72 88.01 79.38 88.44
pitch 87.96 88.92 83.60 89.01
criticize 83.04 84.78 80.21 85.01
convince1 83.02 83.66 79.20 83.60
convince2 81.82 85.07 78.00 84.97
convince3 80.54 84.97 77.07 85.14
dissuade1 80.97 81.77 78.57 81.84
dissuade2 80.69 85.64 79.12 85.77
similarities 84.53 90.16 80.87 90.48
interpolation 75.94 77.85 71.92 78.38
why like nn 82.22 87.61 80.57 88.72
diff than nn 84.70 92.57 86.51 93.28
common with nn 79.71 88.32 80.01 88.90
all 82.15 85.08 78.43 85.44

paired with textual metadata and co-interacted items to train the phase-1 QFormer tasks ITC, ITG,
ITM and IIC with 8 learned query tokens. The phase-2 tasks train the full ILM model along with
QFormer model as an adapter for item input, the QFormer generates 8 tokens for each item input.
Text inputs are processed by the default PALM 2 text input tokenizer. ILM is trained using the default
language model loss and dataset of 24 tasks from ELM. For comparison, the original ELM work used
a Multi-Layer Perceptron (MLP) adapter to adapt the item embeddings to language space. In phase-1
they train only the adapter and keep the LLM frozen. In phase-2 they fully train all the parameters in
the LLM and adapter.

Results We experiment with 3 variants of the setup using semantic embedding of items, behavioral
embedding of items and a combination of both semantic and behavioral embedding of items. The
results in Table 2 show that semantic embeddings alone perform better than behavioral embeddings,
but a combination of both embeddings perform significantly better than semantic embeddings alone.
Using behavioral embeddings alone results in poor performance on semantic consistency tasks since
behavioral embeddings lack semantic understanding.

In Table 3 we evaluate combined semantic and behavioral embedding model in four different settings,

1. ILM-MLP We replace the QFormer with a simple MLP of similar parameter size to evaluate
the value of the QFormer architecture, versus a naïve MLP. This is same as the ELM setup,
with just one phase of training. Not surprisingly, this performed worse than the original
ELM work, as the LLM is frozen.

2. ILM-Qformer-random We initialize the QFormer to random values, directly training the
output of the QFormer as input of an existing LLM for the final task. We use PALM-2 as
the LLM. Note that the LLM is frozen in this setup and there is only one phase of training.
This performs better than ILM-MLP, while still worse than the original ELM paper. This

7
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Table 3: Results with various architecture choices. ILM-Qformer-fullyfinetune is costlier but performs
the best. ILM-Qformer is a good tradeoff between training cost and performance. Best results bolded

Tasks Item Encoder

ELM ILM-MLP ILM-QFormer-
random

ILM-Qformer ILM-Qformer-
fullyfinetune

summary 81.53 78.44 80.99 81.45 82.66
positive review 88.12 85.25 85.83 85.69 87.89
neutral review 84.41 81.47 83.96 84.24 85.48
five pos char. 86.41 85.06 85.71 85.91 91.19
five neg char. 84.89 86.77 85.35 84.07 93.89
long description 80.81 77.83 80.05 80.19 81.58
funnier 75.52 73.42 75.23 75.93 76.78
sadder 77.86 76.06 78.12 78.18 79.39
scarier 76.77 75.24 76.99 77.08 78.50
improve 83.30 77.94 82.84 83.40 84.67
movie to viewer 84.72 80.70 84.37 84.43 88.44
pitch 87.96 85.26 88.08 88.23 89.01
criticize 83.04 79.30 83.00 82.96 85.01
convince1 83.02 80.74 83.46 83.03 83.60
convince2 81.82 79.62 82.45 82.09 84.97
convince3 80.54 77.69 81.07 80.79 85.14
dissuade1 80.97 79.72 81.09 80.96 81.84
dissuade2 80.69 80.22 81.38 80.72 85.77
similarities 84.53 83.51 85.43 85.85 90.48
interpolation 75.94 73.86 76.95 76.78 78.38
why like nn 82.22 79.33 83.92 84.14 88.72
diff than nn 84.70 85.09 85.48 84.54 93.28
common with nn 79.71 80.85 81.84 81.65 88.90
all 82.15 80.27 82.39 82.34 85.44

demonstrates that while the QFormer has benefit, it alone is not sufficient to beat the existing
baseline.

3. ILM-Qformer We initialize the QFormer with a phase-1 training. In phase-1, we train
the QFormer on ITC, ITG, IIC and ITM losses mentioned earlier. In phase-2, we train the
along with a frozen off-the-shelf PALM-2. This performs as well as the ELM model. Note
that in the ELM work, all the parameters of the PALM-2 model are fully finetuned. This
as a novelty of our paper: the QFormer phase-1 training allows us to skip finetuning the
parameters of the LLM, achieving comparable performance at a lower training cost.

4. ILM-Qformer-fullyfullyfinetune Similar to ILM-Qformer, but fully finetuning the param-
eters of the LLM. This performs the best on the evaluation tasks.

These results are consistently observed for semantic embedding model and behavioral embedding
model and are attached in the Appendix A.4

To compute Semantic consistency (SC), we use the cosine similarity of semantic embeddings of
the original target text labels and ILM generated text tokens. Semantic embeddings of the text is
obtained by passing the target text labels to Sentence-T5 11B model (Ni et al., 2022). This is based
on the original setup described in the ELM paper evaluation setup. The ELM paper does not release
its model or evaluation code, hence we reproduce the ELM model and re-report baselines by running
the evaluation described in the original paper.
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6 CONCLUSION

We presented ILM, a novel item-language unified model. We had traditional representations that
encode rich information in the recommendation domain and we had language models that provide
language understanding, we have shown how we can unify both and learn new tasks that interpolate
between these domains and can utilize items and text in a unified fashion. A pre-training step to
generate behavioral embeddings is required to ensure our technique performs best. We have shown
that we do better when we combine these two domains using semantic consistency tasks from ELM.
In Appendix A.1, we used our model designed for language generation task to evaluate hardcore
recommendation tasks and show reasonable performance, however the existing baselines for those
tasks use different backbone LLMs and are trained to perform well specifically on recommendation
tasks and not language generation. We also note that our technique is agnostic to the domain and can
be applied to any new domain that has rich embedding representations of domain entities.
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A APPENDIX

A.1 RECOMMENDATION CAPABILITIES IN LLM

In addition to the main semantic consistency task, we are interested in knowing the domain capabilities
added to the LLM as a result of this Item-Language unified architecture. We use a dataset designed
for evaluating traditional recommender models. Especially, we are interested in evaluating which
aspects of our work contribute to learning domain specific tasks using LLMs.

OpenP5 (Xu et al., 2023; Hua et al., 2023) is a dataset for LLM-based Recommendation development,
finetuning, and evaluation. It provides 10 popular preprocessed public datasets, and each dataset
contains two kinds of tasks: Sequential Recommendation and Straightforward Recommendation.
We select the MovieLens-1M and Beauty datasets for our benchmarks. The training target for each
example is the ground truth item ID. For training inputs, we append each item’s random indexing
ID with its behavioral embedding on the user sequence training set. We use the provided train,
development, and test split in the OpenP5 dataset, which uses the last item in the user sequence
for testing and the second from the last item in the user interaction sequence for development. For
OpenP5 tasks, we report top-k Hit Rate (HR@K) and Normalized Discounted Cumulative Gain
(NDCG@K) with K = 5, 10 to evaluate the recommendation performance. Since the outputs for the
tasks in this dataset are only from the recommender item vocabulary I, to compute those metrics,
we use beam search to generate 10 outputs for each example, and remove invalid outputs that do not
match the regular expression “.*item_(\d+)$”.

A.2 EFFECTS OF QFORMER PHASE 1 TRAINING.

As shown in Table ?? and Table 7, ILM consistently outperforms ILM-rand by a noticeable margin
across all metrics on all benchmarks, which suggests the importance of the QFormer phase-1 training.
For the OpenP5 dataset, we experiment with different combinations of phase-1 training losses

1. Only using Item-Text losses (ILM-IT)
2. Combine Item-Text losses with an Item-Item contrastive loss (ILM-IT-II)
3. Combine Item-Text losses with an User-Item contrastive loss (ILM-IT-UI)

We generate item-item pair data for (2) as follows. For each user, we treat two consecutive items in
the history sequence as a positive pair, then we perform de-duplication to get all unique pairs as the
item-item pair data. The number of pairs generated are shown in Table 5.

The results for the above models are shown in Table 4. We observe that for the Movie Lens 1 Million
(ML1M) dataset (Harper & Konstan, 2015), introducing user-item or item-item contrastive losses can,
in general, lead to performance gains, while for Beauty there are no obvious gains. We hypothesize
this is due to ML1M’s item-text pair data being scarce and user interactions are much more richer
than in the other two datasets. As can be seen in Table 5, comparing with other datasets, the ML1M
dataset contains many fewer users and items, but many more user-item interactions. This supports our
hypothesis, and suggests exploring user-interaction signals in the phase 1 representation learning can
be beneficial for datasets like ML1M. To demonstrate the regularization effects of the item-item and
user-item contrastive losses, we showed the phase 1 final train and eval item-grounded text generation
losses in Table 8. We observe that adding item-item or user-item contrastive losses in phase 1 indeed
can help to reduce the eval loss and close the train-eval gap.

A.3 EFFECTS OF NUMBER OF QUERY TOKENS

Another key aspect of our ILM approach is we used multiple learned queries to generate multiple em-
beddings in QFormer output as item representation to feed into LLM. Existing methods (Tennenholtz
et al., 2024; Zhang et al., 2023) typically use one embedding as the item-representation to feed into
LLM. We show ILM results using different numbers of queries tokens and a randomly initialized
QFormer in Figure 3. In order to better understand the gains of our approach, we also use the MLP
approach to project the input embedding into a same number of embeddings. For both approaches, as
the number of query tokens increases, the performance first increases then decreases. For most of the
query lengths, our method outperforms the MLP approach. Based on this investigation, we chose 8
tokens to present all our results.
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Table 4: Effects of phase 1 item-item and user-item contrastive losses on OpenP5 benchmarks

Methods ML1M Beauty

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

ILM-ITC(seen) 0.0719 0.0474 0.1088 0.0594 0.0212 0.0160 0.0262 0.0177
ILM-ITC-IIC(seen) 0.0712 0.0479 0.1093 0.0602 0.0210 0.0160 0.0261 0.0177
ILM-ITC-UIC(seen) 0.0724 0.0485 0.1064 0.0595 0.0213 0.0164 0.0270 0.0182

ILM-ITC(unseen) 0.0700 0.0470 0.1071 0.0589 0.0218 0.0163 0.0275 0.0182
ILM-ITC-IIC(unseen) 0.0701 0.0472 0.1078 0.0594 0.0216 0.0162 0.0269 0.0180
ILM-ITC-UIC(unseen) 0.0717 0.0481 0.1086 0.0600 0.0213 0.0162 0.0269 0.0181

Figure 3: Effects of Number of Query Tokens

Table 5: OpenP5 phase 1 and phase 2 dataset statistics

Datasets Phase 1 Phase 2

Item-text Item-item User-item Train Test # Users # Items

ML1M 3079 479664 888696 19629820 12080 6040 3416
Beauty 10879 103268 138521 2628260 44726 22363 12101

Table 6: Results on OpenP5 sequential recommendation tasks using item behavioral embedding

Methods ML1M Beauty

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

OpenP5-T5(seen) 0.2066 0.1400 0.2945 0.1683 0.0457 0.0336 0.0622 0.0389
OpenP5-Llama(seen) 0.0714 0.0466 0.1094 0.0587 0.0022 0.0036 0.0024 0.0017

ILM-Qformer-pretrained(seen) 0.1357 0.0910 0.1922 0.1092 0.0227 0.0174 0.0282 0.0192

OpenP5-T5(unseen) 0.2055 0.1386 0.2940 0.1672 0.0452 0.0332 0.0613 0.0384
OpenP5-Llama(unseen) 0.0556 0.0364 0.0877 0.0467 0.0029 0.0017 0.0045 0.0022

ILM-Qformer-pretrained(unseen) 0.1338 0.0902 0.1919 0.1090 0.0220 0.0168 0.0275 0.0186

A.4 SEMANTIC CONSISTENCY RESULTS

We also evaluated ILM model with semantic embedding only and ILM model with behavioral
embedding only similar to the results in main section Table 3 on combined embedding model.
These results are consistent with the observations on the combined model. ILM-Qformer performs
reasonably for a cheaper training cost and ILM-Qformer-fulyfinetune performs the best. We also
include the results for semantic only models and behavioral only model in Table 9 and Table 9.
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Table 7: Results on OpenP5 straightforward recommendation tasks using item behavioral embedding

Methods ML1M Beauty

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10
HR@5

OpenP5-T5(seen) 0.0347 0.0224 0.0618 0.0309 0.0317 0.0239 0.0437 0.0277
OpenP5-Llama(seen) 0.0106 0.0066 0.0210 0.0104 0.0050 0.0035 0.0065 0.0040

ILM-Qformer-pretrained(seen) 0.0114 0.0070 0.0241 0.0111 0.0211 0.0161 0.0263 0.0177

OpenP5-T5(unseen) 0.0210 0.0134 0.0303 0.0164 0.0139 0.0089 0.0226 0.0117
OpenP5-Llama(unseen) 0.0098 0.0066 0.0195 0.0097 0.0047 0.0032 0.0062 0.0038

ILM-Qformer-pretrained(unseen) 0.0115 0.0067 0.0250 0.0110 0.0215 0.0162 0.0271 0.0180

Table 8: Effects of phase 1 item-item and user-item contrastive losses on OpenP5 phase 1 final train
and eval item-grounded text generation losses

Methods ML1M Beauty

Train Eval Train Eval

ILM-IT 0.0000 4.1699 1.0441 4.2643
ILM-IT-II 0.1552 3.8675 2.0232 3.2567
ILM-IT-UI 0.0089 4.0663 2.3420 3.3724

Table 9: Semantic Consistency (SC) metrics on the ELM 24 tasks using item semantic embedding
(PALM2-XS). We define SC as the semantic embedding cosine similarity between the decoded text
and original text. We adopt the Sentence-T5 11B model (Ni et al., 2022) for computing semantic
embeddings

Tasks Item Encoder

ELM ILM-MLP ILM-QFormer-
random

ILM-Qformer ILM-Qformer-
fullyfinetune

summary 81.53 77.42 81.35 80.98 82.15
positive review 88.12 84.67 86.12 86.14 87.70
neutral review 84.41 80.16 84.12 83.80 85.10
five pos char. 86.41 85.02 85.58 86.17 90.99
five neg char. 84.89 86.14 84.43 84.66 93.64
long description 80.81 76.76 80.37 80.21 81.15
funnier 75.52 72.41 75.89 75.37 76.10
sadder 77.86 74.90 78.17 77.82 78.66
scarier 76.77 74.61 77.15 77.01 77.96
improve 83.30 79.46 83.08 82.97 84.34
movie to viewer 84.72 80.05 84.19 84.40 88.01
pitch 87.96 85.35 88.24 88.17 88.92
criticize 83.04 79.41 83.10 82.86 84.78
convince1 83.02 79.86 83.31 83.23 83.66
convince2 81.82 79.71 82.41 82.19 85.07
convince3 80.54 77.57 81.20 80.60 84.97
dissuade1 80.97 79.36 81.33 81.08 81.77
dissuade2 80.69 80.17 81.25 81.03 85.64
similarities 84.53 82.67 85.86 85.66 90.16
interpolation 75.94 73.68 76.79 76.74 77.85
why like nn 82.22 76.95 84.15 83.97 87.61
diff than nn 84.70 82.68 84.38 85.47 92.57
common with nn 79.71 79.22 82.02 82.23 88.32
all 82.15 79.60 82.44 82.37 85.08
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Table 10: Semantic Consistency (SC) metrics on the ELM 24 tasks using item behavioral embedding
(PALM2-XS). We define SC as the semantic embedding cosine similarity between the decoded text
and original text. We adopt the Sentence-T5 11B model (Ni et al., 2022) for computing semantic
embeddings. Best results bolded

Tasks Item Encoder

ELM ILM-MLP ILM-QFormer-
random

ILM-Qformer ILM-Qformer-
fullyfinetune

summary 81.53 71.47 76.09 78.81 74.06
positive review 88.12 76.39 80.79 82.75 79.09
neutral review 84.41 73.85 79.99 82.54 79.44
five pos char. 86.41 80.20 83.26 84.98 82.73
five neg char. 84.89 83.43 84.46 83.70 84.70
long description 80.81 70.71 75.02 77.98 72.58
funnier 75.52 68.73 71.41 73.50 69.43
sadder 77.86 70.32 73.73 75.90 72.04
scarier 76.77 70.26 73.31 75.21 71.99
improve 83.30 75.60 79.43 81.44 79.50
movie to viewer 84.72 75.71 79.97 82.20 79.38
pitch 87.96 80.52 84.51 86.29 83.60
criticize 83.04 76.21 80.38 81.89 80.21
convince1 83.02 75.60 80.87 82.69 79.20
convince2 81.82 75.31 79.94 81.77 78.00
convince3 80.54 73.88 78.47 80.35 77.07
dissuade1 80.97 76.15 79.50 80.23 78.57
dissuade2 80.69 77.36 80.58 80.92 79.12

similarities 84.53 79.05 80.50 84.00 80.87
interpolation 75.94 71.14 71.61 74.75 71.92
why like nn 82.22 75.76 77.52 81.06 80.57
diff than nn 84.70 80.59 81.89 84.10 86.51
common with nn 79.71 76.51 78.76 80.57 80.01

all 82.15 75.59 78.92 80.87 78.43
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