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Abstract
Score-based methods represented as stochastic
differential equations on a continuous time do-
main have recently proven successful as a non-
adversarial generative model. Training such mod-
els relies on denoising score matching, which can
be seen as multi-scale denoising autoencoders.
Here, we augment the denoising score-matching
framework to enable representation learning with-
out any supervised signal. GANs and VAEs learn
representations by directly transforming latent
codes to data samples. In contrast, score-based
representation learning relies on a new formula-
tion of the denoising score-matching objective
and thus encodes information needed for denois-
ing. We show how this difference allows for man-
ual control of the level of detail encoded in the
representation.

1. Score-based generative modeling
Score-based methods have recently proven successful for
generating images (Song & Ermon, 2020; Song et al., 2020),
graphs (Niu et al., 2020), shapes (Cai et al., 2020), and au-
dio (Chen et al., 2020b; Kong et al., 2021). Two promising
approaches apply step-wise perturbations to samples of the
data distribution until the perturbed distribution matches a
known prior (Song & Ermon, 2019; Ho et al., 2020). A
model is trained to estimate the reverse process, which trans-
forms samples of the prior to samples of the data distribution.
These diffusion models have been further refined (Nichol &
Dhariwal, 2021; Jolicoeur-Martineau et al., 2020; Luhman &
Luhman, 2021) and even achieved better image sample qual-
ity than GANs (Dhariwal & Nichol, 2021). Further, Song
et al. showed that these frameworks are discrete versions
of continuous-time perturbations by stochastic differential
equations and propose a score-based generative modeling
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Figure 1. Conditional score matching with a parametrized la-
tent code is representation learning. Denoising score matching
estimates the score at each x̃; we add a latent representation z of
the clean data x as additional input to the score estimator.

framework on continuous time.

Learning desirable representations has been an inseparable
component of generative models such as GANs and VAEs
(Radford et al., 2016; Chen et al., 2016; Higgins et al., 2017;
Burgess et al., 2018; van den Oord et al., 2017; Donahue
& Simonyan, 2019; Chen et al., 2020a). Considering score-
based methods as promising and theoretically grounded
generative models, here we propose a method to augment
their underlying SDE for learning a latent data-generating
code. The key idea of our approach is illustrated in Figure
1. We begin by briefly revisiting the foundations of score-
based generative diffusion models in section 1.1. In section
2 we present our method and follow up with experimental
results in section 3.

1.1. Forward and reverse diffusion process

The forward diffusion process of the data is modeled as
a Stochastic Differential Equation (SDE) on a continuous
time domain t ∈ [0, T ]. Let x0 ∈ Rd denote a sample of
the data distribution x0 ∼ p0, where d is the data dimension.
The trajectory (xt)t∈[0,T ] of data samples is a function of
time determined by the stochastic diffusion process. The
SDE is chosen such that the distribution p0T (xT |x0) for
any sample x0 ∼ p0 can be approximated by a known prior
distribution. Notice that the subscript 0T of p0T refers to the
conditional distribution of the diffused data at time T given
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the data at time 0. For simplicity we limit the remainder of
this paper to the so-called Variance Exploding SDE (Song
et al., 2021), which is defined as

dx = f(x, t) dt+ g(t) dw :=

√
d[σ2(t)]

dt
, (1)

where w is the standard Wiener process. The perturbation
kernel of this diffusion process has a closed-form solution
being p0t(xt|x0) = N (xt;x0, [σ

2(t) − σ2(0)]I). It was
shown by Anderson that the reverse diffusion process is the
solution to the following SDE:

dx = [f(x, t)− g2(t)∇x log pt(x)] dt+ g(t) dw, (2)

where w is the standard Wiener process on reverse time
flow. Thus, given the score function∇x log pt(x) for all t ∈
[0, T ], we can generate samples from the data distribution
p0(x).

1.2. Denoising score matching objective

In order to learn the score function, one would like to min-
imize the distance between the model and the true score
function. This method is called Explicit Score Matching
(Vincent, 2011) and has the following objective function:

JESMt (θ) = Ext

[
‖sθ(xt, t)−∇xt

log pt(xt)‖22
]
. (3)

Since the ground-truth score function∇xt
log pt(xt) is gen-

erally not known, one can apply denoising score matching
(Vincent, 2011), which is defined as the following:

Jt(θ) = Ex0
{Ext|x0

[

‖sθ(xt, t)−∇xt log p0t(xt|x0)‖22 ]}. (4)

The issue of single scale noise motivated Song & Ermon to
expand the objective to a sum of denoising score matching
terms on multiple noise scales. They further augment the
objective with a positive weighting function λ(σ) > 0 to
empirically balance the loss magnitudes for all noise levels.
For the continuous time domain, Song et al. uniformly sam-
ple t ∈ [0, T ] and use a time-dependent positive weighting
function λ(t), leading to the following objective:

J(θ) = Et [λ(t)Jt(θ)] . (5)

We now show that this objective cannot be made arbitrarily
small. It is known that (4) is equal to explicit score matching
up to a constant which is independent of θ (Vincent, 2011).
Thus, the objective is minimized when the model equals the
ground-truth score function sθ(xt, t) = ∇x log pt(x) and
the additional constant is equal to the loss when this equality
holds. This leads to the following new formulation of the
denoising score matching objective:

Jt(θ) = Ex0
{Ext|x0

[

‖∇xt log p0t(xt|x0)−∇xt log pt(xt)‖22
+‖sθ(xt, t)−∇xt

log pt(xt)‖22]}.
(6)

This observation has not been emphasized previously, prob-
ably because it has no direct effect on the learning of the
score function. However, the additional constant has major
implications for finding other hyperparameters. Examples
for such hyperparameters are the values of: the function
λ(t) and the choice of the forward SDE. While these hyper-
parameters could be optimized in explicit score matching
using gradient-based learning, this ability is severely lim-
ited by the additional non-vanishing constant in (6). In
particular, optimizing such hyperparameters based on the
denoising score matching objective leads to solutions that
do not necessarily minimize the distance from the model to
the ground-truth score function. Instead, they are heavily bi-
ased towards solutions with a smaller value of the additional
constant. For example, trying to minimize the worst-case
λ-divergence as defined in (Durkan & Song, 2021) with
an adversarially trained λ is not directly possible, since λ
will focus on regions where the constant is high and mostly
ignores the model fit to the ground-truth score.
The non-vanishing constant in the denoising score matching
objective, which presents a burden in multiple ways such as
hyperparameter search and model evaluation, however also
provides an opportunity for latent representation learning,
which will be described in the following sections.

2. Representation learning through
score-matching

2.1. Conditional score matching

Class-conditional generation can be achieved in this frame-
work by training an additional time-dependent classifier
pt(y|xt) (Song et al., 2021). In particular, the conditional
score for a fixed y can be expressed as the sum of the un-
conditional score and the score of the classifier, that is,

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log pt(y|xt).

We propose conditional score matching as an alternative way
to allow for controllable generation. Given supervised labels
y(x), the new training objective for each time t becomes

Jt(θ) = Ex0
{Ext|x0

[

‖sθ(xt, t, y(x0))−∇xt log p0t(xt|x0)‖22 ]}. (7)

The conditional objective is minimized if and only
if the model equals the conditional score function
∇xt log pt(xt|y(x0) = ŷ) for all labels ŷ. Note that condi-
tional score matching is directly done during training and
does not require to train an additional classifier over the
whole time domain.

2.2. Learning the latent representation

Since supervised data is limited and rarely available, we pro-
pose to learn the labeling function y(x0) at the same time as
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optimizing the conditional score matching objective (7). In
particular, we represent the labeling function as a trainable
encoder Eφ : Rd → Rdz , where Eφ(x0) maps the data
sample x0 to its corresponding code in the dz-dimensional
latent space. The code is then used as additional input to the
model. Formally, the proposed learning objective for latent
representation learning is the following:

J(θ, φ) = Et,x0,xt [λ(t)

‖sθ(xt, t, Eφ(x0))−∇xt
log p0t(xt|x0)‖22 ]. (8)

Intuitively, Eφ(x0) selects the vector field used to denoise
x0 starting from xt. We show in the following that (8) is
a valid representation learning objective. The score of the
perturbation kernel∇xt

log p0t(xt|x0) is a function of only
t, xt and x0. Thus the objective can be reduced to zero if all
information about x0 is contained in the latent representa-
tion Eφ(x0). When Eφ(x0) has no mutual information with
x0, the objective can only be reduced up to the constant in
(6). Hence, our proposed formulation takes advantage of the
non-zero lower-bound of (6) which can only vanish when
data information is distilled in a code provided as input to
the model.

2.3. Controlling the representation

In contrast to other methods used for unsupervised repre-
sentation learning (Radford et al., 2016; Chen et al., 2016;
Higgins et al., 2017), the proposed objective here enjoys
the continuous nature of the SDE. The encoder is trained
to represent information needed to denoise x0 for different
levels of noise σ(t). We hypothesize that by adjusting the
weighting function λ(t), we can manually control the gran-
ularity of the features encoded in the representation. For
high noise levels, the mutual information of xt and x0 is
insignificant, thus denoising requires all information about
x0 to be contained in the code. In contrast, for small val-
ues of t, xt still contains coarse-grained features of x0 and
denoising can be performed even when the representation
encodes only fine-grained features. We provide empirical
evidence to support this hypothesis in Section 3.

3. Experimental results
For all experiments, we use the same function σ(t), t ∈
[0, 1] as in (Song et al., 2021), which is σ(t) =

σmin

(
σmax

σmin

)t
, where σmin = 0.01 and σmax = 50. Further,

we use λ(t) = σ2(t), which has been shown to yield the KL-
Divergence objective (Durkan & Song, 2021). For visual-
ization purposes, we use a 2-dimensional latent space if not
stated otherwise. Our goal is not to produce state-of-the-art
image quality, rather showcase the representation learning
method. Because of that and also limited computational re-
sources, we did not carry out an extensive hyper-parameter

(a) Samples generated from
a grid of latent values on a
range from −1 to 1

(b) Latent representation of
test samples, colored accord-
ing to the digit class

(c) Samples generated from
a grid of latent values on a
range from −1 to 1

(d) Latent representation of
test samples, colored accord-
ing to the class label

Figure 2. Samples and latent distribution of a model trained on
MNIST (a-b) and the first three classes of CIFAR-10 (c-d) using
L1-regularization and uniform sampling of t

sweep. Hence, the model architecture in all experiments is
similar to but significantly smaller than the one proposed in
(Song et al., 2021). Details for architecture and hyperparam-
eters are described in the appendix (A.1). Figure 10 in the
appendix further illustrates how the representation encodes
information for denoising.

3.1. Uniform sampling of t

We first train a model using L1-regularization on the latent
code for the MNIST dataset (LeCun & Cortes, 2010) and
CIFAR-10 (Krizhevsky et al.). Due to computational limita-
tions, we limit CIFAR-10 to a subset of only three classes,
which we randomly chose to be the first three classes. Fig-
ure 2 shows samples from a grid over the latent space and a
point cloud visualization of the latent values z = Eφ(x0).
For MNIST, we can see that the value of z1 controls the
stroke width, while z2 weakly indicates the class. In con-
trast, the latent code of CIFAR-10 samples mostly encodes
information about the class label. We can see from the sam-
ples that part of the reason might be an encoding of the
background, which is highly correlated with the class labels.
We conducted the same experiment with a probabilistic en-
coder, where the latent representation is regularized using
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(a) Samples generated from
a grid of latent values on a
range from −2 to 2

(b) Latent representation of
test samples, colored accord-
ing to the digit class

Figure 3. Samples and latent distribution of a model trained on
MNIST using KL-divergence and uniform sampling of σ

KL-Divergence. The resulting representation is similar and
can be seen in the appendix (5, 6). We also trained models
on all classes of CIFAR-10, however not until convergence
due to computational constraints (cf. 8, 9). Early results indi-
cate encoding of overall image brightness. We further want
to point out that the generative process using the reverse
SDE involves randomness and thus can generate different
samples for a single latent representation. The diversity
of samples generated for the same representation steadily
decreases with the dimensionality of the latent space, which
is empirically shown in Figure 11 of the appendix.

3.2. Controlling the representation

Next, we analyze the behavior of the representation when
adjusting the weighting function λ(t), which can be done
by changing the sampling distribution of t.

3.2.1. HIGH NOISE LEVELS

First, we focus the training on higher noise levels. To this
end, we sample t such that σ(t) is uniformly sampled from
the interval [σmin, σmax] = [0.01, 50]. Note that after learn-
ing the representation we additionally train the model with
uniform sampling of t and a frozen encoder to achieve good
sample quality. Figure 3 shows the resulting representa-
tion for MNIST using a probabilistic encoder (cf. Figure 7
for L1 regularization results). As expected, the latent rep-
resentation encodes information about classes rather than
fine-grained features such as stroke width. This validates our
hypothesis of section 2.3 that we can control the granularity
of features encoded in the latent space.

3.2.2. TRAINING ON SINGLE TIMESCALES

To understand the effect of training on different timescales
more clearly, we limit the support of the weighting function
λ(t) to a single value of t. We analyze the resulting quality
of the latent representation for different values of t using
the silhouette score with euclidean distance based on the
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(b) CIFAR-10

Figure 4. Mean and standard deviation of silhouette scores when
training a model on MNIST (left) and the first three classes of
CIFAR-10 (right) using a single t over three runs.

dataset classes (Rousseeuw, 1987). It compares the average
distance between a point to all other points in its cluster
with the average distance to points in the nearest different
cluster. Thus we measure how well the latent representation
encodes classes, ignoring any other features.

Figure 4 shows the silhouette scores of latent codes of
MNIST and CIFAR-10 samples for different values of t.
In alignment with our hypothesis of section 2.3, training
on a small t and thus low noise levels leads to almost no
encoded class information in the latent representation, while
the opposite is the case for a range of twhich differs between
the two datasets. The decline in encoded class information
for high values of t can be explained by the vanishing dif-
ference between distributions of perturbed samples when t
gets large. This shows that the distinction among the code
classes represented by the silhouette score is controlled by
λ(t).

Overall, the difference in the latent codes for varying λ(t)
shows that we can control the granularity encoded in the rep-
resentation. While this ability does not exist in previously
proposed models for representation learning, it provides a
significant advantage when there exist some prior informa-
tion about the level of detail that we intend to encode in the
target representation.

4. Conclusion
We presented a new objective for representation learning
based on conditional denoising score matching. In doing so,
we turned the original non-vanishing objective function into
one that can be reduced to zero if all information is distilled
in the code. We showed that the proposed method learns
interpretable features in the latent space. In contrast to pre-
vious approaches, denoising score matching as a foundation
comes with the ability to manually control the granularity
of features encoded in the representation. We demonstrated
that the encoder can learn to separate classes when focusing
on high noise levels and encodes fine-grained features such
as stroke-width when mainly trained on low level noise.



Representation Learning in Continuous-Time Score-Based Generative Models

References
Anderson, B. D. Reverse-time diffusion equation

models. Stochastic Processes and their Applica-
tions, 12(3):313–326, 1982. ISSN 0304-4149.
doi: https://doi.org/10.1016/0304-4149(82)90051-5.
URL https://www.sciencedirect.com/
science/article/pii/0304414982900515.

Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N.,
Desjardins, G., and Lerchner, A. Understanding disentan-
gling in β-vae, 2018.

Cai, R., Yang, G., Averbuch-Elor, H., Hao, Z., Belongie, S.,
Snavely, N., and Hariharan, B. Learning gradient fields
for shape generation, 2020.

Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan,
D., and Sutskever, I. Generative pretraining from pix-
els. In III, H. D. and Singh, A. (eds.), Proceedings of
the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 1691–1703. PMLR, 13–18 Jul 2020a.
URL http://proceedings.mlr.press/v119/
chen20s.html.

Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and
Chan, W. Wavegrad: Estimating gradients for waveform
generation, 2020b.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. Infogan: Interpretable representation
learning by information maximizing generative adversar-
ial nets, 2016.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on
image synthesis, 2021.

Donahue, J. and Simonyan, K. Large scale adversarial
representation learning, 2019.

Durkan, C. and Song, Y. On maximum likelihood training
of score-based generative models, 2021.

Higgins, I., Matthey, L., Pal, A., Burgess, C. P., Glorot,
X., Botvinick, M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained
variational framework. In ICLR, 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. CoRR, abs/2006.11239, 2020. URL
https://arxiv.org/abs/2006.11239.

Jolicoeur-Martineau, A., Piché-Taillefer, R., des Combes,
R. T., and Mitliagkas, I. Adversarial score matching and
improved sampling for image generation, 2020.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.
Diffwave: A versatile diffusion model for audio synthesis,
2021.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian
institute for advanced research). URL http://www.
cs.toronto.edu/˜kriz/cifar.html.

LeCun, Y. and Cortes, C. MNIST handwritten digit
database. 2010. URL http://yann.lecun.com/
exdb/mnist/.

Luhman, E. and Luhman, T. Knowledge distillation in
iterative generative models for improved sampling speed,
2021.

Nichol, A. and Dhariwal, P. Improved denoising diffusion
probabilistic models. CoRR, abs/2102.09672, 2021. URL
https://arxiv.org/abs/2102.09672.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling, 2020.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks, 2016.

Rousseeuw, P. J. Silhouettes: A graphical aid to
the interpretation and validation of cluster anal-
ysis. Journal of Computational and Applied
Mathematics, 20:53–65, 1987. ISSN 0377-0427.
doi: https://doi.org/10.1016/0377-0427(87)90125-7.
URL https://www.sciencedirect.com/
science/article/pii/0377042787901257.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models, 2020.

Song, Y. and Ermon, S. Generative modeling by es-
timating gradients of the data distribution. CoRR,
abs/1907.05600, 2019. URL http://arxiv.org/
abs/1907.05600.

Song, Y. and Ermon, S. Improved techniques for training
score-based generative models. CoRR, abs/2006.09011,
2020. URL https://arxiv.org/abs/2006.
09011.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations, 2021.

van den Oord, A., Vinyals, O., and Kavukcuoglu,
K. Neural discrete representation learning. CoRR,
abs/1711.00937, 2017. URL http://arxiv.org/
abs/1711.00937.

Vincent, P. A connection between score matching and de-
noising autoencoders. Neural Computation, 23(7):1661–
1674, 2011. doi: 10.1162/NECO a 00142.

https://www.sciencedirect.com/science/article/pii/0304414982900515
https://www.sciencedirect.com/science/article/pii/0304414982900515
http://proceedings.mlr.press/v119/chen20s.html
http://proceedings.mlr.press/v119/chen20s.html
https://arxiv.org/abs/2006.11239
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/2102.09672
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
http://arxiv.org/abs/1907.05600
http://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2006.09011
https://arxiv.org/abs/2006.09011
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1711.00937


Representation Learning in Continuous-Time Score-Based Generative Models

A. Appendix

(a) Samples generated from a grid of latent values on a
range from −2 to 2

(b) Latent representation of test samples, colored ac-
cording to the digit class

Figure 5. Samples and latent distribution of a model trained on MNIST using KL-divergence and uniform sampling of t

A.1. Architecture and Hyperparameters

The model architecture we use for all experiments is based on “DDPM++ cont. (deep)” used for CIFAR-10 in (Song et al.,
2021). It is composed of a downsampling and an upsampling block with residual blocks at multiple resolutions. We did
not change any of the hyperparameters of the optimizer. Depending on the dataset, we adjusted the number of resolutions,
number of channels per resolution, and the number of residual blocks per resolution in order to reduce training time.

For representation learning, we use an encoder with the same architecture as the downsampling block of the model, followed
by another three dense layers mapping to a low dimensional latent space. Another four dense layers map the latent code
back to a higher-dimensional representation. It is then given as input to the model in the same way as the time embedding.
That is, each channel is provided with a conditional bias determined by the representation and time embedding at multiple
stages of the downsampling and upsampling block.

Regularization of the latent space For both datasets, we use a regularization weight of 10−5 when applying L1-
regularization, and a weight of 10−7 when using a probabilistic encoder regularized with KL-Divergence.

MNIST hyperparameters Due to the simplicity of MNIST, we only use two resolutions of size 28 × 28 × 32 and
14× 14× 64, respectively. The number of residual blocks at each resolution is set to two. In each experiment, the model is
trained for 80k iterations. For uniform sampling of σ we trained the models for an additional 80k iterations with a frozen
encoder and uniform sampling of t.

CIFAR10 hyperparameters For the silhouette score analysis, we use three resolutions of size 32×32×32, 16×16×32,
and 8× 8× 32, again with only two residual blocks at each resolution. Each model is trained for 90k iterations.

CIFAR10 (deep) hyperparameters While representation learning works for small models already, sample quality on
CIFAR-10 is poor for models of the size described above. Thus for models used to generate samples, we use eight residual
blocks per resolution and the following resolutions: 32× 32× 32, 16× 16× 64, 8× 8× 64, and 4× 4× 64. Each model
is trained for 300k iterations.
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(a) Samples generated from a grid of latent values on a
range from −1 to 1

(b) Latent representation of test samples, colored ac-
cording to the class label

Figure 6. Samples and latent distribution of a model trained on the first three classes of CIFAR-10 using KL-divergence and uniform
sampling of t

(a) Samples generated from a grid of latent values on a
range from −1 to 1

(b) Latent representation of test samples, colored ac-
cording to the digit class

Figure 7. Samples and latent distribution of a model trained on MNIST using L1-regularization and uniform sampling of σ
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(a) Samples generated from a grid of latent values on a
range from −1 to 1

(b) Latent representation of test samples, colored ac-
cording to the class label

Figure 8. Samples and latent distribution of a model trained on all classes of CIFAR-10 using KL-divergence and uniform sampling of t

(a) Samples generated from a grid of latent values on a
range from −1 to 1

(b) Latent representation of test samples, colored ac-
cording to the class label

Figure 9. Samples and latent distribution of a model trained on all classes of CIFAR-10 using L1-regularization and uniform sampling of t
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Figure 10. Samples generated starting from xt (left column) using the score function with the latent code of another x0 (top row) as input.
It shows that samples are denoised correctly only when conditioning on the latent code of the corresponding original image x0.
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(a) 2-dimensional (b) 4-dimensional

(c) 8-dimensional (d) 16-dimensional

Figure 11. Samples generated using the same latent code for each generation, showing that the randomness of the code-conditional
generation reduces in higher dimensional latent spaces.


