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Abstract

Despite the impressive numerical performance of quasi-Newton and Ander-1

son/nonlinear acceleration methods, their global convergence rates have remained2

elusive for over 50 years. This paper addresses this long-standing question by3

introducing a framework that derives novel and adaptive quasi-Newton or non-4

linear/Anderson acceleration schemes. Under mild assumptions, the proposed5

iterative methods exhibit explicit, non-asymptotic convergence rates that blend6

those of gradient descent and Cubic Regularized Newton’s method. Notably, these7

rates are achieved adaptively, as the method autonomously determines the optimal8

step size using a simple backtracking strategy. The proposed approach also includes9

an accelerated version that improves the convergence rate on convex functions.10

Numerical experiments demonstrate the efficiency of the proposed framework,11

even compared to a fine-tuned BFGS algorithm with line search.12

1 Introduction13

Consider the problem of finding the minimizer x⋆ of the unconstrained minimization problem14

f(x⋆) = f⋆ = min
x∈Rd

f(x),

where d is the problem’s dimension, and the function f has a Lipschitz continuous Hessian.15

Assumption 1. The function f(x) has a Lipschitz continuous Hessian with a constant L,16

∀ y, z ∈ Rd, ∥∇2f(z)−∇2f(y)∥ ≤ L∥z − y∥. (1)

In this paper, ∥.∥ stands for the maximal singular value of a matrix and for the ℓ2 norm for a vector.17

Many twice-differentiable problems like logistic or least-squares regression satisfy Assumption 1.18

The Lipschitz continuity of the Hessian is crucial when analyzing second-order algorithms, as it19

extends the concept of smoothness to the second order. The groundbreaking work by Nesterov et al.20

[45] has sparked a renewed interest in second-order methods, revealing the remarkable convergence21

rate improvement of Newton’s method on problems satisfying Assumption 1 when augmented with22

cubic regularization. For instance, if the problem is also convex, accelerated gradient descent typically23

achieves O( 1
t2 ), while accelerated second-order methods achieve O( 1

t3 ). Recent advancements have24

further pushed the boundaries, achieving even faster convergence rates of up to O( 1
t7/2

) through the25

utilization of hybrid methods [42, 14] or direct acceleration of second-order methods [43, 27, 39].26

Unfortunately, second-order methods may not always be feasible, particularly in high-dimensional27

problems common in machine learning. The limitation is that exact second-order methods require28

solving a linear system that involves the Hessian of the function f . This main limitation motivated29

alternative approaches that balance the efficiency of second-order methods and the scalability of30

first-order methods, such as inexact/subspace/stochastic techniques, nonlinear/Anderson acceleration,31

and quasi-Newton methods.32
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1.1 Contributions33

Despite the impressive numerical performance of quasi-Newton methods and nonlinear acceleration34

schemes, there is currently no knowledge about their global explicit convergence rates. In fact, global35

convergence cannot be guaranteed without using either exact or Wolfe-line search techniques. This36

raises the following long-standing question that has remained unanswered for over 50 years:37

What are the non-asymptotic global convergence rates of quasi-Newton38

and Anderson/nonlinear acceleration methods?39

This paper provides a partial answer by introducing generic updates (see algorithms 1 to 3) that can40

be viewed as cubic-regularized quasi-Newton methods or regularized nonlinear acceleration schemes.41

Under mild assumptions, the iterative methods constructed within the proposed framework (see42

algorithms 3 and 6) exhibit explicit, global and non-asymptotic convergence rates that interpolate the43

one of first order and second order methods (more details in appendix A):44

• Convergence rate on non-convex problems (Theorem 4): mini ∥∇f(xi)∥ ≤ O(t−
2
3 + t−

1
3 ),45

• Convergence rate on (star-)convex problems (Theorems 5 and 6): f(xt)− f⋆ ≤ O(t−2 + t−1),46

• Accelerated rate on convex problems (Theorem 8): f(xt)− f⋆ ≤ O(t−3 + t−2).47

1.2 Related work48

Inexact, subspace, and stochastic methods. Instead of explicitly computing the Hessian matrix49

and Newton’s step, these methods compute an approximation using sampling [2], inexact Hessian50

computation [29, 19], or random subspaces [20, 31, 34]. By adopting a low-rank approximation for the51

Hessian, these approaches substantially reduce per-iteration costs without significantly compromising52

the convergence rate. The convergence speed in such cases often represents an interpolation between53

the rates observed in gradient descent methods and (cubic) Newton’s method.54

Nonlinear/Anderson acceleration. Nonlinear acceleration techniques, including Anderson accel-55

eration [1], have a long standing history [3, 4, 28]. Driven by their promising empirical performance,56

they recently gained interest in their convergence analysis [61, 26, 60, 37, 66, 64, 69, 68, 53, 62,57

63, 6, 57, 8, 54]. In essence, Anderson acceleration is an optimization technique that enhances58

convergence by extrapolating a sequence of iterates using a combination of previous gradients and59

corresponding iterates. Comprehensive reviews and analyses of these techniques can be found in60

notable sources such as [37, 7, 36, 35, 5, 17]. However, these methods do not generalize well outside61

quadratic minimization and their convergence rate can only be guaranteed asymptotically when using62

a line-search or regularization techniques [59, 65, 53].63

Quasi-Newton methods. Quasi-Newton schemes are renowned for their exceptional efficiency64

in continuous optimization. These methods replace the exact Hessian matrix (or its inverse) in65

Newton’s step with an approximation that is updated iteratively during the method’s execution. The66

most widely used algorithms in this category include DFP [18, 25] and BFGS [58, 30, 24, 10, 9].67

Most of the existing convergence results predominantly focus on the asymptotic super-linear rate of68

convergence [67, 32, 12, 11, 15, 22, 72, 70, 71]. However, recent research on quasi-Newton updates69

has unveiled explicit and non-asymptotic rates of convergence [49, 51, 50, 40, 41]. Nonetheless,70

these analyses suffer from several significant drawbacks, such as assuming an infinite memory71

size and/or requiring access to the Hessian matrix. These limitations fundamentally undermine the72

essence of quasi-Newton methods, which are typically designed to be Hessian-free and maintain low73

per-iteration cost through their low-memory requirement and low-rank structure.74

Recently, Kamzolov et al. [38] introduced an adaptive regularization technique combined with75

cubic regularization, with global, explicit (accelerated) convergence rates for any quasi-Newton76

method. The method incorporates a backtracking line search on the secant inexactness inequality77

that introduces a quadratic regularization. However, this algorithm relies on prior knowledge of the78

Lipschitz constant specified in Assumption 1. Unfortunately, the paper does not provide an adaptive79

method to find jointly the Lipschitz constant as well, as it is a priory too costly to know which80

parameter to update. This aspect makes the method impractical in real-world scenarios.81
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Paper Organization Section 2 introduces the proposed novel generic updates and some essential82

theoretical results. Section 3 presents the convergence analysis of the iterative algorithm, which83

uses one of the proposed updates. Section 4 is dedicated to the accelerated version of the proposed84

framework. Section 5 presents examples of methods generated by the proposed framework.85

2 Type-I and Type-II Step86

This section first examines a remarkable property shared by quasi-Newton and Anderson acceleration:87

the sequence of iterates of these methods can be expressed as a combination of directions formed by88

previous iterates and the current gradient. Building upon this observation, section 2.1 investigates89

how to obtain second-order information without directly computing the Hessian of the function f by90

approximating the Hessian within the subspace formed by these directions. Subsequently, section 2.291

demonstrates how to utilize this approximation to establish an upper bound for the function f and its92

gradient norm ∥∇f(x)∥. Minimizing these upper bounds, respectively, leads to a type-I and type-II93

method.94

Motivation: what quasi-Newton and nonlinear acceleration schemes actually do? The BFGS95

update is a widely used quasi-Newton method for unconstrained optimization. It approximates the96

inverse Hessian matrix using updates based on previous gradients and iterates. The update reads97

xt+1 = xt − htHt∇f(xt), Ht = Ht−1

(
I − gtd

T
t

gT
t dt

)
+ dt

(
dTt

dT
t gt+gT

t Ht−1dt

(gT
t dt)2

− gT
t Ht−1

gT
t dt

)
where Ht is the approximation of the inverse Hessian at iteration t, ht is the step size, dt = xt−xt−198

is the step direction, gt = ∇f(xt) − ∇f(xt−1) is the gradient difference. After unfolding the99

equation, the BFGS update can be seen as a combination of the di’s and ∇f(xt),100

xt+1 − xt = H0P0 . . . Pt∇f(xt) +
∑t

i=1 αidi, (2)

where Pi are projection matrices in Rd×d and αi are coefficients. Similar reasoning can be applied to101

other quasi-Newton formulas (see appendix B for more details).102

This observation aligns with the principles of Anderson acceleration methods. Considering the same103

vectors dt and gt, Anderson acceleration updates xt+1 as:104

α⋆ = minα ∥∇f(xt) +
∑t−1

i=0 αiri∥, xt+1 − xt =
∑t

i=0 α
⋆
i (di − htgi) ,

where ht is the relaxation parameter, which can be seen as the step size of the method. As all105

xi’s belong to the span of previous gradients, the update is similar to (2), see appendix B for more106

details. This is not surprising, as it has been shown that Anderson acceleration can be viewed as a107

quasi-Newton method [23]. Some studies have explored the relationship between these two classes108

of optimization techniques and established strong connections in terms of their algorithmic behavior109

[23, 73, 56, 13].110

Hence, quasi-Newton algorithms and nonlinear/Anderson acceleration methods utilize previous111

directions di and the current gradient ∇f(xt) in subsequent iterations. However, their convergence112

is guaranteed only if a line search is used, and their convergence speed is heavily dependent on H0113

(quasi-Newton) or ht (Anderson acceleration) [48].114

2.1 Error Bounds on the Hessian-Vector Product Approximation by a Difference of Gradients115

Consider the following d×N matrices that represent the algorithm’s memory,116

Y = [y1, . . . , yN ], Z = [z1, . . . , zN ], D = Y − Z, G = [. . . ,∇f(yi)−∇f(zi), . . .]. (3)

For example, to mimic quasi-Newton techniques, the matrices Y and Z can be defined such that,117

D = [. . . , xt−i+1 − xt−i, . . .], G = [. . . ,∇f(xt−i+1)−∇f(xt−i), . . .], i = 1 . . . N.

Motivated by (2), this paper studies the following update, defined as a linear combination of the118

previous directions di,119

x+ − x = Dα where α ∈ RN . (4)
The objective is to determine the optimal coefficients α based on the information contained in the120

matrices defined in (3). Notably, the absence of the gradient in the update (4) distinguishes this121
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approach from (2), allowing for the development of an adaptive method that eliminates the need for122

an initial matrix H0 (quasi-Newton methods) or a mixing parameter ht (Anderson acceleration).123

Under assumption (1), the following bounds hold for all x, y, z, x+ ∈ Rd [45],124

∥∇f(y)−∇f(z)−∇2f(z)(y − z)∥ ≤ L
2 ∥y − z∥2, (5)∣∣f(x+)− f(x)−∇f(x)(x+ − x)− 1

2 (x+ − x)T∇2f(x)(x+ − x)
∣∣ ≤ L

6 ∥x+ − x∥3. (6)

The accuracy of the estimation of the matrix∇2f(x), depends on the error vector ε,125

ε
def
= [ε1, . . . , εN ], and εi

def
= ∥di∥ (∥di∥+ 2∥zi − x∥) . (7)

The following Theorem 1 explicitly bounds the error of approximating∇2f(x)D by G.126

Theorem 1. Let the function f satisfy Assumption 1. Let x+ be defined as in (4) and the matrices127

D, G be defined as in (3) and vector ε as in (7). Then, for all w ∈ Rd and α ∈ RN ,128

−L∥w∥
2

∑N
i=1 |αi|εi ≤ wT (∇2f(x)D −G)α ≤ L∥w∥

2

∑N
i=1 |αi|εi, (8)

∥wT (∇2f(x)D −G)∥ ≤ L∥w∥
2 ∥ε∥. (9)

Proof sketch and interpretation. The theorem states that the Hessian-vector product∇2f(x)(y−z)129

can be approximated by the difference of gradients ∇f(y) − ∇f(z), providing a cost-effective130

approach to estimate ∇2f without computing it. This property is the basis of quasi-Newton methods.131

The detailed proof can be found in appendix F. The main idea of the proof is as follows. From (5)132

with y = yi and z = zi, writing di = yi − zi, and Assumption 1,133

∥∇f(yi)−∇f(zi)−∇2f(x)(yi − zi)∥ ≤
L

2
∥di∥2 + ∥∇2f(x)−∇2f(z)∥∥di∥ ≤

L

2
εi.

The first term in εi bounds the error of (5), while the second comes from the distance between (5)134

and the current point x where the Hessian is estimated. Then, it suffices to combine the inequalities135

with coefficients α to obtain Theorem 1.136

2.2 Type I and Type II Inequalities and Methods137

In the literature, Type-I methods often refer to algorithms that aim to minimize the function value138

f(x), while type-II methods minimize the gradient norm ∥∇f(x)∥ [23, 73, 13]. Applying the bounds139

(6) and (5) to the update in (4) yields the following Type-I and Type-II upper bounds, respectively.140

Theorem 2. Let the function f satisfy Assumption 1. Let x+ be defined as in (4), the matrices D, G141

be defined as in (3) and ε be defined as in (7). Then, for all α ∈ RN ,142

f(x+) ≤ f(x) +∇f(x)TDα+ αTHα
2 + L∥Dα∥3

6 , H
def
= GTD+DTG+IL∥D∥∥ε∥

2 (10)

∥∇f(x+)∥ ≤ ∥∇f(x) +Gα∥+ L
2

(∑N
i=1 |αi|εi + ∥Dα∥2

)
, (11)

The proof can be found in appendix F. Minimizing eqs. (10) and (11) leads to algorithms 1 and 2,143

respectively, whose constant L is replaced by a parameter M , found by backtracking line-search. A144

study of the (strong) link between these proposed algorithms and nonlinear/Anderson acceleration145

and quasi-Newton methods can be found in appendix B.146

Solving the sub-problems In algorithms 1 and 2, the coefficients α are computed by solving a147

minimization sub-problem in O(N3 +Nd) (see appendix C for more details). Usually, N is rather148

small (e.g. between 5 and 100); hence solving the subproblem is negligible compared to computing a149

new gradient∇f(x). Here is the summary:150

• In algorithm 1, the subproblem can be solved easily by a convex problem in two variables,151

which involves an eigenvalue decomposition of the matrix H ∈ RN×N [45].152

• In algorithm 2, the subproblem can be cast into a linear-quadratic problem of O(N)153

variables and constraints that can be solved efficiently with SDP solvers (e.g., SDPT3).154
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Algorithm 1 Type-I Subroutine with Backtracking Line-search
Require: First-order oracle for f , matrices G, D, vector ε, iterate x, initial smoothness M0.

1: Initialize M ← M0

2
2: do
3: M ← 2M and H ← GTD+DTG

2 + IN
M∥D∥∥ε∥

2

4: α⋆ ← argminα f(x) +∇f(x)TDα+ 1
2α

THα+ M∥Dα∥3

6
5: x+ ← x+Dα

6: while f(x+) ≥ f(x) +∇f(x)TDα⋆ + 1
2 [α

⋆]THα⋆ + M∥Dα⋆∥3

6
7: return x+, M

Algorithm 2 Type-II Subroutine with Backtracking Line-search
Same as algorithm 1, but minimize and check the upper bound (11) instead of (10) on lines 4 and 6.

3 Iterative Type-I Method: Framework and Rates of Convergences155

The rest of the paper analyzes the convergence rate of methods that use algorithm 1 as a subroutine;156

see algorithm 3. The analysis of methods that uses algorithm 2 is left for future work.157

3.1 Main Assumptions and Design Requirements158

This section lists the important assumptions on the function f . Some subsequent results require an159

upper bound on the radius of the sub-level set of f at f(x0).160

Assumption 2. The radius of the sub-level set {x : f(x) ≤ f(x0)} is bounded by R <∞.161

To ensure the convergence toward f(x⋆), some results require f to be star-convex or convex.162

Assumption 3. The function f is star convex if, for all x ∈ Rd and ∀τ ∈ [0, 1],163

f((1− τ)x+ τx⋆) ≤ (1− τ)f(x) + τf(x⋆).

Assumption 4. The function f is convex if, for all y, z ∈ Rd, f(y) ≥ f(z) +∇f(z)(y − z).164

The matrices Y, Z, D must meet some conditions listed below as "requirements" (see section 5 for165

details). All convergence results rely on one of these conditions on the projector onto span(D),166

Pt
def
= Dt(D

T
t Dt)

−1DT
t . (12)

Requirement 1a. For all t, the projector Pt of the stochastic matrix Dt satisfies E[Pt] =
N
d I.167

Requirement 1b. For all t, the projector Pt satisfies Pt∇f(xt) = ∇f(xt).168

The first condition guarantees that, in expectation, the matrix Dt spans partially the gradient ∇f(xt),169

since E[Pt∇f(xt)] =
N
d ∇f(xt). The second condition simply requires the possibility to move170

towards the current gradient when taking the step x+Dα. This condition resonates with the idea171

presented in (2), where the step x+−x combines previous directions and the current gradient∇f(xt).172

In addition, it is required that the norm of ∥ε∥ does not grow too quickly, hence the next assumption.173

Requirement 2. For all t, the relative error ∥εt∥
∥Dt∥ is bounded by δ.174

The Requirement 2 is also non-restrictive, as it simply prevents taking secant equations at yi − zi and175

zi − xi too far apart. Most of the time, δ satisfies δ ≤ O(R).176

Finally, the condition number of the matrix D also has to be bounded.177

Requirement 3. For all t, the matrix Dt is full-column rank, which implies that DT
t Dt is invertible.178

In addition, its condition number κDt

def
=
√
∥DT

t Dt∥∥(DT
t Dt)−1∥ is bounded by κ.179

The condition on the rank of D is not overly restrictive. In most practical scenarios, this condition is180

typically satisfied without issue. However, the second condition might be hard to meet, but section 5181

studies strategies that prevent κD from exploding by taking orthogonal directions or pruning D.182
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Algorithm 3 Generic Iterative Type-I Methods
Require: First-order oracle f , initial iterate and smoothness x0, M0, number of iterations T .

for t = 0, . . . , T − 1 do
Update Gt, Dt, εt (see section 5).
xt+1,Mt+1 ← [algorithm 1](f,Gt, Dt, εt, xt, (Mt/2))

end for
return xT

3.2 Rates of Convergence183

When f satisfies Assumption 1, algorithm 3 ensures a minimal function decrease at each step.184

Theorem 3. Let f satisfy Assumption 1. Then, at each iteration t ≥ 0, algorithm 3 achieves185

f(xt+1) ≤ f(xt)− Mt+1

12 ∥xt+1 − xt∥3, Mt+1 < max
{
2L ; M0

2t

}
. (13)

Under some mild assumptions, algorithm 3 converges to a critical point for non-convex functions.186

Theorem 4. Let f satisfy Assumption 1, and assume that f is bounded below by f∗. Let Require-187

ments 1b to 3 hold, and Mt ≥Mmin. Then, algorithm 3 starting at x0 with M0 achieves188

min
i=1, ..., t

∥∇f(xi)∥ ≤ max

{
3L

t2/3

(
12

f(x0)− f⋆

Mmin

)2/3

;

(
C1

t1/3

)(
12

f(x0)− f⋆

Mmin

)1/3
}
,

where C1 = δL
(

κ+2κ2

2

)
+maxi∈[0,t] ∥(I − Pi)∇2f(xi)Pi∥.

Going further, algorithm 3 converges to an optimum when the function is star-convex.189

Theorem 5. Assume f satisfy Assumptions 1 to 3. Let Requirements 1b to 3 hold. Then, algorithm 3190

starting at x0 with M0 achieves, for t ≥ 1,191

(f(xt)− f⋆) ≤ 6
f(xt)− f⋆

t(t+ 1)(t+ 2)
+

1

(t+ 1)(t+ 2)

L(3R)3

2
+

1

t+ 2

C2(3R)2

4
,

where C2
def
= δLκ+2κ2

2 +maxi∈[0,t] ∥∇2f(xi)− Pi∇2f(xi)Pi∥.

Finally, the next theorem shows that when algorithm 3 uses a stochastic D that satisfies Require-192

ment 1a, then f(xt) also converges in expectation to f(x⋆) when f is convex.193

Theorem 6. Assume f satisfy Assumptions 1, 2 and 4. Let Requirements 1a, 2 and 3 hold. Then, in194

expectation over the matrices Di, algorithm 3 starting at x0 with M0 achieves, for t ≥ 1,195

EDt
[f(xt)− f⋆] ≤ 1

1 + 1
4

[
N
d t
]3 (f(x0)− f⋆) +

1[
N
d t
]2 L(3R)3

2
+

1[
N
d t
] C3(3R)2

2
,

where C3
def
= δLκ+2κ2

2 + (d−N)
d maxi∈[0,t] ∥∇2f(xi)∥.

Interpretation The rates presented in Theorems 4 to 6 combine the ones of cubic regularized196

Newton’s method and gradient descent (or coordinate descent, as in Theorem 6) for functions with197

Lipschitz-continuous Hessian. As C1, C2, and C3 decrease, the rates approach those of cubic Newton.198

The constants C1, C2, and C3 quantify the error of approximating D∇2f(x)D by H in (10) into199

two terms. The first represents the error made by approximating ∇2f(x)D by G, while the second200

describes the low-rank approximation of ∇2f(x) in the subspace spanned by the columns of D. The201

approximation is more explicit in C3, where increasing N reduces the constant up to N = d.202

To retrieve the convergence rate of Newton’s method with cubic regularization, the approximation203

needs to satisfy three properties: 1) the points contained in Yt and Zt must be close to each other,204

and to xt to reduce δ and ∥ε∥; 2) the condition number of D should be close to 1 to reduce κ; 3) D205

should span a maximum dimension in Rd to improve the approximation of∇2f(x) by P∇2f(x)P .206

For example, Zt = xt1TN , Dt = hIN with h small, and Yt = Zt +Dt achieve these conditions. This207

(naive) strategy estimates all directional second derivatives with a finite difference for all coordinates208

and is equivalent to performing a Newton’s step in terms of complexity.209
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Algorithm 4 Type-I subroutine with backtracking for the accelerated method
Require: First-order oracle f , matrices G, D, vector ε, iterate x, smoothness M0, minimal norm ∆

Initialize M ← M0

2 , γ ← 1
4

∥ε∥
∥D∥

(
1 + κ2

D

)
, ExitFlag← False

while ExitFlag is False do
Update M and H ← GTD+DTG

2 + IN
M∥D∥∥ε∥

2

α∗ ← argminα f(x) +∇f(x)TDα+ 1
2α

THα+ M∥Dα∥3

6
x+ ← x+Dα

If −∇f(x+)
TDα ≥ ∥∇f(x+)∥3/2

√
3M
4

and ∥Dα∥ ≥ ∆ then ExitFlag← LargeStep

If −f(x+)
TDα ≥ ∥∇f(x+)∥2

M(γ+ ∥Dα∥
2 )

then ExitFlag← SmallStep

end while
return x+, α, M , γ, ExitFlag

Algorithm 5 Adaptive Accelerated Type-I Algorithm (Sketch, see appendix D for the full version)
Require: First-order oracle f , initial iterate and smoothness x0, M0, number of iterations T .

Initialize G0, D0, ε0, λ(1)
0 , λ(2)

0 , ∆, x1, M1, (M0)1.
for t = 1, . . . , T − 1 do

Update Gt, Dt, εt.
do

Compute vt ← argminΦt, set yt = t
t+3xt +

3
t+3vt, and update (M0)t

{xt+1, ExitFlag} ← [algorithm 4](f,Gt, Dt, εt, yt, (M0)t,∆)

if Φt+1(vt+1) ≤ f(xt+1) then %% Parameters adjustment if needed
ValidBound← False
if ExitFlag is SmallStep then λ

(1)
t ← 2λ

(1)
t , otherwise λ

(2)
t ← 2λ

(2)
t

else
ValidBound← True %% Successful iteration

end if
while ValidBound is False

end for
return xT

4 Accelerated Algorithm for Convex Functions210

This section introduces algorithm 5, an accelerated variant of algorithm 3 for convex functions,211

designed using the estimate sequence technique from [43]. It consists in iteratively building a212

function Φt(x), a regularized lower bound on f , that reads213

Φt(x) =
1∑t

i=0 bi

(∑t
i=0 bi (f(xi) +∇f(xi)(x− xi)) + λ

(1)
t

∥x−x0∥2

2 + λ
(2)
t

∥x−x0∥3

6

)
,

where λ(1,2)
t are non-decreasing. The key aspects of acceleration are as follows (see section 4 for more214

details): 1) The accelerated algorithm makes a step at a linear combination between vt, the optimum215

of Φt, and the previous iterate xt. 2) It uses a modified version of algorithm 1, see algorithm 4.216

3) Under some conditions, the step size can be considered as "large", i.e., similar to a cubic-Newton217

step. The ∆ > 0 ensures the step is sufficiently large to ensure theoretical convergence - but setting218

∆ = 0 does not seem to impact the numerical convergence. The presence of both small and large219

steps is crucial to obtain the theoretical rate of convergence.220

Theorem 7. Assume f satisfy Assumptions 1, 2 and 4. Let Requirements 1b to 3 hold. Then,221

algorithm 5 starting at x0 with M0 achieves, for all ∆ > 0 and for t ≥ 1,222

f(xt)− f⋆ ≤ (M0)
2
max

L

(
3R

t+ 3

)2

+
4(M0)max

3
√
3

max
{
1 ; 2

∆

}( 3R

t+ 3

)3

+
λ̃(1)R2

2 + λ̃(2)R3

6

(t+ 1)3
.

where λ̃(1) = 0.5 · δ
(
Lκ+M1κ

2
)
+ ∥∇f(x0)− P0∇f(x0)P0∥, λ̃(2) = M1 + L,

(M0)max = L
2 (2∆ + (2κ2 + κ)δ) + (2

√
3− 1)max0≤i≤t ∥(I − Pi)∇2f(xi)Pi∥.
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Interpretation The interpretation is similar to the one from Section 3. Ignoring λ̃(1,2), the rate of223

Theorem 7 combines the one of accelerated gradient and accelerated cubic Newton [44, 43]. The224

constant M0 blends the Lipschitz constant of the Hessian L with its approximation errors (2κ2 + κ)δ225

and ∥(I − P )∇2f(x)∥. The better the Hessian is approximated, the smaller the constant.226

5 Some update strategies for matrices Y, Z, D, G227

The framework presented in this paper is characterized by its generality, requiring only minimal228

assumptions on the matrix D and vector ε. This section explores different strategies for updating the229

matrices from (3), which can be classified into two categories: online and batch techniques.230

Recommended method. Among all the methods presented in this section, the most promising231

technique seems to be the Orthogonal Forward Estimates Only, as it ensures that the condition232

number κD = 1 and the norm of the error vector ∥ε∥ is small.233

5.1 Online Techniques234

The online technique updates the matrix D while algorithms 3 and 5 are running. To achieve235

Requirement 1b, the method employs either a steepest or orthogonal forward estimate, defined as236

xt+ 1
2
= xt − h∇f(xt) (steepest) or xt+ 1

2
= xt − h(I − Pt−1)

∇f(xt)

∥∇f(xt)∥
(orthogonal).

Then, it include xt+ 1
2
− xt in the matrix Dt. The projector Pt−1 is defined in (12), and parameter h237

can be a fixed small value (e.g., h = 10−9). This section investigates three different strategies for238

storing past information: Iterates only, Forward Estimates Only, and Greedy, listed below.239

Yt = [xt+ 1
2
, xt, xt−1, . . . , xt−N+1], Zt = [xt, xt−1, . . . , xt−N ] (Iterates only)

Yt = [xt+ 1
2
, xt− 1

2
, . . . , , xt−N+ 1

2
], Zt = [xt, xt−1, . . . , xt−N ] (Forward Estimates Only)

Yt = [xt+ 1
2
, xt, xt− 1

2
, . . . , xt−N+1

2
], Zt = [xt, xt− 1

2
, . . . , xt−N

2
] (Greedy)

Iterates only: In the case of quasi-Newton updates and Nonlinear/Anderson acceleration, the iterates240

are constructed using the equation xt+1 − xt ∈ ∇f(xt) + span{xt−i+1 − xt−i}i=1...N . The update241

draws inspiration from this observation. However, it does not provide control over the condition242

number of Dt or the norm ∥ε∥. To address this, one can either accept a potentially high condition243

number or remove the oldest points in D and G until the condition number is bounded (e.g., κ = 109).244

Forward Estimates Only: This method provides more control over the iterates added to Y and Z.245

When using the orthogonal technique to compute xi+ 1
2

reduces the constants in Theorems 4, 5 and 7:246

the condition number of D is equal to 1 as DTD = h2I , and the norm of ε is small (∥ε∥ ≤ O(h)).247

Greedy: The greedy approach involves storing both the iterates and the forward approximations. It248

shares the same drawback as the Iterates only strategy but retains at least the most recent information249

about the Hessian-vector product approximation, thereby reducing the ∥zi − xi∥ term in ε (7).250

5.2 Batch Techniques251

Instead of making individual updates, an alternative approach is to compute them collectively, centered252

on xt. This technique generates a matrix Dt consisting of N orthogonal directions d1, · · · , dN of253

norm h. The corresponding Yt, Zt, Gt matrices are then defined as follows:254

Yt = [xt + d1, . . . , xt + dn], Zt = [xt, . . . , xt], Gt = [. . . ,∇f(xt + di)−∇f(xt), . . .].

This section explores two batch techniques that generate orthogonal directions: Orthogonalization255

and Random Subspace. Both lead to δ = 3h and κ = 1 in Requirements 2 and 3. However, they256

require N additional gradient computations at each iteration (instead of one for the online techniques).257

For clarity, in the experiments, only the Greedy version is considered.258

Orthogonalization: This technique involves using any online technique discussed in the previous259

section and storing the directions in a matrix D̃t. Then, it constructs the matrices Dt by performing260

an orthogonalization procedure on D̃t, such as the QR algorithm. This approach provides Hessian261

estimates in relevant directions, which can be more beneficial than random ones.262
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Figure 1: Comparison between the type-1 methods proposed in this paper and the optimized imple-
mentation of ℓ-BFGS from minFunc [52] with default parameters, except for the memory size. All
methods use a memory size of N = 25.

Random Subspace: Inspired by [34], this technique randomly generates Dt at each iteration by263

either taking Dt to be N random (rescaled) canonical vectors or by using the Q matrix from the QR264

decomposition of a random N ×D matrix. This ensures that Dt satisfies Requirement 1a. For clarity,265

in the experiments, only the QR version is considered.266

6 Numerical Experiments267

This section compares the methods generated by this paper’s framework to the fine-tuned ℓ-BFGS268

algorithm from minFunc [52]. More experiments are conducted in appendix E. The tested methods269

are the Type-I iterative algorithms (algorithm 3 with the techniques from section 5). The step size270

of the forward estimation was set to h = 10−9, and the condition number κDt
is maintained below271

κ = 109 with the iterates only and Greedy techniques. The accelerated algorithm 6 is used only with272

the Forward Estimates Only technique. The compared methods are evaluated on a logistic regression273

problem with no regularization on the Madelon UCI dataset [33]. The results are shown in fig. 1.274

Regarding the number of iterations, the greedy orthogonalized version outperforms the others due to275

the orthogonality of directions (resulting in a condition number of one) and the meaningfulness of276

previous gradients/iterates. However, in terms of gradient oracle calls, the recommended method,277

orthogonal forward iterates only, achieves the best performance by striking a balance between the278

cost per iteration (only two gradients per iteration) and efficiency (small and orthogonal directions,279

reducing theoretical constants). Surprisingly, the accelerated method’s performance is suboptimal,280

possibly because it tightens the theoretical analysis, diminishing its inherent adaptivity.281

7 Conclusion, Limitation, and Future work282

This paper introduces a generic framework for developing novel quasi-Newton and Ander-283

son/Nonlinear acceleration schemes, offering a global convergence rate in various scenarios, including284

accelerated convergence on convex functions, with minimal assumptions and design requirements.285

One limitation of the current approach is requiring an additional gradient step for the forward286

estimate, as discussed in Section 5. However, this forward estimate is crucial in enabling the287

algorithm’s adaptivity, eliminating the need to initialize a matrix H0 (quasi-Newton) or employ a288

mixing parameter h0 (Anderson acceleration).289

In future research, although unsuitable for large-scale problems, the method presented in this paper290

can achieve super-linear convergence rates, as with infinite memory, they would be as fast as cubic291

Newton methods. Utilizing the average-case analysis framework from existing literature, such as [47,292

55, 21, 16, 46], could also improve the constants in Theorems 4 and 5 to match those in Theorem 6.293

Furthermore, exploring convergence rates for type-2 methods, which are believed to be effective for294

variational inequalities, is a worthwhile direction.295

Ultimately, the results presented in this paper open new avenues for researchs. It may also provide a296

potential foundation for investigating additional properties of existing quasi-Newton methods and297

may even lead to the discovery of convergence rates for an adaptive, cubic-regularized BFGS variant.298
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