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ABSTRACT

Deep neural networks based on state space models (SSMs) are attracting signifi-
cant attention in sequence modeling since their computational cost is significantly
smaller than that of Transformers. While the capabilities of SSMs have been
demonstrated through experiments in various tasks, theoretical understanding of
SSMs is still limited. In particular, most theoretical studies discuss the capabil-
ities of SSM layers without nonlinear layers, and there is a lack of discussion
on their combination with nonlinear layers. In this paper, we explore the capa-
bilities of SSMs combined with fully connected neural networks, and show that
they are comparable to Transformers in extracting the essential tokens depending
on the input. As concrete examples, we consider two synthetic tasks, which are
challenging for a single SSM layer, and demonstrate that SSMs combined with
nonlinear layers can efficiently solve these tasks. Furthermore, we study the non-
parametric regression task, and prove that the ability of SSMs is equivalent to that
of Transformers in estimating functions belonging to a certain class.

1 INTRODUCTION

Foundation models based on Transformers have achieved remarkable success in various sequence
modeling tasks such as natural language processing (Vaswani et al., 2017), computer vision (Doso-
vitskiy et al., 2020), and speech recognition (Radford et al., 2023). The superior performance of
Transformers is attributed to the self-attention mechanism, which enables the model to aggregate
information from the input sequence.

In contrast to its success, the self-attention mechanism has a potential problem that it requires a large
amount of computation and memory. To deal with this issue, many studies have attempted to develop
efficient models that can replace Transformers. Among them, State Space Models (SSMs) have gar-
nered considerable interest recently. One advantage of SSMs is that the output can be computed
with a significantly small time using convolution via the FFT algorithm or recursive computation.
Based on the original SSMs, many improvements have been proposed, such as HiPPO-based in-
tialization (Gu et al., 2021) and architectures using gated convolutions (Fu et al., 2022; Poli et al.,
2023).

Networks based on SSMs have achieved high performance in various applications such as gene
analysis (Nguyen et al., 2024), audio generation (Goel et al., 2022) and speech recognition (Saon
et al., 2023). On the other hand, some of the recent studies pointed out the limitations of SSMs to
solve tasks. For example, Merrill et al. (2024) show that SSMs cannot solve sequential problems
from the view of computational complexity theory. Additionally, Jelassi et al. (2024) demonstrate
that SSMs are inferior to Transformers in solving the task to copy the input sequence.

One of the major differences between SSMs and Transformers lies in how they aggregate infor-
mation from the input sequence tokens. The output of Transformers is computed as a weighted
sum of the input tokens, where the weights are determined depending on the input. This allows
the Transformer to dynamically determine which tokens to extract based on the input, leading to its
high performance. SSMs also compute their output as a weighted sum of the input tokens, but the
weights do not depend on the input. Therefore, a single SSM layer cannot perform dynamic token
extraction, which limits its capability.
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Nonlinear            + SSM

Data-independent

Comparable

Transformer

Data-dependent

Both models can switch the tokens they pay attention to.

Figure 1.1: Conceptual illustrations of our theory. The abilities of SSMs are said to be limited since
their filter is not data-dependent. However, when combined with nonlinear layers, SSMs are compa-
rable to Transformers in terms of dynamic token selection. Indeed, experiments on associative recall
tasks show that SSMs capture the important tokens in the sequence depending on the input, which
is similar to the behavior of Transformers. The heatmap in the figure represents the importance of
the token when the model predicts the output. Note that these are not artificial figures, but the actual
results of the experiments.

However, in typical architectures, SSMs are repeatedly applied alternately with fully connected
neural networks (FNNs), similar to the attention mechanism. This raises the following question:

Can SSMs combined with FNN layers perform dynamic token selection similar to Transformers?

This paper provides a positive theoretical result for this question. Specifically, we demonstrate that
SSMs, when combined with FNNs, can exhibit dynamic token selection with performance equiva-
lent to Transformers.

To demonstrate the claim, we consider two synthetic tasks (input copying and associative recall),
and a non-parametric regression problem. Input copying is the task of generating the same sequence
as the given input. Jelassi et al. (2024) intensively studied this task and showed that a single SSM
layer underperforms compared to Transformers in solving this task. In this paper, we show that two-
layer SSMs combined with FNN layers can achieve performance comparable to Transformers in this
task. In associative recall, the models are required to infer the answer from a pair of words provided
as input. We demonstrate that the performance of SSMs combined with FNN layers is better than
that of SSMs without FNNs shown in Massaroli et al. (2024). As for the non-parametric regression,
we consider the estimation of piecewise γ-smooth functions, which is defined in Takakura & Suzuki
(2023). Takakura & Suzuki (2023) shows that Transformers can efficiently estimate functions in this
class. We show that SSMs combined with FNN layers can achieve the same convergence rate as the
rate for Transformers shown in Takakura & Suzuki (2023).

In solving the three problems above, the models have to determine which tokens to extract based on
the input data. Therefore, these results imply that SSMs possess dynamic token extraction capabil-
ities comparable to Transformers. We give some examples of associative recall task in Figure 1.1.
We trained SSMs and Transformers on the task and draw heatmaps to show which tokens the trained
models focus on. From the figures, we can observe that both models pay attention to similar parts
of the input. This verifies that SSMs possess dynamic feature extraction capabilities comparable to
Transformers. See Section 3.2 for more details of the associative recall task.

The contributions of this paper are summarized as follows:
1. We theoretically study the abilities of SSMs to solve two artificial tasks, input copying and asso-

ciative recall, and prove that SSMs + FNNs can solve these tasks efficiently (Section 3.1, 3.2).

2. To prove the above results, we provide a theoretical result that shows SSMs combined with FNNs
can mimic the dynamic token selection mechanism of Transformers (Section 3.3).

3. As a more general example, we also consider the non-parametric regression for the function
class defined in Takakura & Suzuki (2023), and demonstrate that SSMs can achieve the same
estimation error as Transformers (Section 4).
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Other related works. Some studies have theoretically investigated the abilities of SSMs recently.
For instance, Wang & Xue (2023) show that SSMs are universal approximators for continuous
sequence-to-sequence functions. Moreover, Cirone et al. (2024) studied the abilities of SSMs using
rough path theory. Furthermore, Alonso et al. (2024) analyzed the abilities of SSMs with the use of
the control theory. However, these studies (i) do not give quantitative evaluations comparing SSMs
to Transformers, and/or (ii) only consider SSM layers without nonlinear layers.

There are some previous studies for the estimation error bound for non-parametric regression, for
example, Suzuki (2018); Schmidt-Hieber (2020); Suzuki & Nitanda (2021) for FNNs and Okumoto
& Suzuki (2021) for CNNs. These studies do not consider the case where the positions of essential
features change depending on the input. The function classes with piecewise smoothness are also
considered in Petersen & Voigtlaender (2018) and Imaizumi & Fukumizu (2019). They do not
consider anisotropic smoothness or sequence inputs, whereas we consider such situations.

Notations. For l, r ∈ Z (l ≤ r), let [l] be the set {1, . . . , l}, and [l : r] be the set {l, . . . , r}.
For a set S ⊆ R and d, V ∈ N, let Sd×[−V :0] :=

{
[s−V , . . . , s0] | si ∈ Sd

}
and let Sd×∞ :={

[. . . , s−2, s−1, s0] | si ∈ Sd
}

. For F : Ω → Rl, let ∥F∥∞ := supX∈Ω ∥F (X)∥∞. For a matrix
A, let ∥A∥0 = |{(i, j) | Aij ̸= 0}|. For X ∈ Rd×∞, Xi,: ∈ R1×∞ represents its i-th row.

2 THE DEFINITION OF DEEP NEURAL NETWORKS WITH SSMS

In this section, we provide the formal definition of deep neural networks with SSMs. State space
models with the input [ut]0t=−L, the latent vectors [xt]0t=−L and the output [yt]0t=−L (ut ∈ R, xt ∈
R, yt ∈ R), are represented as follows:

xt+1 = Axt + But, yt = Cxt + Dut (t = −L, . . . ,−1),

where A,B,C,D ∈ R are learnable parameters. Then, the output yt can be written explicitly as
yt =

∑t
n=−L (CAt−nB+ Dδt−n)un. By setting ht := CAtB + Dδt and h = [ht]

L
t=0, we can

rewrite the output as yt = (h ∗ u)t :=
∑t

n=−L ht−nun using convolution operation ∗. If the filter
[ht]

L
t=0 is precomputed, the output can be computed with O(L logL) time complexity using FFT

algorithm, which is much faster than the computation cost of Transformers, O(L2).

In this paper, we consider the architectures consisting of the following three types of layers: (i) FNN
layers, (ii) convolution layers, and (iii) an embedding layer.

(i) FNN layer An FNN with depth L and width W is defined as
f(x) := (ALη(·) + bL) ◦ · · · ◦ (A1x+ b1),

where η = ReLU, and Ai ∈ Rdi+1×di , bi ∈ Rdi+1 with maxi di ≤W . Then, we define the class of
FNN with depth L, width W , norm bound B and sparsity S by

Ψ(L,W, S,B) :=

{
f

∣∣∣∣∣ max
i

{∥Ai∥∞, ∥bi∥∞} ≤ B,

L∑
i=1

∥Ai∥0 + ∥bi∥0 ≤ S

}
.

(ii) Convolution layer Next, we define the convolution layers. Let W ∈ RD×D be learnable
weights, and D be the embedding dimension. Then, given the input X ∈ RD×∞, the output of the
convolution layer g : RD×∞ → RD×∞ with window size U is computed as

g(X) := H ∗ (WX), Hk,j := c1,k cos

(
2πj · a1,k
U + 1

)
+ c2,k sin

(
2πj · a2,k
U + 1

)
,

where H ∈ RD×(U+1) is a filter controlled by learnable parameters c1, c2, a1, a2 ∈ RD. The oper-
ator ∗ : RD×(U+1) × RD×∞ → RD×∞ represents element-wise convolution. Note that we assume
the finite window size U , i.e., the output of position −i (i ∈ N≥0) is computed with the tokens at
position −i, . . . ,−i− U . Such setting is also considered in the analysis of Transformers (Takakura
& Suzuki, 2023). Then, we define the class of convolution layers with window size U , embedding
dimension D and norm constraint B by

C(U,D,B) := {g | max {∥W∥∞, ∥a1∥∞, ∥a2∥∞, ∥c1∥∞, ∥c2∥∞} ≤ B}.

The definition of the convolution filter includes several important settings. First, our setting includes
the case where we use the convolution filter ht = CAtB + Dδt of ordinary SSMs. Indeed, by
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constructing the parameters A,B,C,D in the filter appropriately, we can obtain the same architecture
as the convolution layer we consider (see Appendix A for the details). Moreover, our setting includes
the filter used in Hyena (Poli et al., 2023), in which the filter is defined by neural networks with sin-
activation.

(iii) Embedding layer Finally, the embedding layer with embedding dimension D is defined as
Emb(X) = [E1Xi + E2]

∞
i=−∞,

where E1 ∈ RD×d and E2 ∈ RD are learnable parameters.

We first feed the sequence into Emb, and then alternately apply convolution layers and FNN layers.
Note that the FNN layers are applied in a token-wise manner. Thus, we define a class of deep neural
networks using SSMs, denoted as S , as follows:

S(M,U,D,L,W, S,B) :=

fM ◦ gM ◦ · · · ◦ f1 ◦ g1 ◦ Emb

∣∣∣∣∣∣
fi ∈ Ψ(L,W, S,B),

gi ∈ C(U,D,B),

∥E1∥∞ ≤ B, ∥E2∥∞ ≤ B.

 .

We remark that the number of parameters of the model is O(M(LW 2 +D2)), and does not depend
on the window size U , since the parameters are shared among the tokens.

3 SYNTHETIC TASKS: INPUT COPYING AND ASSOCIATIVE RECALL

In this section, we consider the two tasks of (i) input copying and (ii) associative recall, and show
that SSMs combined with FNNs can solve these tasks efficiently. In both of these tasks, the position
of the important token is different for each input. Therefore, the fact that SSMs can solve these tasks
suggests that SSMs have dynamic token extraction capabilities comparable to those of Transformers.

Throughout this section, we assume that an input is given as a sequence of words in the dictionary W ,
where W is a finite set. Each word in the sequence is first converted into a |W|-dimensional one-hot
vector. Then, the tokens are transformed to D-dimensional vectors by the embedding layer, and fed
into subsequent convolution layers and FNN layers. Thus, we obtain a sequence of D-dimensional
tokens as a model’s output. We consider the setting where the model generates sequences by autore-
gressively outputting the words, i.e., next-token prediction. To do this, we introduce an additional
decoding layer, which we denote by Dec. This layer has a learnable parameter WDec ∈ RD×|W|,
and linearly transforms the final token of the model’s output into a vector in R|W|. Then, the word
corresponding to the largest component of this vector is regarded as the model’s prediction.

3.1 INPUT COPYING

The input copying is a task in which the model is required to output exactly the same sequence as the
input via autoregressive inference. As an example, consider the situation where the model receives
the input sequence “〈BOS〉 c a d b e 〈COPY〉”, where a, b, c, d, e are the words in W , and
〈BOS〉 and 〈COPY〉 are special tokens, which are also included in W . Then, the model first needs to
output “c”. Next, the model receives the input “〈BOS〉 c a d b e 〈COPY〉 c”, and the model
is required to generate “a”. This process is repeated until the number of tokens the model generates
becomes equal to the number of words in the input sequence.

To evaluate the model for this task, we consider the probability that the model generates the correct
sequence for a certain input distribution. More precisely, suppose that input sequences are given
in the form of “〈BOS〉 x1 x2 · · · xV 〈COPY〉”, where x1, x2, . . . , xV are independently generated
from the uniform distribution on W \ {〈BOS〉, 〈COPY〉}. Then, we set y1, . . . , yV as the sequence
generated by the model, and evaluate the model by the metric errV defined as follows, which mea-
sures the probability that the model does not correctly copy the input sequence:

errV := P[(y1, . . . , yV ) ̸= (x1 . . . , xV )].

Jelassi et al. (2024) intensively studied the capabilities of SSMs and Transformers to solve this task.
They theoretically showed that Transformers with O(log(V/ϵ) log |W|) parameters can achieve
errV ≤ ϵ. In their proof, they leverage the dynamic token extraction ability of the attention mech-
anism. More specifically, they demonstrate that Transformers can solve the copying task by look-
ing up the n sequential tokens that match the last n tokens. In addition, they discuss the lower
bound of the accuracy of SSMs, and showed that SSMs need O(L log |W|) memory size to achieve
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errV ≤ 1/2. These results suggest that a single SSM layer is inferior to Transformers in terms of
the dynamic token extraction abilities.

In contrast to these results, we investigate the case where nonlinear layers are placed before and after
the SSM layer, and obtain the following result.

Theorem 3.1. For any ϵ > 0, there exists an SSM F̂ ∈ S(M,U,D,L,W, S,B) with
M = 2, U = V, D, L, W, S, logB ≲ log37 ϵ−1 log42 V log8 |W|,

and decoding layer Dec with ∥WDec∥∞ ≤ 1 such that supV ′∈[V ] errV ′ ≤ ϵ.

This result shows that, two layer SSMs combined with FNNs, we can achieve the error ϵ with
poly log

(
ϵ−1, V, |W|

)
parameters, and avoid the necessity of the memory size increasing linearly

with V .

In the proof of this theorem, it is essential that there are FNN layers before and after the second SSM
layer. As we will show later in Lemma 3.3, the SSM combined with the preceding and following
FNN layers has the ability to extract tokens based on the inner product of keys and queries, similar
to a Transformer. Jelassi et al. (2024) demonstrates that a two-layer Transformer can solve the input
copying task. Thus, by replacing the attention layer with FNN + SSM + FNN, the above theorem
can be proved. The detailed proof can be found in Appendix H.

3.2 ASSOCIATIVE RECALL

Next, we investigate the task called associative recall. In this task, we assume that the set of words
W is divided into two disjoint sets Wkey and Wvalue. The input sequence is given in the form of “k1
v1 · · · kV vV q”, where k1, . . . , kV ∈ Wkey (ki ̸= kj if i ̸= j), v1, . . . , vV ∈ Wvalue and q ∈ Wkey

matches one of the ki (i ∈ [V ]). Then, the model is required to output the corresponding vi for the
given q = ki. For example, if the model receives the input “c 2 a 5 d 1 b 4 a”, the model
needs to output “5”.

Similarly to the input copying task, this task also requires the model to dynamically extract the
important tokens. Indeed, to solve this task, the model needs to focus on three tokens: (i) the last
token of the input, (ii) the token with the same word as the last one, and (iii) the token that follows
(ii). Since the locations of (ii) and (iii) change depending on (i), the model needs to pay attention to
different locations depending on the input.

We proved the following theorem, which shows that O(poly log(|W|)) parameters are sufficient to
solve the associative recall task when using SSMs combined with FNNs.
Theorem 3.2. There exists an SSM F̂ ∈ S(M,U,D,L,W, S,B) with

M = 2, U = 2V, D, L, W, S, logB ≲ log13(|W|),
and decoding layer Dec with ∥WDec∥∞ ≤ 1 such that, for any input sequences of associative recall
task, the model generates the correct output.

Massaroli et al. (2024) showed that Hyena-based SSMs can solve the associative recall task with
O(
√

|W| log2 |W|) parameters. In contrast, we proved that we require only O(poly log |W|) pa-
rameters, thanks to the nonlinear layers. This indicates that combining SSMs with nonlinear layers
can improve the dynamic token extraction ability of SSMs.

In this theorem as well, the essence of the proof is the ability of the SSM with preceding and
following FNN layers, as described in Lemma 3.3. The proof can be found in Appendix H.

3.3 SSMS MIMIC ATTENTION MECHANISMS TO SELECT IMPORTANT TOKENS

In this subsection, we discuss why SSMs combined with FNNs can perform dynamic token selection
similar to Transformers.

The dynamic token selection abilities of Transformers stem from the attention mechanisms. Indeed,
attention mechanisms compute the weighted sum of the values (i.e., projected input tokens), where
the weights are determined based on the input. The weights are computed by applying the softmax
function to the inner product between keys and queries. This means that the attention mechanism
prioritizes the tokens where the key and query have a high inner product. The following statement
shows that SSMs combined with FNN layers can mimic this functionality.
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Lemma 3.3 (Dynamic Token Selection by SSMs). Suppose that the input sequence X is given by

X =

[ ∗ · · · ∗ q
k−V · · · k−1 k0
v−V · · · v−1 v0

]
∈ R(2d′+d)×[−V :0],

where q, kj ∈ Rd′
and vj ∈ Rd with ∥q∥∞ ≤ 1, ∥kj∥∞ ≤ 1, ∥vj∥∞ ≤ 1 (j = −V, . . . , 0). Let

µj = q⊤kj (j = −V, . . . , 0) and j∗ = argmaxj=−V,...,0 µj . Suppose that, for any j ∈ [−V :
0] \ {j∗}, it holds µj ≤ µj∗ − δ for some δ > 0. Then, for any ϵ > 0, there exist FNN layers
f1, f2 ∈ Ψ(L,W, S,B) and a convolution layer g ∈ C(U,D,B) with

U = V, D = d′
3
δ−2
(
log2 ϵ−1 + log2 V

)
,

L ≲ d′
8
δ−5
(
log5 ϵ−1 + log5 V

)
, W ≲ d′

3
δ−3
(
log3 ϵ−1 + log3 V

)
,

S ≲ d′
8
δ−5
(
log5 ϵ−1 + log5 V

)
, logB ≲ d′

3
δ−2
(
log3 ϵ−1 + log3 V

)
,

such that ∥y0 − vj∗∥∞ ≤ ϵ, where [y−V , . . . , y−1, y0] := f2 ◦ g ◦ f1(X).

We provide the proof in Appendix G. From this theorem, we can see that SSMs preceded and
followed by FNN layers can dynamically change the positions of tokens to focus on based on the
value of the inner product between the key and query, similar to the attention mechanism. Thus,
SSMs demonstrate dynamic token selection abilities similar to Transformers.

4 NONPARAMETRIC REGRESSION PROBLEM

In this section, we consider a non-parametric regression problem with sequence inputs, and show
that SSMs are comparable to Transformers in estimating piecewise γ-smooth functions. As we will
explain later, in functions belonging to this class, the positions of important tokens vary depending
on the input. Therefore, the dynamic token selection ability is essential for estimating a piecewise γ-
smooth function. In Appendix E, we provide a visual explanation of the motivation for considering
this class of functions.

Due to the technical convenience to analyze the estimation error, we consider the setting where the
output of the network is bounded. For this purpose, we assume that the output of the model is
fed into the function clipR defined by clipR(x) := max {−R,min {R, x}}. Since clipR can be
implemented by the FNN with depth 1 and width 2, this assumption is not far from the practical
setting. Furthermore, to predict a real value, the final token (i.e., index 0) in the sequence output by
the model is regarded as the predicted value. We define the class of clipped networks S ′ by

S ′(M,U,D,L,W, S,B) = {(clipR ◦ F )0 | F ∈ S(M,U,D,L,W, S,B)} .

4.1 PROBLEM SETTING

We consider the situation where the input X := [xi]
0
i=−∞ ∈ Rd×∞ is a sequence of d-dimensional

tokens, and they are generated from a probability measure PX on ([0, 1]d×∞,B([0, 1]d×∞)).
In the following, we denote Ω := suppPX and define the norm ∥·∥p,PX

by ∥f∥p,PX
=(∫

Ω
∥f(X)∥pp dPX

)1/p
.

As in the usual nonparametric regression setting, suppose that we observe n i.i.d. inputs X(i) ∼
PX (i = 1, . . . , n) and the corresponding outputs Y (i) ∈ R generated by Y (i) = F ◦(X(i)) + ξ(i),
where ξ(i) ∈ R is the i.i.d. noise generated from N (0, σ2) (σ > 0). We further assume
that

{
ξ(i)
}n
i=1

is independent of the inputs
{
X(i)

}n
i=1

. Given the pairs of inputs and outputs{
(X(i), Y (i))

}n
i=1

, we obtain the estimator F̂ of the target function F through empirical risk mini-
mization:

F̂ := arg min
F∈S′

1

n

n∑
i=1

(
Y (i) − F (X(i))

)2
,

where S ′ is the class of networks that we defined above. To measure the statistical performance of
the estimator F̂ , we utilize mean squared error (MSE) defined by

R(F̂ , F ◦) = E
[∥∥∥F̂ (X)− F ◦(X)

∥∥∥2
2,PX

]
,
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where the expectation is taken for
{
X(i)

}n
i=1

and
{
ξ(i)
}n
i=1

.

4.2 PIECEWISE γ-SMOOTH FUNCTION CLASS

To compare the estimation ability of SSMs with that of Transformers, we assume that the target
function F ◦ belongs to the function class called piecewise γ-smooth. The function class was intro-
duced in Takakura & Suzuki (2023), and they showed the estimation error bound of Transformers
for the functions in the class. In this function class, the importance of the tokens (or coordinates) is
characterized by the smoothness of the function. We describe the details in the following.

γ-smooth function class. Before introducing the piecewise γ-smooth function class, we first de-
fine the γ-smooth function class, which was first proposed by Okumoto & Suzuki (2021). This
function class can be seen as an extension of the well-known function spaces, such as the mixed-
Besov space and (anisotropic) Sobolev space.

First, for r ∈ Zd×∞
0 , we define ψrij : [0, 1] → R by ψrij (x) :=

{√
2 cos(2π|rij |x) (rij ≤ 0),√
2 sin(2π|rij |x) (rij > 0),

and ψr : [0, 1]d×∞ → R by ψr(X) =
∏

i=1

∏
j=1 ψrij (Xij). Then, {ψr}r∈Zd×∞

0
forms a complete

orthonormal system of L2([0, 1]d×∞), Therefore, any f ∈ L2([0, 1]d×∞) can be expanded as f =∑
r∈Zd×∞

0
⟨f, ψr⟩ψr. For s ∈ Nd×∞

0 , we define

δs(f) :=
∑

r∈Zd×∞
0 ,⌊2sij−1⌋≤rij<2sij

⟨f, ψr⟩ψr.

Then, we define the γ-smooth function class as follows.

Definition 4.1 (γ-smooth function class). For a given γ : Nd×∞
0 → R which is monotonically non-

decreasing with respect to each coordinate and p ≥ 2, θ ≥ 1, we define the γ-smooth function space
as follows:

Fγ
p,θ([0, 1]

d×∞) :=
{
f ∈ L2([0, 1]d×∞) | ∥f∥Fγ

p,θ
<∞

}
,

where the norm ∥f∥Fγ
p,θ

is defined as ∥f∥Fγ
p,θ

:=
(∑

s∈Nd×∞
0

2θγ(s)∥δs(f)∥θp,PX

)1/θ
. We also

define the finite dimensional version Fγ
p,θ([0, 1]

d×l) for l ∈ N in the same way.

Note that δs(f) can be seen as the frequency component of f with frequency |rij | ∼ 2sij for
each coordinate (i, j). Therefore, we can interpret that γ controls the amplitude of each frequency
component through weighting the term ∥δs(f)∥p,PX

in the definition of the norm ∥·∥Fγ
p,θ

. In other
words, if γ(s) is larger, the norm of frequency component δs(f) is smaller.

As a special case of γ, we consider the following two types of smoothness:

γ(s) =

{
⟨a, s⟩ (Mixed smoothness),
max {aijsij | i ∈ [d], j ∈ Z} (Anisotropic smoothness),

where a ∈ Rd×∞
>0 is the smoothness parameter, which determines the smoothness of the function

for each coordinate. To provide the intuition of the smoothness, let us consider the extreme case,
aij → ∞ for (i, j) with sij ̸= 0. Then, it holds γ(s) → ∞, both for mixed and anisotropic
smoothness, which implies 2γ(s) → ∞. This indicates that a strong “penalty” is imposed on the
component δs(f) and the function f does not have the frequency component sij along the direction
of (i, j). Since the norm ∥f∥Fγ

p,θ
has to be finite, it holds ∥δs(f)∥p,PX

→ 0. This means that the
function f has to be smooth for the input coordinate (i, j). Therefore, large aij implies that the
function is smooth towards the coordinate (i, j), and this indicates that the value of function does
not change much for the input coordinate (i, j), which means that Xij is not an important feature.
In contrast, small aij implies that the coordinate Xij is an important feature.

As we stated above, the function class Fγ
p,θ([0, 1]

d×∞) can be seen as an extension of some well-
known function spaces to the infinite-dimensional setting. Indeed, if PX is a uniform distribution on
[0, 1]1×l and p < ∞, then Fγ

p,θ([0, 1]
1×l) with mixed smoothness is equivalent to the mixed-Besov

space. Moreover, if PX is a uniform distribution, then the anisotropic Sobolev space is included in
the unit ball of Fγ

2,2 with anisotropic smoothness.
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Piecewise γ-smooth function class. Now, we are ready to define the piecewise γ-smooth function
class. The functions in this class have different smoothness depending on the input unlike γ-smooth
functions. Therefore, the models have to choose appropriate tokens to extract depending on the
input when estimating a function in this class.

The rigorous definition of piecewise γ-smooth function class is given as follows. In the following,
we denote X−i := [. . . , x−i−1, x−i] for i ∈ N and X = [. . . , x−1, x0].
Definition 4.2 (Piecewise γ-smooth function class). Let µ be a function that belongs to
Fγ

p,θ([0, 1]
d×∞), which we call the importance function. Additionally, let πX : [−V : 0] → [−V :

0] be the map that sorts the indices i ∈ [−V : 0] in ascending order of the importance µ(Xi), i.e.,
µ(XπX(−V )) < · · · < µ(XπX(0)).

Then, we define the map Π : [0, 1]d×∞ → [0, 1]d×[−V :0] by
Π(X) := [xπX(−V ), . . . , xπX(0)].

Then, for p ≥ 2, θ ≥ 1 and γ : Nd×∞
0 → R, the function class Pγ

p,θ([0, 1]
d×∞) with piecewise

γ-smoothness is defined as follows:

Pγ
p,θ([0, 1]

d×∞) :=
{
g = f ◦Π

∣∣∣ f ∈ Fγ
p,θ([0, 1]

d×[−V :0]), ∥g∥Pγ
p,θ

<∞
}
,

where the norm ∥g∥Pγ
p,θ

is defined by ∥g∥Pγ
p,θ

:=
(∑

s∈Nd×[−V :0]
0

2θγ(s)∥δs(f) ◦Π∥θp,PX

)1/θ
.

In simple terms, when an input X = [. . . , x−V , . . . , x0] is fed into a function g ∈ Pγ
p,θ([0, 1]

d×∞),
the tokens x−V , . . . , x0 are first sorted in ascending order of the importance µ(X−V ), . . . , µ(X0),
and the resulting sequence [xπX(−V ), . . . , xπX(0)] is fed into the γ-smooth function f . The impor-
tance of each token x−i is determined by the preceding tokens, i.e., x−i, x−i−1, . . .. Since the order
of the sorted tokens changes depending on the input, the smoothness of the function g = f◦Π ∈ Gγ

p,θ

differs for different inputs.

In the definition, tokens with higher importance are placed closer to index 0 after sorting. In the
latter subsection, we assume that the smoothness of the function f for a coordinate is smaller for
the tokens with indices closer to 0, which implies that the tokens with higher importance are more
essential to estimate the function f .

As in Takakura & Suzuki (2023), we assume that an importance function µ is well-separated, i.e.,
for some constant c, β > 0, µ satisfies µ(Xπλ(−i)) ≥ µ(Xπλ(−i−1)) + ci−β for any X ∈ Ωλ. This
implies that X satisfies µ(X−i) ≃ µ(X−j) (i ̸= j) with probability zero. A similar assumption can
be found in the literature of statistics such as Hall & Horowitz (2007).

4.3 APPROXIMATION AND ESTIMATION ABILITY OF SSMS

In this subsection, we show the theoretical results on the ability of SSMs to approximate and estimate
the function in the piecewise γ-smooth function class.

To establish the theories, we make the following assumptions, all of which are also imposed in
Takakura & Suzuki (2023).
Assumption 4.3. The true function F ◦ belongs to Gγ

p,θ, where γ is mixed or anisotropic smoothness.
Moreover, F ◦ and the importance function µ satisfy the following conditions:

(i) ∥F ◦∥Fγ
p,θ

≤ 1, ∥F ◦∥∞ ≤ R, ∥µ∥Fγ
p,θ

≤ 1, ∥µ∥∞ ≤ 1 for some constant R > 0.

(ii) For the smoothness parameter a, it holds aij = Ω(log(|j|+ 1)) for µ ∈ Fγ
p,θ, and aij =

Ω(jα) for F ◦ ∈ Gγ
p,θ, where α > 0 is a constant. Moreover, it holds ∥a∥wlα ≤ 1 for both µ

and F ◦, where ∥a∥wlα := supj j
αā−1

j and āj is the j-th smallest element of a.
(iii) If γ is mixed smoothness, we assume ā1 < ā2.

Remark 4.4. The assumption ∥a∥wlα ≤ 1 implies that the j-th smallest element of smoothness
parameter a increases polynomially with respect to j, which indicates the sparsity of the important
features. This assumption is natural in real-world applications, as we check in Section 5. Moreover,
the assumptions aij = Ω(log(|j|+ 1)) and aij = Ω(jα) mean that the token placed far from the
final token is less important. Note that the condition aij = Ω(jα) for F ◦ = f ◦Π ∈ Gγ

p,θ is imposed
on the function f ∈ Fγ

p,θ, and the input of the function f is sorted by the importance.
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Then, we have the following theorem on the approximation ability of SSMs for piecewise γ-smooth
functions.
Theorem 4.5. Let F ◦ be a function satisfying Assumption 4.3. Then, for any T > 0, there exists a
SSM F̂ ∈ S ′(M,U,D,L,W, S,B) with

M ≲ T 1/α, U = V, D ≲ T cα,β log2 V, L ≲ T cα,β log5 V,

W ≲ 2T/a†
T cα,β log3 V, S ≲ 2T/a†

T cα,β log5 V, logB ≲ T cα,β log3 V,
(4.1)

such that
∥∥∥F ◦ − F̂

∥∥∥
2
≲ 2−T . Here, cα,β is a constant depending on α and β such that cα,β ≤

5 + 2/α+ 5β/α.

This result reveals that the number of parameters to achieve the error ϵ is
O((1/ϵ)

1

a† poly log(1/ϵ, V )), which is the same as that of Transformers shown by Takakura
& Suzuki (2023). Similarly to Theorem 3.1 and Theorem 3.2, to prove this theorem, we utilize the
similar argument as Lemma 3.3, which establishes the dynamic token selection ability of SSMs
combined with FNNs. The detailed proof can be found in Appendix I.

Using the approximation theory above, we obtain the following results, which state the estimation
ability of SSMs for piecewise γ-smooth functions.
Theorem 4.6. Suppose that the target function F ◦ satisfies Assumption 4.3. Let a† = ā1 for mixed
smoothness, and a† =

(∑∞
i=1 ā

−1
i

)−1
for anisotropic smoothness. Moreover, let F̂ be an ERM

estimator in S(M,U,D,L,W, S,B), with M,U,D,L,W, S,B defined as (4.1) for T = a†

2a†+1
.

Then, for any l, r ∈ Z, it holds

Rl,r(F̂ , F
◦) ≲ n

− 2a†
2a†+1 (log n)c

′
α,β log13 V,

where c′α,β is a constant such that c′α,β ≤ 21 + 10/α+ 20β/α.

The proof can be found in Appendix J. We can see that the convergence rate with respect to n
matches that of Transformers shown in Takakura & Suzuki (2023). This indicates that SSMs possess
the ability to select important tokens based on the inputs, similarly to Transformers. Moreover, since
the estimation error bound depends on V with only poly-log factor, if V = poly(n), the estimation
error rate does not change up to poly-log factor. This also aligns with Transformers and shows
that, even when estimating functions that depend on long ranges of the input sequence, SSMs are
as efficient as Transformers. Overall, we can conclude that SSMs can estimate the function in the
piecewise γ-smooth function class with the same efficiency as Transformers.

5 EXPERIMENTS: SPARSITY OF IMPORTANT TOKENS

Figure 5.1: The transition of the prob-
ability of correct classification when we
repeatedly mask the input tokens.

In the tasks we theoretically study, the number of essen-
tial tokens in the sequence is small. We conducted simple
numerical experiments and confirmed that (i) such spar-
sity of important tokens also holds in real-world tasks,
and that (ii) SSMs can indeed extract these important to-
kens depending on the input.

We use the dataset of DNA base sequences in Genomic
Benchmark Dataset (Grešová et al., 2023). The base se-
quences are treated as sequences where each nucleic acid
is considered a single token, and we consider a binary
classification task based on the role of the base sequences.
We employ the pre-trained Hyena provided by Nguyen
et al. (2024), and fine-tune it on the dataset.

To investigate which tokens the model focuses on for clas-
sification, we selected a correctly classified data sample (we refer to this as the target sequence) and
masked unimportant tokens one by one. More precisely, we repeatedly masked the token that causes
the smallest decrease in accuracy when masked. The change in accuracy is shown by the blue line
in Figure 5.1. We can see that, even when most of the tokens are masked, the model is still able to
classify correctly. This indicates that the important tokens in the input sequence are sparse.
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Furthermore, to investigate the ability of SSMs to dynamically extract important tokens, we exam-
ined how the accuracy changes by masking the tokens at the same positions as in the target sequence
for other data samples. The average and minimum changes in accuracy are shown with the red and
green lines, respectively. The figure shows that although the accuracy was high before masking, it
decreases as more tokens are masked. This demonstrates that the positions of important tokens vary
across different data samples, and that SSMs are able to dynamically extract important tokens based
on the input to perform correct classifications.

6 CONCLUSION

In this study, we theoretically investigated the capabilities of SSMs compared to Transformers.
Specifically, we focused on the ability to dynamically extract tokens based on the input, which is an
essential strength of Transformers, and clarified that SSMs combined with FNN layers can emulate
such mechanism. Using this insight, we analyzed three cases: input copying, associative recall, and
nonparametric regression, and showed that SSMs exhibit performance comparable to Transformers.

Limitations and future work We studied approximation and estimation abilities of SSMs to solve
the tasks, and did not discuss whether SSMs can be optimized efficiently. Analyzing how the op-
timization algorithm works for SSMs is a possible direction for future work. Additionally, we did
not investigate the other types of efficient sequence models, such as SSMs with data-dependent
filters (like Mamba (Gu & Dao, 2023)) and linear attention (Katharopoulos et al., 2020). Future re-
search could focus on the comparison of those models and SSMs. Moreover, we did not consider a
specific parameterization known in practical applications of SSMs. Specifically, we did not impose
constraints such as A being a diagonal matrix in the filter CAt−nB +Dδt−n. Instead, as described
in Appendix A, we considered cases where A is a block diagonal matrix. It remains future work to
explore how we can constrain the structure of A to solve the tasks.
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—— Appendix ——

A EXTENSION TO ORDINARY SSM FILTER

In this section, we describe how to extend our setting to the ordinary SSM filter. More specifically,
our setting with embedding dimensionD can be extended to the ordinary SSM filter with embedding
dimension 4D.

For simplicity, we consider the case D = 1. We constuct the parameters A,B,C,D ∈ R2×2 to make
the filter ht := CAtB+ Dδt−n same as the filter defined in Section 2. Let us set D = 0, and

A =


cos
(

2πa1,1

U+1

)
− sin

(
2πa1,1

U+1

)
0 0

sin
(

2πa1,1

U+1

)
cos
(

2πa1,1

U+1

)
0 0

0 0 cos
(

2πa1,2

U+1

)
− sin

(
2πa1,2

U+1

)
0 0 sin

(
2πa1,2

U+1

)
cos
(

2πa1,2

U+1

)

.
Then, we have

At =


cos
(

2πa1,1t
U+1

)
− sin

(
2πa1,1t
U+1

)
0 0

sin
(

2πa1,1t
U+1

)
cos
(

2πa1,1t
U+1

)
0 0

0 0 cos
(

2πa1,2t
U+1

)
− sin

(
2πa1,2t
U+1

)
0 0 sin

(
2πa1,2t
U+1

)
cos
(

2πa1,2t
U+1

)

.
Therefore, if we set

B =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

, C =

c1,1 0 0 0
0 0 0 0
0 0 0 0
c1,2 0 0 0

,
then we have

ht =


c1,1 cos

(
2πa1,1t
U+1

)
0 0 0

0 0 0 0
0 0 0 0

c1,2 sin
(

2πa1,2t
U+1

)
0 0 0

.
Then, if we appropriately set WV and WQ, this filter can realize the same output with our setting.

While we do not show the estimation ability for the filter above, we can easily extend our proof to
derive the almost same estimation error bound for it.

B REPRODUCTION OF THE FINITE WINDOW SETTING

For mathematical simplicity, we assumed in Section 2 that the convolution of the SSM layers are
performed within finite windows, which can be smaller than the sequence length. However, in
practical applications, the window size is equal to the sequence length. In the theorem presented
in Section 3, we consider the case where the window size matches the sequence length, and this
aligns with realistic problem settings. On the other hand, in the nonparametric regression discussed
in Section 4, since we consider infinitely long sequences, it is impossible to set the window size
equal to the sequence length.

In the problem setting of Section 4, we can obtain the same output as when using a finite window size
by performing some additional calculations with standard SSMs. Let [ut]t≤0 be the input sequence,
and [xt]t≤0, [yt]t≤0 be the sequence of states and outputs of standard SSMs, respectively. In other
words, for any t ≤ 0, we have

xt+1 = Axt + But,

yt = Cxt + Dut,
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and
xt =

∑
s≤t

At−sBus.

Next, let [x′t]t≤0, [y
′
t]t≤0 be the sequence of states and outputs when the shifted input sequence

[ut−U−1]t≤0 are fed into the same SSMs. Then, it holds

x′t+1 = Ax′t + But−U−1,

y′t = Cx′t + Dut−U−1,

and
x′t =

∑
s≤t

At−sBus−U−1 =
∑

s≤t−U−1

At−s−U−1Bus.

Therefore, we have

xt − AU+1x′t =

t∑
s=t−U

At−sBus.

Let [y◦t ]t≤0 be the output sequence of SSMs with the finite window size of length U + 1. Then, we
have

y◦t =

t∑
s=t−U

(
CAt−sB+ Dδt−s

)
us = C(xt − AU+1x′t) + Dut.

Since AU+1 can be pre-computed, we can obtain the output of SSMs with the window by performing
recurrent calculations for two SSMs.

C EMPIRICAL RESULTS ON THE SYNTHETIC TASKS

In order to empirically demonstrate the dynamic token selection ability of SSMs, we conducted
experiments on the input copying and associative recall tasks.

We consider three types of models: (i) single-layer SSMs (SSM + FNN), (ii) two-layer SSMs (SSM
+ FNN + SSM + FNN), and (iii) Transformers. As we proved theoretically in Lemma 3.3, to exhibit
dynamic token selection ability in SSMs, it is essential that SSMs are preceded and followed by
FNN layers. Therefore, theoretically, (ii) two-layer SSMs are expected to perform similarly to (i)
Transformers. Moreover, since (i) single-layer SSMs do not have the dynamic token selection ability,
they are expected to perform worse than two-layer SSMs and Transformers.

To demonstrate the effectiveness of adding FNN layers to SSMs, we vary the dimension of the hid-
den states (i.e., dimension of the states in SSMs). Then, we observe the changes in the performance.

Results are shown in Figure C.1. We can see that the performance of (ii) two-layer SSMs is better
than (i) single-layer SSMs, particularly when the dimension of the hidden states is small and the
FNN layers have sufficient expressive power. This means that the alternation of SSM layers and
FNN layers is essential to exhibit SSMs’ dynamic token selection ability. Moreover, we observe that
the performance of (ii) two-layer SSMs is comparable to (iii) Transformers. This result empirically
supports our theoretical analysis that SSMs combined with FNN layers can mimic the dynamic token
selection ability of Transformers.

D ADDITIONAL RESULTS ON SYNTHETIC TASKS

In this section, we provide additional results on the SSMs’ ability to solve synthetic tasks. Specifi-
cally, we consider the two tasks: induction heads and selective copying.

D.1 INDUCTION HEAD

The induction heads (Olsson et al., 2022) is a task to recall the word that appears immediately after
a specific keyword. For example, if the keyword is x and the input sequence is “a c b d e c”,
the model have to output the word “b”, which is the word that appears after “c”.
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Figure C.1: Empirical results for input copying task (left) and associative recall task (right). We
compare the performance of single-layer SSMs (SSM + FNN), two-layer SSMs (SSM + FNN + SSM
+ FNN), and Transformers. The number in parentheses following ”FNN” indicates the depth of the
FNN. We can see that two-layer SSMs with sufficiently expressive FNN layers exhibit performance
comparable to Transformers, and outperform single-layer SSMs.

To formalize the task, suppose that input sequences are given by the form “x1 x2 · · · xV k”, where
x1, . . . , xV , k ∈ W . Moreover, we assume that, for each sequence, there exists a unique j ∈ [V −1]
such that xj = k. Then, the model is required to output xj+1.

In this task, the position of the token to extract changes for each input sequence. Therefore, to solve
this task, the model has to change which token to focus based on the input, i.e., the dynamic token
selection ability is required.

For induction heads, we obtain the following result.

Theorem D.1. There exists an SSM F̂ ∈ S(M,U,D,L,W, S,B) with
M = 2, U = V, D, L, W, S, logB ≲ log5 V log8 |W|,

and decoding layer Dec with ∥WDec∥∞ ≤ 1 such that, for any input sequences of induction heads
task, the model generates the correct output.

The proof is provided in Appendix H.

D.2 SELECTIVE COPYING

The selective copying (Gu & Dao, 2023) is a variant of the input copying task, where there
are some empty tokens between the tokens to copy. For example, if the input sequence is
“〈BOS〉 a 〈PAD〉 〈PAD〉 b 〈PAD〉 c 〈PAD〉 〈COPY〉”, the model have to generate the se-
quence “a b c” in an auto-regressive manner.

Similarly to the input copying task, since the models have to change the position of the token to
copy, the dynamic token selection ability is required to solve this task. Moreover, since the model
needs to avoid empty tokens at different positions for each sequence and copy only the necessary
tokens. Therefore, it requires capturing the context of the sequence, making it a more challenging
than input copying task.

To provide a formal definition of the task, suppose that the special tokens 〈BOS〉, 〈PAD〉, and
〈COPY〉 are included in the vocabulary W . Then, let us consider the input sequence of the form
“〈BOS〉 x1 x2 · · · xV 〈COPY〉”, where x1, . . . , xV ∈ W \ {〈BOS〉, 〈COPY〉}. For each i ∈ [V ],
xi is a random variable that matches 〈PAD〉 with probability α (> 0). Otherwise, xi is generated
from the uniform distribution over W \ {〈BOS〉, 〈COPY〉, 〈PAD〉}. Let i1, . . . , iK ∈ [V ] be the
indices such that xik ̸= 〈PAD〉 (k ∈ [K]). Then, the model is required to output the sequence “xi1
· · · xiK ”.

For the task described above, we obtain the following result.
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Figure E.1: Intuitive explanation of piecewise γ-smooth functions. Left: For simplicity, consider a
finite-length input sequence X = [x−4, . . . , x−1, x0]. An importance function µ takes the sequence
as input and determines the importance of the last token. Using the function µ, the importance values
of each token, µ(X−4), . . . , µ(X0), are determined. A permutation map Π rearranges the tokens in
ascending order of their importance. Finally, the rearranged tokens are fed into a γ-smooth function
f . In the sorted sequence, tokens in the right have higher importance, and the function f becomes
less smooth for tokens positioned further to the right. Right: An intuitive explanation of how the
smoothness of a function changes due to token reordering. As an example, consider a function with
a 3-dimensional input vector X = (x1, x2, x3). Assume f is only non-smooth in the direction of
the second coordinate, while it is smooth in all other directions. If X is directly fed into f , the
second coordinate, x2, is always the non-smooth direction. On the other hand, if the coordinates are
rearranged by an input-dependent permutation map Π before being passed to f , the smoothness of
the function changes. For example, in the top-left region of the domain, the reordering might cause
the second coordinate to correspond to x3, making x3 the non-smooth direction.

Theorem D.2. Let ϵ > 0. Suppose that |W| ≳ log4(V/ϵ). Then, there exists an SSM F̂ ∈
Ŝ(M,U,D,L,W, S,B) with

M = 2, U = V, D, L, W, S, logB ≲ log84 V log89 ϵ−1 log8 |W|,
and decoding layer Dec with ∥WDec∥∞ ≤ 1 such that, the model generates the correct sequence
for selective copying task with probability 1− ϵ.

In this theorem, compared to the case of input copying, we additionally assume that |W| ≳
log4(V/ϵ). This is mainly due to the existence of empty tokens in the input sequence, and is not
due to the problems specific to the SSMs, i.e., the same problem would occur in the case of Trans-
formers. More concretely, in the proof of the theorem, similarly to the proof of Theorem 3.1, we
consider the n-gram immediately before the token, and construct a network that can find the same
n-gram (excluding empty tokens) in the input sequence. Since there are empty tokens in the input
sequence in selective copying, n-gram overlapping (excluding empty tokens) can easily occur com-
pared to the case without empty tokens. In particular, when the vocabulary size |W| is small, n-gram
overlapping much more likely to occur, thus it is difficult to copy the sequence correctly.

The proof is provided in Appendix H.

E THE INTUITION BEHIND PIECEWISE γ-SMOOTH FUNCTIONS

In this chapter, we provide an intuitive explanation of the definition of piecewise γ-smooth functions
introduced in Section 4.2.

The goal of our study is to demonstrate that SSMs possess the ability to focus on important tokens
in the input sequence, similar to Transformers. To achieve this, we formulate the importance of each
token in terms of the smoothness of a function. Specifically, let us consider a function f that takes
a sequence of tokens X = [. . . , x−2, x−1, x0] as input and outputs y = f(X). If the function f is
smooth with respect to a token (coordinate) xi, we regard that token as unimportant; conversely, if
f is not smooth with respect to xi, we consider the token to be important. This is because, when f
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Bob was born in New York. After graduating  
from university, he became a lawyer. 
What is Bob's occupation? ▶ Lawyer 
In which city was Bob born? ▶ New York

Figure E.2: Real-world tasks where piecewise γ-smooth functions can be applied. Left: There are a
different type of bird in each of the two images. The images are taken from ImageNet (Deng et al.,
2009). When considering a task of classifying these two types of birds, the important region is only
the part containing the bird, highlighted by the red box. By defining an importance function that
assigns larger values to this region, the task can be framed within the framework of piecewise γ-
smooth functions. Right: A passage and two related questions are given. Depending on the question,
the important parts of the passage are different. Let us define the importance function that assigns
larger values to the relevant parts of the passage based on the given question. Then, this problem
setting can also be framed within the framework of piecewise γ-smooth functions.

is smooth with respect to xi, the value of f does not change significantly with variations in xi, and
vice versa.

To quantitatively handle the smoothness of a function, we first consider γ-smooth functions. As
described in Section 4.2, γ-smooth functions form a class of functions that includes spaces such as
mixed-Besov spaces and Sobolev spaces. While this class includes a wide variety of functions, once
a specific function is fixed, its smoothness is also fixed. In other words, the locations of important
tokens are independent of the input. Thus, even if we demonstrate the capability of SSMs to estimate
functions in this class, it does not reveal whether SSMs possess the ability to dynamically adjust their
focus based on the input, i.e., the dynamic token selection ability.

To reflect the dynamic token selection ability of Transformers and SSMs, we introduce piecewise
γ-smooth functions. We provide an illustrative explanation in Figure E.1. To make the smoothness
of a function dependent on the input, we consider rearranging the input tokens. If we rearrange the
tokens using a permutation map Π based on the input X and apply the function f , the smoothness
changes depending on the input, while the smoothness of the γ-smooth function f itself is fixed.
We define the composition of the permutation map Π and the γ-smooth function f , i.e., f ◦ Π, as a
piecewise γ-smooth function.

To define the permutation map Π, we introduce an importance function µ. The function µ takes a
sequence of tokens as input and returns the importance of the last token as a real number. Given a
sequence X = [. . . , x−2, x−1, x0], let X−i = [. . . , x−i−2, x−i−1, x−i]. The importance of a token
x−i is then computed as µ(X−i), as shown in Figure E.1. The map Π rearranges the tokens in
ascending order of their importance scores µ(X−i).

As assumed in Assumption 4.3, the function f becomes smoother with respect to tokens located
farther from position 0. Thus, tokens with higher importance as defined by µ are rearranged to
positions closer to position 0 after the permutation. Consequently, these tokens are considered more
critical for the function f .

Thus, the piecewise γ-smooth function g = f ◦ Π is defined. The following two points are particu-
larly important:

• While γ-smooth functions have fixed smoothness, piecewise γ-smooth functions have smooth-
ness depending on the input. This is because the tokens are sorted by the order of importance.

• The importance of tokens are determined by the importance function µ. If a token has high
importance, it is a significant token for the function f .

In Figure E.2, we present concrete examples of real-world problems where piecewise γ-smooth
functions are applicable.

In the example on the left, there are two images with birds. We consider the task of predicting the
species of the bird in each image. For this task, only the regions containing the bird are relevant,
while the other parts of the images are not essential. Since the locations of the birds differ between
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the two images, the important regions vary depending on the input. By defining an importance
function that assigns higher importance to tokens corresponding to the regions containing the bird,
this problem can be framed within the framework of piecewise γ-smooth functions.

In the example on the right, a passage and related questions are provided. We consider the task of
inferring appropriate answers to the questions based on the passage. For the first question, which
asks about Bob’s profession, the focus should be on the blue-highlighted part of the passage. For the
second question, which asks about Bob’s hometown, the focus shifts to the green-highlighted part.
We can define an importance function that takes the passage and the question as input and assigns
higher values to tokens corresponding to the relevant parts of the passage (e.g., the blue part for the
first question and the green part for the second question). Then, we can interpret the problem within
the framework of piecewise γ-smooth functions.

F AUXILIARY LEMMAS

In the following discussion, to simplify the notation, we define the function class Ψ′(D,B) by

Ψ′(D,B) :=
{
t 7→ [c1,k cos (2πa1,kt) + c2,k sin (2πa2,kt)]

D
k=1

∣∣∣ ∥c∥∞ ≤ B, ∥a∥∞ ≤ B.
}
.

First, we prove the following lemma, which states the properties of the Softmax and multi-variate
Swish function.
Lemma F.1 (Properties of Softmax and Multi-variate Swish function). Fix θ ∈ Rd. Assume that
there exists an index i∗ ∈ [d] and δ > 0 such that θi∗ > θi + δ for all i ̸= i∗. Then, the following
two statements hold:

1. (Lemma C.1 of Takakura & Suzuki (2023)) It holds
d∑

i=1

|Softmax(θ)i − δi,i∗ | ≤ 2d exp(−δ).

2. For any x ∈ [0, 1]d, it holds∣∣∣∣∣
d∑

i=1

Softmax(θ)i · xi − xi∗

∣∣∣∣∣ ≤ 2d2 exp(−δ).

Proof. We prove the second one. Using the first argument, we have∣∣∣∣∣
d∑

i=1

Softmax(θ)i · xi − xi∗

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i̸=i∗

Softmax(θ)i · xi + (Softmax(θ)i∗ · xi∗ − xi∗)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i̸=i∗

Softmax(θ)i · xi + (Softmax(θ)i∗ · xi∗ − δi∗,i∗xi∗)

∣∣∣∣∣∣
≤
∑
i ̸=i∗

|Softmax(θ)i − δi,i∗ | · xi + |Softmax(θ)i∗ − δi∗,i∗ | · xi∗

≤
d∑

i=1

|Softmax(θ)i − δi,i∗ | · xi

≤ 2d2 exp(−δ),
which completes the proof.

The following is a famous fact that there exists a neural network that realize the clipping function.
Lemma F.2. Let a, b ∈ R. There exists a neural neural network fclip ∈ Ψ(L,W, S,B) with

L ≲ 1, W ≲ 1, S ≲ 1, B ≲ |a|+ |b|,
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such that, for any x ∈ R, it holds

fclip(x) =


a if x ≤ a,

x if a ≤ x ≤ b,

b if b ≤ x.

The following lemma shows the approximation ability of FNN for some elementary functions.

Lemma F.3 (Lemma F.6, Lemma F.7, Lemma F.12 of Oko et al. (2023), Corollary 4.2 of
Perekrestenko et al. (2018)). The following statements hold:

(mult) Let d ≥ 2, C ≥ 1, ϵerror ∈ (0, 1]. For any ϵ > 0, there exists a neural network fmult ∈
Ψ(L,W,S,B) with
L ≲ (log ϵ−1 + d logC) · log d, W ≲ d, S ≲ d log ϵ−1 + d logC, logB ≲ d logC,

such that, for any x ∈ [0, C]d and x ∈ Rd with ∥x− x′∥∞ ≤ ϵerror, it holds∣∣∣∣∣fmult(x
′)−

d∏
i=1

xi

∣∣∣∣∣ ≤ ϵ+ d · Cd · ϵerror.

(rec) For any ϵ ∈ (0, 1), there exists frec ∈ Ψ(L,W,S,B) with
L ≲ log2 ϵ−1, W ≲ log3 ϵ−1, S ≲ log4 ϵ−1, logB ≲ log ϵ−1,

such that, for any x ∈ [ϵ, ϵ−1] and x′ ∈ R, it holds∣∣∣∣frec(x′)− 1

x

∣∣∣∣ ≤ ϵ+
|x′ − x|
ϵ2

.

(exp) For any ϵ > 0, there exists fexp ∈ Ψ(L,W, S,B) with
L ≲ log2 ϵ−1, W ≲ log ϵ−1, S ≲ log2 ϵ−1, logB ≲ log2 ϵ−1,

such that, for any x, x′ ≥ 0, it holds
|fexp(x′)− exp(x)| ≤ ϵ+ |x′ − x|.

(cos) For any ϵ > 0, a > 0, b ∈ R, C ≥ 1, there exists fcos ∈ Ψ(L,W, S,B) with
L ≲ log2 ϵ−1 + log(aD + b), W ≲ 1,

S ≲ log2 ϵ−1 + log(aD + b), logB ≲ max {1, log |b/a|},
such that, for any x ∈ [−D,D], it holds

|fcos(x)− cos(ax+ b)| ≤ ϵ.

We also use the following lemma, which gives the approximation error of (x, y) 7→ y/x.

Lemma F.4. For any ϵ ∈ (0, 1], there exists a neural network ϕ ∈ Ψ(L,W, S,B) with
L ≲ log2 ϵ−1, W ≲ log3 ϵ−1, S ≲ log4 ϵ−1, logB ≲ log ϵ−1,

such that, for any x, y, x′, y′ ∈ R with x ∈ [ϵ, ϵ−1], y ∈ [0, ϵ−1], it holds∣∣∣ϕ(x′, y′)− y

x

∣∣∣ ≤ ϵ+
|x− x′|
ϵ8

+
|y − y′|
ϵ2

.

Proof. From (rec) of Lemma F.3, there exists a neural network ϕ1 ∈ Ψ(L,W, S,B) with
L ≲ log2 ϵ−1, W ≲ log3 ϵ−1, S ≲ log4 ϵ−1, logB ≲ log ϵ−1,

such that, for any x ∈ [ϵ, ϵ−1] ⊆ [ϵ3, ϵ−3] and x′ ∈ R, it holds∣∣∣∣ϕ1(x′)− 1

x

∣∣∣∣ ≤ ϵ3 +
|x− x′|
ϵ6

.

Next, using (mult) of Lemma F.3, there exists a neural network ϕ2 ∈ Ψ(L,W,S,B) with
L ≲ log ϵ−1, W ≲ 1, S ≲ log ϵ−1, logB ≲ log ϵ−1,

such that, for any y, z ∈ [0, ϵ−1] and y′, z′ ∈ R, it holds

|ϕ2(z′, y′)− zy| ≲ ϵ+
|z − z′|+ |y − y′|

ϵ2
.
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Therefore, we have ∣∣∣ϕ2(ϕ1(x′), y′)− y

x

∣∣∣ ≲ ϵ+
1

ϵ2

(∣∣∣∣ϕ1(x′)− 1

x

∣∣∣∣+ |y − y′|
)

≲ ϵ+
|x− x′|
ϵ8

+
|y − y′|
ϵ2

.

Lastly, we state the following lemma, which shows that the Gaussian kernel can be approximated
expressed as the sum of the product of neural networks.

Lemma F.5. There exists N ∈ N and FNNs ϕn, ϕ
′
n, ϕ

′′
n ∈ Ψ1,1(L,W, S,B), ψn, ψ

′
n ∈

Ψ′(1, B) (n = 1, . . . , N) with
N ≲ log2 ϵ−1,

L ≲ log4 ϵ−1 log2 κ, W ≲ 1, S ≲ log4 ϵ−1 log2 κ, logB ≲ log2 ϵ−1 log κ,

L′ = 1, W ′ ≲ log2 ϵ−1, S′ ≲ log2 ϵ−1,

such that,

• for any t, x ∈ [−1, 1], it holds∣∣∣∣∣exp(−κ · sin2
(π
2
(t− x)

))
−

N∑
n=1

ψn(t)ϕn(x)

∣∣∣∣∣ ≲ ϵ,

• for any x, y ∈ [−1, 1], it holds∣∣∣∣∣exp(−κ · sin2
(π
2
(x− y)

))
−

N∑
n=1

ϕ′n(x)ϕ
′′
n(y)

∣∣∣∣∣ ≲ ϵ,

• for any t ∈ [−1, 1], it holds∣∣∣∣∣exp
(
−κ · sin2

(
πt

2

))
−

N∑
n=1

ψ′
n(t)

∣∣∣∣∣ ≲ ϵ.

Proof. The first part of the proof is inspired by Lemma F.12 of Oko et al. (2023). Let us set A =
log 3ϵ−1. The Taylor expansion of exp shows that, for any x ∈ [0, A], it holds∣∣∣∣∣exp(−x)−

N−1∑
n=0

(−1)n

n!
xn

∣∣∣∣∣ ≤ AN

N !
.

Additionally, we can evaluate the right-hand side as Ak/k! ≤ (eA/k)
k. Therefore, if we set N =

max
{
2eA, ⌈log2 3ϵ−1⌉

}
, the error can be bounded by ϵ/3. Moreover, for x > A, we have∣∣∣∣∣exp(−x)−

N−1∑
n=0

(−1)n

n!
xn

∣∣∣∣∣ ≤ |exp(−x)− exp(−A)|+

∣∣∣∣∣exp(−A)−
N−1∑
n=0

(−1)n

n!
xn

∣∣∣∣∣
≤ ϵ

3
+

2ϵ

3
= ϵ.

Next, let us approximate
N−1∑
n=0

(−κ)n

n!
sin2n

(π
2
(t− x)

)
. We use the fact that

sin2n(x) =

(
eix − e−ix

2

)2n

=
1

22n

2n∑
k=0

(
2n

k

)
(−1)kei(2k−2n)x

=
(−1)n

22n

(
2n

n

)
+
∑

k≥n+1

(−1)k

22n−1

(
2n

k

)
cos ((2k − 2n)x),
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where cn = 1 if n is even and cn = 0 if n is odd. Thus, we have
N−1∑
n=0

(−κ)n

n!
sin2n

(π
2
(t− x)

)
=

N−1∑
n=0

κn

n!22n

(
2n

n

)
+

N−1∑
n=0

∑
k≥n+1

(−κ)n

n!

1

22n−1

(
2n

k

)
cos (π(k − n)(t− x))

=

N−1∑
n=0

κn

n!22n

(
2n

n

)
+

N−1∑
n=0

∑
k≥n+1

(−κ)n

n!

1

22n−1

(
2n

k

)(
cos (π(k − n)t) cos (π(k − n)x)

+ sin (π(k − n)t) sin (π(k − n)x)

)
,

which is decomposed into the sum of products of functions of t and x. Since∣∣∣∣ (−κ)nn!

1

22n−1

(
2n

k

)∣∣∣∣ ≤ κn

n!2n
(2n)!

k!(2n− k)!
≤ κn

n!2n
2n(n!)2

(max(k, 2n− k))!
=

κn

n!2n
2n(n!)2

n!
≤ κN ,

we can see that, there exists C0, Cn,k (n = 0, . . . , N − 1; k = 0, . . . , N − 1) with
C0 ≤ κN , Cn,k ≤ κN ,

such that
N−1∑
n=0

(−κ)n

n!
sin2n

(π
2
(t− x)

)
= C0 +

N−1∑
n=0

N−1∑
k=0

Cn,k

(
cos (π(k − n)t) cos (π(k − n)x)

+ sin (π(k − n)t) sin (π(k − n)x)
)
.

The second item to be proved is already obtained setting x = 0.

To prove the first item, we approximate each term using neural networks. Lemma F.3 implies that,
for any n, k and ϵ > 0, there exists a neural network ϕ1,n,k, ϕ2,n,k ∈ Ψ1,1(L,W, S,B) with

L ≲ N2 log2 κ+ log2 ϵ−1, W ≲ 1, S ≲ N2 log2 κ+ log2 ϵ−1, logB ≲ 1,

such that
|cos(π(k − n)x)− ϕ1,n,k(x)| ≤ ϵ/(N2κN ), |sin(π(k − n)x)− ϕ2,n,k(x)| ≤ ϵ/(N2κN ).

Then, if we approximate exp(−κ · cos(2π(t− x))) by

C0 +

N−1∑
n=0

N−1∑
k=0

Cn,k(cos (π(k − n)t)ϕ1,n,k(x) + sin (π(k − n)t)ϕ2,n,k(x)),

the error can be bounded by

ϵ+

N−1∑
n=0

N−1∑
k=0

Cn,k · 2ϵ

N2κN
≤ ϵ+N2κN · 2ϵ

N2κN
≤ 3ϵ,

which gives the desired result.

For the third item, if we utilize ϕ1,n,k and ϕ2,n,k to approximate cos(π(k − n)y) and
sin(π(k − n)y), respectively, we can obtain the desired result.

The following lemma is the multi-dimensional version of Lemma F.5.

Lemma F.6. There exists N ∈ N and FNNs ϕn,i, ϕ′n,i ∈ Ψd,1(L,W,S,B) with

N ≲ log2 ϵ−1 + log2 d,

L ≲ d4 log4 ϵ−1 log2 κ, W ≲ d, S ≲ d4 log4 ϵ−1 log2 κ, logB ≲ d log2 ϵ−1 log κ,

such that, for any x, y ∈ [−1, 1]d, it holds∣∣∣∣∣exp
(
−κ ·

n∑
i=1

sin2
(π
2
(xi − yi)

))
−

N∑
n=1

ϕn(x)ϕ
′
n(y)

∣∣∣∣∣ ≲ ϵ.
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Proof. The proof of Lemma F.5 shows that, for N ∼ log2 ϵ−1+log2 d, there exists ϕ∗1, . . . , ϕ
∗
N and

C1, · · · , CN with |Cn| ≤ κN such that∣∣∣∣∣exp(−κ · sin2
(π
2
(xi − yi)

))
−

N∑
n=1

Cnϕ
∗
n(xi)ϕ

∗
n(yi)

∣∣∣∣∣ ≲ ϵ

d
,

where ϕ∗n is a function represented as sin(anx+ bn) with some an, bn ∈ R. Therefore,
d∏

i=1

(
N∑

n=1

Cnϕ
∗
n(xi)ϕ

∗
n(yi)

)
=

∑
n1,...,nd

Cn1
· · ·Cnd

ϕ∗n1
(x1) · · ·ϕ∗nd

(xd)ϕ
∗
n1
(y1) · · ·ϕ∗nd

(yd),

which have Nd terms, is an approximation of exp

(
−κ ·

n∑
i=1

sin2
(π
2
(xi − yi)

))
, and the error is

bounded as∣∣∣∣∣exp
(
−κ ·

n∑
i=1

sin2
(π
2
(xi − yi)

))
−

d∏
i=1

(
N∑

n=1

Cnϕ
∗
n(xi)ϕ

∗
n(yi)

)∣∣∣∣∣ ≤ d · ϵ
d
= ϵ.

Using (cos) of Lemma F.3, we can see that, for any n ∈ [N ] and ϵ > 0, there exists a neural network
ψ1,n ∈ Ψd,1(L,W, S,B) with

L ≲ d4 log4 ϵ−1 log κ, W ≲ 1, S ≲ d4 log4 ϵ−1 log κ, logB ≲ log2 ϵ−1 log κ,

such that

|ϕ∗n(x)− ψ1,n(x)| ≤
ϵ

dκdNNd
.

Moreover, using (mult) of Lemma F.3, we can see that there exists a neural network ψ2,n1,...,nd
, ψ3 ∈

Ψ(L,W, S,B) with
L ≲ d2 log2 ϵ−1 log2 κ, W ≲ d, S ≲ d3 log2 ϵ−1 log2 κ, logB ≲ d,

such that
|ψ2(x1, . . . , xd)− Cn1

· · ·Cnd
x1x2 · · ·xd| ≲

ϵ

κdN

|ψ3(x1, . . . , xd)− x1x2 · · ·xd| ≲
ϵ

κdN
.

for any x ∈ R with |x| ≤ 1. for any x1, . . . , xd ∈ R with |xi| ≤ 1. Then, we have∣∣∣∣∣ ∑
n1,...,nd

ψ2,n1,...,nd
(ψ1,n1

(x1), . . . , ψ1,nd
(xd))ψ3(ψ1,n1

(y1), . . . , ψ1,nd
(yd))

− exp

(
−κ ·

n∑
i=1

sin2
(π
2
(xi − yi)

))∣∣∣∣∣
≤ ϵ

κdN
· κdN +

∣∣∣∣∣ ∑
n1,...,nd

Cn1
· · ·Cnd

· ψ1,n1
(x1) · · ·ψ1,nd

(xd) · ψ1,n1
(y1) · · ·ψ1,nd

(yd)

− exp

(
−κ ·

n∑
i=1

sin2
(π
2
(xi − yi)

))∣∣∣∣∣
≤ ϵ

κdN
· κdN + dκdNNd · ϵ

dκdNNd

+

∣∣∣∣∣ ∑
n1,...,nd

Cn1
· · ·Cnd

· ϕ∗1(x1) · · ·ψ∗
d(xd) · ϕ∗1(y1) · · ·ψ∗

d(yd)

− exp

(
−κ ·

n∑
i=1

sin2
(π
2
(xi − yi)

))∣∣∣∣∣
≲ ϵ,

which completes the proof.
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G PROOF OF LEMMA 3.3

First, for any j ̸= j∗, it holds(
1

2
∥q∥2 + 1

2
∥kj∥2 −

1

2
∥q − kj∥2

)
−
(
1

2
∥q∥2 + 1

2
∥kj∗∥2 −

1

2
∥q − kj∗∥2

)
= q⊤kj−q⊤kj∗ ≤ −δ.

Now, since it is hold that

u2 − u4

3
≤ sin2(u) =

1− cos 2u

2
≤ u2,

for u ∈ [0, π/2], for A > 0, j ∈ [−V : 0], i ∈ [d′], we have∣∣∣∣(A sin
( π

2A
(kji − qj)

))2
−
(π
2
(kji − qj)

)2∣∣∣∣
=

∣∣∣∣A2 sin2
( π

2A
(kji − qj)

)
−A2

( π

2A
(kji − qi)

)2∣∣∣∣
≤ A2 ·

( π

2A
(kji − qi)

)4
≤ π4

A2
.

Therefore, if we set A =
√

16π2d′

δ , it holds1

2
∥q∥2 + 1

2
∥kj∥2 −

1

2
· 4

π2

d′∑
i=1

(
A sin

( π

2A
(kji − qi)

))2
−

1

2
∥q∥2 + 1

2
∥kj∗∥2 −

1

2
· 4

π2

d′∑
i=1

(
A sin

( π

2A
(kj∗ − qi)

))2
≤
(
1

2
∥q∥2 + 1

2
∥kj∥2 −

1

2
∥q − kj∥2

)
−
(
1

2
∥q∥2 + 1

2
∥kj∗∥2 −

1

2
∥q − kj∗∥2

)
+

4d′

π2

∣∣∣∣(A sin
( π

2A
(kji − qi)

))2
−
(π
2
(kji − qi)

)2∣∣∣∣
+

4d′

π2

∣∣∣∣(A sin
( π

2A
(kj∗i − qi)

))2
−
(π
2
(kj∗i − qi)

)2∣∣∣∣
≤ −δ + 4d′π2

A2
+

4d′π2

A2
≤ −δ + δ

4
+
δ

4
= −δ

2
.

In the following, we denote

µ′
j :=

1

2
∥q∥2 + 1

2
∥kj∥2 −

1

2
· 4

π2

d′∑
i=1

(
A sin

( π

2A
(kji − qi)

))2
.

Using Lemma F.1, we have∥∥∥∥∥
∑0

j=−V exp
(
κµ′

j

)
· vj∑0

j=−V exp
(
κµ′

j

) − vj∗

∥∥∥∥∥
∞

≤ 2(V + 1)2 exp

(
−δκ

2

)
.

for any κ > 0. Therefore, if we set κ = Ω
(

log ϵ−1+log V
δ

)
, the right-hand side is less than ϵ.

Next, let us consider approximating

exp
(
κµ′

j

)
· vj = vj · exp

κ ·

1

2
∥q∥2 + 1

2
∥kj∥2 −

1

2
· 4

π2

d′∑
i=1

(
A sin

( π

2A
(kji − qi)

))2
= vj · exp

(κ
2
∥q∥2

)
exp

(κ
2
∥kj∥2

)
exp

−32κd′

δ

d′∑
i=1

sin2
(
π

2

kji − qi
A

).
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Combining (mult) and (exp) in Lemma F.3, we can see that there exists a neural network ϕ1 ∈
Ψ(L,W, S,B) with

L ≲
d′

2

δ2
(
log2 ϵ−1 + log2 V

)
, W ≲

d′

δ

(
log ϵ−1 + log V

)
,

S ≲
d′

2

δ2
(
log2 ϵ−1 + log2 V

)
, logB ≲

d′
2

δ2
(
log2 ϵ−1 + log2 V

)
,

such that ∣∣∣ϕ1(x)− exp
(κ
2
∥x∥2

)∣∣∣ ≲ 1

(V + 1)2
ϵ9 exp(−9κd′ − 4δ)

for any x ∈ R with ∥x∥∞ ≤ 1. Moreover, using Lemma F.6, we can see that there exists neural
networks ϕ2,n, ϕ3,n ∈ Ψ(L,W, S,B) (n = 1, . . . , N) with

N ≲
d′

2

δ2
(
log2 ϵ−1 + log2 V

)
, L ≲

d′
8

δ5
(
log5 ϵ−1 + log5 V

)
, W ≲ d′,

S ≲
d′

8

δ5
(
log5 ϵ−1 + log5 V

)
, logB ≲

d′
3

δ2
(
log3 ϵ−1 + log3 V

)
,

such that, for any x, y ∈ [−1, 1]d,∣∣∣∣∣∣
N∑

n=1

ϕ2,n(x)ϕ3,n(y)− exp

−32κd′

δ

d′∑
i=1

sin2
(π
2
(x− y)

)∣∣∣∣∣∣ ≲ 1

(V + 1)2
ϵ9 exp(−9κd′ − 4δ).

Note that, by clipping the output appropriately, we can ensure that

∥ϕ1∥∞ ≤ exp

(
κd′

2

)
, ∥ϕ2,n∥∞ ≤

(
32κd′

δ

)d′N

, ∥ϕ3,n∥∞ ≤
(
32κd′

δ

)d′N

,

without changing the approximation error. Therefore, we have∥∥∥∥∥vj · ϕ1(q)ϕ1(kj)
N∑

n=1

ϕ2,n

( q
A

)
ϕ3,n

(
kj
A

)
− exp

(
κµ′

j

)
· vj

∥∥∥∥∥
∞

=

∥∥∥∥∥vj · ϕ1(q)ϕ1(kj)
N∑

n=1

ϕ2,n

( q
A

)
ϕ3,n

(
kj
A

)

− vj · exp
(κ
2
∥q∥2

)
exp

(κ
2
∥kj∥2

)
exp

−32κd′

δ

d′∑
i=1

sin2
(
π

2

kji − qi
A

)∥∥∥∥∥
∞

≲ exp(κd′) · 1

(V + 1)2
ϵ9 exp(−9κd′ − 4δ) =

1

(V + 1)2
ϵ9 exp(−8(κd′ + δ/2)).

Using (mult) of Lemma F.3, we can see that there exists a neural network ϕ4 ∈ Ψ(L,W, S,B) with

L ≲
d′

3

δ3
(
log3 ϵ−1 + log3 V

)
, W ≲ 1, S ≲

d′
3

δ3
(
log3 ϵ−1 + log3 V

)
, logB ≲ 1,

such that |ϕ4(x, y)− xy| ≲ ϵ9 · 1
N(V+1)2

(
δ

32κd′

)d′N
exp(−(17κd′ + δ)/2) for any x, y ∈ R

with |x| ≤ exp
(

κd′

2

)
, |y| ≤

(
32κd′

δ

)d′N

. Additionally, there exists a neural network ϕ5 ∈
Ψ(L,W, S,B) with

L ≲
d′

3

δ3
(
log3 ϵ−1 + log3 V

)
, W ≲ 1, S ≲

d′
3

δ3
(
log3 ϵ−1 + log3 V

)
, logB ≲ 1,

such that |ϕ5(v, x, y)− v · xy| ≲ ϵ9 · 1
N(V+1)2

(
δ

32κd′

)d′N
exp(−(17κd′ + δ)/2) for any v ∈

Rd′
x, y ∈ R with ∥v∥∞ ≤ 1 and |x| ≤ exp

(
κd′

2

)
, |y| ≤

(
32κd′

δ

)d′N

. Using these networks,
we have the following approximation:∣∣∣ϕ4(ϕ1(q), ϕ2,n( q

A

))
− ϕ1(q)ϕ2,n

( q
A

)∣∣∣
≲ ϵ9 · 1

N(V + 1)2

(
δ

32κd′

)d′N

exp(−(17κd′ + δ)/2),
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∥∥∥∥ϕ5(vj , ϕ1(kj), ϕ3,n(kjA
))

− vjϕ1(kj)ϕ3,n

(
kj
A

)∥∥∥∥
∞

≲ ϵ9 · 1

N(V + 1)2

(
δ

32κd′

)d′N

exp(−(17κd′ + δ)/2).

This implies that there exist neural networks Φ1, ψ1 ∈ Ψ(L,W, S,B) with

L ≲
d′

8

δ5
(
log5 ϵ−1 + log5 V

)
, W ≲

d′

δ

(
log ϵ−1 + log V

)
,

S ≲
d′

8

δ5
(
log5 ϵ−1 + log5 V

)
, logB ≲

d′
3

δ2
(
log3 ϵ−1 + log3 V

)
,

such that∥∥Φ1(kj , vj)ψ(q)− exp
(
κµ′

j

)
· vj
∥∥
∞

=

∥∥∥∥∥
N∑

n=1

ϕ4

(
ϕ1(q), ϕ2,n

( q
A

))
ϕ5

(
vj , ϕ1(kj), ϕ3,n

(
kj
A

))
− vj · exp

(
κµ′

j

)∥∥∥∥∥
∞

≤

∥∥∥∥∥
N∑

n=1

ϕ4

(
ϕ1(q), ϕ2,n

( q
A

))
ϕ5

(
vj , ϕ1(kj), ϕ3,n

(
kj
A

))

− vj · ϕ1(q)ϕ1(kj)
N∑

n=1

ϕ2,n

( q
A

)
ϕ3,n

(
kj
A

)∥∥∥∥∥
∞

+

∥∥∥∥∥vj · ϕ1(q)ϕ1(kj)
N∑

n=1

ϕ2,n

( q
A

)
ϕ3,n

(
kj
A

)
− vj · exp

(
κµ′

j

)∥∥∥∥∥
≲

1

(V + 1)2
ϵ9 exp(−8(κd′ + δ/2)),

where Φ1(kj , vj) ∈ Rd′×N and ψ(q) ∈ RN . Summing up the error for j = −V, . . . , 0, we have∥∥∥∥∥∥
 0∑

j=−V

Φ1(kj , vj)

ψ1(q)−
0∑

j=−V

exp
(
κµ′

j

)
· vj

∥∥∥∥∥∥
∞

≲
1

V + 1
ϵ9 exp(−8(κd′ + δ/2)).

Similarly, there exist neural networks ψ2, ψ3 ∈ Ψ(L,W, S,B) with

L ≲
d′

8

δ5
(
log5 ϵ−1 + log5 V

)
, W ≲

d′

δ

(
log ϵ−1 + log V

)
,

S ≲
d′

8

δ5
(
log5 ϵ−1 + log5 V

)
, logB ≲

d′
3

δ2
(
log3 ϵ−1 + log3 V

)
,

such that ∣∣∣∣∣∣ψ3(q)
⊤

0∑
j=−V

ψ2(kj)−
0∑

j=−V

exp
(
κµ′

j

)
· vj

∣∣∣∣∣∣ ≲ 1

V + 1
ϵ9 exp(−8(κd′ + δ/2)),

where ψ2(kj), ψ3(q) ∈ RN . Note that Φ1(kj , vj) ∈ Rd′×N and ψ2(kj) ∈ RN are the output of the
convolution layer.

From (mult) in Lemma F.3, we can see that there exists a neural network ϕ6 ∈ Ψ(L,W, S,B) with

L ≲
d′

δ

(
log ϵ−1 + log V

)
, W ≲ 1,

S ≲
d′

δ

(
log ϵ−1 + log V

)
, logB ≲ 1,

such that |ϕ6(x, y)−Xy| ≲ 1
V+1ϵ

9 exp(−8(κd′ + δ/2)) for any X ∈ Rd′×N , y ∈ RN with

∥X∥∞, ∥y∥∞ ≤ (V + 1)
(

32κd′

δ

)d′N

exp
(

κd′

2

)
. Similarly, we have the network ϕ7 that approx-

imates x⊤y for any x, y ∈ RN with ∥x∥∞, ∥y∥∞ ≤ (V + 1)
(

32κd′

δ

)d′N

exp
(

κd′

2

)
. Then, we
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have∥∥∥∥∥∥ϕ6
 0∑

j=−V

Φ1(kj , vj), ψ1(q)

−

 0∑
j=−V

Φ1(kj , vj)

ψ1(q)

∥∥∥∥∥∥
∞

≲
1

V + 1
ϵ9 exp(−8(κd′ + δ/2)),

∣∣∣∣∣∣ϕ7
ψ3(q),

0∑
j=−V

ψ2(kj)

− ψ3(q)
⊤

0∑
j=−V

ψ2(kj)

∣∣∣∣∣∣ ≲ 1

V + 1
ϵ9 exp(−8(κd′ + δ/2)).

Now, from Lemma F.4, there exists a neural network ϕ8 ∈ Ψ(L,W, S,B) with

L ≲
d′

2

δ2
(
log2 ϵ−1 + log2 V

)
, W ≲

d′
3

δ3
(
log3 ϵ−1 + log3 V

)
,

S ≲
d′

4

δ4
(
log4 ϵ−1 + log4 V

)
, logB ≲

d′

δ

(
log ϵ−1 + log V

)
,

such that ∣∣∣∣ϕ8(x′, y′)− y′

x′

∣∣∣∣ ≲ ϵ+
|x− x′|
τ8

+
|y − y′|
τ2

for any x, y, x′, y′ ∈ R with x ∈ [τ, τ−1] and y ∈ [0, τ−1], where
τ := min {ϵ, exp(−(κd′ + δ/2))/(V + 1)}

Since it holds
0∑

j=−V

exp(κµj) · vji ≤
0∑

j=−V

exp
(
κµ′

j

)
≤ (V + 1) exp(κd′ + δ/2),

for any i ∈ [d′], and
0∑

j=−V

exp(κµj) ≥ exp(κµj∗) ≥ exp(−κd′ − δ/2),

we have∥∥∥∥∥∥ϕ8
ϕ6

 0∑
j=−V

Φ1(kj , vj), ψ1(q)

, ϕ7
ψ3(q),

0∑
j=−V

ψ2(kj)

−
∑0

j=−V exp
(
κµ′

j

)
· vj∑0

j=−V exp
(
κµ′

j

)
∥∥∥∥∥∥
∞

≲ ϵ+
ϵ9 exp(−8(κd′ + δ/2))/(V + 1)

τ8
+
ϵ9 exp(−8(κd′ + δ/2))/(V + 1)

τ2
≲ ϵ.

which completes the proof.

H PROOF OF THEOREM 3.1, 3.2, D.1 AND D.2

H.1 CONSTRUCTING THE EMBEDDINGS

To construct the embeddings, we use the following lemma.
Lemma H.1. Let S be an arbitrary set of n points in Rd, and m ≥ 1 be a integer. Suppose that, for
any x ∈ S, it holds ∥x∥2 ≤ 1. Then, there exists a matrix R ∈ Rk×d with k ≤ 512m4 log n + 1
satisfying the following:

• Any elements of R is +1/
√
k or −1/

√
k.

• For any x, y ∈ S, it holds
∣∣(Rx)⊤(Ry)− x⊤y

∣∣ ≤ 1
8m2 .

To prove Lemma H.1, we use the following proposition.
Proposition H.2 (Theorem 1.1 in Achlioptas (2003)). Let P be an arbitrary set of n points in Rd.
Given ϵ, β > 0, let k be an integer such that k ≥ 4+2β

ϵ2−ϵ3 log n. Let R be a k×d matrix whose entries

are independent random variables drawn from the uniform distribution on
{
1/
√
k,−1/

√
k
}

. Then,

with probability at least 1− n−β , for any x, y ∈ P ,
(1− ϵ)∥x− y∥22 ≤ ∥Rx−Ry∥22 ≤ (1 + ϵ)∥x− y∥22.
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Proof of Lemma H.1. We apply Proposition H.2 with

P = S ∪ {−s | s ∈ S} , ϵ =
1

8m2
, β = 1.

Let k be an integer such that

k ≥ 512m4 log n

(
≥ 4 + 2β

ϵ2 − ϵ3
log n

)
,

and R be the random matrix defined in Proposition H.2. With probability at least 1 − 1
2n , for any

x, y ∈ P , ∣∣∣∥Rx−Ry∥22 − ∥x− y∥22
∣∣∣ ≤ 1

8m2
∥x− y∥22, (H.1)∣∣∣∥Rx+Ry∥22 − ∥x+ y∥22

∣∣∣ ≤ 1

8m2
∥x+ y∥22. (H.2)

Since 1 − 1
2n ≥ 1

2kd for any positive integer n, k, d, we can choose R such that (H.1) holds. For
such R, it holds

(Rx)⊤(Ry)− x⊤y =
1

4

(
∥Rx+Ry∥22 − ∥Rx−Ry∥22 − ∥x+ y∥22 + ∥x+ y∥22

)
≤ 1

4

(∣∣∣∥Rx+Ry∥22 − ∥x+ y∥22
∣∣∣+ ∣∣∣∥Rx−Ry∥22 − ∥x− y∥22

∣∣∣)
≤ 1

4

(
1

4m2
∥x+ y∥22 +

1

4m2
∥x− y∥22

)
=

1

16m2
∥x∥22 +

1

16m2
∥y∥22

≤ 1

8m2
,

which completes the proof.

H.2 PROOF OF THE THEOREMS

The following is the essential lemma to prove the three theorems.

Lemma H.3. Let m ∈ N>0 and Z = [z−V , . . . , z0] ∈ [−1, 1]|W|×[−V :0] be a sequence of one-hot
vector representing the alphabets in set S. Suppose that there uniquely exists j∗ ∈ [−V : −1] such
that

[zj∗−m, zj∗−m+1, . . . , zj∗−1] = [z−m+1, z−m+2, . . . , z0],

where zj = 0 for j /∈ [−m + 1 : 0]. Then, there exists F ∈ S(M,U,D,L,W, S,B) and W ∈
R|W|×D with

M = 2, U = V, D = m14 log2 V log3 |W|, L ≲ m37 log5 V log8 |W|,
W ≲ m15 log3 V log3 |W|, S ≲ m37 log5 V log8 |W|, logB ≲ m10 log2 V log2 |W|,

such that j∗ = argmaxj=−V,...,0(W · F (Z)0)j .

Proof. Set κ ∼ V 2(logm + log V + log log |W|). Additionally, let us set embedding E1 = R ∈
RD×|W| as in Lemma H.1, and set E2 = 0. We define xj = Rzj for j = −V, . . . , 0. The third item
of Lemma F.5, we can see that there exists ψn ∈ Ψ′(D,B) with
N ≲ log2m+ log2 V + log2 log |W|, D = 1, logB ≲ log2m+ log2 V + log2 log |W|,

such that ∥∥∥∥∥exp
(
−κ · sin2

(
π · (j − k)

2(V + 1)

))
−

N∑
n=1

ψn

(
j

V + 1

)∥∥∥∥∥
∞

≤ 1

8m2d(V + 1)
.

for any j = −V, . . . , 0. Since∣∣∣∣exp(−κ · sin2
(
π · (k − j)

2(V + 1)

))
− δj,k

∣∣∣∣ ≤ 1

8m2d(V + 1)
,
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it holds ∥∥∥∥∥∥
0∑

j=−V

N∑
n=1

ψn

(
j

V + 1

)
· xj − xk

∥∥∥∥∥∥
∞

≤ 1

4m2d
.

Therefore, there exists g1 ∈ C(U,D,B) with
U = V, D = m, logB ≲ m2 log V,

such that

g(X) =

q′−V q′−V+1 · · · q′0
k′−V k′−V+1 · · · k′0
v′−V v′−V+1 · · · v′0

,
∥∥∥∥∥∥
q′−V q′−V+1 · · · q′0
k′−V k′−V+1 · · · k′0
v′−V v′−V+1 · · · v′0

−

[
q−V q−V+1 · · · q0
k−V k−V+1 · · · k0
v−V v−V+1 · · · v0

]∥∥∥∥∥∥
∞

≤ 1

4m2d
,

where
qj =

[
x⊤j−m+1, x

⊤
j−m+2, . . . , x

⊤
j

]⊤
,

kj =
[
x⊤j−m+1, x

⊤
j−m+2, . . . , x

⊤
j

]⊤
,

vj = xj ,

and xj = 0 for j /∈ [−m+ 1 : 0]. Then, it holds,

q′0
⊤
k′j∗ ≥ q⊤0 kj∗ −md · 1

4m2d
≥ 1− 1

8m2
·m− 1

4m
= 1− 3

8m
,

and, for any j ∈ [−V : 0] \ {j∗},

q′0
⊤
k′j ≤ q⊤0 kj +md · 1

4m2d
≤ m− 1

m
+

1

8m2
·m+

1

4m
= 1− 5

8m
.

Therefore, due to Lemma 3.3, there exists f1, f2 ∈ Ψ(L,W, S,B) and g2 ∈ C(U,D,B) with
U = V, D = m14 log2 V log3 |W|, L ≲ m37 log5 V log8 |W|,
W ≲ m15 log3 V log3 |W|, S ≲ m37 log5 V log8 |W|, logB ≲ m14 log2 V log2 |W|,

such that

∥f2 ◦ g2 ◦ f1 ◦ g1(X)− xj∗∥∞ ≤ 1

4
.

Therefore,
∥∥R⊤(F (Z)0)− zj∗

∥∥
∞ ≤ 1

4 + 1
8m2 , which completes the proof.

Now, we prove Theorem 3.1, Theorem 3.2 and Theorem D.1.

Proof of Theorem 3.1. Due to Lemma 2.4 of Jelassi et al. (2024), if we set m ≲ log(V/ϵ)/ log |W|
in Lemma H.3, we can achieve errV ≤ ϵ. Therefore, the result follows.

Proof of Theorem 3.2. Applying m = 1 and V ≤ |W| directly gives the result.

Proof of Theorem D.1. The proof is completely the same as the proof of Theorem 3.2. Note that
associative recall is the special case of induction heads where the set keys and the set queries are
completely split.

Proof of Theorem D.2. The probability of havingM or more consecutive 〈PAD〉 tokens in the input
sequence is at most V · αM . Therefore, if M ∼ log V + log ϵ−1, this probability becomes less than
ϵ/2. Hence, in the following discussion, we consider situations where 〈PAD〉 does not appear
consecutively M times or more.

Let “s0, s1, . . . , sV ” be the input sequence, and take an arbitrary index i ∈ [V ]. Fix a positive integer
K. Due to the definition of M , if we set m = KM , there are at least K tokens that are not 〈PAD〉
in the sequence [si−m+1, si−m+2, . . . , si].
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Now, let us upper bound the probability that there exists i ̸= j (i, j ∈ [V ]) such that two sequences
[si−m+1, si−m+2, . . . , si] and [sj−m+1, sj−m+2, . . . , sj ] have common K elements (including du-
plicates) that are not 〈PAD〉. First, we have |W|K choices for the common K elements. Then, we
have (m!/(m−k)!)2 choices for the positions of the common K elements in the sequence of length
m. Each choice of the positions occurs with probability at most 1/|W|2K . Moreover, there are at
most V 2 choices for the indices i and j. Therefore, the probability can be upper bounded by

V 2 · |W|K · m!2

(m−K)!2
· 1

|W|2K
≤ V 2

|W|K
· m!2

(m−K)!2

≤ V 2

|W|K
· e2(m+ 1/e)2(m+1)

e2((m−K)/e)2(m−K)

≤ V 2

|W|K
· (m+ 1)2(m+1)

e2(m+1)
· e2(m−K)

(m−K)2(m−K)

≤ V 2

e2
·
(
(MK −K)2

e2|W|

)K

· (m+ 1)2(m+1)

(m−K)2m

≤ V 2(KM + 1)2

e2
·
(
K2(M − 1)2

e2|W|

)K

·
(
KM + 1

KM −K

)2KM

≤ V 2(KM + 1)2

e2
·

(
K2(M − 1)2

e2|W|
·
(
M + 1

M − 1

)M
)K

≤ V 2(KM + 1)2

e2
·
(
C ·K2(M − 1)2

|W|

)K

,

whereC > 0 is a universal constant. Therefore, if |W| ≥ 2C ·K2(M−1)2 andK ∼ log ϵ−1+log V ,
the probability is less than ϵ/2.

Let us consider the situation where the input “s0, s1, . . . , sL” is fed into the model. Let us set
embedding E1 = R ∈ RD×|W| as in Lemma H.1, and set E2 = 0. Additionally, let xj be the
embedding of sj for j = 0, . . . , L. Let us consider the model that finds sI with the index I ∈ [L]
such that the partial sequence [sI−m+1, sI−m+2, . . . , sI ] and [sL−m+1, sL−m+2, . . . , sL] have the
same K elements that are not 〈PAD〉.

The similar discussion as in the proof of Lemma H.3 reveals that there exists ψn ∈ Ψ′(D,B) with
N ≲ log2m+ log2 V, D = 1, logB ≲ log2m+ log2 V,

such that ∥∥∥∥∥∥
L∑

j=0

N∑
n=1

ψn

(
j

V + 1

)
· xj −

1

m

L∑
j=L−m+1

xj

∥∥∥∥∥∥
∞

≤ 1

4m2
.

Therefore, there exists g1 ∈ C(U,D,B) with
U = L, D ≲ log2m+ log2 V, logB ≲ log2m+ log2 V,

such that

g1(X) =

[
q′0 q′1 · · · q′L
k′0 k′1 · · · k′L
v′0 v′1 · · · v′L

]
,

∥∥∥∥∥
[
q′0 q′1 · · · q′L
k′0 k′1 · · · k′L
v′0 v′1 · · · v′L

]
−

[
q0 q1 · · · qL
k0 k1 · · · kL
v0 v1 · · · vL

]∥∥∥∥∥
∞

≤ 1

4m2
,

where

qt =
1

m

t∑
j=t−m+1

xj , kt =
1

m

t∑
j=t−m+1

xj , vt = xt,

Then, if [sj−m+1, sj−m+2, . . . , sj ] and [sL−m+1, sL−m+2, . . . , sL] have the common K elements,
it holds

q′L
⊤
k′j ≥

K

m2
− 1

4m2
.
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Moreover, if the number of common elements in [sj−m+1, sj−m+2, . . . , sj ] and
[sL−m+1, sL−m+2, . . . , sL] is less than K, it holds

q′L
⊤
k′j ≤

K − 1

m2
+

1

4m2
=

K

m2
− 3

4m2
.

Therefore, due to Lemma 3.3, there exists f1, f2 ∈ Ψ(L,W, S,B) and g2 ∈ C(U,D,B) with
U = V, D = m16 log2 V log3 |W|, L ≲ m42 log5 V log8 |W|,
W ≲ m18 log3 V log3 |W|, S ≲ m42 log5 V log8 |W|, logB ≲ m16 log2 V log2 |W|,

such that
∥f2 ◦ g2 ◦ f1 ◦ g1(X)− xI∥∞ ≤ 1

4
.

Therefore,
∥∥R⊤(F (Z)0)− xI

∥∥
∞ ≤ 1

4 + 1
8m2 , which completes the proof.

I PROOF OF THEOREM 4.5

I.1 PREPARATION: APPROXIMATION OF γ-SMOOTH FUNCTIONS

Before proving Theorem 4.5, we prove the following theorem Theorem I.2 under Assumption I.1
about the approximation of γ-smooth functions.
Assumption I.1. The true function F ◦ satisfies F ◦

0 ∈ Fγ
p,θ, where γ is mixed or anisotropic smooth-

ness. Suppose that it holds ∥F∥Fγ
p,θ

≤ 1 and ∥F ◦
0 ∥∞ ≤ R, where R > 0 is a constant. Addition-

ally, we assume the smoothness parameter a satisfies ∥a∥wlα ≤ 1 for some 0 < α < ∞ and
aij = Ω(log(|j|+ 1)). Moreover, if γ is mixed smoothness, we assume ā1 < ā2.
Theorem I.2. Suppose that target function F ◦ satisfies Assumption I.1. Then, for any T > 0, there
exists an SSM F ∈ S(M,U,D,L,W, S,B) with

M = 1, logU ∼ T, D ∼ T 1/α, L ∼ T, W ∼ T 1/α,

W ′ ∼ T 1/α2T/a†
, S ∼ T 2/α max

{
T 2/α, T 2

}
2T/a†

, logB ∼ T 1/α,
(I.1)

such that ∥F − F ◦∥2,PX
≲ 2−T .

Given a smoothness function γ : Nd×∞
0 → R, we define

I(T, γ) := {(i, j) | ∃s ∈ Nd×∞
0 such that sij ̸= 0, γ(s) < T},

dmax := |I(T, γ)|.
The feature extraction map Γ: Rd×∞ → Rdmax is defined as

Γ(X) = [Xi1,j1 , . . . , Xidmax ,jdmax
].

The following lemma shows that, if FNN receives finite number of ”important” features, it can
approximate γ-smooth functions and piecewise γ-smooth functions. This is mainly due to the con-
dition ∥a∥wlα ≤ 1, which induces sparsity of important features.
Lemma I.3 (Theorem D.3 in Takakura & Suzuki (2023)). Suppose that the target functions f ∈ Fγ

p,θ

and g ∈ Pγ
p,θ satisfy ∥f∥∞ ≤ R and ∥g∥∞ ≤ R, where R > 0 and γ is the mixed or anisotropic

smoothness and the smoothness parameter a satisfies ∥a∥wlα ≤ 1. For any T > 0, there exist FNNs
f̂T , ĝT ∈ Ψ(L,W, S,B) such that ∥∥∥f̂T ◦ Γ− f

∥∥∥
2,PX

≲ 2−T ,

∥ĝT ◦ Γ ◦Π− g∥2,PX
≲ 2−T ,

where
L ∼ max

{
T 2/α, T 2

}
,W ∼ T 1/α2T/a†

,

S ∼ T 2/α max
{
T 2/α, T 2

}
2T/a†

, logB ∼ T 1/α.

From this lemma, we can see that, if the the convolution layer can approximate Γ, the SSM can give
important features to the FNN, and the FNN can approximate the target function.
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Now, we prove Theorem I.2.

Proof of Theorem I.2. Firstly, we construct the embedding layer Emb: Rd×∞ → RD×∞. Set the
embedding dimension D as max{d, dmax}+ 1. We set E1 ∈ RD×d to satisfy

E1x = [x1, . . . , xd, 0, 0, . . . , 0︸ ︷︷ ︸
D−d−1 elements

]⊤.

for x = [x1, . . . , xd] ∈ Rd. Additionally, we set E2 ∈ RD to satisfy
E2 = [0, . . . , 0︸ ︷︷ ︸

d elements

, 1, 0, . . . , 0︸ ︷︷ ︸
D−d−1 elements

]⊤.

Note that ∥E1∥∞ = ∥E2∥∞ = 1. Then, the constructed embedding layer Emb is represented as
follows:

Emb(X) =


· · · xt · · ·
· · · 1 · · ·
· · · 0 · · ·
...

...
...

· · · 0 · · ·

 ∈ RD×∞.

Secondly, we construct the convolution layer. The role of this layer is to approximate the fea-
ture extractor Γ. The weight matrix WV ∈ RD×|X| is set to extract the important “dimen-
sions” (i1, . . . , idmax ). More precisely, we set WV to satisfy

WV y = [yi1 , . . . , yidmax
, 0, . . . , 0︸ ︷︷ ︸
D−dmax elements

] ∈ RD

for y = [y1, . . . , yD] ∈ RD. Then, the resulted projection is represented as follows:

WV (Emb(X)) =



· · · Xt,i1 · · ·
...

...
...

· · · Xt,idmax
· · ·

· · · 0 · · ·
...

... · · ·
· · · 0 · · ·


∈ RD×∞.

Next, we construct the convolution filter. From the assumption aij = Ω(log(|j|+ 1)), we can
choose the window size U ∈ N such that

logU ∼ T and aij ≤ T =⇒ j ≤ U.

Lemma F.5 shows that, for each jm (m = 1, . . . , dmax), for any ϵ > 0, κ > 0, there exists km ∈
Ψ′(W ′, B) with

W ′ ≲ log2 ϵ−1, B ≲ log ϵ−1 log κ

such that

max
j=0,...,U

∣∣∣∣km( j

U

)
− exp

(
−κ · sin2

(
π

2

(
j

U
− jm

U

)))∣∣∣∣ ≲ ϵ.

Now, if |j − jm| ≥ 1, it holds

exp

(
−κ · sin2

(
π

2

(
j

U
− jm

U

)))
≤ exp

(
−κ ·

(
2

π
· π
2
· 1

U

)2
)

= exp
(
− κ

U2

)
,

and, if j = jm, it holds

exp

(
−κ · sin2

(
π

2

(
j

U
− jm

U

)))
= 1.

Therefore, if we set κ = U2 log ϵ−1, we have

max
j=0,...,U

∣∣∣∣km( j

U

)
− δjm(j)

∣∣∣∣ ≲ 2ϵ,

where δj′ is the function defined by

δj′(j) =

{
1 if j = j′,

0 otherwise.
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This inequality show that the filter k can approximately extract the important tokens.

Finally, we set the weight matrix WQ by

WQ
i,j =

{
1 if j = d+ 1

0 otherwise,

which results in WQ(Emb(X)) = [1, . . . , 1]⊤ and
g1 ◦ Emb(X) =WQ(Emb(X))⊙ (β(1) ∗W (0)(Emb(X)))

= β(1) ∗W (0)(Emb(X))

= [zt]
0
t=−∞ ∈ RD×∞,

zt =

U−1∑
s=0

k(s)

D∑
i=1

W
(0)
i,t−sXi,t−s

=



∑U−1
s=0 (k(s))1Xi1,t−s

...∑U−1
s=0 (k(s))dmax

Xidmax ,t−s

0
...
0


.

Thirdly, we construct the FNN layer. From Lemma I.3, there exists an FNN f̂ ∈ Ψ(L,W, S,B)
such that ∥∥∥f̂ ◦ Γ− F ◦

∥∥∥
2,PX

≲ 2−T , (I.2)

where
L ∼ max

{
T 2/α, T 2

}
,W ∼ T 1/α2T/a†

,

S ∼ T 2/α max
{
T 2/α, T 2

}
2T/a†

, logB ∼ T 1/α.
(I.3)

Let C : RD → Rd be a linear map such that
Cy = [y1, . . . , ydmax

]⊤

for y = [y1, . . . , yD]⊤ ∈ RD, and we set f1 := f̂ ◦C. Note that f1 ∈ Ψ(L,W, S,B) for L,W,S,B
defined in (I.3). The constructed SSM F̂ is represented as follows:

F̂ (X) = f1(z0) = f̂ ◦ C(z0) = f̂ ◦ Γ̂(X)0,

where

Γ̂(X) =

[
U−1∑
s=0

(k(s))mXim,−s

]dmax

m=1

∈ Rdmax .

Now, we evaluate the error between the target function F ◦ and the constructed model F̂ . We evaluate
the error by separating into two terms:∥∥∥F̂ − F ◦

∥∥∥
2,PX

≤
∥∥∥F̂ − f̂ ◦ Γ

∥∥∥
2,PX

+
∥∥∥f̂ ◦ Γ− F ◦

∥∥∥
2,PX

.

The second term can be bounded by (I.2), so we evaluate the first term. Since f̂ ∈ Ψ(L,W, S,B) is
(BW )L-lipschitz continuous, for any X ∈ [0, 1]d×∞, we have∣∣∣F̂ (X)− f̂ ◦ Γ(X)

∣∣∣ = ∣∣∣f̂(Γ̂(X))− f̂(Γ(X))
∣∣∣ ≤ (BW )L

∥∥∥Γ̂(X)− Γ(X)
∥∥∥
∞
.

Since X ∈ [0, 1]d×∞, it holds∥∥∥Γ̂(X)− Γ(X)
∥∥∥
∞

= max
m=1,...,dmax

∣∣∣∣∣
U−1∑
s=0

(k(s))mXim,−s − δjm(s)Xim,−s

∣∣∣∣∣
≤ max

m=1,...,dmax

U−1∑
s=0

|(k(s))m − δjm(s)|
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≤ Uϵ.

By setting ϵ = 2−T /U , we have∣∣∣F̂ (X)− f̂ ◦ Γ(X)
∣∣∣ ≤ ∥∥∥Γ̂(X)− Γ(X)

∥∥∥
∞

≤ 2−T

for any X ∈ [0, 1]d×∞. Therefore, it holds∥∥∥F̂ − F ◦
∥∥∥
2,PX

≤
∥∥∥F̂ − f̂ ◦ Γ

∥∥∥
2,PX

+
∥∥∥f̂ ◦ Γ− F ◦

∥∥∥
2,PX

≤ sup
X∈[0,1]d×∞

∣∣∣F̂ (X)− f̂ ◦ Γ(X)
∣∣∣+ ∥∥∥f̂ ◦ Γ− F ◦

∥∥∥
2,PX

≲ 2−T .

Finally, we evaluate the parameters L,W, S,B which controls the class of k ∈ Ψ′(W ′, B). Since
∥a∥wlα = supj j

αā−1
j ≤ 1, it holds

dmax :=
∣∣{(i, j) ∣∣ ∃s ∈ Nd×∞

0 , sij ̸= 0, γ(s) < T
}∣∣ ≤ T 1/α.

Therefore, we have
W ′ = dmax · log2 ϵ−1 ≲ T 2+1/α,

logB ∼ log ϵ−1 log
(
U2 log ϵ−1

)
≲ T 2.

This completes the proof.

I.2 PROOF OF THEOREM 4.5

Proof of Theorem 4.5. For T > 0, we define

Ij(T, γ) := {i | (i, j) ∈ I(T, γ)} =
{
i
(j)
1 , . . . , i

(j)
|Ij |

}
,

rmax(T, γ) := max {j ∈ [J ] | Ij(T, γ) ̸= ∅},
Note that rmax(T, γ) ∼ T 1/α since aij = Ω(jα).

Theorem I.2 implies that there exist an embedding layer Emb, an FNN f1 ∈ Ψ(L,W, S,B) and a
convolution layer g1 ∈ C(U,D,L′,W ′, S,B) with

M = 1, logU ∼ T,D ∼ T 1/α,

L ∼ T,W1 ∼ T 1/α,

L′ ∼ max
{
T 2/α, T 2

}
,W ′ ∼ T 1/α2T/a†

,

S ∼ T 2/α max
{
T 2/α, T 2

}
2T/a†

, logB ∼ T 1/α,

such that
f1 ◦ g1 ◦ Emb(X)i = [x⊤i , µ̂i(X), 0, . . . , 0︸ ︷︷ ︸

dmax elements

,−1, . . . ,−1︸ ︷︷ ︸
rmax elements

]⊤,

for all i ∈ Z, where µ̂i(X) satisfies
|µ̂i(X)−t − (µi(X)− 1)| ≲ 2−T .

Intuitively, the i-th elements for i = 3, . . . , 2+ dmax are used to store the feature Xt−i,j for j ∈ [d],
and the i-th elements for i = 3 + dmax, . . . , 2 + dmax + rmax are buffers to store which elements
are already selected. Note that, for any i ≤ rmax, it holds

µ̂(X)πλ(i) − µ̂(X)πλ(i+1) ≳ (µ(X)πλ(i) − 2−T )− (µ(X)πλ(i+1) + 2−T ) ≳ T−β/α,

and µ̂(X)t ∈ [−1, 0] for all t ∈ [0 : V ].

In the following, we set U = V . Let us set χT ∼ T log 2 + 2 logU

T−β/α
. Using Lemma F.3, we see that,

there exists a neural network ϕexp ∈ Ψ(L,W, S,B) with

L ≲ T 2(1+β/α) log2 U, W ≲ T 1+β/α logU, S ≲ T 2(1+β/α) log2 U, logB ≲ T 2(1+β/α) log2 U,

such that, for any x ≤ 0, it holds

|ϕexp(χTx)− exp(χTx)| ≤ 2−2T 1+β/α

/U3.
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Moreover, using Lemma F.3 again, we see that there exists a neural network ϕ× with
L ≲ T 2(1+β/α) log2 U, W ≲ 1, S ≲ T 2(1+β/α) log2 U, logB ≲ T 1+β/α logU,

such that, for any 0 ≤ x ≲ U2 exp
(
T 1+β/α

)
, 0 ≤ y ≲ 1, it holds

|ϕ×(x, y)− xy| ≤ 2−2T 1+β/α

/U3.

Then, for any x ≤ 0 and y ∈ [0, 1], it holds
|ϕ×(ϕexp(χTx), y)− exp(χTx)y| ≤ |ϕ×(ϕexp(χTx), y)− ϕexp(χTx)y|+ |ϕexp(χTx)y − exp(χTx)y|

≤ 2−2T 1+β/α

/U3 + 2−2T 1+β/α

/U3

≲ 2−2T 1+β/α

/U3.

Then, let us define f ′1 be an FNN layer such that it holds
f ′1 ◦ f1 ◦ g1(X) ◦ Emb(X)i = [ϕ×(ϕexp(µ̂i(X)), xi), 0, . . . , 0︸ ︷︷ ︸

dmax elements

,−1, . . . ,−1︸ ︷︷ ︸
rmax elements

]⊤.

Additionally, we define
Zm := (f ′m ◦ gm ◦ fm) ◦ · · · ◦ (f ′1 ◦ g1 ◦ f1) ◦ Emb(X),

for m ∈ [1 : rmax]. We construct remaining layers f2, g2, f ′2, . . . , frmax+1, grmax+1, f
′
rmax+1 to

make them satisfying
Zm = [ϕ×(ϕexp(µ̂i(X)), xi), X̂i

(1)
1 ,j1

, . . . , X̂
i
(1)

|I1|,j1
, . . . , X̂

i
(m)
1 ,jm

, . . . , X̂
i
(m)

|Im|,jm
, 0, . . . , 0︸ ︷︷ ︸
dmax−

∑m
j=1 |Ij | elements

,

ĵ1/U, . . . , ĵm/U, −1, . . . ,−1︸ ︷︷ ︸
rmax−m elements

]⊤,

where X̂
i
(jm)
k ,jm

, ĵm are the approximation of X̂
i
(jm)
k ,jm

, ĵm (m = 1, . . . ,M ; k = 1, . . . , |Ijm |)
respectively such that∣∣∣X̂i

(jm)
k ,jm

−X
i
(jm)
k ,jm

∣∣∣ ≲ 2−T ,
∣∣∣ĵm/U − jm/U

∣∣∣ ≲ 2−3T 1+β/α

/V 5.

Then, we see that
ZM = [x⊤i , µ̂i(X), X̂

i
(1)
1 ,j1

, . . . , X̂
i
(1)

|I1|,j1
, . . . , X̂

i
(rmax)
1 ,jrmax

, . . . , X̂
i
(rmax)

|Irmax |
,jrmax

, ĵ1/U, . . . , ĵM/U ]⊤.

Hence, Lemma I.3 shows that there exists a FNN f ′M ∈ Ψ(L,W, S,B) with

L ≲ max
{
T 2/α, T 2

}
, W ≲ T 1/α2T/α†

,

S ≲ T 2/α max
{
T 2/α,T 2

}
2T/α†

, logB ≲ T 1/α,

such that

∥f ′M (ZM )− f∥2 ≲ 2−T .

The same discussion as Theorem I.2 gives the desired result.

In the following, we construct an FNN fm and a convolution layer gm form ∈ [1 : rmax]. The proof
mainly divided into two parts: (i) obtaining X̂

i
(m)
k ,jm

, i.e., the approximation of important features

X
i
(m)
k ,jm

(k = 1, . . . , |Im|) and (ii) getting ĵm, i.e., recording which token jm was selected.

Picking up the important features X
i
(m)
k ,jm

(k = 1, . . . , |Im|) Due to Lemma F.1 and the fact
that jm ∈ [0 : V ] is an index such that µt−j (µ̂t−j) is the largest in µt−j (µ̂t−j) (j ̸= j1, . . . , jm−1),
for any t ∈ [0 : U ] with t ̸= t0, it holds∣∣∣∣∣

∑V
j=0Xi,j exp(χT · µ̂t−j) · (1− IS(j))∑V

j=0 exp(χT · µ̂t−j) · (1− IS(j))
−Xi,jm

∣∣∣∣∣ ≤ 2U2 exp
(
−χT · T−β/α

)
≲ 2−T ,

where S = {j1, . . . , jm−1}. Now, let us approximate∑V
j=0Xi,j exp(χT · µ̂ti) · (1− IS(j))∑V
j=0 exp(χT · µ̂t−i) · (1− IS(j))

=
1
V

∑V
j=0Xi,j exp(χT · µ̂ti) · (1− IS(j))

1
V

∑V
j=0 exp(χT · µ̂t−i) · (1− IS(j))
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using neural networks. Using Lemma F.4, we can see that there exists a neural network ϕ∗ ∈
Ψ(L,W, S,B) with
L ≲ T 2(1+β/α) log2 U, W ≲ T 3(1+β/α) log3 U, S ≲ T 4(1+β/α) log4 U, logB ≲ T 1+β/α logU,

such that, for any x ∈ [exp(−χT ), exp(χT )], y ∈ [0, U ], x′ > 0, y′ > 0, it holds∣∣∣ϕ∗(x′, y′)− y

x

∣∣∣ ≲ 2−T + U22T
1+β/α

(|x− x′|+ |y − y′|).

Next, Lemma F.5 implies that there exists a neural networks ϕ′n ∈ Ψ′(1, B) and ϕn ∈
Ψ(L,W, S,B) (n = 1, . . . , N) with

N ≲ T 1+β/α log T log V,

L ≲ T 5(1+β/α) log T log5 V, W ≲ 1,

S ≲ T 5(1+β/α) log T log5 V, logB ≲ T 3(1+β/α) log T log3 V,

such that, for any t, x, x̂ ∈ [0, 1], it holds∣∣∣∣∣
N∑

n=0

ϕ′n(t)ϕn(x̂)− exp

(
−
V 2( 1

α log T + 2T 1+β/α + 2 log V ) · sin2
(
π
2 (t− x)

)
2

)∣∣∣∣∣
≲ T−1/α2−2T 1+β/α

/V 2 + T 1+β/αV 3|x− x̂|.
Since

exp

(
−
V 2( 1

α log T + 2T 1+β/α + 2 log V ) sin2
(
π
2 (t− x)

)
2

)
{
≤ T−1/α2−2T 1+β/α

/V 2 (|t− x| ≥ 1/V ),

= 1 (t = x),

we have∣∣∣∣∣exp
(
−
V 2( 1

α log T + 2T 1+β/α + 2 log V ) sin2
(
π
2 (t− x)

)
2

)
− I{x}(t)

∣∣∣∣∣ ≲ 2T−1/α2−2T 1+β/α

/V 2.

Therefore, we have∣∣∣∣∣
N∑

n=1

ϕ′n(t)ϕn(x̂)− I{x}(t)

∣∣∣∣∣ ≲ T−1/α2−(1+β/α)T /V 2 + T 1+β/αV 3|x− x̂|.

Summing up over x = j1/U, . . . , jm−1/U , we have∣∣∣∣∣
m−1∑
m′=1

I∑
i=1

ϕ
(jm′ ,i)
0 (t)ϕ

(jm′ ,i)
1 (ĵm′/U)− IS(t)

∣∣∣∣∣
≲ rmax

(
T−1/α2−2T 1+β/α

/V 2 + T 1+β/αV 3
∣∣∣ĵm′/U − jm′/U

∣∣∣)
≲ 2−2T 1+β/α

/V 2.

Combining the results above, we have∣∣∣∣∣ 1V
V∑

j=0

ϕ×(ϕexp(Xi,j , χT ·̂µt−j)) ·

(
1−

m−1∑
m′=1

I∑
i=1

ϕ
(jm′ ,i)
0 (t)ϕ

(jm′ ,i)
1 (ĵm′/U)

)

− 1

V

V∑
j=0

Xi,j exp(χT · µ̂t−j) · (1− IS(j))

∣∣∣∣∣
≲

1

V

V∑
j=0

(∣∣∣∣∣ϕ×(ϕexp(Xi,j , χT · µ̂t−j)) ·

(
m−1∑
m′=1

I∑
i=1

ϕ
(jm′ ,i)
0 (t)ϕ

(jm′ ,i)
1 (ĵm′/U)− IS(j)

)∣∣∣∣∣
+ |(ϕ×(ϕexp(Xi,j , χT ·̂µt−j))−Xi,j exp(χT · µ̂t−j))IS(j)|

)
≲ 2−2T 1+β/α

/V 2

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Similarly, we have∣∣∣∣∣ 1V
V∑

j=0

ϕexp(χT ·̂µt−j) ·

(
1−

m−1∑
m′=1

I∑
i=1

ϕ
(jm′ ,i)
0 (t)ϕ

(jm′ ,i)
1 (ĵm′/U)

)

− 1

V

V∑
j=0

exp(χT · µ̂t−j) · (1− IS(j))

∣∣∣∣∣
≲ 2−2T 1+β/α

/V 2

Using the facts that

exp(−χT ) ≤
1

V

V∑
t=0

exp(χT · µ̂[t]) ≤ 1,

1

V

V∑
t=0

u[t] exp(χT · µ̂[t]) ≤ 1

V

V∑
t=0

exp(χT · µ̂[t]),

we have∣∣∣∣∣ϕ∗
(

1

V

V∑
j=0

ϕ×(Xi,j , ϕexp(χ̂T · µt−j)) ·

(
1−

m−1∑
m′=1

I∑
i=1

ϕ
(jm′ ,i)
0 (t)ϕ

(jm′ ,i)
1 (ĵm′/U)

)
,

1

V

V∑
j=0

ϕexp(χ̂T · µt−j) ·

(
1−

m−1∑
m′=1

I∑
i=1

ϕ
(jm′ ,i)
0 (t)ϕ

(jm′ ,i)
1 (ĵm′/U)

))

−
∑U

t=0 u[t] exp(χT · µ̂[t]) · (1− IS(j))∑U
t=0 exp(χT · µ̂[t]) · (1− IS(j))

∣∣∣∣∣
≲ 2−T + V 22T

1+β/α

· 2−2T 1+β/α

/V 2 ≲ 2−T .

Overall, we can see that, there exist neural networks ϕO ∈ Ψ′(L,W, S,B) and ϕA, ϕB , ϕC ∈
Ψ(L,W, S,B) with

L ≲ T 5+1/α+5β/α log T log5 V, W ≲ T 3+1/α+3β/α log T log3 V,

S ≲ T 5+1/α+5β/α log T log5 V, logB ≲ T 3+1/α+3β/α log T log3 V,

such that

max
i∈

{
i
(m)
1 ,...,i

(m)

|Im|

}
∣∣∣∣∣ϕC

 V∑
j=0

ϕO(j/V )ϕA(Zm−1)ϕB(Zm−1[−j])


︸ ︷︷ ︸

=:X̂i,jm

−Xjm,i

∣∣∣∣∣ ≲ 2−T .

Recording which token was picked up Similar discussion as above shows that there exist neural
networks ϕ′O ∈ Ψ′(L,W, S,B) and ϕ′A, ϕ

′
B , ϕ

′
C ∈ Ψ(L,W, S,B) with

L ≲ T 5+1/α+5β/α log T log5 V, W ≲ T 3+1/α+3β/α log T log3 V,

S ≲ T 5+1/α+5β/α log T log5 V, logB ≲ T 3+1/α+3β/α log T log3 V,

such that ∣∣∣∣∣∣ϕ′C
 V∑

j=0

ϕ′O(j/V )ϕ′A(Zm−1)ϕ
′
B(Zm−1[−j])

− sin

(
π

4

jm
V

)∣∣∣∣∣∣ ≲ 2−T .

Lemma F.3 shows that there exists a neural network ϕarcsin ∈ Ψ(L,W,S,B) with
L ≲ T 2(1+β/α) log2 V, W ≲ 1, S ≲ T 2(1+β/α) log2 V, logB ≲ T 1+β/α log V,

for any x ∈ [0, π/4], it holds

|ϕarcsin(x)− arcsin(x)| ≲ 2−3T 1+β/α

/V 5.
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Using this network, we can obtain ĵm/V such that
∣∣∣ĵm/V − jm/V

∣∣∣ ≲ 2−3T 1+β/α

/V 5.

Finishing the proof We can easily see that, constructing the weight matrix in the convolution
layers appropriately, we can obtain Zm from Zm−1 using the neural networks constructed above.
This completes the proof.

J PROOF OF THEOREM 4.6

J.1 PREPARATION

In this subsection, we prove the following theorem.

Theorem J.1. Let F̂ ∈ S(M,U,D,L,W, S,B) be an ERM estimator which minimizes the emprical
cost. Then, for any δ ∈ (0, 1), it holds that

Rl,r(F̂ , F
◦) ≲ inf

F∈S

1

r − l + 1

r∑
i=l

∥Fi − F ◦
i ∥

2
2,PX

+
1

n
·M2L(S +D) log

(
DULWB

δ

)
+ δ.

To prove the theorem, we use the following proposition.

Proposition J.2 (Theorem 5.2 in Takakura & Suzuki (2023)). For a given class F of functions from
[0, 1]d×∞ to R∞, let F̂ ∈ F be an ERM estimator which minimizes the empirical cost. Suppose
that there exists a constant R > 0 such that ∥F ◦∥∞ ≤ R, ∥F∥∞ ≤ R for any F ∈ F , and
N (F , δ, ∥·∥∞) ≥ 3. Then, for any 0 < δ < 1, it holds that

Rl,r(F̂ , F
◦) ≲ inf

F∈F

1

r − l + 1

r∑
i=l

∥Fi − F ◦
i ∥

2
2,PX

+ (R2 + σ2)
logN (F , δ, ∥·∥∞)

n
+ (R+ σ)δ,

where N (F , δ, ∥·∥) is the δ-covering number of the space F associated with the norm ∥·∥, defined
by

N (F , δ, ∥·∥) := inf {m ∈ N | ∃F1, . . . , Fm ∈ F ,∀F ∈ F ,∃i ∈ [m] s.t. ∥F − Fi∥ ≤ δ}.

Thanks to this proposition, the problem to obtain the upper bound of the excess risk of the estimator
F̂ is reduced to the problem to evaluate the covering number of the function class S. The covering
number of the function class S can be evaluated as follows.

Theorem J.3 (Covering number of SSMs). The covering number of the function class
S(M,U,D,L,W, S,B) can be bounded as

logN (S(M,U,D,L,W, S,B), δ, ∥·∥∞) ≲M2L(S +D2) log

(
DULWB

δ

)
.

This theorem implies that the upper bound of the covering number of the function class S polyno-
mially increases with respect to the embedding dimensions D, the number of layers M,L and the
sparsity S of the parameters. This result is similar to the result by Takakura & Suzuki (2023) on the
covering number of Transformers.

A large difference of the covering number between the SSMs and Transformers is the dependence
on the window size U ; the covering number of the SSMs depends on U logarithmically, while that of
the Transformers does not depend on U . This is because SSMs sum up the tokens in the convolution
without normalization. Whereas it is prefered that the covering number does not depend on U , the
logarithmic dependence on U is not a serious problem for the estimation ability, as we will see later.

In the following, we prove Theorem J.3. First of all, we introduce the lemma below, which is useful
to evaluate the covering number.

Lemma J.4. Let {fθ}θ∈Θ be a parametrized function class from [0, 1]d×∞ to R∞. Suppose that the
parameter space Θ satisfies Θ ⊆ [−B,B]D for some B > 0, D > 0. Additionally, suppose that

|{θ | θ ̸= 0, θ ∈ Θ}| ≤ S.

Moreover, assume that there exists a constant r > 0 such that∥∥fθ − fθ̃
∥∥
∞ ≤ r∥θ − θ̃∥∞ for any θ, θ̃ ∈ Θ.
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Then, it holds

logN (F , δ, ∥·∥∞) ≤ S log

(
rBD

δ

)
.

The following lemma is drawn from Takakura & Suzuki (2023), which evaluates the norm of the
output of FNN, the lipschitz constant with respect to the input, and the lipschitz constant with respect
to the parameters.

Lemma J.5 (Lemma E.3 in Suzuki (2018)). Suppose that two FNNs f, f̃ with L layers and W
hidden units is given by

f(x) := (ALσ(·) + bL) ◦ · · · ◦ (A1σ(x) + b1),

f̃(x) := (ÃLσ(·) + b̃L) ◦ · · · ◦ (Ã1σ(x) + b̃1),

where σ is the ReLU activation function. Assume that for any l = 1, . . . , L, it holds

∥Al∥∞ ≤ B,
∥∥∥Ãl

∥∥∥
∞

≤ B, ∥bl∥∞ ≤ B,
∥∥∥b̃l∥∥∥

∞
≤ B.

Additionally, let r ≥ 1 be a constant.

1. For any x ∈ RD×∞ with ∥x∥∞ ≤ r, it holds
∥f(x)∥∞ ≤ (2BW )Lr.

2. For any X,X ′ ∈ RD×∞, it holds
∥f(x)− f(x′)∥∞ ≤ (BW )L∥X −X ′∥∞.

3. Assume that, for any l = 1, . . . , L, it holds∥∥∥Al − Ãl

∥∥∥
∞

≤ δ,
∥∥∥bl − b̃l

∥∥∥
∞

≤ δ.

Then, for any x ∈ RD with ∥x∥∞ ≤ r, it holds∥∥∥f(x)− f̃(x)
∥∥∥
∞

≤ 2(2BW )Lr · δ.

We also evaluate them for the convolution layers.
Lemma J.6. Suppose that two convolution layers g, g̃ with window sizeU and embedding dimention
D is given by1

g(X) := β(X) ∗ (WVX),

g̃(X) := β̃(X) ∗ (W̃VX).

Let r ≥ 1 be a constant. Assume that it holds

∥WV ∥∞ ≤ B,
∥∥∥W̃V

∥∥∥
∞

≤ B,

and, for any h = 0, . . . ,H and X ∈ Rd×∞ with ∥X∥∞ ≤ r, it holds

∥β(X)∥1 ≤ c,
∥∥∥β̃(X)

∥∥∥
1
≤ c,

for some B ≥ 1, c ≥ 1. Then, the following statements hold.

1. For any X ∈ RD×∞ with ∥X∥∞ ≤ r, it holds
∥g(X)∥∞ ≤ BDrc.

2. Suppose that X,X ′ ∈ RD×∞ satisfies ∥X∥∞ ≤ r, ∥X ′∥∞ ≤ r and
∥β(X)− β(X ′)∥1 ≤ κ∥X −X ′∥∞

for some κ ≥ 02. Then, it holds
∥g(X)− g(X ′)∥∞ ≤

(
B2rc+Br · κ

)
∥X −X ′∥∞.

3. Assume that, for any h = 0, . . . ,H , it holds∥∥∥WV − W̃V

∥∥∥
∞

≤ δ,
∥∥∥β(X)− β̃(X)

∥∥∥
1
≤ ιδ.

1This architecture can be easily extended to the multi-order version since it corresponds to gH ◦ gH−1 ◦
· · · ◦ g1 with WV = I for g2, . . . , gH .

2If the filter is data-dependent, then κ = 0.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

for ι > 0. Then, it holds
∥g(X)− g̃(X)∥∞ ≤

(
Br2c+ (Br)2 · ι

)
· δ.

Proof. We use frequently the following three inequalities:
∥WX∥∞ ≤ ∥W∥1∥X∥∞ ≤ D · ∥W∥∞∥X∥∞,
∥β ∗X∥∞ ≤ ∥β∥1∥X∥∞,

where W ∈ RD×D, X ∈ RD×∞, Y ∈ RD×∞, β ∈ RD×U .

Proof of 1 We have
∥g(X)∥∞ = ∥(β(X) ∗ (WVX))∥∞

≤ ∥β(X) ∗ (WVX)∥∞
≤ ∥WVX∥∞ · ∥β(X)∥1
≤ BDr · c ≤ BDrc.

Proof of 2 We have
∥g(X)− g(X ′)∥∞ = ∥β(X) ∗ (WVX)− β(X ′) ∗ (WVX

′)∥∞
≤ ∥β(X) ∗ (WVX)− β(X ′) ∗ (WVX)∥∞

+ ∥(β(X ′) ∗ (WVX))− (β(X ′) ∗ (WVX
′))∥∞

≤ ∥((β(X)− β(X ′)) ∗ (WVX))∥∞ + ∥(β(X ′) ∗ (WV (X −X ′)))∥∞
≤ ∥β(X)− β(X ′)∥1 · ∥WVX∥∞ + ∥β(X ′)∥1 · ∥WV (X −X ′)∥∞
≤ Br · κ∥X −X ′∥∞ ·Br +Br · c ·B∥X −X ′∥∞
=
(
B2rc+Br · κ

)
∥X −X ′∥∞.

Proof of 3 We have
∥g(X)− g̃(X)∥∞ =

∥∥∥β(X) ∗ (WVX)− β̃(X) ∗
(
W̃VX

)∥∥∥
∞

≤
∥∥∥β(X) ∗ (WVX)− β̃(X) ∗ (WVX)

∥∥∥
∞

+
∥∥∥β̃(X) ∗ (WVX)− β̃(X) ∗

(
W̃VX

)∥∥∥
∞

≤
∥∥∥(β(X)− β̃(X)

)
∗ (WVX)

∥∥∥
∞

+
∥∥∥β̃(X) ∗

((
WV − W̃V

)
X
)∥∥∥

≤
∥∥∥β(X)− β̃(X)

∥∥∥
1
· ∥WVX∥∞ +

∥∥∥β̃(X)
∥∥∥
1
·
∥∥∥(WV − W̃V

)
X
∥∥∥
∞

≤ Br · ιδ ·Br +Br · c · δr
=
(
Br2c+ (Br)2 · ι

)
δ.

Subsequently, we evaluate the lipschitz constant of the composition of the layers with respect to the
input and the parameters.

Lemma J.7. Let (f1, f̃1), . . . , (fM , f̃M ) be pairs of two FNNs which satisfy the same condition of
the pair (f, f̃) in Lemma J.5. Additionally, let (g1, g̃1), . . . , (gM , g̃M ) be convolution layers which
satisfy the same condition of the pair (g, g̃) in Lemma J.6. Suppose R > 0 be a constant, and
F, F̃ : [0, 1]d×∞ → R∞ are two functions defined by

F := clipR ◦ fM ◦ gM ◦ · · · ◦ clipR ◦ f1 ◦ g1,

F̃ := clipR ◦ f̃M ◦ g̃M ◦ · · · ◦ clipR ◦ f̃1 ◦ g̃1.
Moreover, assume that B ≥ 1, c ≥ 1, r ≥ 1. Then, it holds∥∥∥F (X)− F̃ (X)

∥∥∥
∞

≤ 2M+1(2BW )ML(BDRc)2M (1 + κ)M (1 + ι) · δ.
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Proof. For m = 1, . . . ,M , we define
Fm := clipR ◦ fm ◦ gm ◦ · · · ◦ clipR ◦ f1 ◦ g1, F̃m := clipR ◦ f̃m ◦ g̃m ◦ · · · ◦ clipR ◦ f̃1 ◦ g̃1,

and F0 := id, F̃0 := id. Then, it holds
Fm = clipR ◦ fm ◦ gm ◦ Fm−1, F̃m = clipR ◦ f̃m ◦ g̃m ◦ F̃m−1

for m = 1, . . . ,M . Note that ∥Fm∥∞ ≤ R and
∥∥∥F̃m

∥∥∥
∞

≤ R for any m = 1, . . . ,M due to the
clipping.

For any X ∈ Rd×∞ with ∥X∥∞ ≤ r and m = 1, . . . ,M , we have∥∥∥Fm(X)− F̃m(X)
∥∥∥
∞

=
∥∥∥clipR ◦ fm ◦ gm ◦ Fm−1(X)− clipR ◦ f̃m ◦ g̃m ◦ F̃m−1(X)

∥∥∥
∞

=
∥∥∥fm ◦ gm ◦ Fm−1(X)− f̃m ◦ g̃m ◦ F̃m−1(X)

∥∥∥
∞

(∵ clipR is 1-lipschitz continuous.)

≤
∥∥∥fm ◦ gm ◦ Fm−1(X)− f̃m ◦ gm ◦ Fm−1(X)

∥∥∥
∞

+
∥∥∥f̃m ◦ gm ◦ Fm−1(X)− f̃m ◦ g̃m ◦ Fm−1(X)

∥∥∥
∞

+
∥∥∥f̃m ◦ g̃m ◦ Fm−1(X)− f̃m ◦ g̃m ◦ F̃m−1(X)

∥∥∥
∞
.

For the first term, since ∥gm ◦ Fm−1(X)∥ ≤ (BDRc)2 due to the first argument of Lemma J.6,
using the third argument of Lemma J.5, we have∥∥∥fm ◦ gm ◦ Fm−1(X)− f̃m ◦ gm ◦ Fm−1(X)

∥∥∥
∞

≤ 2(2BW )L(BDRc)2 · δ.
For the second term, the second argument of Lemma J.5 and the third argument of Lemma J.6 yield∥∥∥f̃m ◦ gm ◦ Fm−1(X)− f̃m ◦ g̃m ◦ Fm−1(X)

∥∥∥
∞

≤ (BW )L∥gm ◦ Fm−1(X)− g̃m ◦ Fm−1(X)∥∞
≤ (BW )L ·

(
2BR2c+ (BR)2 · ι

)
· δ.

For the thrid term, the third argument of Lemma J.5 and the third argument of Lemma J.6 imply∥∥∥f̃m ◦ g̃m ◦ Fm−1(X)− f̃m ◦ g̃m ◦ F̃m−1(X)
∥∥∥
∞

≤ (BW )L
∥∥∥g̃m ◦ Fm−1(X)− g̃m ◦ F̃m−1(X)

∥∥∥
∞

≤ (BW )L ·
(
2B2Rc+BR · κ

)
·
∥∥∥Fm−1(X)− F̃m−1(X)

∥∥∥
∞
.

Let λ1, λ2 be the constants defined by
λ1 :=

(
2(2BW )L(BDRc)2 + (BW )L ·

(
2BR2c+ (BR)2 · ι

))
· δ

λ2 := (BW )L ·
(
2B2Rc+BR · κ

)
.

Then, we have ∥∥∥Fm(X)− F̃m(X)
∥∥∥
∞

≤ λ1 + λ2 ·
∥∥∥Fm−1(X)− F̃m−1(X)

∥∥∥
∞
.

This implies∥∥∥Fm(X)− F̃m(X)
∥∥∥
∞

+
λ1

λ2 − 1
≤ λ2 ·

(∥∥∥Fm−1(X)− F̃m−1(X)
∥∥∥
∞

+
λ1

λ2 − 1

)
.

Thus, by induction, we have∥∥∥Fm(X)− F̃m(X)
∥∥∥
∞

+
λ1

λ2 − 1
≤ λm2 ·

(∥∥∥F0(X)− F̃0(X)
∥∥∥
∞

+
λ1

λ2 − 1

)
=
λm2 · λ1
λ2 − 1

.

Since λ2 > 1, it holds∥∥∥Fm(X)− F̃m(X)
∥∥∥
∞

≤ λ1 ·
λm2 − 1

λ2 − 1
= λ1 ·

(
1 + λ2 + ·+ λm−1

2

)
≤ mλ1λ

m−1
2 .

Now, using
λ1 ≤ 3(2BW )L(BDRc)2(1 + ι) · δ, λ2 ≤ 2(2BW )L(BDRc)2(1 + κ),
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we have∥∥∥F (X)− F̃ (X)
∥∥∥
∞

≤Mλ1λ
M−1
2 ≤ 2M+1(2BW )ML(BDRc)2M (1 + κ)M (1 + ι) · δ,

which completes the proof.

Finally, we prove Theorem J.3.

Proof of Theorem J.3. In the model we consider, it holds
κ = 0,

ι ≤ 2U · (2BW ′)L
′
,

c ≤ U(2BW ′)L
′
.

Therefore, we have∥∥∥F (X)− F̃ (X)
∥∥∥
∞

≤ 2M+1(2BW )ML(BDRU(2BW ′)L
′
)2M ·

(
2 · 2U(2BW ′)L

′
)
· δ

= 2M+3(2BW )ML(2BW ′)(2M+1)L′
(BDRU)2M+1 · δ.

The number of parameters in a FNN is 2W 2L. Additionally, the number of parameters in a convo-
lution layer is 2D2. Moreover, the number of nonzero parameters in whole network is bounded by
M(S + 2D2). Therefore, the covering number can be evaluated as

logN (S(M,U,D,L,W, S,B), δ, ∥·∥∞)

≤M(S + 2D2)

+ log

(
M
(
2W 2L+D2

)
·B · 2M+3(2BW )ML(2BW ′)(2M+1)L′

(BDRU)2M+1

δ

)

≲M2L(S +D2) log

(
DULWB

δ

)
,

which completes the proof.

J.2 PROOF OF THEOREM 4.6

Theorem 4.5 implies that, for any T > 0, there exists an SSM F ∈ S(M,U,D,L,W, S,B) with
M = T 1/α, U = V, D ∼ T cα,β log2 V,

L ∼ T cα,β log5 V, W ∼ 2T/a†
T cα,β log3 V,

S ∼ 2T/a†
T cα,β log5 V, logB ∼ T cα,β log3 V,

such that ∥F − F ◦∥2,PX
≲ 2−T . Therefore, it holds

1

r − l + 1

r∑
t=l

∥Fi − F ◦
i ∥

2
2,PX

≤ 2−2T .

Next, Theorem J.3 shows that it holds

logN(S, δ, ∥·∥∞) ≲ 2T/a†
T 2/α+4cα,β (log V )13 log

1

δ
.

Using Theorem J.1, we can show that

Rl,r(F̂ , F
◦) ≲ 2−2T +

2T/a†
T 2/α+4cα,β (log V )13 log 1

δ

n
+ δ.

By setting T = a†

2a†+1
log n and δ = 1/n, we have

Rl,r(F̂ , F
◦) ≲ n

− 2a†
2a†+1 (log n)1+2/α+4cα,β log13 V.
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K ADDITIONAL DETAILS ON THE EXPERIMENTS

All the code was implemented in Python 3.10.14 with Pytorch 1.13.1 and CUDA ver 11.7. The
experiments were conducted on Ubuntu 20.04.5 with A100 PCIe 40GB.

Genomic Benchmark dataset (Grešová et al., 2023) is given with the Apache License Version
2.0 and can be accessed from https://github.com/ML-Bioinfo-CEITEC/genomic_
benchmarks. The pretrained model of Hyena is given with the Apache License Version
2.0 and can be accessed from https://github.com/HazyResearch/safari?tab=
readme-ov-file.

For the training and evaluation of models, we utilized the code provided at https://colab.
research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL.

We used the dataset human enhancers cohn of Genomic Benchmark dataset. As for the pre-
trained model of Hyena, we used hyenadna-tiny-1k-seqlen. The model was fine-tuned for
100 epochs. Then, we sampled 20 different test sequences whose correct probability is larger or
equal to 0.95. For each sequence, we repeatedly mask the tokens that maximize the correct proba-
bility. The error bar is calculated by the standard deviation of these 20 samples. The source code
for the experiment is downstream finetune.py and downstream mask.py, which can be
found in the supplemental material. Finetuning needs around one hour, and masking needs around
90 minutes.
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