
NeurIPS Deep RL Workshop , 2022

Contrastive Example-Based Control

Kyle Hatch 1 KHATCH@STANFORD.EDU

Benjamin Eysenbach 2 BEYSENBA@CS.CMU.EDU

Rafael Rafailov 1 RAFAILOV@STANFORD.EDU

Tianhe Yu 1 TIANHEYU@CS.STANFORD.EDU

Ruslan Salakhutdinov 2 RSALAKHU@CS.CMU.EDU

Sergey Levine 3 SVLEVINE@EECS.BERKELEY.EDU

Chelsea Finn 1 CBFINN@CS.STANFORD.EDU
1Department of Computer Science, Stanford University
2Machine Learning Department, Carnegie Mellon University
3Department of Electrical Engineering and Computer Sciences, UC Berkeley

Abstract
While there are many real-world problems that might benefit from reinforcement learning,

these problems rarely fit into the MDP mold: interacting with the environment is often prohibitively
expensive and specifying reward functions is challenging. Motivated by these challenges, prior
work has developed data-driven approaches that learn entirely from samples from the transition
dynamics and examples of high-return states. These methods typically learn a reward function from
the high-return states, use that reward function to label the transitions, and then apply an offline RL
algorithm to these transitions. While these methods can achieve good results on many tasks, they
can be complex, carefully regularizing the reward function and using temporal difference updates.
In this paper, we propose a simple and scalable approach to offline example-based control. Unlike
prior approaches (e.g., ORIL, VICE, PURL) that learn a reward function, our method will learn
an implicit model of multi-step transitions. We show that this implicit model can represent the
Q-values for the example-based control problem. Thus, whereas a learned reward function must
be combined with an RL algorithm to determine good actions, our model can directly be used to
determine these good actions. Across a range of state-based and image-based offline control tasks,
we find that our method outperforms baselines that use learned reward functions, and additional
experiments demonstrate improved robustness and scaling with dataset size.
Keywords: Reinforcement Learning, Offline RL, Robot Learning, Reward Learning, Contrastive
Learning, Model-based Reinforcement Learning, Example-Based Control, Reward-free Learning

1. Introduction

Reinforcement learning is typically framed as the problem of maximizing a given reward function.
However, in many real-world situations, it is more natural for users to define what they want an
agent to do with examples of successful outcomes (Fu et al., 2018b; Zolna et al., 2020a; Xu and
Denil, 2019; Eysenbach et al., 2021). For example, a user that wants their robot to pack laundry into
a washing machine might provide multiple examples of states where the laundry has been packed
correctly. This problem setting is often seen as a variant of inverse reinforcement learning (Fu et al.,
2018b), where the aim is to learn only from examples of successful outcomes, rather than from

© 2022 K. Hatch, B. Eysenbach, R. Rafailov, T. Yu, R. Salakhutdinov, S. Levine & C. Finn.

CONTRASTIVE EXAMPLE-BASED CONTROL

expert demonstrations. To solve this problem, the agent must both figure out what constitutes task
success (i.e., what the examples have in common) and how to achieve such successful outcomes.

In this paper, our aim is to address this problem setting in the case where the agent must learn
from offline data. The offline setting forces the RL agent to learn without trial and error. Instead,
the agent must infer the outcomes of potential actions from the provided data, while also relating
these inferred outcomes to the success examples. We will refer to this problem of offline RL with
success examples as offline example-based control.

Most prior approaches involve two steps: first learning a reward function, and second combining
it with an RL method to recover a policy (Fu et al., 2018b; Zolna et al., 2020a; Xu and Denil, 2019).
While such approaches can achieve excellent results when provided sufficient data (Kalashnikov
et al., 2021; Zolna et al., 2020a), learning the reward function is challenging when the number of
success examples is small (Li et al., 2021; Zolna et al., 2020a). These prior approaches are relatively
complex (e.g., they use temporal difference learning) and have many hyperparameters.

Our aim is to provide a simple an scalable approach that avoids the challenges of reward learn-
ing. The main idea will be a learn a certain type of dynamics model. Then, using that model to
predict the probabilities of reaching each of the success examples, we will be able to estimate the
Q-values for every state and action. This approach does not require learning a reward function and
does not use an offline RL algorithm as a subroutine. The key design decision is the type of model;
we will use an implicit model of the time-averaged future (precisely, the discounted state occupancy
measure). This decision means that our model reasons across multiple time steps but will not output
high-dimensional observations (only a scalar number). A limitation of this approach is that it will
correspond to a single step of policy improvement: the dynamics model corresponds to the dynam-
ics of the behavioral policy, not of the reward-maximizing policy. While this means that our method
is not guaranteed to yield the optimal policy, our experiments nevertheless show that our approach
outperforms multi-step RL methods.

The main contribution of this paper is an offline RL method (LAEO) that learns a policy from
examples of high-reward states. The key idea behind LAEO is an implicit dynamics model, which
represents the probability of reaching states at some point in the future. We use this model to esti-
mate the the probability of reaching the examples of high-return states. LAEO is simpler than prior
approaches based on reward classifiers, and achieves better results. Our experiments demonstrate
that LAEO can successfully solve offline RL problems from examples of high-return states on four
state-based manipulation tasks and two image-based manipulation tasks. Our experiments show
that LAEO trains more stably than prior methods and is more robust to occlusions. Additionally,
we show that LAEO can learn from just a handful of success examples, and exhibits better scaling
with dataset size than prior methods.

2. Related Work

Reward learning. To overcome the challenge of hand-engineering reward functions for RL, prior
methods either use supervised learning or adversarial training to learn a policy that matches the ex-
pert behavior given by the demonstration (imitation learning) (Pomerleau, 1988; Ross et al., 2011;
Ho and Ermon, 2016; Spencer et al., 2021) or learn a reward function from demonstrations and opti-
mize the policy with the learned reward through trial and error (inverse RL) (Ng and Russell, 2000;
Abbeel and Ng, 2004; Ratliff et al., 2006; Ziebart et al., 2008; Finn et al., 2016; Fu et al., 2018a).
However, providing full demonstrations complete with agent actions is often difficult, therefore,

2

CONTRASTIVE EXAMPLE-BASED CONTROL

recent works have focused on the setting where only a set of user-specified goal states or human
videos are available (Fu et al., 2018b; Singh et al., 2019; Kalashnikov et al., 2021; Xie et al., 2018;
Eysenbach et al., 2021; Chen et al., 2021). These reward learning approaches have shown successes
in real-world robotic manipulation tasks from high-dimensional image inputs (Finn et al., 2016;
Singh et al., 2019; Zhu et al., 2020; Chen et al., 2021). Nevertheless, to combat covariate shift
that could lead the policy to drift away from the expert distribution, these methods usually require
significant online interaction. Unlike these works that study online settings, we consider learning
visuomotor skills from offline datasets.
Offline RL. Offline RL (Ernst et al., 2005; Riedmiller, 2005; Lange et al., 2012; Levine et al., 2020)
studies the problem of learning a policy from a static dataset without online data collection in the
environment, which has shown promising results in robotic manipulation (Kalashnikov et al., 2018;
Mandlekar et al., 2020; Rafailov et al., 2021; Singh et al., 2020; Julian et al., 2020; Kalashnikov
et al., 2021). Prior offline RL methods focus on the challenge of policy distribution shift, by de-
veloping a variety of techniques such as regularization between the learned policy and the behavior
policy of the dataset using direct policy constraints (Fujimoto et al., 2018; Liu et al., 2020; Jaques
et al., 2019; Wu et al., 2019; Zhou et al., 2020; Kumar et al., 2019; Siegel et al., 2020; Peng et al.,
2019; Fujimoto and Gu, 2021; Ghasemipour et al., 2021), learning conservative Q-functions (Kumar
et al., 2020; Kostrikov et al., 2021; Yu et al., 2021; Sinha and Garg, 2021), and penalizing out-of-
distribution states generated by learned dynamics models (Kidambi et al., 2020; Yu et al., 2020b;
Matsushima et al., 2020; Argenson and Dulac-Arnold, 2020; Swazinna et al., 2020; Rafailov et al.,
2021; Lee et al., 2021; Yu et al., 2021).

While prior works combat overestimation caused by distribution shift, they require reward an-
notations of each datapoint in the large offline dataset. Practical approaches have used manual
reward sketching to train a reward model (Cabi et al., 2019; Konyushkova et al., 2020; Rafailov
et al., 2021) or heuristical reward functions (Yu et al., 2022). Others have considered offline learn-
ing from demonstrations, without access to a pre-defined reward function (Mandlekar et al., 2020;
Zolna et al., 2020a; Xu et al., 2022; Jarboui and Perchet, 2021), however they require access to high-
quality demonstrations data. In contrast, our method: (1) addresses distributional shift induced by
both the learned policy and the reward function in a principled way, (2) only requires user-provided
goal states and (3) does not require expert-quality data, resulting in an effective and practical offline
reward learning scheme.

3. Learning to Achieve Examples Offline

RL methods that operate in the offline setting typically require regularization, and our method will
employ regularization in two ways. First, we regularize the policy with an additional behavioral
cloning term, which penalizes the policy for sampling out-of-distribution actions. Second, our
method uses the Q-function for the behavioral policy, so it performs one (not many) step of policy
improvement. These regularizers mean that our approach is not guaranteed the yield the optimal
policy.

3.1. Preliminaries

We assume that an agent interacts with an MDP with states s ∈ S, actions a, a state-only reward
function r(s) ≥ 0, initial state distribution p0(s0) and dynamics p(st+1 | st, at). We use τ =

3

CONTRASTIVE EXAMPLE-BASED CONTROL

(s0, a0, s1, a1, · · ·) to denote an infinite-length trajectory. The likelihood of a trajectory under a
policy π(a | s) is

π(τ) = p0(s0)
∞∏
t=0

p(st+1 | st, at)π(at | st). (1)

The objective is to learn a policy π(a | s) that maximizes the expected, γ-discounted sum of re-
wards: maxπ Eπ(τ)

[∑∞
t=0 γ

tr(st)
]
. We define the Q-function for policy π as the expected dis-

counted sum of returns, conditioned on an initial state and action:

Qπ(s, a) ≜ Eπ(τ)

[∞∑
t=0

γtr(st)

∣∣∣∣s0=s
a0=a

]
. (2)

We will focus on the offline (i.e., batch RL) setting. Instead of learning by interacting with the
environment (i.e., via trial and error), the RL agent will receive as input a dataset of trajectories
Dτ = {τ ∼ β(τ)} collected by a behavioral policy β(a | s). We will use Qβ(s, a) to denote the
Q-function of the behavioral policy.

Specifying the reward function. In many real-world applications, specifying and measure a
scalar reward function is challenging, but providing examples of good states (i.e., those which would
receive high rewards) is straightforward. Thus, we follow prior work (Fu et al., 2018b; Zolna et al.,
2020a; Eysenbach et al., 2021; Xu and Denil, 2019; Zolna et al., 2020b) in assuming that the agent
does not observe scalar rewards (i.e., Dτ does not contain reward information). Instead, the agent
receives as input a dataset D∗ = {s∗} of high-reward states s∗ ∈ S. These high-reward states are
examples of good outcomes, which the agent would like to achieve. The high-reward states are not
labeled with their specific reward value.

To make the control problem well defined, we must relate these success examples to the reward
function. We do this by assuming that the frequency of each success example is proportional to its
reward: very good states are more likely to appear (and be duplicated) as success examples.

Assumption 1 Let pτ (s) be the empirical probability density of state s in the trajectory dataset,
and let p∗(s) as the empirical probability density of state s under the high-reward state dataset. We
assume that there exists a positive constant c such that

r(s) = c
p∗(s)

pτ (s)
for all states s. (3)

This is the same assumption as Eysenbach et al. (2021). This assumption is important because shows
how example-based control is universal: for any reward function, we can specify the corresponding
example-based problem by constructing a dataset of success examples that are sampled according
to their rewards. We assumed that rewards are non-negative so that these sampling probabilities are
positive.

This assumption can also be read in reverse. When a user constructs a dataset of success ex-
amples in an arbitrary fashion, they are implicitly defining a reward function. In the tabular setting,
the (implicit) reward function for state s is the count of the times s occurs in the dataset of success
examples. Compared with goal-conditioned RL (Kaelbling, 1993), defining tasks via success exam-
ples is more general. By identifying what all the success examples have in common (e.g., laundry
is folded), the RL agent can learn what is necessary to solve the task and what is irrelevant (e.g., the
color of the clothes in the laundry).

We now can define our problem statement as follows:

4

CONTRASTIVE EXAMPLE-BASED CONTROL

Definition 1 In the offline example-based control problem, a learning algorithm receives as input
a dataset of trajectories Dτ = {τ} and a dataset of successful outcomes D∗ = {s} satisfying
Assumption 1. The aim is to output a policy that maximizes the RL objective (Eq. 3.1).

This problem setting is appealing because it mirrors many practical RL applications: a user has
access to historical data from past experience, but collecting new experience is prohibitively expen-
sive. Moreover, this problem setting can mitigate the challenges of reward function design. Rather
than having to implement a reward function and add instruments to measure the corresponding com-
ponents, the users need only provide a handful of observations that solved the task. This problem
setting is similar to imitation learning, in the sense that the only inputs are data. However, unlike
imitation learning, in this problem setting the high-reward states are not labeled with actions, and
these high-reward states may not necessarily contain entire trajectories.

Figure 1: Our method will esti-
mate the discounted state occupancy
measure using contrastive learning.
Note that this is the average over
many future states.

An implicit model of successor representations. Our method
will estimate the discounted state occupancy measure,

pβ(st+ = s | s0, a0) ≜ (1− γ)
∞∑
t=0

γtpπt (st = s | s0, a0), (4)

where pβt (st | s, a) is the probability of policy β(a | s) visiting
state st after exactly t time steps. Unlike the transition function
p(st+1 | st, at), the discounted state occupancy measure indicates
the probability of visiting a state at any point in the future, not just
at the immediate next time step. In tabular settings, this distribu-
tion corresponds to the successor representations (Dayan, 1993).
To handle continuous settings, we will use the contrastive approach
from recent work (Mazoure et al., 2020; Eysenbach et al., 2022).
We will learn a function f(s, a, sf) ∈ R takes as input an initial
state-action pair as well as a candidate future state, and outputs a
score estimating the likelihood that sf is a real future state. The loss function is a standard con-
trastive learning loss(e.g., Ma and Collins (2018)), where positive examples are triplets of a state,
action, and future state:

max
f

L(f ;Dτ) ≜ Ep(s,a),sf∼pβ(st+|s,a) [log σ(f(s, a, sf))] + Ep(s,a),sf∼p(s) [log(1− σ(f(s, a, sf)))] , (5)

where σ(·) is the sigmoid function. At optimality, the implicit dynamics model encodes the dis-
counted state occupancy measure:

f∗(s, a, sf) = log pβ(st+ = sf | s, a)− log pτ (sf). (6)

We visualize this implicit dynamics model in Fig. 1. Note that this dynamics model is policy
dependent. Because it is trained with data collected from one policy (β(a | s)), it will correspond
to the probability that that policy visits states in the future. Because of this, our method will result
in estimating the value function for the behavioral policy (akin to 1-step RL (Brandfonbrener et al.,
2021)), and will not perform multiple steps of policy improvement.

Intuitively, the training of this implicit model resembles hindsight relabeling (Kaelbling, 1993;
Andrychowicz et al., 2017). However, it is generally unclear how to use hindsight relabeling for
single-task problems. Despite being a single-task method, our method will be able to make use of
hindsight relabeling to train the dynamics model.

5

CONTRASTIVE EXAMPLE-BASED CONTROL

3.2. Deriving Our Method

The key idea behind out method is that this implicit dynamics model can be used to represent the
Q-values for the example-based problem, up to a constant.

Lemma 2 Assume that the implicit dynamics model is learned without errors. Then the Q-function
for the data collection policy β(a | s) can be expressed in terms of this implicit dynamics model:

Qβ(s, a) =
c

1− γ
Ep∗(s∗)

[
ef(s,a,s

∗)
]
. (7)

The proof is shown in the Appendix (available on website).
So, after learning the implicit dynamics model, we can estimate the Q-values by averaging

this model’s predictions across the success examples. We will update the policy using Q-values
estimated in this manner, plus a regularization term:

min
π

L(π; f,D∗) ≜ −(1− λ)Eπ(a|s)p(s),s∗∼D∗

[
ef(s,a,s

∗)
]
− λEs,a∼Dτ [log π(a | s)] . (8)

In our experiments, we use a weak regularization coefficient of λ = 0.05.

Figure 2: If the state-action
representation ϕ(s, a) is close
to the representation of a high-
return state ψ(s), then the pol-
icy is likely to visit that state.
Our method estimates Q-values
by combining the distances to all
the high-return states (Eq. 2).

It is worth comparing this approach to prior methods based on
learned reward functions (Xu and Denil, 2019; Fu et al., 2018b; Zolna
et al., 2020a). Those methods learn a reward function from the success
examples, and use that learned reward function to synthetically label
the dataset of trajectories. Both approaches can be interpreted as learn-
ing a function on one of the datasets and then applying that function
to the other dataset. Because it is easier to fit a function when given
large quantities of data, we predict that our approach will outperform
the learned reward function approach when the number of success ex-
amples is small, relative to the number of unlabeled trajectories. Other
prior methods (Eysenbach et al., 2021; Reddy et al., 2020) avoid learn-
ing reward functions by proposing TD update rules that are applied to
both the unlabeled transitions and the high-return states. However, be-
cause these methods have yet to be adapted to the offline RL setting,
we will focus our comparisons on the reward-learning methods.

3.3. A Geometric Perspective

Before presenting the complete RL algorithm, we provide a geometric
perspective on the representations learned by our method. Our implicit
models learns a representation of state-action pairs ϕ(s, a) as well as a representation of future
states ψ(s). One way that our method can optimize these representations is by treating ϕ(s, a) as
a prediction for the future representations.1 Each of the high-return states can be mapped to the
same representation space. To determine whether a state-action pair has a large or small Q-value,
we can simply see whether the predicted representation ϕ(s, a) is close to the representations of any
of the success examples. Our method learns these representations so that the Q-values are directly
related to the Euclidean distances2 from each success example. Thus, our method can be interpreted

1. Our method can also learn the opposite, where ψ(s) is a prediction for the previous representations.
2. When representations are normalized, the dot product is equivalent to the Euclidean norm. We find that unnormalized

features work better in our experiments.

6

https://sites.google.com/view/laeo-rl

CONTRASTIVE EXAMPLE-BASED CONTROL

as learning a representation space such that estimating Q-values corresponds to simple geometric
operations (kernel smoothing with an RBF kernel (Hastie et al., 2009, Chpt. 6)) on the learned
representations. While the example-based control problem is more general than goal-conditioned
RL (see Sec. 3.1), we can recover goal-conditioned RL as a special case by using a single success
example.

3.4. A Complete Algorithm
We now build a complete offline RL algorithm based on these Q-functions. We will call our method
“Learning to Achieve Examples Offline,” or LAEO for short. Our algorithm will resemble one-step
RL methods, but differ in how the Q-function is trained. After learning the implicit dynamics model
(and, hence, Q-function) we will optimize the policy. The objective for the policy is maximizing
Q-values plus a behavioral cloning regularization term, which penalizes sampling unseen actions:

max
π

(1− λ)Eπ(a|s)pτ (s) [Q(s, a)] + λE(s,a)∼pτ (s,a) [log π(a | s)]

= (1− λ)Eπ(a|s),s∗∼p∗(s)

[
ef(s,a,s

∗)
]
+ λE(s,a)∼pτ (s,a) [log π(a | s)] . (9)

Algorithm 1 Learning to Achieve Examples Offline

1: Inputs: dataset of trajectories D = {τ},
dataset of high-return states D∗ = {s}.

2: Learn the model via contrastive learning:
f ← argminf L(f ;Dτ) ▷ Eq. 8

3: Learn the policy: π ← argminπ L(π; f,D∗) ▷ Eq. 9
4: return policy π(a | s)

As noted above, this is a one-step
RL method: it updates the policy to
maximize the Q-values of the behav-
ioral policy. Performing just a sin-
gle step of policy improvement can
be viewed as a form of regulariza-
tion in RL, in the same spirit as early
stopping is a form of regularization in
supervised learning. Prior work has
found that one-step RL methods can
perform well in the offline RL setting. Because our method performs only a single step of policy
improvement, we are not guaranteed that it will converge to the reward-maximizing policy. We
summarize the complete algorithm in Alg. 1.

4. Experiments

Our experiments test whether LAEO can effectively solve offline RL tasks that are specified by ex-
amples of high-return states, rather than via scalar reward functions. We study when our approach
outperforms prior approaches based on learned reward functions. We look not only at the per-
formance relative to baselines on state-based and image-based tasks, but also how that performance
depends on the size and composition of the input datasets. Additional experiments study how LAEO
performs when provided with varying numbers of success observations and whether our method can
solve partially observed tasks. We include full hyperparameters and implementation details in the
Appendix (available on website). Code will be released.

Baselines. Our main point of comparison will be prior methods that use learned reward functions:
ORIL (Zolna et al., 2020a) and PURL (Xu and Denil, 2019). The main difference between these
methods is the loss function used to train reward function: ORIL uses binary cross entropy loss while
PURL uses a positive-unlabeled loss (Xu and Denil, 2019). Note that the ORIL paper also reports
results using a positive-unlabeled loss, but for the sake of clarity we simply refer to it as PURL. After
learning the reward function, each of these methods applies an off-the-shelf RL algorithm. We will

7

https://sites.google.com/view/laeo-rl

CONTRASTIVE EXAMPLE-BASED CONTROL

Figure 3: Benchmark comparison: We evaluate the performance of LAEO on six simulated manipulation tasks.
FetchReach and FetchPush are two manipulation tasks from Plappert et al. (2018) that use state-based obser-
vations. FetchReach-image and FetchPush-image are the same tasks but with image-based observations.
SawyerWindowOpen and SawyerDrawerClose are two state-based manipulation tasks from Yu et al. (2020a).
LAEO matches or outperforms prior example-based offline RL methods on state and image-based tasks, including those
that learn a separate reward function (ORIL, PURL).

implement all baselines using the TD3+BC (Fujimoto and Gu, 2021) offline RL algorithm. These
offline RL methods achieve good performance on tasks specified via reward functions (Kostrikov
et al., 2021; Brandfonbrener et al., 2021; Fujimoto and Gu, 2021). We also include Behavioral
Cloning (BC) results.

Benchmark comparison. We start by comparing the performance of LAEO to these baselines on
six manipulation tasks. FetchReach and FetchPush are two manipulation tasks from Plappert
et al. (2018) that use state-based observations. FetchReach-image and FetchPush-image
are the same tasks but with image-based observations. SawyerWindowOpen and Sawyer-
DrawerClose are two manipulation tasks from Yu et al. (2020a). For each of these tasks, we
collect a dataset of medium quality by training an online agent from Eysenbach et al. (2022) and
rolling out multiple checkpoints during the course of training. The resulting datasets have success
rates between 45%− 50%. Since we are in the offline setting, we do not report results as a function
of number of environment interactions (which is always 0). Instead, we will report results after
500, 000 training gradient steps (or 250, 000 steps, if the task success rates have converged by that
point).

We report results in Fig. 3. We observe that LAEO, PURL, and ORIL perform similarly on
FetchReach and FetchReach-image. This is likely because these are relatively easy tasks,
and each of these methods is able to achieve a very high success rate. Note that all of these meth-
ods significantly outperform BC, indicating that they are able to learn better policies than the mode
behavior policies represented in the datasets. On SawyerDrawerClose, all methods, including
BC, achieve near perfect success rates, likely due to the simplicity of this task. On FetchPush,
FetchPush-image, and SawyerWindowOpen, LAEO outperforms all of the baselines by a
significant margin. Recall that the main difference between LAEO and PURL/ORIL is by learn-

8

CONTRASTIVE EXAMPLE-BASED CONTROL

Figure 6: Effect of dataset size: (Left) LAEO outperforms ORIL on FetchPush-image when only a small number
of high-return example states are given, likely because ORIL struggles to fit the learned reward function on such a
small dataset. (Right) LAEO continues to improve when trained with more reward-free trajectories, while the ORIL’s
performance plateaus.

ing a dynamics model, rather than the reward function. These experiments suggest that for tasks
with more complex dynamics, learning a dynamics model can achieve better performance than is
achieved by model-free reward classifier methods.

Figure 4: Training stability. Visu-
alizing success rates of individual training
seeds of LAEO (blue) and ORIL (orange) on
FetchPush-image shows that LAEO dis-
plays better training stability.

Additionally, we visualize the evaluation success
rates of individual training seeds of LAEO and ORIL
(the highest performance baseline) throughout the course
of training on FetchPush-image. We observe that
LAEO displays steadier performance than ORIL, sug-
gesting that LAEO has greater training stability than
methods that use TD-learning with learned reward func-
tions.

Varying the input data. One important criterion for of-
fline RL algorithms is that they can learn from datasets
of varying quality, varying from expert-level demon-
strations to low-quality data collected from a near-
random policy. Our next experiment studies how the
dataset composition affects LAEO and the baselines.
We use three tasks: FetchReach, FetchPush, and
FetchReach-image. On each of these tasks, we gen-
erate a low-quality dataset by rolling out multiple checkpoints from a partially trained agent
from Eysenbach et al. (2022). In comparison to the medium-quality datasets collected earlier,
which have success rates between 45% − 50%, these low quality datasets have success rates be-
tween 8%− 12%.

We report results in Fig. 5. We observe that on FetchReach-image (hard) our method
significantly outperforms the baselines. This suggests that in image based domains with low quality
datasets, learning a dynamics model instead of a reward function is especially beneficial.

Our next experiments study how varying the number of high-return example states and the
number of reward-free trajectories affects performance. As noted in the Sec. 1, we conjecture that
our method will be especially beneficial relative to reward-learning approaches in settings with very
few high-return example states.

In Fig. 6 (left), we vary the number of high-return example states on FetchPush -image,
holding the number of unlabeled trajectories constant. We observe that LAEO maintains virtually

9

CONTRASTIVE EXAMPLE-BASED CONTROL

unchanged performance whether 200, 100, 10, or 1 high return example states are provided. In
contrast, ORIL’s performance decreases as the number of high-return example states decreases. In
Fig. 6 (right), we vary the number of unlabeled trajectories, holding the number of high-return
example states constant at 200. We test the performance of LAEO vs. ORIL on three different
dataset sizes on FetchPush-image, roughly corresponding to three different orders of mag-
nitude: the 0.1X dataset contains 3, 966 trajectories (198, 300 total transitions), the 1X dataset
contains 31, 271 trajectories (1, 563, 550 total transitions), and the 10X dataset contains 300, 578
trajectories (15, 028, 900 total transitions). We observe that LAEO continues to see performance
gains as number of unlabled trajectories increases, whereas ORIL’s performance plateaus. Taken
together these results suggest that, in comparison to reward classifier based methods, LAEO needs
less human supervision and is more effective at leveraging large quantities of unlabeled data.

Figure 5: Data quality. LAEO continues to match or
outperform reward classifier based methods on datasets that
contain a low percentage of successful trajectories.

Partial Observability. Our final experiments
test the performance of LAEO on a partially-
observed task. We modify the camera position
in the FetchPush-image so that the block
is occluded whenever the end effector is moved
to touch the block. While such partial observ-
ability can stymie temporal difference meth-
ods (Whitehead and Ballard, 1991), we predict
that LAEO might continue to solve this task be-
cause it does not rely on temporal difference
learning. The results, shown in Fig. 7, con-
firm this prediction. On this partially observ-
able task, we compare the performance of LAEO with that of ORIL, the best performing baseline
on the fully observable tasks. On the partially observable task, LAEO achieves a success rate of
51.9%, versus 33.9% for ORIL.

5. Conclusion

Figure 7: Partial observability. LAEO continues to solve
the manipulation task in a setting where the new camera
placement causes partial observability.

In this paper, we presented an RL algorithm
aimed at settings where data collection and re-
ward specification are difficult. Our method
learns from a combination of high-return states
and reward-free trajectories, integrating these
two types of information to learn reward-
maximizing policies. Whereas prior methods
perform this integration by learning a reward
function and then applying an off-the-shelf RL
algorithm, ours learns an implicit dynamics
model. Not only is our method simpler (no
additional RL algorithm required!), but also it
achieves higher success rates on the benchmark tasks. Because our reinforcement learning method
resembles prior representation learning methods (Mazoure et al., 2020; Nair et al., 2022), we believe
that scaling this method to very large offline datasets is an important direction for future work.

10

CONTRASTIVE EXAMPLE-BASED CONTROL

References

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. arXiv
preprint arXiv:1707.01495, 2017.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
policy evaluation. Advances in Neural Information Processing Systems, 34:4933–4946, 2021.

Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott Reed,
Rae Jeong, Konrad Zołna, Yusuf Aytar, David Budden, Mel Vecerik, et al. A framework for
data-driven robotics. arXiv preprint arXiv:1909.12200, 2019.

Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions from”
in-the-wild” human videos. arXiv preprint arXiv:2103.16817, 2021.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural computation, 5(4):613–624, 1993.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.

Benjamin Eysenbach, Sergey Levine, and Ruslan Salakhutdinov. Replacing rewards with examples:
Example-based policy search via recursive classification, 2021.

Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine. Contrastive learn-
ing as goal-conditioned reinforcement learning. arXiv preprint arXiv:2206.07568, 2022.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pages 49–58. PMLR,
2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning. International Conference on Learning Representations, 2018a.

Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine. Variational inverse control with
events: A general framework for data-driven reward definition. arXiv preprint arXiv:1805.11686,
2018b.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900, 2018.

11

CONTRASTIVE EXAMPLE-BASED CONTROL

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max q-learning operator for simple yet effective offline and online rl. In International Conference
on Machine Learning, pages 3682–3691. PMLR, 2021.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Conference on Neural
Information Processing Systems, 2016.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Firas Jarboui and Vianney Perchet. Offline inverse reinforcement learning, 2021. URL https:
//arxiv.org/abs/2106.05068.

Ryan Julian, Benjamin Swanson, Gaurav S Sukhatme, Sergey Levine, Chelsea Finn, and Karol
Hausman. Efficient adaptation for end-to-end vision-based robotic manipulation. arXiv preprint
arXiv:2004.10190, 2020.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pages 1094–1099. Citeseer, 1993.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on Robot Learning, pages
651–673. PMLR, 2018.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic re-
inforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

Ksenia Konyushkova, Konrad Zolna, Yusuf Aytar, Alexander Novikov, Scott Reed, Serkan Cabi,
and Nando de Freitas. Semi-supervised reward learning for offline reinforcement learning. Offline
Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, pages 11761–11771, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sascha Lange, Thomas Gabel, and Martin A. Riedmiller. Batch reinforcement learning. In Rein-
forcement Learning, volume 12. Springer, 2012.

12

https://arxiv.org/abs/2106.05068
https://arxiv.org/abs/2106.05068

CONTRASTIVE EXAMPLE-BASED CONTROL

Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Representation balancing offline model-based
reinforcement learning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=QpNz8r_Ri2Y.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Kevin Li, Abhishek Gupta, Ashwin Reddy, Vitchyr H Pong, Aurick Zhou, Justin Yu, and Sergey
Levine. Mural: Meta-learning uncertainty-aware rewards for outcome-driven reinforcement
learning. In International Conference on Machine Learning, pages 6346–6356. PMLR, 2021.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforce-
ment learning without great exploration. arXiv preprint arXiv:2007.08202, 2020.

Zhuang Ma and Michael Collins. Noise contrastive estimation and negative sampling for conditional
models: Consistency and statistical efficiency. arXiv preprint arXiv:1809.01812, 2018.

Ajay Mandlekar, Fabio Ramos, Byron Boots, Silvio Savarese, Li Fei-Fei, Animesh Garg, and Dieter
Fox. Iris: Implicit reinforcement without interaction at scale for learning control from offline
robot manipulation data. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 4414–4420. IEEE, 2020.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bachman, and R Devon
Hjelm. Deep reinforcement and infomax learning. Advances in Neural Information Processing
Systems, 33:3686–3698, 2020.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A uni-
versal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning, ICML ’00, 2000.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforce-
ment learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Dean A Pomerleau. Alvinn: an autonomous land vehicle in a neural network. In Proceedings of the
1st International Conference on Neural Information Processing Systems, pages 305–313, 1988.

Rafael Rafailov, Tianhe Yu, A. Rajeswaran, and Chelsea Finn. Offline reinforcement learning from
images with latent space models. Learning for Decision Making and Control (L4DC), 2021.

13

https://openreview.net/forum?id=QpNz8r_Ri2Y

CONTRASTIVE EXAMPLE-BASED CONTROL

Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maximum margin planning. In
Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, 2006.

Siddharth Reddy, Anca D. Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. International Conference on Learning Representations, 2020.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforce-
ment learning method. In European Conference on Machine Learning, pages 317–328. Springer,
2005.

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. AISTATS, 2011.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, and Martin Riedmiller. Keep doing what worked: Be-
havioral modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396,
2020.

Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end robotic
reinforcement learning without reward engineering. arXiv preprint arXiv:1904.07854, 2019.

Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. Cog:
Connecting new skills to past experience with offline reinforcement learning. arXiv preprint
arXiv:2010.14500, 2020.

Samarth Sinha and Animesh Garg. S4rl: Surprisingly simple self-supervision for offline reinforce-
ment learning. arXiv preprint arXiv:2103.06326, 2021.

Jonathan Spencer, Sanjiban Choudhury, Arun Venkatraman, Brian Ziebart, and J. Andrew Bagnell.
Feedback in imitation learning: The three regimes of covariate shift. ArXiv Preprint, 2021.

Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Overcoming model bias for robust offline
deep reinforcement learning. arXiv preprint arXiv:2008.05533, 2020.

Steven D Whitehead and Dana H Ballard. Learning to perceive and act by trial and error. Machine
Learning, 7(1):45–83, 1991.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Annie Xie, Avi Singh, Sergey Levine, and Chelsea Finn. Few-shot goal inference for visuomotor
learning and planning. In Conference on Robot Learning, pages 40–52. PMLR, 2018.

Danfei Xu and Misha Denil. Positive-unlabeled reward learning. arXiv preprint arXiv:1911.00459,
2019.

Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline imita-
tion learning from suboptimal demonstrations. International Conference on Machine Learning,
2022.

14

CONTRASTIVE EXAMPLE-BASED CONTROL

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learn-
ing. In Conference on Robot Learning, pages 1094–1100. PMLR, 2020a.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020b.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. arXiv preprint arXiv:2102.08363,
2021.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
How to leverage unlabeled data in offline reinforcement learning. International Conference on
Machine Learning, 2022.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforce-
ment learning. arXiv preprint arXiv:2011.07213, 2020.

Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash Ku-
mar, and Sergey Levine. The ingredients of real-world robotic reinforcement learning. arXiv
preprint arXiv:2004.12570, 2020.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf Ay-
tar, Misha Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations and
unlabeled experience. arXiv preprint arXiv:2011.13885, 2020a.

Konrad Zolna, Scott Reed, Alexander Novikov, Sergio Gomez Colmenarejo, David Budden, Serkan
Cabi, Misha Denil, Nando de Freitas, and Ziyu Wang. Task-relevant adversarial imitation learn-
ing. Conference on Robot Learning, 2020b.

15

	Introduction
	Related Work
	Learning to Achieve Examples Offline
	Preliminaries
	Deriving Our Method
	A Geometric Perspective
	A Complete Algorithm

	Experiments
	Conclusion

