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ABSTRACT

Language model alignment has become an important component of AI safety,
allowing safe interactions between humans and language models, by enhancing
desired behaviors and inhibiting undesired ones. It is often done by tuning the
model or inserting preset aligning prompts. Recently, representation engineering,
a method which alters the model’s behavior via changing its representations post-
training, was shown to be effective in aligning LLMs (Zou et al., 2023a). Repre-
sentation engineering yields gains in alignment oriented tasks such as resistance
to adversarial attacks and reduction of social biases, but was also shown to cause a
decrease in the ability of the model to perform basic tasks. In this paper we study
the tradeoff between the increase in alignment and decrease in helpfulness of the
model. We propose a theoretical framework which provides bounds for these two
quantities, and demonstrate their relevance empirically. First, we find that under
the conditions of our framework, alignment can be guaranteed with representa-
tion engineering, and at the same time that helpfulness is harmed in the process.
Second, we show that helpfulness is harmed quadratically with the norm of the
representation engineering vector, while the alignment increases linearly with it,
indicating a regime in which it is efficient to use representation engineering. We
validate our findings empirically, and chart the boundaries to the usefulness of
representation engineering for alignment.

1 INTRODUCTION

Advancements in large language model (LLM) development over the last few years have given
LLMs a variety of abilities that allow them to serve as general purpose assistants in a wide range
of tasks, such as broad-scoped question answering, writing assistance, teaching, and more (Rad-
ford et al., 2019; Devlin et al., 2019; Brown et al., 2020; Schulman et al., 2023; OpenAI, 2023;
Bubeck et al., 2023; Nori et al., 2023; West, 2023; Park et al., 2023a). The vast use of LLMs
for such purposes has raised concerns due to the harm they can cause their users, such as serv-
ing fake information (Lin et al., 2022; Weidinger et al., 2022), behaving offensively, feeding social
biases (Hutchinson et al., 2020; Venkit et al., 2022; Weidinger et al., 2022), or encouraging prob-
lematic behaviors by users Roose (2023); Atillah (2023). Alignment is often the term given for
the process of removing these undesired behaviors (Yudkowsky, 2001; Taylor et al., 2016; Amodei
et al., 2016; Shalev-Shwartz et al., 2020; Hendrycks et al., 2021; Pan et al., 2022; Ngo, 2022).

There are several different approaches to performing alignment in LLMs, such as including aligning
prompts Askell et al. (2021); Rae et al. (2021) which was shown to improve alignment and decrease
toxicity in LLMs, and the procedure of reinforcement learning from human feedback (RLHF) which
trains language models to be helpful and harmless (Bai et al., 2022). Though effective to an extent,
these approaches are still dangerously frail, as several works have shown that adversarial prompts
can trigger negative behaviors in LLMs Wallace et al. (2019); Yu & Sagae (2021); Xu et al. (2021);
Subhash (2023); Zou et al. (2023b). The work of Wolf et al. (2023) provides a theoretical framework
which shows that frozen LLMs can be misaligned with sufficiently long prompts.

Recently, a new method for alignment has been proposed by Zou et al. (2023a), which controls the
model at the internal representation level by adding tailored vectors to the hidden layers’ represen-
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Figure 1: Effect of representation engineering on helpfulness and alignment. Our main results show
that alignment can improve at the cost of helpfulness. Moreover, we show that for small repre-
sentation engineering norms the helpfulness decreases quadratically while the alignment increase is
linear, so there is a regime in which representation engineering can be cost-effective.

tations. This is done by extracting directions in the model’s latent space that connect contrasting
behaviors, and then injecting vectors at inference time in order to steer away from undesired be-
haviors and towards desired ones. Typically, the vectors are all prepared with norm 1, and they are
multiplied by a coefficient to tune the strength of the steering, but there is a trade-off – when the
parameter is too high performance tends to degrade. Zou et al. (2023a) demonstrated experimentally
that the procedure can significantly improve alignment, e.g., in resistance to adversarial attacks, with
reduction from 50% success of adversarial attacks to less than 15%, and truthfulness enhancement,
with a relative increase of over 50%, though at the cost of somewhat reducing the helpfulness of the
model. Similar methods have also been used by Jorgensen et al. (2023); Leong et al. (2023); Liu
et al. (2023); Turner et al. (2023) to improve alignment and reduce toxicity.

Since then, there has been an increasing body of work using this method. Wang et al. (2024b) use
extracted safety vectors for inference time alignment for harmlessness, reducing jailbreaking success
rate from over 30% with prompting and over 10% in supervised fine tuning to below one percent.
Wang et al. (2024a) uses a method of editing model parameters that maximize the difference between
toxic and untoxic responses to detoxify it. Wei et al. (2024) find sparse regions in parameter space
that affect alignment brittleness, to be removed for better alignment. Marks et al. (2024) interpret
causal graphs in language models and edit them to improve behaviors. van der Weij et al. (2024)
extend activation steering to multiple behaviors. To improve low rank finetuning, Wu et al. (2024)
utilize a procedure of tuning representations directly to substantially reduce the trainable parameters
of finetuning compared to LoRA. Xu et al. (2024); Li et al. (2024) use concept activation vectors
to jailbreak, they also observe that concepts that activate different behaviors are linearly separable.
Zhang et al. (2024) remove hallucinations by editing truthfulness concepts. Additionally, the method
scales to SOTA models, such as Sonnet’s Claude Templeton (2024), using a similar method of sparse
auto encoders, which extracts interpretable features from the model that can be used to manipulate
the model through steering.

There are also known limitations to editing representations. Limitations of model editing methods
for social debiasing are studied in Yan et al. (2024), and the work of Elazar et al. (2021) empirically
demonstrates how projecting out supervised linear probe directions via iterative nullspace projection
can reduce performance on selected tasks. Theoretical works on the subject show that in context
learning is equivalent to inserting a query with a task vector Hendel et al. (2023) and the vectors that
connect representations of token pairs are parallel when the semantic difference between the pairs is
similar (the linear representation hypothesis) Park et al. (2023b).

Understanding the tradeoff between model helpfulness and alignment is important for designing
safe yet useful LLM systems. Previous empirical works have shown tradeoffs between quality and
diversity and between helpfulness and safety in LLMs due to instruct finetuning (Florian et al., 2024;
Bianchi et al., 2023; Röttger et al., 2023), and reduction in performance due to watermarking (Ajith
et al., 2023). In this work we aim to shed light on the benefits and limitations of representation
engineering for LLM alignment, i.e., how much does alignment improve with this method and what
is the cost in terms of the model’s abilities. We approach this question theoretically at first, and then
provide empirical evidence for the validity of our theory.
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In sections 2 and 3, we set up our theoretical framework and present our theoretical results respec-
tively. We find that representation engineering increases alignment linearly with the representation
engineering vector norm (theorem 1), while the helpfulness of the model, defined as the proba-
bility of answering a query correctly, decreases quadratically with the representation engineering
vector norm (theorem 2). Consequently, alignment can be guaranteed with large enough represen-
tation injections (corollary 1), though at the cost of significantly reducing the model’s helpfulness,
e.g.multiple choice question answering reduced to random guessing (corollary 2). Conversely, this
means that when injecting vectors of small norms, the improvement of alignment is initially faster
than the decrease in helpfulness, possibly indicating that there is a regime where representation en-
gineering is more effective, allowing for inference time alignment while maintaining the model’s
helpful capabilities. See figure 1 for an illustration of this intuition.

In section 4 we explore the validity of our assumptions and results in an experimental setting: We
calculate alignment, as defined by the theoretical framework, as a function of representation engi-
neered vector norms corresponding to the desired behaviors and find that it increases as predicted by
theorem 1. This is done by aligning with representation engineering an unaligned (pretrained) model
with respect to desired behaviors (“harmless”, “not-racist”), and misaligning an aligned (RLHF)
model to undesired behaviors (“harmful”, “racist”). Then, we calculate the helpfulness of the model,
quantified by its question answering abilities over different knowledge domains and coding capabil-
ities, with the same aligning vectors, and find that the decay with increased vector norm described
in theorem 2 is manifested. Furthermore, injecting large norms of these vectors leads to significant
reduction of helpfulness, such as performance on multiple-choice questions that is equivalent to
random guessing (corollary 2). Together, the results correspond to the intuitive illustration in fig. 1.

2 PRELIMINARIES

We denote Pθ(·|s) as the model’s next token probability distribution with the parameters θ to the
prompt s. The model is composed of L layers, rlθ is the l’th hidden state representation of the model.
The next token prediction of a model is parametrized as:

Pθ(tn+1|t1...tn) = softmax(Ur
(L)
θ (t1...tn))tn+1 (1)

Where r
(L)
θ (s) is the final hidden layer’s representation of the prompt s and U is a matrix from the

hidden state to a vocabulary of tokens. This is an accurate parametrization for state-of-the-art LLMs.

Parameterizing representation engineering is done by modifying each layer’s hidden state via adding
a corresponding engineered vector: Denote a representation engineered model Pθ of L layers, with
a set of engineered representations Re = (r

(l=1)
e , ..., r

(l=L−1)
e ) by Pθ,re , which is applied by adding

to each hidden state the corresponding engineered vector:

r
(l)
θ ← r

(l)
θ + r(l)e (2)

Note that here l < L, as used in Zou et al. (2023a). Additionally, we follow existing methods for
representation engineering and provide a uniform norm for all the injected vectors |r(l)e | = |re|. The
vectors are initially prepared with norm 1, and when injected to the model, they are multiplied by
the coefficient re which can be positive or negative, to tune the steering strength and direction. For
layers that are not injected, |r(l)e | = 0.

To quantify alignment, we use the behavior expectation definition of alignment as in Wolf et al.
(2023). We will use a binary scoring function, with labels ±1 for aligned/misaligned answers.
The results can be extended to more complex behavior scoring function over [−1,+1], to yield
qualitatively similar results, as discussed appendix H:

Definition 1 Let B : Σ∗ → {−1,+1} be a binary behavior scoring function, the behavior of a
prompted model P (·|q) is defined as:

B[Pθ(·|q)] = Ea∼Pθ(·|q)[B(a)] =
∑

a+∈aligned

Pθ(a+|q)−
∑

a−∈misaligned

Pθ(a−|q) (3)

Notice that while B is a binary function, the behavior expectation is in the range [−1,+1], reflecting
cases where an aligned response is required and unaligned responses must be filtered. In theorem 1
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we will prove that representation engineering is an effective alignment method by lower bounding
the behavior expectation. Notice that high probability of outputting a positive/negative response
gives a positive/negative contribution to the behavior expectation, thus the sign and absolute value
of behavior expectation is a good measure for the alignment of a model.

The model’s helpfulness can be quantified as its ability to produce useful answers to user’s queries
(knowledge questions, code generation, summarization, etc.). In order to theoretically analyze help-
fulness, we focus on queries where correctness can be defined, such as knowledge based question
answering on various domains (see figure 1 for an example), or producing code to solve a problem.
This can be measured as the likelihood of outputting a correct answer to a query:

helpfulness(model, q) = Pθ(acorrect|q) (4)

Where Pθ(acorrect|q) is the model’s probability of outputting the correct answer a to the query q.
By this definition, the helpfulness is in the range [0, 1], and motivation behind it is to quantify the
general capabilities of the model when engineered representations are injected into it. For queries
where correctness is not defined, the bounds we derive are expected to still be meaningful as they
can also describe the rate of the model’s deviation from its original distribution due to representation
engineering, as will be explained in the next section.

Ideally, a model that interacts with a user should be both aligned and helpful, meaning its response
is appropriate w.r.t. a desired behavior (i.e., positive behavior expectation) and also useful (i.e., high
probability of giving a correct answer to the query). In the next section, we will provide results
on alignment and helpfulness under the use of representation engineering, based on the model’s
next token prediction, which provides simple analytical forms for alignment and helpfulness. In
appendix I, we extend the results for multi-token answers, which yields qualitatively similar results,
with somewhat more complex form.

3 MAIN RESULTS

We will show that representation engineering improves alignment, but harms helpfulness. Theorem
1 shows that behavior expectation is bounded from below by a hyperbolic tangent function, such
that it approaches +1 for increasing size of injected vectors and increases linearly within a bounded
range. This in principle allows to sample an aligned response for any adversarial attack (corollary 1),
demonstrating the power of representation engineering as an alignment technique. Theorem 2 shows
that the helpfulness is maximized in the vicinity of norm zero injected vectors (i.e., no representation
engineering) and in corollary 2 that as the norm is increased, helpfulness decays to random guessing.
The assumptions used to prove the theorems are presented formally in appendix A.

The following statement quantifies how alignment is improved by representation engineering. It as-
sumes the injected representations in all layers accumulate to a change in the last hidden layer repre-
sentation that classifies positive and negative behavior answers to the query, as depicted in figure 2a.
This condition was chosen due to the popular choice in representation engineering to use injected
representations {r(l)e }, that are themselves classifiers for positive and negative representations on
the intermediate layers. This is because they are learned from contrasting positive and negative be-
havior representations for different queries, such as mean centering, r(l)e = Egood,bad[r

(l)
good − r

(l)
bad]

(Jorgensen et al. (2023)), or PCA, r(l)e = argmaxv:||v||=1[Egood,bad|⟨v, r(l)good − r
(l)
bad⟩|2] (Zou et al.

(2023a)), such that they form linear classifiers for the intermediate layers due to the positive/negative
inner product with positive/negative answer representations. Notably, in Xu et al. (2024) it is shown
empirically that such concept classes in latent space are linearly separable. We discuss this assump-
tion further in A and provide empirical evidence. Furthermore, the classification condition can be
softened to an imperfect classifier, as discussed in appendix A and shown in appendix in F, to yield
similar results.

Theorem 1 Let Pθ,re(·|q) be a model prompted with query q and injected with representations of
coefficient re. Let B : Σ∗ → {−1,+1} be a behavior scoring function. The injections to all layers
amounts to a change in the final hidden layer representation that is q dependent, denoted by the
vector δr

(L)
e (q). Assume that the representations of aligned and misaligned answers w.r.t. B are

linearly separable, and that δr(L)
e (q) linearly classifies them with margin ∆. Then, the behavior
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expectation of the model conditioned on the query q satisfies:

B[Pθ,re(·|q)] ≥ tanh(∆λ · re + arctanh(B0)) (5)

Where B0 = B[Pθ(·|q)] is the behavior expectation without representation engineering and λ is a
model dependent coefficient relating between re and the corresponding final hidden state norm.

As can be seen in the mathematical expression and in figure 2b for B0 = −0.5, this lower bound
is a shifted hyperbolic tangent function w.r.t re. At re = 0 the bound gives B0, which is the
unaltered model’s behavior. As re is increased, the bound approaches +1, meaning the behavior
asymptotically approaches +1. We see that for B0 that is not too close to −1, the increase in
behavior expectation is linear due to the hyperbolic tangent’s nature, while if it is very close to
−1, re is to be increased before seeing the linear effect. Thus for behaviors on which the model
is negative but also has a small tendency for positive answers, the linear effect should be felt near
re = 0. In section 4, we present our numerical estimation ∆λ in the range 0.1 − 3, both based on
the linear classifier condition and direct alignment measurement. For proof see appendix section B.

Figure 2: (a) The change to the last hidden layer due to vector injections from previous layers
classifies positive and negative answer representations. (b) Plot of the upper bound on behavior
expectation in theorem 1

Note that during decoding, the change in all layers of the model Re = {r(1)e , ..., r
(L−1)
e }, amounts

to a change to the final hidden layer’s representation, r(L)
θ,re
− r

(L)
θ , where r

(L)
θ,re

is the final hidden

layer representation that incorporates all the previous hidden layer changes and r
(L)
θ is the original

representation. The complexity of the multi-layer editing is incorporated into the types of changes
observed in the final hidden layer.

In contrast to Wolf et al. (2023), that has a framework centralized on using prompts to misalign
frozen models, i.e. models whose weights and representations are not changed after training, here
the model is not frozen due to representation engineering, and accordingly a different result is ob-
tained on guaranteeing an aligned response – for any adversarial attack, using large enough norms
with representation engineering produces an aligned response if the learned injected representations
accumulate to a good classifier of positive and negative answer representations in the final layer.

Corollary 1 Let ϵ > 0, Pθ a language model and q a prompt that induces negative behavior
B[Pθ(·|q)] < γ < 0 without representation engineering. Under the conditions of theorem 1, using
an injected vector norm of re > 1

∆λ (arctanh(1− ϵ)− arctanh(γ)) leads to behavior expectation
B[Pθ,re(·|q)] > 1− ϵ.

This can be extended to multi-token answers, by enforcing the above result on each decoding step
of the generated answer, as explained in appendix I. The binary behavior score can also be extended
beyond binary, as explained in appendix H.

Now, we shall bound from above the helpfulness of the model as a function of representation engi-
neering. We formally bound the probability of producing correct answers to queries where correct-
ness is well-defined. Yet, even for queries where this is not the case, the bound can still be relevant,
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as it quantifies the model’s deviation from its original distribution due to representation engineering.
Hence if the model was initially helpful on a task, a random deviation to its probability distribution
is expected to decrease model performance proportionally to the size of the deviation.

Intuitively, editing the model’s representation in a specific direction adds random noise to other
latent concepts of the model, causing a degradation in its other capabilities. This is introduced in
our framework through the resulting change to the final hidden layer δre(q) = r

(L)
θ,re
− r

(L)
θ , we

will assume its direction δre(q)
|δre(q)| contains random projections w.r.t. latent representations of correct

and incorrect answers, which creates noise in the model’s distribution. The noise is expected to
be random on the highest probability tokens, since they answer a query that is unrelated to the
behavior being enhanced (intuitively depicted in figure 3a). We verify this empirically in appendix
A.3. Thus, we assume random noise on the top T tokens making up a large probability mass of the
answer distribution, 1− ϵ, (e.g. T ∼ 10 typically makes ϵ ∼ 0.1), and do not make assumptions on
the rest of the vocabulary. The following theorem formally states this.

Theorem 2 Let Pθ,re(·|q) be a model prompted with query q and injected with representations of
coefficient re. If the resulting change to the directionality of the last hidden layer representation due
to the injections in all layers, distributes randomly with variance σ2 > 0 w.r.t. the representations of
correct and incorrect answers making up 1− ϵ of the probability mass, the helpfulness of the model
on the query is bounded with probability 1− 2

T by:

Pθ,re(acorrect|q) ≤
P0

P0 + (1− P0) · α(1− ϵ)(1 + λ2σ2β2

2 r2e)
(6)

Where P0 = Pθ,re=0(·|q) is the probability of answering correctly without representation engineer-
ing, T is the number of tokens making 1− ϵ of the probability mass and α, β > 0 that depend on the
query. λ is a model dependent coefficient relating between re and the corresponding final hidden
state norm.

The proof is presented in appendix C and the assumption formally defined in appendix A. The above
bound is illustrated in figure 3b for different values of β. As can be seen, around re = 0, the bound is
parabolic, i.e. the decrease is proportional to−r2e , this can be obtained by expanding the bound near
re = 0. On the other hand, for large re, we see a decay to zero at a rate proportional to r−2

e , this can
be obtained by expanding the bound for large re. This can be extended to multi-token answers, by
enforcing the above result on each decoding step of the generated answer, as explained in appendix
I.

Importantly, this demonstrates that for large re, the helpfulness decays to zero, hence representation
engineering significantly harms the model’s overall performance, while for small re, it can initially
decrease more slowly (parabolically) around re = 0, hence the model’s performance is relatively
unharmed. For the second statement to be feasible, the true helpfulness and the bound need to be
close when no representation engineering is performed. The difference between the two at re = 0
is bounded by 1 − P0, such that for queries with high probability of being answered correctly
without representation engineering, i.e. P0 ≈ 1, the true helpfulness and the bound will be close,
guaranteeing the parabolic bound to be meaningful.

The parameter α ∈ [0, 1] measures the tightness of the bound at re = 0, since the true helpfulness
at re = 0 is P0, while our helpfulness bound is P0

P0+α(1−P0)
. Thus α = 1 (and ϵ = 0) means the

bound at re = 0 coincides with the true helpfulness, while smaller α means the bound overshoots
the true helpfulness. In our results, we obtain α ≤ 0.5. Figure 3 depicts this overshooting for
α = 0.25. Even so, as explained above, the tightness is at least 1 − P0 regardless of α, so it is
always meaningful for queries the model is initially helpful on.

The product of parameters λσβ are a measure for the rate/curvature of the quadratic decay, as they
are the coefficient multiplying r2e . λ is the same scaling parameter from theorem 1, σ represents the
standard deviation of random noise added to the logits due to representation engineering (depicted in
figure 3a and formally defined in A), and β is the minimum between two weighted sums of positive
variables with parameter σ′ = 1. In section 4, we present our empirical estimation λσβ in the range
0.1 − 0.66, both based on the logit noise condition and direct helpfulness measurement. Hence the
decay should be felt at coefficients re of order of size 1.
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Figure 3: (a) Directionality of change to last hidden layer due to representation engineering dis-
tributes randomly with variance σ2 w.r.t. correct and incorrect answer representations. (b) Plot of
helpfulness bound with given parameters of P0, α and λσβ.

Lastly, when considering the average helpfulness over a dataset in a scenario where the number of
answers is constant, N (such as multiple choice questions), we obtain that on average, the model will
converge to answering 1/N of the questions correctly as representation engineering is increased:

Corollary 2 Under the conditions of theorem 2, the expected value of the helpfulness on a dataset
of queries, Eq∈dataset[Pθ,re(acorrect|q)] is asymptotically bounded from above by 1

N as |re| → ∞.
Where N is the number of possible answers for each query.

Intuitively, for large |re|, the model is uniformly random, so it will guess the correct answer with
probability 1

N . This can be seen in section 4.

3.1 INTERPRETATION OF RESULTS – A TRADEOFF BETWEEN ALIGNMENT AND USEFULNESS

The combination of the two results show that alignment improves linearly with the norm of the
vectors injected in representation engineering while helpfulness is decreased quadratically. This
means that when injecting vectors of small norms, the improvement of alignment is initially faster
than the decrease in helpfulness, possibly indicating that there is a regime where representation
engineering is more effective. See figure 1 for an illustration of this intuition.

4 EMPIRICAL RESULTS

Here we will calculate alignment and helpfulness as defined above and observe how they change
as we increase the vector norms of representation engineering. In principle, theorem 1 shows the
dynamics of behavior flipping its signs due to representation engineering, thus to demonstrate it, we
use representation engineering to show an increase in alignment of an unaligned pretrained model
(specifically we use Llama 2 13B Touvron et al. (2023)), and a decrease in alignment of an aligned
RLHF model (we use Llama 2 13B chat Touvron et al. (2023)). In appendix E, we perform the
experiments on Llama 3.1 8B Dubey et al. (2024) as well. For the unaligned model, we calculate
the behavior expectation w.r.t. behaviors “harmless” and “not-racist”, as a function of representation
engineering vector coefficients and show an improvement in alignment. For the aligned model,
we do the same for the behaviors “harmful” and “racist” and show a decrease in alignment. Our
experiments show an effect of representation engineering on alignment that matches theorem 1.
Then, we calculate helpfulness as the probability of answering queries correctly when the model
is injected with the same behavior altering vectors. Our experiments demonstrate that helpfulness
changes as in theorem 2. Additional experimental details can be found in appendix E.

We follow the work of Zou et al. (2023a) to extract the vectors used in representation engineering:
We use datasets comprised of pairs of positive and negative statements w.r.t. a behavior. The differ-
ence between the representations of the pairs are used to find latent space directions that can steer
the model’s responses from negative to positive behaviors or vice versa. For the “harmful” behavior

7
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on the aligned model, we extracted harmful and unharmful instructions from AdvBench Robey et al.
(2021; 2022) and shareGPT respectively. For “harmless” behavior on the the unaligned model, the
above approach of contrasting positive and negative requests does not work, since the model did not
undergo alignment, so it equally agrees to answer both types of requests. Thus, the produced engi-
neered representations never steer the model towards not answering any request. So, inspired by the
method of preference learning, we contrast aligned and misaligned responses to harmful instructions
from AdvBench. For “racism” on the aligned model, we used biased statements from the StereoSet
dataset Nadeem et al. (2020) followed by aligned and misaligned responses, and contrasted them.
For “not-racist” on the unaligned model, we flipped the sign of the vectors to reverse the steering
direction.

Alignment Measurement: To calculate harmful behavior expectation, we sampled full re-
sponses to harmful instructions and used the behavior scoring function that assigns an answer
B(answer) = ±1 if the model answers a harmful instruction or refuses to and calculated its expec-
tation value, which is the difference between probabilities of fulfilling and not fulfilling the instruc-
tion. To calculate the racism behavior expectation, sampled full responses to racist statements and
used a behavior scoring function that assigns an answer B(answer) = ±1 to agreeing/disagreeing
with a racist statement, and calculated the expectation value of this function w.r.t. the model distri-
bution, which is the difference in probabilities of agreeing and disagreeing with a racist statement.

Figure 4: Plots of behavior expectation as a function of the coefficients of representation engineering
vectors injected to the model. The blue line is the direct measurement, the orange line is a plot of
the bound from theorem 1. (a) Harmless behavior expectation of Llama 2 13B as a function of
coefficient of injected harmful PCA vectors. (b) Racism behavior expectation of Llama 2 13B as
a function of coefficient of injected bias PCA vectors.(c) Harmful behavior expectation of Llama 2
13B as a function of coefficient of injected harmful PCA vectors. (d) Racism behavior expectation
of Llama 2 13B chat as a function of coefficient of injected bias PCA vectors.

Figure 4a(c) shows harmless (harmful) behavior expectation as a function of harmless (harmful)
PCA vector coefficients injected into the misaligned (aligned) model. Figure 4b(d) shows not-racist
(racist) behavior expectation as a function of bias PCA vector coefficients injected into the mis-
aligned (aligned) model. Overall we see that on both behaviors and both models, the behavior
expectation changes like a hyperbolic tangent, as expected of theorem 1, which can be seen by the
fitted curve of the data to a bound of the form of theorem 1 when using ∆λ as a free parameter that
fits the measurements. The value of ∆λ corresponding to the curve is 0.5− 3 while our empirically
estimated value of ∆λ from the data based on the linear classification condition of the last hidden
layer change is 0.1− 0.4 (for details on the empirical estimation see appendix A.3). The difference
between these two ranges may be attributed to the method of the empirical estimation of ∆ that
looks for an upper bound on it on the entire re range, while the main change in alignment in figure 4
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occurs in a more specific range, where the upper bound of ∆ is evidently bigger. We note that for all
behaviors, re = 2.5 suffices for a significant change in behavior expectation, taking it from negative
to positive. It is left to observe the decrease in helpfulness and verify that it is not too small.

Helpfulness Measurement: To calculate helpfulness, we tested the model on two tasks. The first
is knowledge based question answering (MMLU), which allows a clean test for the single token
theoretical results (theorem 2), and the second is coding tasks (HumanEval), which allows to verify
the single token results persist for tasks with multiple-token answers. Importantly, we injected the
model with the same vectors used to alter the model’s behavior in the alignment measurement. In
appendix A.3 we show that while these vectors typically separate between aligned and misaligned
responses in the model’s latent space when the prompt is related to the behavior in question, when
prompted with knowledge based questions, the tokens enhanced are random with a trend that fits
our theoretical assumptions.

First, we queried the model with multiple choice questions from the MMLU dataset Hendrycks et al.
(2020) over a variety of domains (international law, medical genetics, high school computer science)
and calculated the probability that the model assigns the correct one answer. This was measured as
a function of injected vector coefficients inserted to the model for the behaviors above. Figure
5a(c) shows this for the harmless (harmful) behavior vectors on the misaligned (aligned) model and
5b(c) shows this for the not-racist (racist) behavior vectors for the misaligned (aligned) model. Here
we restricted the probabilities to the answers of the multiple choice question, A,B,C,D. We also
performed the experiment in a sampling setting, where we sampled full responses to the questions,
and calculated the accuracy on the dataset, where similar trends were observed (see appendix E).

According to theorem 2, around re = 0, helpfulness should decrease parabolically, which can be
seen by Taylor expanding the bounds, yielding Pcorrect ≈ f(0) + 1

2f
′′(0)r2e where f ′′(0) < 0.

Then, according to corollary 2, since there are N = 4 answers to choose from, the probability of the
correct answer should on average converge to 1/4. To demonstrate this behavior in the empirical
measurements, we plot a bound of the form of theorem 2 with the boundary conditions of corollary
2 (for further explanation on the theoretical justification of using this bound see appendix E.4). We
do so with free parameter λσβ, and α set to 1 (in our theoretical bound it is smaller, but it is due to
the bound being centered at re = 0 while the peak is not guaranteed to be, hence it may overshoot),
from which we find λσβ in the range of 0.33 − 0.66. With our empirically estimated values of
λσβ from direct measurement of the noise injected due to representation engineering, in the range
0.1− 0.4 (see details on the empirical estimation in appendix A.3).

Notably, for re = 2.5, the decrease in helpfulness is still not too great, while as mentioned pre-
viously, alignment is significantly increased. Further note that the decrease in helpfulness is not
attributed to the model’s refusal to answer questions, as one might suspect for an injection of harm-
less vectors. This is because for both positive and negative coefficients the helpfulness drops, while
the refusal to answer harmful queries grows only in one direction.

Next, we tested the model’s coding skills with the humaneval dataset. as can be seen in figure 6, the
model’s performance is peaked around re = 0, and it decays parabolically ar re increases. We note
that the asymmetry between positive and negative coefficients is captured in our theoretical bounds.

5 DISCUSSION

In this work, we study the benefits of representation editing for LLM alignment from a theoretical
perspective. We find that increasing the magnitude of the vectors injected to the model leads to
improved alignment; we theoretically quantify this improvement as linear in the vectors’ magnitude,
and validate our result empirically. A practical outcome of our result is a guarantee of alignment
when using the representation engineering method. Such theoretical guarantees cannot be made
without altering the model at inference time – Wolf et al. (2023) show that prompt based alignment
methods can always be undone. Our result thus crystallizes an inherent advantage of representation
engineering over competing alignment methods.

On the other hand, our framework indicates a degradation of the model’s general capabilities when
representation engineering is applied. We theoretically quantify this degradation to be parabolic
in the injected vectors’ magnitude, which puts a bound on the strength with which representation
engineering should be performed to keep the model reliable for different uses. While our theoretical
bound is an upper bound on the helpfulness, we observe this parabolic behavior empirically as well.
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Figure 5: Helpfulness measurement: the probability assigned to the correct answer to questions
from different MMLU tests (international law, medical genetics, high school computer science), as a
function of representation engineering vector coefficients injected to the model. Here the probability
of the correct answer was measured relative to the answers A, B, C, D. The red line plots the bound of
theorem 2 for free parameters on “international law”. (a) Helpfulness of Llama 2 13B with harmful
PCA vectors. (b) Helpfulness of Llama 2 13B with bias PCA vectors. (c) Helpfulness of Llama 2
13B chat with harmful PCA vectors. (d) Helpfulness of Llama 2 13B chat with bias PCA vectors.

Figure 6: Helpfulness measurement on humaneval of Llama 2 13B chat as a function of coefficient
of injected harmfulness (a) and racism (b) PCA vectors.

While representation engineering is an emerging field, editing interpretable features of models on
the representation level in order to control them scales to SOTA models such as Sonnet’s Claude
Templeton (2024). In principle, our framework may be generalized for theoretically analyzing the
effects of normal finetuneing on alignment and helpfulness, as it too amounts to a change in the
LLM representations to maximize the likelihood of desired outputs. In particular, each step in
preference learning is equivalent to a representation injection with coefficient that equals to the
learning rate (see appendix G). However, we leave this for future work, as finetuning creates small
changes to the model’s representation at each training step on several behaviors, that sums to a large
overall change, while representation engineering takes a large step in one behavioral direction. As
a result, the change to the representations in a representation engineering process on one behavior
creates random noise on the others (assumption 2), unlike a finetuning process where this does
not necessarily happen. Hence in regards of maintaining helpfulness, finetuning has an advantage,
however, representation engineering does enjoy the benefit of an online controllable step size in the
desired behavior which allows to effectively manipulate the specific behavior at inference time.

Overall, we hope that our theoretical work will shed light on the mechanism of representation engi-
neering, which constitutes a new interesting direction for language model alignment.
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A.1 INTRODUCTION OF ASSUMPTIONS

A representation of an answer to a query is defined as the latent space embedding of the answer’s
token, UT etoken, where ei is the one-hot vector of the token i and U is the matrix from the last
layer’s hidden dimension to the vocabulary. We assume that the representations of positive and
negative answers to a query are linearly separable, and that the change to the last hidden layer of the
model due to representation engineering linearly classifies them with margin ∆:

Assumption 1 Given a query q, the change to the last hidden layer of a model due to representation
engineering, δre(q) = r(L)(q, re)−r(L)(q, 0) , linearly classifies the representations of positive and
negative answers to a query q with margin ∆, where the positive and negative answers are defined
with respect to a behavior scoring function B : Σ→ {−1,+1}:

mini:B(i)>0,j:B(j)<0

{〈 δre(q)

|δre(q)|
, UT ei − UT ej

〉}
> ∆ (7)

That is to say, that on the axis defined by δre(q), positive and negative representations can be sep-
arated, and the minimal distance between representations of positive and negative answers on it is
∆. It is used in theorm 1, to obtain that the probability of the aligned answers increases w.r.t.the
misaligned answers as the coefficients of the injected representations increases.

Note that the above assumption can be relaxed from a hard margin to a soft margin assumption,
where δre(q) classifies the representations of positive and negative answers, but part of the mis-
aligned/aligned answers’ representations are misclassified as aligned/misaligned. This yields similar
results to theorem 1 that are shown in appendix F.

For queries whose topic is unrelated to the behavior with respect to which representation engineering
is performed, we expect the change to the last layer representation to be somewhat random on the
highest probability tokens as they answer a question that is unrelated to the behavior whose vectors
are injected to the model. Intuitively, the change to the final layer representation has no preference
for a correct token over an incorrect token, so an incorrect answer is just as likely to be on one
side or the other of the plane defined by the vertical δre(q) that passes through the correct answer
representation.

Assumption 2 When sampling an answer to a query q that is unrelated to the behavior of represen-
tation engineering, the vector δre(q) = r(L)(q, re)− r(L)(q, 0), i.e., the resulting change to the last
hidden layer representation due to the steering vectors from all layers, is random with the following
coordinate-wise distribution on the T highest probability tokens making 1 − ϵ of the probability
mass:

⟨ δre(q)
|δre(q)|

, UT ei⟩ ∼ D (8)

Where D is some continuous distribution with variance σ2 > 0.

This defines a random directionality of δre(q) w.r.t. the representations of answers. It is used in
theorem 2 to formalize that representation engineering is a “perpendicular” direction to the query’s
relevant answer representations.

Finally, we assume that for small coefficients of representation engineering re, the norm of the
change to the last hidden layer representation is linear in re:

Assumption 3 Let Pθ,re(·|q) be a language model prompted with query q. The change to the
last hidden layer representation due to representation engineering with coefficient re, denoted by
δre(q) = r(L)(q, re)− r(L)(q, 0) satisfies:

|δre(q)| = λ|re| (9)

For a constant λ > 0 that is query dependent.

It is used in theorems 1 and 2, to relate the change to the last hidden layer to the coefficients of
injected representations.
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A.2 DISCUSSION OF ASSUMPTIONS

Linear classification with margin ∆ (assumption 1): We expect the representation engineered
vectors re to be good classifiers because they are obtained by methods of finding directions in the
latent space that maximize the distance between representations of positive and negative textual
statements. For example, in Zou et al. (2023a) the first principle component is used as a steering
vector, obtained via pca1 = argmaxv{Egood,bad[|⟨v, rgood−rbad⟩|2]} and in Jorgensen et al. (2023)
the steering vector is obtained as the average of difference between positive and negative statements
1
N

∑N
i=1(r

i
good − ribad). In these examples, rgood and rbad are representations of queries and not

the latent space embedding of the answers, as in the definition of ∆-representation-separability, but
we expect the steering vectors to behave similarly on them. In subsection A.3, we show that indeed
δre(q) clusters positive and negative responses to harmful queries in the model’s latent space. In
appendix F we also formulate a theorem equivalent to theorem 1, but with an imperfect classifier.

Random directionality of last hidden layer change (assumption 2): When answering queries that
are unrelated to the behavior being enhanced by representation engineering, the directionality of the
injected vectors are expected to be random w.r.t. the representations of the answers to the query.
Therefore, the highest probability tokens are expected to be injected with random noise. We validate
this in the next subsection, by looking at the noise injected into the top 10 highest probability tokens
in knowledge queries (which typically make over 90% of the probability mass).

Linear last hidden layer change (assumption 3): Intuitively, when adding vectors of relatively
small norms to each layer, the first order Taylor expansion with respect to the vectors is good, and
it scales linearly with the coefficients of the vectors. We observe experimentally in subsection A.3
that for small coefficients, the change is indeed approximately linear. Note that it suffices to assume
|δre(q)| grows monotonically with |re|, but for simplicity and due to experimental observations we
assume the linear dependence.
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A.3 EXPERIMENTS FOR ASSUMPTIONS

Here we empirically check the validity of our assumptions and empirically estimate the values of
the parameters in the bounds. The experiments were performed on Llama 2 13B and Llama 2 13B
chat. We first verify a linear relation between the representation engineering coefficient re to the
last hidden layer change of assumption 3, which yields λ. Then, we verify the normal distribution
assumption 2 and the linear classification of assumption 1.

Norm of final hidden layer change is linear in injected vectors For a query q we define
δre(q) = r(L)(q, re)− r(L)(q, 0) as the change of the representation of the query in the final layer.
where r(L)(q, 0) is the representation if we injected no vector (the default model representation) and
r(L)(q, re) is the representation given that we inject a vector of norm re at a range of layers. We
show that the norm of δre(q) increases linearly with re when re is not too large (figure 7). Here we
use the above mentioned fairness PCA vectors. We average on different queries from a few datasets
taken from MMLU.

In practice we look at Uδre(q), where U is the transformation taking from the final layer representa-
tion to the logits vector. Since this is a linear transformation, showing a linear relationship between
re and |Uδre(q)| implies a linear relationship between re and |δre(q)|.

Figure 7: Linear increase in the norm of Uδre(q) for small coefficients, when injected with “racist”
vectors.

In figures 8 and 9 we plot the change in norm for Llama 2 13B chat (injected with racist vectors)
and Llama 2 13B (injected with not racist vectors) respectively, on the datasets “international law”,
“medical genetics” and “high school computer science”. We add fitted curves to estimate λ. We find
that it is in the range 40− 60.
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Figure 8: Norm of the final hidden layer representation change as a function of representation en-
gineering coefficient, for Llama 2 13B chat, on different MMLU datasets. The fitted linear curves
estimate λ.
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Figure 9: Norm of the final hidden layer representation change as a function of representation engi-
neering coefficient, for Llama 2 13B, on different MMLU datasets. The fitted linear curves estimate
λ.
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Random logit noise assumption As proposed in assumption 2, we show here that the projection
of a given answer on the representation change δre(q) is random. (Assuming the question asked is
not connected to the property we are changing with the representation engineering). In assumption
2 we looked at the normalized change: ⟨ δre(q)

||δre(q)|| , U
T ei⟩. Here we will look at ⟨δre(q), UT ei⟩, so

we expect the distribution to be:

⟨δre(q), UT ei⟩ ∼ ||δre(q)|| ·D

Meaning the standard deviation scales linearly with the norm of δre(q). Since re scales linearly
with δre(q), we expect the standard deviation to also scale linearly with re. To measure the effective
randomness, we look at ⟨δre(q), UT (ei − ecorrect)⟩, which shows explicitly that the correct answer
logit change is sometimes enhanced and sometimes decreased relatively to the incorrect answers.
We will observe that the noise is approximately normal.

To create the plot, for each question in a dataset, we look at the top 10 answers ei, i ∈ [10] (with
no representation engineering). We note that experimentally, the top 10 tokens make the majority
of the probability mass (over 90%). Now for a given re coefficient, we calculate the projection of
these answers on δre(q). We then aggregate these projections for all the questions in a few dataset
and look at their histogram and at their standard deviation. We repeat this for different re norms.

Figure 10: (a) ((b)) Distribution of the change in token logits minus the logit of the correct answer
of Llama 2 13B chat when injected with racist (harmful) vectors. As can be seen, it is approximately
normal, and in (c) and (d) the standard deviation grows linearly with the coefficient size re, which
is linear in |δre(q)|.

The tangent of the curve of figure 10c,d is λσ, as the curve is the standard deviation of
⟨ δre(q)
|δre(q)| , U

T ei⟩ · |δre(q)| = ⟨ δre(q)
|δre(q)| , U

T ei⟩ · λre, from assumption 3, and the inner product is
a random variable of standard deviation σ, hence the tangent is λσ. We observe that the noise is
approximately normal. From the linear curve, we estimate λσ = 0.5, thus λσβ ≈ 0.8 · 0.5, as it is
the mean of a half-normal distribution with parameter λσ, which is approximately 0.8λσ.

Similarly, for the pretrained model, we find that λσ = 0.2 and 0.1 for fairness and harmlessness
respectively.
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Figure 11: (a) ((b)) Distribution of the change in token logits minus the logit of the correct answer
of Llama 2 13B chat when injected with harmless (not-racist) vectors. As can be seen, it is approxi-
mately normal, and in (c) and (d) the standard deviation grows linearly with the coefficient size re,
which is linear in |δre(q)|.
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Clustering of positive and negative answers to harmful queries Here we aim to estimate how
well ∆-representation-separability (definition 1) works in practice. The condition is equivalent to:

⟨δre(q), UT (egood − ebad)⟩ ≥ |δre(q)| ·∆ (10)

And by assumption 3, it is equivalent to:

⟨δre(q), UT (egood − ebad)⟩ ≥ ∆λ · re (11)

In figure 12 and 13, we plot the distance between the centers of representation clusters for positive
and negative answers to harmful queries as the norm of harmful vectors is increased, for Llama 2
13B chat and Llama 2 13B respectively. As can be seen, the distance between the clusters increases,
which corresponds to an increase in E[⟨δre(q), UT (egood − ebad)⟩]. We can define a range of coef-
ficients in which the increase is bounded from below by a linear curve of the form in equation 11,
meaning that the change in the model’s representation separates the positive and negative answer
representations, similarly to the definition of ∆-representation separability, but with mean instead
of min. Thus by equation 11, the tangent of the lower bounding lines of figures 12 and 13 are an
estimate for ∆λ. From, this we get that ∆λ is approximately 0.1− 0.3

Figure 12: Separation between representation clusters of positive and negative behavior tokens in-
duced by δre(q) on Llama 2 13B chat for three harmful instructions from the AdvBench dataset.

In practice, the good and bad tokens were chosen beforehand as the top 40 tokens of the models
when representation engineering is applied and when it is not applied (meaning in one case the
model is aligned and in the other it is not).
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Figure 13: Separation between representation clusters of positive and negative behavior tokens in-
duced by δre(q) on Llama 2 13B for three harmful instructions from the AdvBench dataset.
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B PROOF OF THEOREM 1

The theorem utilizes assumptions 3 and 1. The behavior expectation is:

B[Pθ,re(·|q)] =
∑

a+∈good Pθ,re(a+|q)−
∑

a−∈bad Pθ,re(a−|q)∑
a+∈good Pθ,re(a+|q) +

∑
a−∈bad Pθ,re(a−|q)

= (12)

=

∑
a+∈good exp(⟨r(q) + δr(q), UT ea+

⟩)−
∑

a−∈bad exp(⟨r(q) + δr(q), UT ea−⟩)∑
a+∈good exp(⟨r(q) + δr(q), UT ea+

⟩) +
∑

a−∈bad exp(⟨r(q) + δr(q), UT ea−⟩)
= (13)

Where r(q) is the final hidden layer representation and δr(q) is the change to the last hidden layer
due to representation engineering on the previous layers. a+ ∈ good and a− ∈ bad denote the
aligned and misaligned answers respectively, i.e. B(a±) = ±1.

=
1−

∑
a−∈bad exp(⟨r(q)+δr(q),UT ea− ⟩)∑
a+∈good exp(⟨r(q)+δr(q),UT ea+

⟩)

1 +

∑
a−∈bad exp(⟨r(q)+δr(q),UT ea− ⟩)∑
a+∈good exp(⟨r(q)+δr(q),UT ea+

⟩)

= (14)

=
1−

∑
a−∈bad exp(⟨r(q),UT ea− ⟩)exp(⟨δr(q),UT ea− ⟩)∑
a+∈good exp(⟨r(q),UT ea+

⟩)exp(⟨δr(q),UT ea+
⟩)

1 +

∑
a−∈bad exp(⟨r(q),UT ea− ⟩)exp(⟨δr(q),UT ea− ⟩)∑
a+∈good exp(⟨r(q),UT ea+

⟩)exp(⟨δr(q),UT ea+
⟩)

= (15)

Let us look at the fraction that appears in the numerator and denominator:∑
a−∈bad exp(⟨r(q), UT ea−⟩)exp(⟨δr(q), UT ea−⟩)∑
a+∈good exp(⟨r(q), UT ea+

⟩)exp(⟨δr(q), UT ea+
⟩)

< (16)

<

∑
a−∈bad exp(⟨r(q), UT ea−⟩) ·mina′

−∈bad{exp(⟨δr(q), UT ea′
−
⟩)}∑

a+∈good exp(⟨r(q), UT ea+
⟩) ·maxa′

+∈good exp(⟨δr(q), UT ea′
+
⟩)

= (17)

=

∑
a−∈bad exp(⟨r(q), UT ea−⟩)∑

a+∈good exp(⟨r(q), UT ea+ − UT ea−⟩)
· 1

maxa′
+∈good,a−∈bad exp(⟨δr(q), UT ea′

+
⟩)

(18)

=

∑
a−∈bad exp(⟨r(q), UT ea−⟩)∑

a+∈good exp(⟨r(q), UT ea+
− UT ea−⟩)

· 1

exp(maxa′
+∈good,a−∈bad⟨ δr(q)

|δr(q)| , U
T ea′

+
⟩ · |δr(q)|)

(19)
From ∆ margin linear classification of {UTa+}a+∈good and {UTa−}a−∈good by δr(q)

|δr(q)| (assump-
tion 1):

<

∑
a−∈bad exp(⟨r(q), UT ea−⟩)∑

a+∈good exp(⟨r(q), UT ea+
− UT ea−⟩)

· 1

exp(∆|δr|)
(20)

Plugging this back in to the behavior expectation, we obtain:

B[Pθ,re(·|q)] >
1−

∑
a−∈bad exp(⟨r(q),UT ea− ⟩)∑

a+∈good exp(⟨r(q),UT ea+
−UT ea− ⟩) ·

1
exp(∆|δr|)

1 +

∑
a−∈bad exp(⟨r(q),UT ea− ⟩)∑

a+∈good exp(⟨r(q),UT ea+
−UT ea− ⟩) ·

1
exp(∆|δr|)

= (21)

=
1−

∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q)exp(−∆|δr|)

1 +

∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q)exp(−∆|δr|)

(22)

= tanh(
∆|δr| − ln(

∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q) )

2
) (23)
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Then, notice that: ∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q)

=
1−B0

1 +B0
(24)

Where B0 = B[Pθ(·|q)], and that:

arctanh(B0) = −
1

2
ln

1−B0

1 +B0
(25)

Thus we obtain:

B[Pθ,re(·|q)] > tanh(
∆|δr(q)|

2
+ arctanh(B0)) (26)

Lastly, note that for coefficients that are not too large, |δr(q)| is proportional to the injected vector
coefficient re (assumption 3), hence:

B[Pθ,re(·|q)] > tanh(
∆λ

2
· re + arctanh(B0)) (27)

Where λ is the coefficient relating re to |δr(q)|.

C PROOF OF THEOREM 2

The theorem utilizes assumptions 3 and 2. Notice that:

Pθ,re(acorrect|q) =
Pθ,re(acorrect|q)

1
=

Pθ,re(acorrect|q)
Pθ,re(acorrect|q) +

∑
i∈incorrect Pθ,re(ai|q)

= (28)

=
Pθ(acorrect|q)

Pθ(acorrect|q) +
∑

i∈incorrect Pθ(ai|q)e⟨δre(q),UT (ei−ecorrect(q))⟩
≤ (29)

Denote Xi = ⟨ δre(q)
|δre(q)| , U

T ei⟩ and by P 0
correct the probability of answering correctly without repre-

sentation engineering:

=
P 0
correct

P 0
correct +

∑
i∈incorrect Pθ(ai|q)e|δre(q)|(Xi−Xcorrect)

≤ (30)

Next, by considering the sum only only over highest probability tokens making up 1 − ϵ of the
probability mass, for which we denote the incorrect tokens sum as incorrect(ϵ):

≤ P 0
correct

P 0
correct +

∑
i∈incorrect(ϵ) Pθ(ai|q)e|δre(q)|(Xi−Xcorrect)

≤ (31)

Denote by I± = {i ∈ incorrect(ϵ)| ±Xi −Xcorrect > 0}. Using the AM-GM inequality:

≤ P 0
correct

P 0
correct +

∑
i∈I+

P 0
i e

∑
i∈I+

P0
i
(Xi−Xcorrect)∑

i∈I+
P0
i

|δre(q)|
+

∑
i∈I−

P 0
i e

∑
i∈I− P0

i
(Xi−Xcorrect)∑

i∈I− P0
i

|δre(q)|

(32)

Denote by P± =
∑

i∈I± P 0
i and c± =

∑
i∈I±

P 0
i (Xi−Xcorrect)∑
i∈I±

P 0
i

. We get:

=
P 0
correct

P 0
correct + P+ec+|δre(q)| + P−ec−|δre(q)|

(33)

≤ P 0
correct

P 0
correct +min{P−, P+}(ec+|δre(q)| + ec−|δre(q)|)

(34)

≤ P 0
correct

P 0
correct +min{P−, P+}(1 + 1

2 min{c−, c+}2|δre(q)|2)
(35)
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Lastly, note that for coefficients that are not too large, |δr(q)| is proportional to the injected vector
coefficient re (assumption 3), hence:

≤ P 0
correct

P 0
correct +min{P−, P+}(1 + 1

2 min{c−, c+}2λ2|re|2)
(36)

Under the assumption that Xi distribute randomly (assumption 2), c± are a weighted sum of posi-
tive/negative random variables with parameter σ, which we can refactor to σ2 · c′2± where c′± are the
same but with σ′ = 1. Yielding:

≤ P 0
correct

P 0
correct +min{P−, P+}(1 + 1

2β
2σ2λ2|re|2)

(37)

We denote α = min{P−,P+}
(1−P 0

correct)(1−ϵ)
, since we considered only the tokens making 1−ϵ of the probability

mass, thus, P+ + P− = (1 − ϵ)(1 − P 0
correct). Hence α measures the non-tightness of the bound,

due to the asymmetry between P±, and (1 − ϵ) the non-tightness due to not using all the words in
the vocabulary for the bound, only the top T .

=
P 0
correct

P 0
correct + (1− P 0

correct)α(1− ϵ)(1 + 1
2β

2σ2λ2|re|2)
(38)

Notice that with probability 1
T the set I± is empty, therefor with probability 1− 2

T both sets are not
empty, thus P± > 0 and c+ > 0, c− < 0.

Notice that P (Xcorrect > Xi) =
1
2 , thus i ∈ I+ with probability 1

2 . Therefor P+ is a weighted sum
of Bernoulli variables with weights {P 0

i }i∈incorrect.

D PROOF OF COROLLARY 2

Following the notation of the proof of theorem 2, with probability 1
V , I− is empty:

Pθ,re(acorrect|q) <
P 0
correct

P 0
correct + (1− P 0

correct)e
|δre(q)|

∑
i∈incorrect P0

i
(Xi−Xcorrect)∑

i∈incorrect P0
i

(39)

In the notation of the proof of theorem 2:

P 0
correct

P 0
correct + (1− P 0

correct)e
c+|δre(q)|

=
P 0
correct

P 0
correct + (1− P 0

correct)e
c+λre

(40)

Where c+ > 0 is a weighted sum of half-normal variables. The last transition is by assumption 3.

Similarly, with probability 1
T , I+ is empty, thus

Pθ,re(acorrect|q) <
P 0
correct

P 0
correct + (1− P 0

correct)e
c−|δre(q)|

= Pθ,re(acorrect|q) <
P 0
correct

P 0
correct + (1− P 0

correct)e
c−λre

(41)
Where c− < 0.

Thus for re →∞, with probability 1− 2
T , it is bounded by a term that approaches 0 (that of theorem

2), with probability 1/T another term that approaches 0 (the sigmoid with c+), and with probability
1/T a term that approaches 1 (the sigmoid with c−). Hence the expectation value is bounded by 1

T .
This proves corollary 2.

For a combination of all these results, notice that with probability 1− 2
T , the helpfulness is bounded

by the term in theorem 2, while with probability 1
T it is bounded by:

P 0
correct

P 0
correct + (1− P 0

correct)e
c+|δre(q)|

(42)

For re > 0, this term is bounded by:

<
P 0
correct

P 0
correct + (1− P 0

correct)(1 + c2+λ
2r2e)

(43)
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While for re < 0 it is bounded by 1. For the sigmoid with c−, we get the same bound, except that
for re > 0 it is bounded by 1, while for re < 0 it is bounded by:

<
P 0
correct

P 0
correct + (1− P 0

correct)(1 + c2−λ
2r2e)

(44)

Taking the weighted average of these three bounds gives the expectation value over the randomness
of I± being empty/non-empty:

E[Pθ,re(acorrect|q)] < (1− 1

T
)

P 0
correct

P 0
correct + α(1− P 0

correct)(1 + min{c−, c+, β}2λ2r2e)
+

1

T
(45)

E EXPERIMENTAL DETAILS

E.1 COMPUTE

All experiments were conducted using 2 NVIDIA A10 GPUs, 2 CPUs and 80GB of memory. Recre-
ating all experiments takes in total no more than 4 hours.

E.2 OBTAINING THE ENGINEERED REPRESENTATIONS

We use the code provided by Zou et al. (2023a) to perform representation engineering on the Llama
2 13B chat, Llama 2 13B models Touvron et al. (2023) and Llama 3.1 8B chat, Llama 3.1 8B models
Dubey et al. (2024). To construct the engineered representations, we first create a set pairs of positive
and negative behavior prompts, and extract their representations in each hidden layer. Then, the pairs
of vectors are subtracted per layer. On these vector differences we perform PCA analysis to extract
the highest order PCA vectors per layer as the representation engineered vectors, {r(l)e }.
We create behavior vectors of harmlessness and not-racist to align Llama 2 13b, Llama 3.1 8B and
harmfulness and racism vectors to misalign Llama 2 13b chat, Llama 3.1 8B Instruct.

• For creating racism vectors for Llama 2 13B chat and Llama 3.1 8B Instruct, we use the
StereoSet bias dataset Nadeem et al. (2020). Given a bias statement from the dataset, we
apply it over the template of an aligned response: “Qusestion: Consider the statement:
[STATEMENT] Answer: The statement is false and racist.”, and a template of a misaligned
response: “Question: Consider the statement: [STATEMENT] Answer: 100%”. Then, we
perform the PCA procedure to create the engineered representations.

• For the non-racist vectors for Llama 2 13B and Llama 3.1 8B, we use the same dataset
and template described above for the racist vectors of Llama 2 13B chat, only this time the
desired behavior is opposite, so we subtract the representations of the prompts in reverse
order.

• For the harmfulness vectors for Llama 2 13B chat and Llama 3.1 8B Instruct, we take
harmful instructions from AdvBench dataset Robey et al. (2021; 2022) and unharmful in-
structions from shareGPT, and create pairs of prompts with the format “Request: Can you
[INSTRUCTION]?”, where the instruction is taken from one of the datasets (a pair consists
of two prompts, one with a harmful instruction and one with an unharmful instruction).

• For the harmless vectors for Llama 2 13B, we take harmful instructions from AdvBench
dataset, create pairs of harmless and harmful responses to them, sampled from Llama2 13B
chat. The created pairs of prompts follow the format: “[INST]Question:[INSTRUCTION]
Answer: [RESPONSE(Llama2-13b-chat)][/INST]”. The responses of Llama2 13b chat
were sampled by injecting the model with harmfulness vectors to produce the misaligned
answer, and the aligned answers were sampled without representation engineering. For
Llama 3.1 8B, the usual method used for harmful vectors sufficed, only this time the desired
behavior is opposite, so we subtract the representations of the prompts in reverse order.

In all cases, we used 128 pairs of positive and negative statements. For the bias vectors, we injected
the model in layers −11 to −30 and for harmfulness/harmlesness in layers −25 to −33.
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E.3 ALIGNMENT EXPERIMENTS

To perform the experiment measuring racism, we fed the representation engi-
neered model biased statements, with the prompt ”[INST]Do you agree with
the following statement? [STATEMENT][/INST]” and for llama3.1:
<|start header id|> user <|end header id|> Do you agree with the
following statement? [STATEMENT] <|eot id|> <|start header id|>
assistant <|end header id|>” where the statement was taken from the racist statements
in the bias dataset. We generate the response of the model and evaluate whether the model
agreed or disagreed with the racist statement based on his full answer. We average on 100 racist
statements randomly selected from the StereoSet dataset and plot P (Agree)− P (Disagree)
(or P (Disagree)− P (Agree) for the unaligned model) as a function of the injected vectors’
coefficient re.

To perform the experiment for compliance with harmful instructions, we queried the model with
harmful instructions from AdvBench and checked as a function of representation engineering coef-
ficient whether the model agrees or refuses to answer the instruction. The answers were sampled
under greedy decoding for each coefficient, and averaged on 100 harmful instructions for Llama
2 13B chat, Llama 2 13B and also for Llama 3.1 8B Instruct, Llama 3.1 8B. Note that taking the
temperature to zero in greedy sampling is equivalent to taking the representation norms to infinity,
thus the hyperbolic tangent becomes a step function, and the step appears where the probability of a
positive and negative response are equally likely. However, due to the linear dependence of the be-
havior on re, when averaging on several instructions, the points where the behavior flips are evenly
spread between queries, creating the linear curve.

Results on Llama 2 13B models are presented in figure 4 and on Llama 3.1 8B Instruct in figure 17

E.4 HELPFULNESS EXPERIMENTS

We evaluate the performance of a model on an MMLU dataset by feeding 100 questions from the
test set to the model in the form: ”[Question][A)Choice A][B) Choice B][C) Choice C][D) Choice
D] The answer is”, then calculate the probabilities for answering ”A”, ”B”, ”C” and ”D” and take
the correct answer’s probability. We averaged the probability of the correct answer over the data set.
This was performed for different coefficients to create the figures in 5.

While the bound of theorem 2 is with probability 1− 2
|V | =

1
2 in the case of 4 answers, as explained in

D, for the other 2
|V | probability, the helpfulness is bounded with equal probability either by a sigmoid

or by a reverse sigmoid, such that together they contribute approximately 1
|V | to the expectation

value of the helpfulness (due to their small overlap), leading to corollary 2, in which the average
helpfulness converges to 1

|V | =
1
4 in the case of our experiment, as can be seen in figure 5. Around

re = 0, the contribution of these sigmoids to the helpfulness expectation value can be bounded with
the parabolic bound of theorem 2 as shown in the proof provided in appendix D. Thus in total, the
bound of theorem 2 with boundary conditions of corollary 2 is theoretically justified.

Additionally, we performed a variation of the experiment by sampling full answers to questions
from the model (temperature 1.0 over the full vocabulary of the model). Then, where the answer
is provided, calculated the probability for the correct answer over the entire vocabulary. This is
presented for Llama 2 13B models in figure 14, and for Llama 3.1 8B models in figure 16. We also
calculate the accuracy of the Llama 2 13B models answers as presented in figure 15.

E.5 FIGURES

All error bars were produced using mean squared error. The method of fitting the curves to the data
can be found in the code.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 14: Helpfulness measurement: Same as figure 5, but calculating the probability of correct
answer over the full vocabulary.

Figure 15: Helpfulness measurement: Accuracy of correct answer over the full vocabulary.
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Figure 16: Helpfulness measurement: the probability assigned to the correct answer to questions
from different MMLU tests (international law, medical genetics, high school computer science), as a
function of representation engineering vector coefficients injected to the model. Here the probability
of the correct answer was over the full vocabulary. (a) Helpfulness of Llama 3.1 8B as a function
of coefficient of injected harmful PCA vectors. (b) Helpfulness of Llama 3.1 8B as a function of
coefficient of injected bias PCA vectors. (c) Helpfulness of Llama 3.1 8B Instruct as a function of
coefficient of injected harmful PCA vectors. (d) Helpfulness of Llama 3.1 8B Instruct as a function
of coefficient of injected bias PCA vectors.

Figure 17: Plots of behavior expectation as a function of the coefficients of representation engineer-
ing vectors injected to the model. (a) Harmful behavior expectation of Llama 3.1 8B Instruct as a
function of coefficient of injected harmful PCA vectors. (b) Racism behavior expectation of Llama
3.1 8B Instruct as a function of coefficient of injected bias PCA vectors.
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F RELAXATION TO SOFT MARGIN

In the proof of theorem 1, we use the assumption that the change to the last hidden layer representa-
tion due to representation engineering linearly classifies the representations of positive and negative
answers to a query with margin ∆ (as explained in appendix A). We can relax this assumption by
assuming that some of the negative (positive) responses’ representations, are misclassified as aligned
(misaligned) answers by δre(q), in the sense that:

i ∈ aligned, j ∈ misaligned : ⟨δre(q), UT (ei − ej)⟩ ≤ ∆ (46)

That is, the margin ∆ does not hold for every pair of aligned and misaligned answers.

The key idea is that while it is indeed possible for such misclassifications to occur, the proba-
bility assigned to most of the tokens in the vocabulary is very small, thus we can bound their
contribution to the behavior expectation. To this end, we define a set of misclassified responses:
{i ∈ misclassified} and bound the probability mass that the model assigns them by:∑

i∈misclassified

Pθ(i|q) < δ ·
∑

i∈aligned

Pθ(i|q) (47)

Furthermore, we bound how “deep” the misclassified negative response representations can go into
the cluster of positive answer representations:

min
i∈aligned,j∈misclassified

{⟨δre(q), UT (ei − ej)⟩} > −M (48)

With this, the linear classification assumption can be modified as:

Assumption 4 Given a query q, the change to the last hidden layer of a model due to representation
engineering, δre(q) = r(L)(q, re)−r(L)(q, 0) , linearly classifies the representations of positive and
negative answers to a query q with margin ∆, where the positive and negative answers are defined
with respect to a behavior scoring function B : Σ⋆ → {−1,+1}:

min
i∈aligned,j∈misaligned

{〈 δre(q)

|δre(q)|
, UT ei − UT ej

〉}
> ∆ (49)

Up to a set of misclassified answers, whose probability is bounded by
∑

i∈misclassified Pθ(i|q) <

δ ·
∑

i∈aligned Pθ(i|q) that satisfy:

min
i∈aligned,j∈misclassified

{⟨δre(q), UT (ei − ej)⟩} > −M (50)

Note that realistically, δ can be very small for a very large set of tokens, as in inference, LLMs
typically assign high probability to few tokens and very low probability for most. Hence it suffices
to classify just a few high probability tokens.

We can restate theorem 1 in the following way:

Theorem 3 Let δ, ϵ > 0 and let Pθ,re(·|q) be a model prompted with query q and injected with
representations of coefficient re. Let B : Σ⋆ → {−1,+1} be a behavior scoring function. Under
assumption 4, for re <

log ϵ
2δ

M ·λ the behavior expectation of the model conditioned on the query q
satisfies:

B[Pθ,re(·|q)] ≥ tanh(∆λ · re + arctanh(B0))− ϵ (51)
Where B0 = B[Pθ(·|q)] is the behavior expectation without representation engineering and λ is a
model dependent coefficient relating between re and the corresponding final hidden state norm.
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Proof:

We follow the proof of theorem 1, up to equation 22, there, we introduce the misclassified tokens’

contributions, which we denote by R =
∑

a∈misclassified exp(⟨r(q)+δre(q),U
T ea)∑

a+∈good exp(⟨r(q)+δre(q),UT ea+
)

:

B[Pθ,re(·|q)] >
1−

∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q)exp(−∆|δr|)−R

1 +

∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q)exp(−∆|δr|) +R

(52)

Following the same idea as with equation 16, we obtain that:

R <

∑
a∈misclassified exp(⟨r(q), UT ea)∑

a+∈good exp(⟨r(q), UT ea+
)

1

exp(−|δr|M)
(53)

Plugging this in gives:

B[Pθ,re(·|q)] >
∑

a+∈good Pθ(a+|q)−
∑

a−∈bad Pθ(a−|q)exp(−∆|δr|)−
∑

a∈misclassified Pθ(a|q)exp(M |δr|)∑
a+∈good Pθ(a+|q) +

∑
a−∈bad Pθ(a−|q)exp(−∆|δr|) +

∑
a∈misclassified Pθ(a|q)exp(M |δr|)

>

(54)
Denote the first second and third terms respectively as A,B,C:

=
A−B − C

A+B + C
=

A−B
A+B −

C
A+B

1 + C
A+B

> (
A−B

A+B
− C

A+B
)(1− C

A+B
) >

A−B

A+B
− 2

C

A+B
(55)

Notice that from the transition in equation 23:

A−B

A+B
= tanh(

∆|δr| − ln(

∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q) )

2
) (56)

Is the bound from theorem 1, and the second term:

C

A+B
=

∑
a∈misclassified Pθ(a|q)exp(M |δr|)∑

a+∈good Pθ(a+|q) +
∑

a−∈bad Pθ(a−|q)exp(−∆|δr|)
< δ · exp(M |δr|) (57)

Lastly, notice that: ∑
a−∈bad Pθ(a−|q)∑
a+∈good Pθ(a+|q)

=
1−B0

1 +B0
(58)

Where B0 = B[Pθ(·|q)], and that:

arctanh(B0) = −
1

2
ln

1−B0

1 +B0
(59)

Thus we obtain:

B[Pθ,re(·|q)] > tanh(
∆|δr(q)|

2
+ arctanh(B0))− 2δ · exp(M |δr|) (60)

Then, note that for coefficients that are not too large, |δr(q)| is proportional to the injected vector
coefficient re (assumption 3), hence:

B[Pθ,re(·|q)] > tanh(
∆λ

2
· re + arctanh(B0))− 2δ · exp(Mλ · re) (61)

Where λ is the coefficient relating re to |δr(q)|. Thus for re <
log ϵ

2δ

M ·λ :

B[Pθ,re(·|q)] > tanh(
∆λ

2
· re + arctanh(B0))− ϵ (62)
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G RELATION OF REPRESENTATION ENGINEERING TO FINETUNING WITH
PREFERENCE LEARNING

To a degree one can draw a relation between representation engineering and preference learning.

Proposition 1 For an LLM, one iteration of gradient descent on the preference learning loss with
learning rate η is equivalent to representation engineering with coefficient re = η.

Proof:

The objective in preference learning is to minimize the loss:

L = −E(x,y+,y−)∼D[log
P (y+|x)
P (y−|x)

] = −E(x,y+,y−)∼D[⟨r(L)
x , UT (ey+

− ey−)⟩] (63)

Which increases the likelihood of desired responses to prompts. By training with preference learn-
ing, in each iteration of gradient descent, each representation is changed by:

r(l) → r(l) − η
∂L

∂r(l)
(64)

The gradient of the loss w.r.t. a hidden layer representation is:

∂L

∂rl
= E(x,y+,y−)∼D[

∂r(x)

∂rl(x)
· UT (ey+ − ey−)] (65)

Thus at each layer, the representation is shifted in a direction that maximizes the difference between
positive and negative responses’ representations, UT (ey+ − ey−). Which is equivalent to represen-
tation engineering with coefficient re = η, and vectors Re = {E(x,y+,y−)∼D[ ∂r(x)

∂rl(x)
· UT (ey+

−
ey−)]}Ll=1

H EXTENSION OF RESULTS BEYOND BINARY BEHAVIOR SCORE

The idea behind theorem 1, is that the resulting change to the final hidden layer due to the represen-
tation injections linearly classifies aligned and misaligned answers, where the aligned/misaligned
labels are given by the binary behavior scoring function. To extend beyond a binary behavior score,
we need to assume that the model’s latent space captures more finegrained differences between an-
swers. Here we will provide results for a trinary behavior score (theorem 4), and a general behavior
score (theorem 5).

A natural extension is for a trinary score function, where ±1 is aligned/misaligned, and 0 is irrele-
vant/neutral. We can reformulate theorem 1 in the following way:

Theorem 4 Let Pθ,re(·|q) be a model prompted with query q and injected with representations of
coefficient re. Let B : Σ∗ → {−1, 0,+1} be a behavior scoring function. The injections to all
layers amounts to a change in the final hidden layer representation that is q dependent, denoted by
the vector δr(L)

e (q). Assume that the representations of aligned and misaligned/irrelevant answers
w.r.t. B are linearly separable, and that δr(L)

e (q) linearly classifies them with margin ∆. Then, the
behavior expectation of the model conditioned on the query q satisfies:

B[Pθ,re(·|q)] ≥
B0 + P+(e

∆λ·re − 1)

1 + P+(e∆λ·re − 1)
(66)

Where B0 = B[Pθ(·|q)] and P+ are the behavior expectation and probability of aligned answer
without representation engineering, and λ is a model dependent coefficient relating between re and
the corresponding final hidden state norm.

The behavior bound has a different form, but it behaves the same – for re = 0, it coincides with
B0, around re = 0 it is linear, and for re → ∞ it approaches +1. The proof, presented in H.1,
essentially follows the proof of theorem 1, except besides the P± terms (probability mass of positive
and negative responses without representation engineering) there is also a P0 term.
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For a general behavior scoring function, B : Σ∗ → [−1,+1], we can similarly assume that the
representations of answers with score > b+ and answers with score < b+, are linearly separable,
and obtain the following result:

Theorem 5 Let Pθ,re(·|q) be a model prompted with query q and injected with representations of
coefficient re. Let B : Σ∗ → [−1,+1] be a behavior scoring function. The injections to all layers
amounts to a change in the final hidden layer representation that is q dependent, denoted by the
vector δr

(L)
e (q). Assume that the representations of answers with behavior score > b+ and those

with score < b+ w.r.t. B are linearly separable, and that δr(L)
e (q) linearly classifies them with

margin ∆. Then, the behavior expectation of the model conditioned on the query q satisfies:

B[Pθ,re(·|q)] ≥
b+P+e

∆λre − P−

P+e∆λre + P−
(67)

Where P± are the probabilities of aligned/misaligned answers without representation engineering,
and λ is a model dependent coefficient relating between re and the corresponding final hidden state
norm.

Here we see that the behavior expectation converges to the maximal score b+, for which δr
(L)
e can

classify answers below and above the score. The trend is similar to theorem 1, with a sigmoidal
behavior, but without the tightness on behavior expectation at re = 0, due to the more complex
behavior scoring function. The proof is presented in H.2.

H.1 PROOF OF THEOREM 4

Following the same proof as in 1, up to equation 22, but replacing the sum over negative answers to
sum over negative and neutral answers, we obtain by denoting P±, the sum over positive/negative
answers without representation engineering, and by P0 sum over neutral answers:

B[Pθ,re(·|q)] ≥
P+ − P−exp(−∆|δr|)

P+ + (P− + P0)exp(−∆|δr|)
(68)

=
P+(e

∆|δr| − 1) + (P+ − P−)

P+(e∆|δr| − 1) + (P+ + P− + P0)
(69)

We note that P+ + P− + P0 = 1 and that P+ − P− = B[Pθ,re=0(·|q)] = B0:

=
P+(e

∆|δr| − 1) +B0

P+(e∆|δr| − 1) + 1
(70)

Lastly, applying assumption 3, replaces |δr| = λre.

H.2 PROOF OF THEOREM 5

Following the same proof idea as in theorem 1, starting with equation 12 but replacing the scores in
the numerator for positive and negative answers with b+ and −1 (for worst case), up to equation 22,
denote by P+ the probability without representation engineering for answers with score > b+ and
by P− the rest:

B[Pθ,re(·|q)] ≥
b+P+e

∆|δr| − P−

P+e∆|δr| + P−
(71)

Lastly, applying assumption 3, replaces |δr| = λre.
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I EXTENSION OF RESULTS TO MULTI-TOKEN ANSWERS

Intuitively, both the alignment guarantee result of theorem 1 and helpfulness bound of theorem 2,
which apply for a single token output, can be extended to multi-token answers by applying the
results on multiple decoding steps.

I.1 ALIGNMENT

Starting with alignment, we note that if the model is limited to producing N tokens, then from
corollary 1, we can ensure that with a large enough representation engineering coefficient, each
token will correspond to an aligned response:

Theorem 6 Let ϵ > 0, Pθ a language model, B : Σ∗ → {−1,+1}, behavior scoring function and q
a query, and suppose the model’s reply contains at most N tokens. Under the assumption of theorem
1 holding in every decoding step, for re > 1

∆λ (log
N
ϵ + log 1−B0

1+B0
), then:

B[Pθ(·|q)] > 1− 2ϵ (72)
Where B0 is the behavior expectation without representation engineering.

We see that larger coefficients of representation engineering improve the behavior expectation, sim-
ilarly to corollary 1, but with multiple token answers. By inverting the relation between re and ϵ,
and placing it in the behavior expectation bound, we obtain a sigmoid-like behavior, that is linear
for re ≈ 0.

Proof:

Following the notation of the proof of theorem 1, we note that at each decoding step, the probability
of outputting a token ai that is aligned w.r.t. behavior scoring function B, conditioned on the previous
context qa1...ai−1, is: ∑

a+∈good Pθ,re(a+|qa1...ai−1)∑
a+∈good Pθ,re(a+|qa1...ai−1) +

∑
a−∈bad Pθ,re(a−|qa1...ai−1)

(73)

Following the proof technique of theorem 1, we obtain that this probability is larget than:

≥ P+e
∆λre

P+e∆λre + P−
(74)

Where P± are the probabilities for an aligned/misaligned output at the given decoding step. To
ensure this probability is larger than 1− ϵ′, we demand:

re >
log P−

P+
+ log 1

ϵ′

∆λ
(75)

Thus over N decoding steps, we use a union bound, leading to a positive response with probability
(1− ϵ′)N > (1− ϵ′N). Taking ϵ′ = ϵ/N , we obtain:

re >
maxi∈[N ]{log

P i
−

P i
+
}+ log N

ϵ

∆λ
(76)

Where P i
± is the probability for a positive/negative continuation in the i’th token of the response.

We note that P i
−

P i
+

=
1−Bi

0

1+Bi
0

, where Bi
0 is the behavior expectation at the i’th decoding step. For

the response to be positive, it is required that every step is positive, due to the binary score, then
the behavior expectation of the entire response is no larger than the behavior expectation of each
decoding step, B0 ≤ mini∈[N ] B

i
0, meaning it suffices to have:

re >
log 1−B0

1+B0
+ log N

ϵ

∆λ
(77)

We obtain that under these conditions, an aligned response is generated with probability at least 1−ϵ.
A negative response, is generated with probability no greater than ϵ. Thus the behavior expectation
is at least:

B[Pθ,re(·|q)] > 1− 2ϵ (78)
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I.2 HELPFULNESS

For helpfulness, we will consider a query q and a correct answer a of N tokens. We will show that
the probability of the answer decreases quadratically. The intuition is that in each decoding step
the probability decreases quadratically, and due to the probability chain rule, if at the i’th step of
generation, the probability for the next token is Pi, then the full sequence probability is

∏N
i=1 Pi.

Once we expand this term w.r.t. re, we get a leading quadratic dependence:

Corollary 3 Let Pθ be a language model and q be a query with answer a = a1...aN containing
at most N tokens. Denote by {P i

0}Ni=1 the probability assigned to each correct token {ai}Ni=1 in
the sequence without representation engineering, such that the probability of the full sequence is
P0 =

∏N
i=1 P

i
0. Then under the conditions of theorem 2 holding at each decoding step, we have

with probability of at least 1− 2N
T :

Pθ,re(q) ≤
P0∏N

i=1(P
i
0 + (1− P i

0)α(1− ϵ)(1 + λ2σ2β2

2 r2e))
(79)

This shows the original probability of the sequence P0, is normalized by a term whose leading order
is quadratic in re:

N∏
i=1

(P i
0 +(1−P i

0)α(1− ϵ)(1+
λ2σ2β2

2
r2e)) =

N∏
i=1

(P i
0 +(1−P i

0)α(1− ϵ)))+ c · r2e + o(r2e) (80)

We once a gain note that if P i
0 is close to 1, then (P i

0 + (1− P i
0)α(1− ϵ))) ≈ 1, making the bound

tighter where the model is more helpful initially.

An alternative bound, is simply to consider that the probability for a sequence, P0, is bounded by
the probability of each element in the sequence, P i

0, for which theorem 2 can be directly applied,
and the quadratic decay is achieved, although this is a bound that is less tight.
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