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ABSTRACT

Endovascular robots have been actively developed in both academia and indus-
try. However, progress toward autonomous catheterization is often hampered by
the widespread use of closed-source simulators and physical phantoms. Addi-
tionally, the acquisition of large-scale datasets for training machine learning al-
gorithms with endovascular robots is usually infeasible due to expensive medical
procedures. In this paper, we introduce CathSim, the first open-source simula-
tor for endovascular intervention to address these limitations. CathSim empha-
sizes real-time performance to enable rapid development and testing of learning
algorithms. We validate CathSim against the real robot and show that our simu-
lator can successfully mimic the behavior of the real robot. Based on CathSim,
we develop a multimodal expert navigation network and demonstrate its effec-
tiveness in downstream endovascular navigation tasks. The intensive experimen-
tal results suggest that CathSim has the potential to significantly accelerate re-
search in the autonomous catheterization field. Our project is publicly available at
https://anonymous.4open.science/r/cathsim-E168.
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Figure 1: An overview of CathSim.
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Figure 2: The design architecture of CathSim.

1 INTRODUCTION

Endovascular interventions are commonly performed for the diagnosis and treatment of vascular dis-
eases. This intervention involves the utilization of flexible tools, namely guidewires, and catheters.
These instruments are introduced into the body via small incisions and manually navigated to spe-
cific body regions through the vascular system (Wamala et al., 2017). Endovascular tool navigation
takes approximately 70% of the intervention time and is utilized for a plethora of vascular-related
conditions such as peripheral artery disease, aneurysms, and stenosis (Padsalgikar, 2017). Further-
more, they offer numerous advantages over traditional open surgery, including less recovery time,
minimized pain and scarring, and a lower complication risk (Wamala et al., 2017). However, sur-
geons rely on X-ray imaging for visual feedback when performing endovascular tasks. Thus, they
are overly exposed to operational hazards such as radiation and orthopedic injuries. In addition, the
manual manipulation of catheters requires high surgical skills, while the existing manual solutions
lack of haptic feedback and limited visualization capabilities (Omisore et al., 2018).
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Recently, several robots have been developed to assist surgeons in endovascular intervention (Kun-
drat et al., 2021). This allows surgeons to perform endovascular procedures remotely (Mahmud
et al., 2016). However, most of the existing robotic systems are based on the follow-the-leader
(master-slave) convention, wherein navigation is still fully reliant on surgeons (Püschel et al., 2022).
Furthermore, the use of manually controlled robotic systems still requires intensive focus from the
surgeon, as well as a prolonged duration compared to its non-robotic counterpart (Jara et al., 2020).
We believe that to overcome these limitations, it is crucial to develop autonomous solutions for the
tasks involved in endovascular interventions.

In this paper, we introduce CathSim, a significant stride towards autonomous catheterization. Our
development of this open-source endovascular simulator targets the facilitation of real-time training
of machine learning algorithms, a crucial advancement over existing, often closed-source simulators
burdened with computational demands (See et al., 2016). CathSim distinguishes itself by focusing
on machine learning applicability, thereby overcoming common design restrictions found in other
simulators (Table 1). It boasts features essential for rapid ML algorithm development, such as easy
installation and gymnasium support, anatomically accurate phantoms including high-fidelity aor-
tic models from Elastrat Sarl Ltd., Switzerland, and a variety of aortic arch models for extensive
anatomical simulation. CathSim also achieves high training speeds, balancing computational de-
mand and efficiency, and integrates advanced aorta modeling with detailed 3D mesh representations
for realistic simulations. Additionally, it offers realistic guidewire simulation and compatibility with
AR/VR training through Unity integration, enabling advanced surgical training applications. More-
over, CathSim facilitates targeted algorithm development for specific aortic complications, thereby
enhancing the effectiveness of medical interventions. These features collectively position CathSim
as a versatile and invaluable asset in both surgical training and the development of groundbreaking
machine learning algorithms within the medical community.

Recognizing that autonomous catheterization is an emerging task within the machine learning do-
main, we introduce an expert trajectory solution as a foundational baseline. These expert trajecto-
ries model complex surgical procedures, offering a rich, practical learning context for developing
autonomous systems (Kiran et al., 2021). By enabling observational learning, these systems can
adeptly mirror expert maneuvers, significantly reducing the learning curve from novice to skilled
interventionists. CathSim’s risk-free, diverse, and dynamic simulation environment allows au-
tonomous systems to iterate and refine their performance safely, informed by expert actions (Li
et al., 2022). Our research demonstrates that leveraging expert-guided learning in a simulated set-
ting markedly enhances the effectiveness of downstream ML tasks in autonomous catheterization,
such as imitation learning and force prediction. The contributions of this work are twofold:

• Introduction of CathSim, an innovative, open-source endovascular navigation simulator,
specifically engineered for autonomous catheterization. It features real-world emulation,
realistic force feedback, rapid training capability, and is AR/VR ready, making it an essen-
tial asset for the ML community in medical simulations.

• Development of an expert trajectory network, along with a novel set of evaluation metrics,
to demonstrate its efficacy in pivotal downstream tasks like imitation learning and force
prediction, thus pushing the boundaries of ML in autonomous medical interventions.

2 RELATED WORK

Endovascular Simulator. Research on simulators for minimally invasive surgery categorizes the
simulation level into four distinct categories: synthetic, virtual reality, animal, and human ca-
daver (Nesbitt et al., 2016). Each type of simulation environment possesses unique advantages and
limitations, as detailed in numerous studies (Dequidt et al., 2009; Talbot et al., 2014; Sinceri et al.,
2015). The primary focus of these environments lies in trainee skills’ development (Nesbitt et al.,
2016; Talbot et al., 2014), path planning (Dequidt et al., 2009), and the enhancement of assistive
features, such as haptic feedback (Molinero et al., 2019). Recently, the use of synthetic simulators,
such as high-fidelity phantoms, has been investigated through the application of imitation learning
techniques (Chi et al., 2020). Simultaneously, other studies have utilized simulation environments
and tested their models on bi-dimensional synthetic phantoms (Faure et al., 2012; Lillicrap et al.,
2015; Dequidt et al., 2009; Talbot et al., 2014; Wei et al., 2012). Nevertheless, despite advancements,
challenges persist due to the physicality, real-time-factor, or closed-source nature of the simulators.
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Table 1: Endovascular simulation environments comparison.

Simulator Physics Engine Catheter AR/VR Force Sensing Open-source

Molinero et al. (2019) Unity Physics Discretized ✗ Vision-Based ✗
Karstensen et al. (2020) SOFA TB theory ✗ ✗ ✗
Behr et al. (2019) SOFA TB theory ✗ ✗ ✗
Omisore et al. (2021) CopelliaSim Unknown ✗ ✗ ✗
Schegg et al. (2022) SOFA TB theory ✗ ✗ ✗
You et al. (2019) Unity Physics Discretized ✗ Vision-Based ✗

CathSim (ours) MuJoCo Discretized ✓ ✓ ✓

Table 1 shows a comparison of current endovascular simulators. Unlike other simulators, CathSim
provides an open-source environment that is well-suited for training autonomous agents. Built on
MuJoCo (Todorov et al., 2012), CathSim offers real-time force sensing and high-fidelity, realistic
visualization of the aorta, catheter, and endovascular robots. In practice, CathSim can be utilized to
train reinforcement learning (RL) agents or serve as a skill training platform for interventionists.

Autonomous Catheterization. The advancement of machine learning has paved the way for ini-
tial results in autonomous catheterization. While initial research primarily concentrates on devising
supportive features (You et al., 2019), an evident shift towards higher degrees of autonomy has
emerged, such as semi-autonomous navigation (Yang et al., 2017). Several studies within this do-
main have employed deep RL techniques (Behr et al., 2019; Karstensen et al., 2020; Kweon et al.,
2021; Athiniotis et al., 2019; Omisore et al., 2020; 2021), typically exploiting images obtained dur-
ing fluoroscopy (Ji et al., 2011). Nonetheless, a number of approaches do not depend on RL. For
instance, several works (Qian et al., 2019; Cho et al., 2021; Schegg et al., 2022) have utilized the
Dijkstra algorithm (Dijkstra, 1959), following a centerline based navigation paradigm. A different
approach involves the use of breadth-first search (Fischer et al., 2022). Despite these promising
results, a significant portion of the research is still positioned at the lower end of the autonomy
spectrum (Yang et al., 2017), primarily relying on physical or closed-source environments.

Imitation Learning. Recent advancements in RL have enabled imitation learning to be accom-
plished based on human demonstration (Ho & Ermon, 2016). This is especially beneficial for
tasks requiring complex skills within dynamic environments, such as surgical tasks within evolv-
ing anatomies. Imitation learning frameworks have already been successfully deployed in executing
real-world tasks via robotic systems, such as navigation and manipulation (Tai et al., 2018; Finn
et al., 2016). Learning-based methods on demonstration have been employed in several studies
within the field of endovascular navigation (Rafii-Tari et al., 2014; 2013; Chi et al., 2018b;a; 2020).
These have been paired with the incorporation of hidden Markov models or dynamical movement
primitives (Saveriano et al., 2021), while recent works use generative adversarial imitation learn-
ing (Ho & Ermon, 2016). By utilizing insights from deep RL, the level of surgical autonomy could
potentially evolve towards task autonomy, wherein the robot, under human supervision, assumes a
portion of the decision-making responsibility while executing a surgical task (Dupont et al., 2021).

3 THE CATHSIM SIMULATOR

Fig. 1 and Fig. 2 shows the overview and system design of CathSim with four components: i) the fol-
lower robot, as proposed by Abdelaziz et al. (2019), ii) the aorta phantom, iii) the guidewire model,
and iv) the blood simulation and AR/VR. We choose MuJoCo as our foundation platform for two
reasons: First, MuJoCo is computationally efficient, making it an ideal choice for fast development.
Second, MuJoCo is well integrated with the machine learning ecosystem, offering researchers a fa-
miliar interface and accelerating algorithm development to address endovascular intervention chal-
lenges. Since there are several methods to simulate each component in our system, it is a challenging
task to find the optimal combination. We design our system such that it is modular, upgradable, real-
time, and extendable. Please see the Appendix A for more design information.

Simulation Model. Although our CathSim has several components, we assume that all compo-
nents are built from rigid bodies (instead of soft bodies). This is a well-known assumption in many
state-of-the-art simulators to balance the computational time and fidelity of the simulation (Faure
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et al., 2012; Todorov et al., 2012). We employ rigid bodies, governed by the general equations of
motion in continuous time, as follows:

Mv̇ + c = τ + JT f . (1)

where M denotes the inertia in joint space, v̇ signifies acceleration, and c represents the bias force.
The applied force, τ , includes passive forces, fluid dynamics, actuation forces, and external forces.
J denotes the constraint Jacobian, which establishes the relationship between quantities in joint and
constraint coordinates. The Recursive-Newton-Euler algorithm (Featherstone, 2014) is employed to
compute the bias force c, while the Composite Rigid-Body algorithm (Featherstone, 2014) is used to
calculate the joint-space inertia matrixM . Forward kinematics are utilized to derive these quantities.
Subsequently, inverse dynamics are applied to determine τ using Newton’s method (Todorov, 2011).

(a) Aorta (b) Guidewire (c) Blood

Figure 3: The visualization of the aorta, guidewire and blood in our simulator.

Aorta. We scan four detailed 3D mesh representations of aortic arch models, which are created using
clear, silicone-based anthropomorphic phantoms (manufactured by Elastrat Sarl Ltd., Switzerland).
This is followed by the concave surface decomposition into a collection of near-convex shapes us-
ing the volumetric hierarchical approximate decomposition (V-HACD) (Mamou & Ghorbel, 2009),
resulting in a set of convex hulls. These convex forms are subsequently incorporated into our sim-
ulator for collision modeling. Their use significantly simplifies computations (Jiménez et al., 2001)
and allows for the implementation of multipoint contacts using the MuJoCo (Todorov et al., 2012).
The combination of these steps results in our simulated aorta, as depicted in Fig. 3(a).

Guidewire. A rope-like structure designed to direct the catheter towards its intended position. The
guidewire is composed of the main body and a tip, where the tip is characterized by a lower stiff-
ness and a specific shape (depending on the procedure). Modelling the flexibility of a guidewire
is accomplished by dividing it into many rigid components linked together by revolute or spherical
joints (Burgner-Kahrs et al., 2015). This form of representation has been proven to confer accu-
rate shape predictions (Shi et al., 2016), while characterized by a low computational cost compared
to its counterparts (Burgner-Kahrs et al., 2015). To ensure real-time functionality during simula-
tions, we developed a serpentine-based model comprising numerous rigid segments interconnected
by revolute joints that approximate the continuous contour and bending behavior of the guidewire.
The collision properties of the guidewire’s segments comprise a capsule-based shape, composed of
a cylindrical core flanked by conical terminations designed as opposed to hemispherical caps. The
caps merge along their common interface, forming the wire’s exterior surface. This design mimics
the motion and shape of the real catheter (Fig. 3(b)).

Blood Simulation. Although blood modeling is not the primary focus of our current work, for ref-
erence purposes, we include a basic implementation. Our model treats blood as an incompressible
Newtonian fluid, following the real-time methodology described in the study by Wei et al. (2012)
(see Fig. 3(c)). We intentionally omit the dynamics of a pulsating vessel, resulting in the simplifica-
tion of assuming rigid vessel walls. This simplification is a common approach in the field, as seen in
works like Yi et al. (2018), Behr et al. (2019), and Karstensen et al. (2020), and it helps to minimize
computational demands while effectively simulating the forces opposing guidewire manipulation.
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4 AUTONOMOUS CATHETERIZATION WITH EXPERT NAVIGATION NETWORK

Inspired by autonomous driving and human-robot interaction field (Kiran et al., 2021; Kim et al.,
2021), we develop an expert navigation network for use in downstream tasks. We use CathSim
to generate a vast amount of labeled training samples, enabling our model to learn from diverse
scenarios. By exposing the model to different scenarios, we can enhance its ability to generalize
to real-world situations (Zhao et al., 2020). Furthermore, we also leverage additional information
that is unavailable within the real systems (Püschel et al., 2022), such as force (Okamura, 2009) or
shape representation (Shi et al., 2016), to further enhance our expert navigation system. We note that
our simulator offers a wide range of modalities and sensing capabilities compared to the real-world
endovascular procedure where the sensing is very limited (the surgeons can only rely on the X-ray
images during the real procedure). By combining these modalities, we aim to develop an expert
navigation system that not only achieves high performance but also ensures sample efficiency.
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Figure 4: The expert navigation network.
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Figure 5: Downstream imitation learning.

4.1 EXPERT NAVIGATION NETWORK

Our Expert Navigation Network (ENN) is a multimodal network trained on CathSim. Firstly, we
include a semantic segmentation of the guidewire as one of the modalities. This allows the expert
to accurately perceive the position and shape of the guidewire during navigation, enabling safe
movements within the blood vessels. Secondly, we set joint position and joint velocity values for the
guidewire. By incorporating these data, we can formulate the guidewire’s kinematics and dynamics
details (Tassa et al., 2018), thus allowing for more coordinated and efficient navigation compared to
previous works (Rafii-Tari et al., 2012; Song et al., 2022). Thirdly, we include the top camera image
as another input modality. This visual input provides contextual information about the surrounding
environment, enabling the expert to make informed decisions based on the spatial arrangement of
blood vessels and potential obstacles (Cho et al., 2021).

We employ Convolutional Neural Networks (CNN) to extract visual features from the input images
and the segmentation map, and a Multi-Layer Perceptron (MLP) to process the joint positions and
joint velocities. The resulting feature maps are then flattened and concatenated. A fully connected
layer is then used to map the features to the feature vector Z. By combining these modalities, our ex-
pert navigation system can learn the complex mapping between inputs and desired trajectories. The
feature vector Z serves as the input for training the soft-actor-critic (SAC) policy π (Haarnoja et al.,
2018), a core component of our reinforcement learning approach. The overall ENN architecture is
visualized in Fig. 4 and the detailed implementation can be found in Appendix E.

4.2 DOWNSTREAM TASKS

We demonstrate the effectiveness of the ENN and our CathSim simulator in downstream tasks,
including imitation learning and force prediction. Both tasks play an important role in practice, as
they provide critical information for the surgeon in the real procedure.
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Imitation Learning. We utilize our ENN using behavioral cloning, a form of imitation learn-
ing (Hussein et al., 2017), to train our navigation algorithm in a supervised manner. This approach
emphasizes the utility of the simulation environment in extracting meaningful representations for
imitation learning purposes. Firstly, we generate expert trajectories by executing the expert policy,
denoted as πexp, within CathSim. These trajectories serve as our labeled training data, providing
the desired actions for each state encountered during navigation. Secondly, to mimic the real-world
observation space, we select the image as the only input modality. Thirdly, we train the behav-
ioral cloning algorithm by learning to replicate the expert’s actions given the input observations and
optimizing the policy parameters to minimize the discrepancy between the expert actions and the
predicted actions:

L(θ) = −Eπθ
[log πθ(a|s)]− βH(πθ(a|s)) + λ||θ||22 . (2)

where −Eπθ
[log πθ(a|s)] represents the negative log-likelihood, averaged over all actions and states;

−βH(πθ(a|s)) is the entropy loss, weighted by β and λ||θ||22 is L2 regularization, weighted by λ.

To facilitate this learning process, the feature space, denoted as Z, which was originally extracted
by the expert policy was set to train the network. By capturing the essential characteristics of the
expert’s navigation strategy, this feature space serves as a meaningful representation of the obser-
vations (Hou et al., 2019). Subsequently, we train the mapping from the learned feature space Z to
actions, allowing the behavioral cloning algorithm to effectively mimic the expert’s decision-making
process. Through this iterative process of learning and mapping, our behavioral cloning algorithm
learns to navigate based on the expert trajectory while using less information compared to the expert.
Fig. 5 shows the concept of our imitation learning task.

Force Prediction. This is a crucial task in endovascular intervention, as surgeons utilize force
feedback cues to avoid damaging the endothelial wall of the patient’s blood vessels. Many force
prediction methods have been proposed by employing sensor utilization (Yokoyama et al., 2008)
or image-based methods (Song et al., 2022). We present a supervised method to demonstrate the
force prediction capabilities of our ENN. The structure of our force prediction algorithm consists of
a CNN coupled with an MLP head and the following loss function:

L = LZ + Lf =

D∑
i=1

(Zi − Ẑi)
2 +

D∑
i=1

(f − f̂)2 . (3)

where Ẑ represents the feature vector extracted by ENN and f̂ represents the force resulted from the
transition πexp, D represents the number of samples in the collected dataset.

5 EXPERIMENTS

We first validate the realism of our CathSim and then analyze the effectiveness of the ENN. Since
other endovascular simulators are closed-source or do not support learning algorithms, it is not
straightforward to compare our CathSim with them. We instead compare our CathSim with the real
robot to show that our simulator can mimic the real robot’s behavior. We note that our experiments
mainly focus on benchmarking CathSim and learning algorithms. Other aspects of our simulator
such as blood simulation and AR/VR are designed for surgical training and, hence are not discussed
in this paper. The details of the running speed of our simulator are discussed in the Appendix B.

5.1 CATHSIM VALIDATION

CathSim vs. Real Robot Comparison. To assess our simulator’s accuracy, we juxtaposed the
force measurements from our simulator with those from real-world experiments. In the real exper-
iments Kundrat et al. (2021), an ATI Mini40 load cell was used to capture the force resulting from
the interaction between instruments and the same Type-I silicone phantom employed in our experi-
ments. This force-based comparison was chosen due to the scarcity of quantitative metrics suitable
for evaluations (Rafii-Tari et al., 2017). The setup details are provided in our Appendix D.

Statistical Analysis. We compare the observed empirical distribution and a normal distribution
derived from the real experiments conducted by Kundrat et al. (2021). We derive a cumulative
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distribution (Fig. 6) by sampling data from a Gaussian distribution given the experiments by Kun-
drat et al. (2021). We utilize Mann-Whitney test to compare the given distributions. The resulting
statistic given the test is 76076, with a p-value of, p ≈ 0.445 which leads to the conclusion that
the differences in the distributions are merely given to chance. As such, the distributions can be
considered as being part of the same population and thus convene that the force distribution of our
simulator closely represents the distribution of forces encountered in the real-life system. Therefore,
we can see that our CathSim successfully mimics the behavior of the real-world robotic system.

User Study. We conducted a user study with 10 participants, asking them to evaluate our CathSim
based on seven key criteria: 1) anatomical accuracy 2) navigational realism 3) user satisfaction 4)
friction accuracy 5) interaction realism 6) motion accuracy 7) visual realism All user study questions
are available in Appedix G. Table 2 shows the results, where the responses are represented in a 5-
point Likert scale. Despite comprehensive positive feedback, enhancement of the simulator’s visual
experience was identified as an area for improvement.

Figure 6: Comparison between the simulated force from
our CathSim and real force from the real robot.

Table 2: User-study results.

Question Average STD

Anatomical Accuracy 4.57 0.53
Navigation Realism 3.86 0.69
User Satisfaction 4.43 0.53
Friction Accuracy 4.00 0.82
Interaction Realism 3.75 0.96
Motion Accuracy 4.25 0.50
Visual Realism 3.67 1.15

Figure 7: Episode lengths of when utilizing different input
modalities.

Start

BCA LCCA

Figure 8: Experiment Setup
Table 3: Force prediction results.

Algorithm MSE (N) ↓

Baseline 5.0021
FPN (1K) 0.5047
FPN (10K) 0.1828
FPN (100K) 0.0898

5.2 EXPERT TRAJECTORY ANALYSIS

Experimental Setup. We conduct the experiment to validate the effectiveness of the expert trajec-
tory with different modality inputs (i.e., image, internal, segmentation mask). We also employ a
professional endovascular surgeon who controls CathSim manually to collect the “Human” trajec-
tory. We propose the following metrics (details in Appendix C) to evaluate the catheterization re-
sults: Force (N), Path Length (cm), Episode Length (steps), Safety (%), Success (%), and SPL (%).
Two targets are selected for the procedures, specifically the brachiocephalic artery (BCA) and the
left common carotid artery (LCCA). The targets and the initial placement of the catheter and the
targets are visualized in Fig. 8. More details on experiment setups can be found in Appendix E. In
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all training setups, our CathSim’s speed is from 40 to 80 frames per second, which is well suited for
real-time applications.

Table 4: Expert navigation results. ENN uses both image, internal, and segmentation mask as inputs.

Target Input Force Path Length Episode Length Safety Success SPL

(N) ↓ (cm) ↓ (s) ↓ % ↑ % ↑ % ↑

BCA

Human 1.02 ± 0.22 28.82 ± 11.80 146.30 ± 62.83 83 ± 04 100 ± 00 62
Image 3.61 ± 0.61 25.28 ± 15.21 162.55 ± 106.85 16 ± 10 65 ± 48 74
Image+Mask 3.36 ± 0.41 18.55 ± 2.91 77.67 ± 21.83 25 ± 07 100 ± 00 86
Internal 3.33 ± 0.46 20.53 ± 4.96 87.25 ± 50.56 26 ± 09 97 ± 18 80
Internal+Image 2.53 ± 0.57 21.65 ± 4.35 221.03 ± 113.30 39 ± 15 33 ± 47 76
ENN 2.33 ± 0.18 15.78 ± 0.17 36.88 ± 2.40 45 ± 04 100 ± 00 99

LCCA

Human 1.28 ± 0.30 20.70 ± 3.38 97.36 ± 23.01 77 ± 06 100 ± 00 78
Image 4.02 ± 0.69 24.46 ± 5.66 220.30 ± 114.17 14 ± 14 33 ± 47 69
Image+Mask 3.00 ± 0.29 16.32 ± 2.80 48.90 ± 12.73 33 ± 06 100 ± 00 96
Internal 2.69 ± 0.80 22.47 ± 9.49 104.37 ± 97.29 39 ± 17 83 ± 37 79
Internal+Image 2.47 ± 0.48 14.87 ± 0.79 37.80 ± 10.50 42 ± 08 100 ± 00 100
ENN 2.26 ± 0.33 14.85 ± 0.79 33.77 ± 5.33 45 ± 05 100 ± 00 100

Figure 9: Examples of navigation path from an endovascular surgeon and our ENN.

Quantitative Results. Table 4 shows that the expert network ENN outperforms other tested config-
urations for both BCA and LCCA targets. It excels in terms of minimal force exerted, the shortest
path length, and the least episode length. While the human surgeon shows a better safety score, ENN
surpasses most other configurations. The results show that utilizing several modality inputs effec-
tively improves catheterization results. However, we note that the human surgeon still performs the
task more safely in comparison with ENN, and safety is a crucial metric in real-world endovascular
intervention procedures.

Expert Trajectory vs. Humans Skill. To evaluate the performance of various iterations of our
model during training, we computed the mean episode length and compared it with the human re-
sults. As depicted in Fig. 7, within the BCA, our algorithms successfully navigate the environment
after 105 time steps and half of them exhibited superior performance compared to the human op-
erator. Moreover, it is evident from both targets’ navigation that ENN consistently achieves good
performance with low inter-seed variance. We note although our ENN outperforms the surgeon,
ENN uses several modality inputs (including image, internal force, segmentation mask), while the
surgeon only relies on the image to conduct the task.

Navigation Path. Fig. 9 shows the comparison between the navigation paths generated by our ENN
and a surgeon. The surgeon’s path exhibits a meandering trajectory, which stands in contrast to the
expert’s more direct route. Moreover, the path taken by the human operator in navigating towards
the BCA (Fig. 9(a)), demonstrates heightened irregularity, which indicates the increased difficulty in
comparison to targeting the LCCA. This is likely due to the BCA’s deeper location within the chest.
Despite these challenges, the human operator exerted less force compared to our ENN algorithm.
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Table 5: The imitation learning results with and without using the expert navigation network (ENN).

Target Algorithm Force Path Length Episode Length Safety Success SPL

(N) ↓ (cm) ↓ (s) ↓ % ↑ % ↑ % ↑

BCA
ENN 2.33 ± 0.18 15.78 ± 0.17 36.88 ± 2.40 45 ± 04 100 ± 00 99
Image w/o. ENN 3.61 ± 0.61 25.28 ± 15.21 162.55 ± 106.85 16 ± 10 65 ± 48 74
Image w. ENN 2.23 ± 0.10 16.06 ± 0.33 43.40 ± 1.50 49 ± 03 100 ± 00 98

LCCA
ENN 2.26 ± 0.33 14.85 ± 0.79 33.77 ± 5.33 45 ± 05 100 ± 00 100
Image w/o ENN 4.02 ± 0.69 24.46 ± 5.66 220.30 ± 114.17 14 ± 14 33 ± 47 69
Image w. ENN 2.51 ± 0.21 14.71 ± 0.20 33.10 ± 2.07 43 ± 04 100 ± 00 100

5.3 DOWNSTREAM TASK RESULTS

Imitation Learning. The details of our imitation learning setup can be found in the Appendix F. A
comparison of the baseline algorithm (i.e., using only Image), the expert (ENN), and the behavioral
cloning algorithm utilizing ENN is presented in Table 5. The expert trajectories produced by ENN
have a significant impact on algorithm performance within a limited observation space. Compared
to the Image baseline, utilizing expert trajectories in the behavioral cloning algorithm leads to re-
markable improvements. Both for the BCA and LCCA targets, the integration of expert trajectories
results in lower force, shorter path and episode length, higher safety, and a high success rate and
SPL score. This demonstrates the potential of expert trajectories to enhance performance beyond
the baseline, indicating their value for sim-to-real transfer in future research.

Force Prediction. Table 3 shows the impact of the amount of generated trajectory samples, obtained
by the use of ENN, on the fine-tuning of the Force Prediction Network (FPN) and its subsequent per-
formance, measured through the Mean Square Error (MSE). The baseline MSE stands at 5.0021N.
When we fine-tuned the FPN with 1, 000 (1K) generated samples, the MSE was reduced signifi-
cantly to 0.5047N, demonstrating the efficacy of the expert network in generating valuable samples
for network training. As the quantity of generated samples increased to 10, 000 (10K), the MSE
further dropped to 0.1828N. This trend continued, as evidenced by the decrease in MSE to 0.0898N
when the FPN was fine-tuned with 100, 000 (100K) samples. These results highlight the potential
of the expert network to generate increasingly useful samples for training which is unattainable by
human participants in real-world procedures, and the subsequent ability of the FPN to be fine-tuned
to achieve progressively better results.

6 DISCUSSION

Our work has introduced the first open-source and real-time endovascular simulator. To this end,
we do not propose any new learning algorithms, instead, our CathSim serves as the foundation
for future development. Similar to the autonomous driving field (Dosovitskiy et al., 2017) where
the simulators significantly advance the field, we hope that our CathSim will attract more attention
and work from the machine learning community to tackle the autonomous catheterization task, an
important but relatively underdeveloped research direction.

Limitation. While we have demonstrated the features of CathSim and successfully trained an expert
navigation network, there are notable limitations. First, since CathSim is the very first open-source
endovascular simulator, it is infeasible for us to compare it with other closed-source ones. However,
we have validated our simulator with a real robot setup. We hope that with our open-source simu-
lator, future research can facilitate broader comparisons. Additionally, it’s pertinent to note that the
expert trajectory utilized in our study is generated using CathSim. This may introduce an inherent
bias, as the trajectory is specific to our simulator’s environment and might not fully replicate real-
world scenarios. Second, in order to simplify the simulation and enable real-time factors, we utilize
rigid body and rigid contact assumptions, which do not fully align with the real world where the
aorta is deformable and soft. This aspect potentially limits the applicability of our findings in real-
world settings. Finally, we have not applied our learned policy to the real robot as our ENN shows
strong results primarily under multiple modalities input, which is not feasible in actual procedures
reliant solely on X-ray images for navigation.

9
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Although the ENN outperforms human surgeons in some metrics, we clarify that our results are
achieved under assumptions. First, our ENN utilizes multiple inputs including joint positions, joint
velocities, internal force, and segmentation images, while surgeons rely solely on the images. Addi-
tionally, the surgeon interacts with the simulator using traditional devices (keyboards), which may
limit precision due to the discretized action space. In contrast, our algorithm operates continuously.
These differences afford our ENN certain advantages, thereby contributing to its promising results.

Future Work. We see several interesting future research directions. First, we believe that apart
from training expert navigation agents, our CathSim can be used in other tasks such as planning,
shape prediction, or sim2real X-ray transfer (Kang et al., 2023). We provide initial results and the
baselines of these tasks in Appendix H, I. Second, extending our simulator to handle soft contact
and deformation aorta would make the simulation more realistic. Third, our CathSim simulator can
be used to collect and label data for learning tasks. This helps reduce the cost, as real-world data
collection for endovascular intervention is expensive (Kundrat et al., 2021). Finally, developing
robust autonomous catheterization agents and applying them to the real robot remains a significant
challenge. Currently, it is uncertain how seamlessly the learning agent’s policy would adapt to real-
world situations under real-world settings such as dynamic blood flood pressure, soft and deformable
tissues. We believe several future works are needed to improve both the endovascular simulators and
learning policy to bridge the simulation to real gap.

Finally, we note that our CathSim is a simulator for medical-related tasks. Therefore, agents trained
in our environment must not be used directly on humans. Users who wish to perform real-world
trials from our simulator must ensure that they obtain all necessary ethical approvals and follow all
local, national, and international regulations.
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A CATHSIM DESIGN DETAILS

(a) The design of the Robotic Follower (Slave Robot) (b) Our simulated version of the Robotic Follower

Figure 10: Schematic representation of the CathBot’s follower mechanism (Kundrat et al., 2021) (a)
alongside a visualization of our simulated model (b).

Robotic Follower. In our study, we focus on simulating the robotic follower, predicated on the lin-
ear relationship between the leader and follower, as outlined in the CathBot design (Kundrat et al.,
2021). For the sake of simplicity, our simulation comprises four modular platforms attached to the
main rail; two of these platforms hold the guidewire during translational movements with clamps,
while the other two facilitate angular movements via rotary catheter and guidewire platforms. Pris-
matic joints connect the main rail components and the clamps, enabling translational movements,
while revolute joints link the wheels, allowing the catheter and guidewire to rotate (refer to Fig. 10
for the design).

Actuation. CathBot’s actuation entirely depends on the frictional forces ff between the guidewire
and the clamp. In our simplified model, we assert that the frictional force ff is sufficient to entirely
prevent slippage (ff ≥ fs), hence eliminating the need to account for the effects of sliding friction
fs. This approach gives us direct control over the joints without having to simulate frictional effects,
leading to faster simulation times due to fewer contact points. Furthermore, a friction-based actu-
ation mechanism could potentially slow down execution times and increase error probability due
to simulation noise. Thus, we argue that our choice to assume perfect motion results in enhanced
computational efficiency, particularly within the context of our defined problem domain.

Aortic Models. In addition to Type-I Aortic Arch model which is mainly used in our experiments,
we incorporate three distinct aortic models to enrich our anatomical dataset. These models include
a high-fidelity Type-II aortic arch and a Type-I aortic arch with an aneurysm, both sourced from
Elastrat, Switzerland. Furthermore, a low tortuosity aorta model, based on a patient-specific CT
scan, is included. With these three additional representations, our simulator contains four distinct
aorta models. These models aim to enhance the diversity and accuracy of aortic structures available
for research and educational endeavors. These aortas are visualized in Fig. 11.

(a) Type-I (Aneurysm) (b) Type-II (c) Low Tortuosity

Figure 11: Aortic Models.
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B CATHSIM SPEED EVALUATION

Figure 12: CathSim training speed.

Table 6: Comparative training times

Algorithm
Training Time (h)

BCA LCCA

Image 3.00 ± 0.11 2.54 ± 0.17
Image+Mask 4.20 ± 0.05 4.60 ± 1.29
Internal 2.38 ± 0.15 2.20 ± 0.18
Internal+Image 3.15 ± 0.28 3.54 ± 0.29
ENN 4.61 ± 0.22 4.83 ± 0.41

Training Speed. As illustrated in Fig. 12, we provide a comparison of frames per second (FPS)
for the various algorithms we employed during model training. It is evident that utilizing solely
the internal state space, comprised of joint positions and velocities, facilitates expedited training
processes. In contrast, integrating all modalities into the training process results in its deceleration.
The most significant computational demand arises from the dual convolutional neural networks uti-
lized in both the image and mask representations. However, despite this load, the algorithms exhibit
respectable computational speed, even during the training phase. Our simulator supports approxi-
mately 40 to 80 frames per second performance for all implemented algorithms, underscoring the
computational speed of our simulation environment. Moreover, we provide the training times in
terms of hours for the different modalities in Table 6.

C EVALUATION METRICS

Force. In our study, the force applied by surgical instruments during the simulation is critical for
evaluating their performance and interaction with the aorta. To accurately record this force, we
used a manual cannulation method through our simulator. At each time step of the simulation, we
collected the collision points between the guidewire and the aorta. These collision points give us
crucial insights into the tridimensional force acting on the system, which consists of the normal force
(fz) and the frictional forces (fx and fy). To compute the total magnitude of the force, we calculated
the Euclidean norm of the force vector at a given time step (t), denoted as ft. This magnitude is
obtained from the square root of the sum of the squares of the force vector components

ft =
√
f2x,t + f2y,t + f2z,t (4)

This allows us to holistically assess the collective impact of the force components, providing a more
comprehensive understanding of the guidewire’s behavior and its interaction forces with the aorta
throughout the simulation. Furthermore, it facilitates a comparison between our experiments and
those conducted by Kundrat et al. (2021).

Path Length. The path length was derived by summing the Euclidean distances between sequential
positions of the guidewire head. For each time step, the position of the guidewire head, denoted
as ht, was extracted. The Euclidean distance between the guidewire head position at time t and
the position at time t + 1, denoted as ht and ht+1 respectively, was then calculated d(ht, ht+1) =√
(ht+1 − ht)2. This process resulted in a path length represented by:

PathLength =

n∑
i=1

||ht+1 − ht|| (5)

where n is the episode length.
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SPL. The navigation performance of the expert was evaluated in relation to human performance.
This involved utilizing the path length, as calculated in the previous paragraph, to assess the op-
timality of the navigation. An optimal policy results in the shortest path. The Success Weighted
by Normalized Inverse Path Length (SPL) metric, as suggested by Anderson et al. (2018) was then
computed using

SPL =
1

N

N∑
i=1

Si
li

max(pi, li)
(6)

where the path length pi is normalized by the optimal path li. In this context, the shortest path
observed was used as the optimal path, considering that human performance is consistently outper-
formed by the RL policies.

Safety. We compute the safety based on the number of times an algorithm inflicts a force greater
than 2N. This constant is derived from the study in real-world setup (Kundrat et al., 2021). As such,
we create a binary variable a ∈ {0, 1} where a = 1 if ft ≥ 2N. As such, the safety metric is defined
as:

Safety = 1− 1

N

N∑
i=1

ai (7)

where N represents the number of steps within an episode. We further subtract the result from 1.
Intuitively, an algorithm that inflicts a great force at each step during the episode will have a safety
of 0%, whereas an algorithm that inflicts a damage of f ≤ 2N at all time steps, will result in a safety
of 100%.

Episode Length. The length of an episode is determined by the number of steps an algorithm
takes to complete a task. This metric is significant as it provides insight into the efficiency of an
algorithm; fewer steps generally indicate more efficient performance, assuming that the quality of
task completion is preserved.

Success. The success of an episode is defined by whether the agent is able to achieve the goal within
a pre-specified time limit of 300 time steps. This metric is binary; it records a success if the goal is
reached within the time limit, and a failure otherwise. This serves to measure the effectiveness of
the agent in task completion under time constraints, mirroring real-world scenarios where timeliness
is often crucial.

D CATHSIM VALIDATION AGAINST REAL-ROBOT

Force Extraction. The real robot experiments conducted by Kundrat et al. (2021) employed a 6 DoF
force sensor (Mini40, ATI Industrial Automation, Apex, USA) to measure the force produced by the
interaction between the instruments and the silicone phantom (see Fig. 13). The force sensor was
placed directly underneath the phantom, where the magnitude of the force was extracted. Similarly,
in order to extract the force within our simulator, we manually carry out the cannulation using an
input device and extract the forces at each time step. For each simulation time step, we extract the
collision points between the guidewire and the aorta, along with the tridimensional force expressed
as the normal force fz and frictional forces fx and fy . We then compute the force magnitude using
Equation 4.

Distribution Comparison. We begin our comparison with the Shapiro-Wilk test of normality on the
data extracted from the simulator and, given a p-value of p ≈ 7.195×10−17 and a statistic of 0.878,
we conclude that the sampled data does not represent a normal distribution N (µ, σ). Furthermore,
we assess the homoscedasticity of the sample distribution and normal distribution by using Levene’s
tests, which results in a statistic of 40.818 and a p-value of p ≈ 2.898×10−10, therefore, concluding
that σ2

1 ̸= σ2
2 . Given the previous statistics (i.e., non-normal distribution and unequal variances),

we select the non-parametric Mann-Whitney test to compare the given distributions. The statistical
tests show that our CathSim can mimic the real-robot behavior, as indicated in the main paper.
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Figure 13: Experimental setup of CathBot: (1) Pulsatile and continuous flow pumps, (2) Force
Sensor, (3) Vascular phantom, (4) Webcam, (5) NDI Aurora field generator, (6) Catheter manipulator
(i.e., robotic follower), (7) Simulated X-ray Screening, and (8) Master device. Adapted from Chi
et al. (2020); Kundrat et al. (2021).

E EXPERT NAVIGATION NETWORK IMPLEMENTATION

Observation Space. We incorporated a range of observations to provide the agent with an ex-
tensive understanding of the environment. A grayscale image of dimensions 80 × 80 (denoted by
I ∈ [0, 1]80×80) is generated as a visual clue, which is accompanied by the ground truth binary
segmentation mask S ∈ {0, 1}80×80. The mask S[i, j] = 1 is validated only when the pixel co-
ordinates (i, j) are part of set A, the pixels that constitute the guidewire. Furthermore, to enhance
the reinforcement learning problem’s optimization, we also included the ground truth joint posi-
tions Q ∈ R168 and joint velocities V ∈ R168. These joint values provide detailed mechanical
insight into the guidewire’s state, enriching the agent’s knowledge base and facilitating informed
decision-making.

Action Representation. In CathSim, the essential actions are denoted by translation at ∈ [−1, 1]
and rotation ar ∈ [−1, 1]. At each time step, the agent generates these actions, which are col-
lectively represented by the vector a ∈ [−1, 1]2. Here, a positive at denotes forward movement,
while a negative at signifies a backward movement. Similarly, a positive ar corresponds to a clock-
wise guidewire rotation, while a negative ar indicates an anticlockwise rotation. The selection of
translation and rotation actions in CathSim closely mirrors the actions in real-world endovascular
procedures, as described by Kundrat et al. (2021). By faithfully reproducing the motions of an actual
robot, the simulation environment better replicates real-world situations. This enables the reinforce-
ment learning agent to acquire policies that can be feasibly implemented in a physical robot, thereby
augmenting the practical value and applicability of the behaviors learned.

Reward Function. Our employed reward system is dense, and it hinges on the spatial position
of the guidewire tip in relation to the goal. Formally, the reward r is determined by the function
r(pt, g) = −d(pt, g), where d(pt, g) = ||pt − g|| characterizes the distance between the position p
of the guidewire tip at time t and the target g. If the guidewire tip lies within a distance threshold δ
of the target g, the agent is conferred a positive reward r. For our research, we adopted a δ of 4mm
and assigned a task completion reward of r = 10. Consequently, we end up with the following
reward function:

r(ht, g) =

{
10 if d(h, g) ≤ δ

−d(h, g) otherwise
(8)

Training Details. The experiments were conducted on an NVIDIA RTX 2060 GPU (33MHz) sys-
tem on an Ubuntu 22.04 LTS based operating system. Furthermore, the system contained an AMD
Ryzen 7 5800X 8-Core Processor with a total of 16 threads with 64GB of RAM. All experiments
used PyTorch, whilst for the Soft Actor Critic implementation we used stable baselines (Raffin et al.,
2021). The training was carried out for a total of 600, 000 time steps using a total of 5 different ran-
dom seeds, resulting in a training time bounded between 2 and 5 hours. Each episode has two
terminal states, one which is time-bound (i.e., termination of an episode upon reaching a number of
steps) and one which is goal bound (i.e., the agent achieves the goal g).
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Table 7: The network architectures for ENN.

Network Layer (type) Output Shape Param # Nonlinearity

CNN

Input (1, 80, 80) 0 -
Conv2D (32, 19, 19) 2080 ReLU
Conv2D (64, 8, 8) 32832 ReLU
Conv2D (64, 6, 6) 36928 ReLU
Flatten (2304) 0 -
Linear (256) 590080 ReLU

MLP

Input (1, 336) 0 -
Linear (256) 86272 ReLU
Linear (128) 32896 ReLU

Table 8: SAC hyperparameters

Hyperparameter Value

Learning Rate 3 × 10−4

Buffer Size 106

Batch Size 256
Smoothing Coefficient (τ ) 0.005
Discount (γ) 0.99
Train Frequency 1
Gradient Steps 1
Entropy Coefficient 1
Target Update Interval 1
Target Entropy -2

Networks. We employ multiple feature extractors to dissociate the dominant features within our Ex-
pert Navigation Network (ENN). Specifically, we use a convolutional neural network (CNN (Mnih
et al., 2015)) to extract the image-based features, resulting in two latent features JI and JS that
represent the top camera view and guidewire segmentation map. The CNN is composed of 3 con-
volutional layers with a ReLU (Agarap, 2018) activation function, followed by a flattening opera-
tion. We also concatenate joint positions Q and joint velocities V to generate a joint feature vector
JJ = Q ∥ P of dimensionality 336 which is then passed through the MLP. These features are
concatenated to form a single feature vector J = JI ∥ JS ∥ JJ , which is fed into a policy network
π(at, θ). Both network architectures are presented in Table 7.

SAC. Our primary reinforcement learning method is the soft actor-critic (SAC) (Haarnoja et al.,
2018). Soft actor-critic (SAC) is a model-free reinforcement learning algorithm that learns a stochas-
tic policy and a value function simultaneously. The objective function of SAC combines the expected
return of the policy and the entropy of the policy, which encourages exploration and prevents pre-
mature convergence to suboptimal policies. The algorithm consists of three networks, namely a
state-value function V parameterized by ψ, a soft Q-function Q parameterized by θ, and a policy π
parameterized by ϕ. The parameters we employ are present in Table 8. For the policy network, we
use a composition of linear layers to handle and transform the input data.

F DOWNSTREAM TASKS

F.1 IMITATION LEARNING

Network. The architecture of our network for the Behavioral Cloning (BC) algorithm consists of
a sequence of specialized layers that gradually transform the input data. The process initiates with
the input, formatted as a tensor of dimensions (1, 80, 80), which is passed through three Conv2D
layers. All of these layers employ the Rectified Linear Unit (ReLU) as their activation function.
Upon passing through the Conv2D layers, the output tensor is reshaped into a single dimension
by a flattening layer, facilitating the shift from convolutional to linear layers. The flattened output
is then processed by a Linear layer utilizing the ReLU activation function. Finally, an additional
Linear layer, without an activation function, delivers the final output of the network. This last layer
provides raw scores, which are interpreted directly as the network’s output, mirroring the decisions
made by the BC algorithm. The network architecture is illustrated in Table 9.

Table 9: BC Architecture

Layer (type) Output Shape Param # Nonlinearity

Input (1, 80, 80) 0 -
Conv2D (32, 19, 19) 2080 ReLU
Conv2D (64, 8, 8) 32832 ReLU
Conv2D (64, 6, 6) 36928 ReLU
Flatten (2304) 0 -
Linear (512) 1180160 ReLU
Linear (2) 1026 None

Table 10: BC hyperparameters

Hyperparameter Default Value

Batch Size 32
Optimizer Adam

Learning Rate 1 × 10−3

Entropy Coefficient 1 × 10−3

Epochs 800

Training. To train the BC algorithm, we employ a set of hyperparameters, as listed in Table 10. The
training procedure makes use of a batch size of 32. The Adam (Kingma & Ba, 2014) optimizer is
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utilized to minimize the loss function. We set the learning rate and entropy coefficient to 1× 10−3,
controlling the step size at each iteration of the optimization and regularizing the policy towards a
more exploratory behavior, respectively. The training process spans over 800 epochs, each epoch
consisting of a complete pass through the entire dataset, providing the model ample opportunity to
converge to an optimal solution.

F.2 FORCE PREDICTION

Table 11: Force Prediction Network Architecture

Layer (type) Output Shape Param # Nonlinearity

Input (1, 80, 80) 0 -
Conv2D (32, 19, 19) 2080 SELU
Conv2D (64, 8, 8) 32832 SELU
Conv2D (64, 6, 6) 36928 SELU
Flatten (2304) 0 -
Linear (768) 1769472 SELU
Linear (256) 196864 SELU
Linear (1) 257 ReLU

Network. We utilize a hybrid architecture comprising a CNN followed by an MLP, with a grayscale
image as the input. The network architecture includes three Conv2D layers that apply convolu-
tion operations to the input tensor. Each of these convolutional layers employs the Scaled Ex-
ponential Linear Unit (SELU (Klambauer et al., 2017)) as the activation function, encouraging
self-normalization and improving the network’s capability to propagate gradients deeply into the
architecture. Subsequent to the Conv2D layers, a flattening layer reshapes the output into a one-
dimensional tensor. Thereafter, the architecture implements three Linear layers. The initial two
layers use the SELU activation function, while the final one adopts the Rectified Linear Unit
(ReLU (Agarap, 2018)) activation function. This amalgamation of multiple linear layers, each paired
with a distinct non-linear activation function, enables the network to learn complex patterns in the
input data, leading to the network’s final output. Table 11 shows the force prediction network archi-
tecture.

Training. We employed the NAdam optimizer (Dozat, 2016) to train our model, setting the initial
learning rate at 4 × 10−4. This was coupled with a SELU activation function to enhance self-
normalization and facilitate gradient propagation. To dynamically adjust the learning rate during
the training process, we used a OneCycle learning rate scheduler (Smith & Topin, 2018), and the
training was conducted for a total of 30 epochs.

Data Management. In terms of data management, we divided the original dataset into training,
testing, and validation subsets according to the total time steps. Initially, we allocated 20% of the
total time steps to the test set. Subsequently, the remaining data was partitioned into a validation
set and training set, with the validation set representing 20% of the leftover steps. This procedure
was followed for each experimental run of our force prediction model, generating corresponding
sets of transitions. Of particular note, the test set consistently stemmed from our largest trajectory
dataset—the 100K dataset. For each training run, we designated 20% of this dataset for validation,
utilizing the remaining portion for training. The model’s performance was assessed using the orig-
inally separated test set. By adhering to this structured and consistent methodology, we ensured a
rigorous and equitable evaluation of our model’s performance across multiple runs.

G QUESTIONNAIRE

The study was conducted with ten volunteer participants to evaluate the effectiveness and authentic-
ity of our endovascular simulator. These participants, who had no prior experience in endovascular
navigation, provided feedback using a 5-point Likert scale (Likert, 1932). Initially, participants
were shown an actual endovascular navigation fluoroscopic video. Following this, they directly in-
teracted with the simulator, tasked with cannulating two targets: the brachiocephalic artery and the
left common carotid artery. Upon task completion, participants filled out a questionnaire featuring
the following prompts:
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1. How well did the simulator simulate the anatomy and structure of blood vessels?
2. How closely did the simulator replicate the visual experience of navigating a real endovas-

cular procedure?
3. How satisfied were you with the overall performance and functionality of the simulator?
4. How well did the simulation depict the resistance and friction of the guidewire against the

walls of the vessel?
5. How realistic were the visual representations of the guidewire’s interaction with the vessel

walls?
6. How closely did the guidewire’s motion match your expectations of how a real guidewire

would move?
7. How visually realistic was the guidewire simulation?

H TRADITIONAL PATH PLANNING

To emphasize our choice of using a neural network policy as the expert, we conducted a defining
experiment. We initially used the A* planner (Hart et al., 1968) to identify the most straightforward
route from a starting position to the goal, ensuring sampling was restricted to the aortic arch. This
plan is depicted in Fig. 14. However, the results revealed that the shortest path is not always the
best. The cannulation efficiency along this route was suboptimal, and there was no standardized
method to determine the exact actuation for the guidewire tip to follow this path. Expanding our
research, we utilized a Multilayer Perceptron (MLP) to predict the next action from a sequence of
observations. Yet, this model also faced difficulties in following the desired route, highlighting the
intrinsic complexities of the task. The agent’s actual path, showing the guidewire’s deviation, can
be seen below:

Figure 14: Path Planning

I SHAPE PREDICTION

Shape prediction, especially for guidewires, is instrumental in reducing vasculature stress and op-
timizing control performance. This ultimately results in a substantial reduction in complication
risks (Shi et al., 2016). Efforts to attain precise shape prediction have led to significant invest-
ments in shape-sensing technologies. One noteworthy example is the FBG-sensors (Chitalia et al.,
2020), tailored for shape approximation. However, the incorporation of these sensors presents sev-
eral challenges. They not only entail material costs and augment the instrument size but also limit
navigational abilities and necessitate major alterations to optimize guidewire features, including
stiffness. To navigate these environments, alternatives have been sought, including reconstructions
from bi-planar scanner images or those anchored in precise kinematics (Shi et al., 2016). While
deep learning emerges as a promising solution, especially in terms of cost mitigation, it inherently
demands extensive data.
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Figure 15: Shape Prediction

We posit that our simulator can be instrumental in furnishing the necessary data to train models that
use images to approximate instrument shapes. To affirm this, we have juxtaposed image observations
of shape 80 × 80 with the real 3D positions of the guidewire bodies p, facilitating the guidewire
shape reconstruction from 2D images. Using this data, we trained a CNN, leveraging the NAdam
optimizer (Dozat, 2016) and a refined loss function encompassing the Huber Loss (Huber, 1992)
with a δ = 1:

LHuber(y, ŷ) =

{
1
2 (y − ŷ)2 if |y − ŷ| < δ

δ
(
|y − ŷ| − δ

2

)
, otherwise

, (9)

Here, y denotes the ground truth positions of the guidewire bodies, and ŷ signifies the predicted
positions. A regularization term, Lreg, is introduced to ensure the guidewire’s geometric structure
remains intact, assuming an interbody distance of 2mm:

Lreg =
1

n− 1

n−1∑
i=1

|∥ŷi+1 − ŷi∥2 − 0.002| (10)

The combined loss is then represented as:

L = αLHuber(y, ŷ) + βLreg , (11)

Our comparative analysis between the actual guidewire shape and its prediction is visually repre-
sented in Fig. 15. The close approximation of the guidewire shape from the 2D image underscores
our simulator’s potential.

Such findings highlight the capacity of our simulator to enhance auxiliary tasks, enabling researchers
to utilize the simulator for data-driven model samples. While this provides a foundation, a deeper
delve into simulation to real transfer nuances is warranted in future research. Nevertheless, consid-
ering the exorbitant costs of real-world data acquisition, our simulator stands out as a pivotal tool in
the evolution of these methodologies.
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J NETWORK CHOICE

In our experimental trials, we implemented a transformer-based architecture, drawing inspiration
from the visual transformer by Dosovitskiy et al. (2020). This architecture was specifically tailored
with an image size of 80, a patch size of 10, and a single-channel configuration, alongside a depth
of 3 and 4 heads within the attention layers. Despite these specifications, the transformer model did
not achieve the expected performance level in our specialized domain of endovascular navigation.
It notably struggled to complete the designated tasks within the desired timeframe. This underper-
formance, coupled with signs of convergence, is illustrated in Fig 16, highlighting the challenges
encountered in applying this model to our specific context.

Figure 16: ViT-Based ENN Trials: Initial results indicate that using ViT as a feature extractor does
not improve outcomes and fails to meet the target within the time limit, despite showing conver-
gence.

K SIM-TO-REAL IMAGING GAP

We showcase the adaptability of our endovascular simulator using domain adaptation techniques.
This is crucial for translating simulated environments into more realistic, X-ray-like images. The
implementation of this approach is based on the work of Kang et al. (2023). Their method, em-
ploying multi-scale semantic matching, effectively ensures the preservation of essential structural
information in medical images while transitioning from simulated to real-world imaging styles.
This technique has demonstrated significant success in producing realistic X-ray images and has
set a new benchmark in the field. For an in-depth understanding and visual representation of this
adaptation process, we refer readers to the detailed findings and illustrations in the work of Kang
et al. (2023). The adapted images can be visualized in Fig. 17.

(a) (b) (c)

Figure 17: Sim-to-Real Adaptation: Demonstration of sim-to-real domain adaptation for creating
realistic renderings, featuring a) the input image, b) the resultant generated image, and c) a real
X-ray image example. Figure addapted from Kang et al. (2023)
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