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Abstract

This paper studies the black-box optimization task which aims to find the maxima
of a black-box function using a static set of its observed input-output pairs. This is
often achieved via learning and optimizing a surrogate function with that offline
data. Alternatively, it can also be framed as an inverse modeling task that maps a
desired performance to potential input candidates that achieve it. Both approaches
are constrained by the limited amount of offline data. To mitigate this limitation,
we introduce a new perspective that casts offline optimization as a distributional
translation task. This is formulated as learning a probabilistic bridge transforming
an implicit distribution of low-value inputs (i.e., offline data) into another distribu-
tion of high-value inputs (i.e., solution candidates). Such probabilistic bridge can
be learned using low- and high-value inputs sampled from synthetic functions that
resemble the target function. These synthetic functions are constructed as the mean
posterior of multiple Gaussian processes fitted with different parameterizations on
the offline data, alleviating the data bottleneck. The proposed approach is evalu-
ated on an extensive benchmark comprising most recent methods, demonstrating
significant improvement and establishing a new state-of-the-art performance. Our
code is publicly available at https://github.com/cuong-dm/ROOT.

1 Introduction

Black-box optimization arises in scientific and engineering domains where evaluating each candidate
solution is costly, often requiring extensive physical experiments or high-fidelity simulations [61]. For
instance, designing energy-efficient hardware accelerators [5, 9, 37] involves numerous cycle-accurate
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simulations to assess configuration performance. In materials science, finding nanoporous structures
with high adsorption capacity for carbon capture or hydrogen storage demands labor-intensive lab
experiments [17, 20]. Similar challenges arise in protein design [21], molecular generation [16], and
drug discovery [52], where evaluations are likewise expensive.

Prior Literature. Existing approaches to black-box optimization include both online and offline
methods with the latter being an emerging alternative of the former. In particular, online methods
such as Bayesian optimization [53, 34, 54, 73, 74, 62, 63, 64, 65, 33] have long been explored for
black-box design tasks with provable performance guarantee in the asymptotic limit of data. However,
their reliance on iterative experimentation makes them less practical in high-cost settings with limited
to no experimentation budget. In contrast, black-box methods leverage past data to learn a surrogate
model which can be used to find better designs without incurring new experimentation [36, 7, 18, 12,
27, 40, 59, 60, 14, 15]. In this paper, we focus on the offline setting, where the goal is to discover
high-performing designs using only past experimentation data.

Challenge. Among offline methods, the main challenge is that surrogate models can become increas-
ingly erroneous when the search moves away from the offline dataset, especially when offline data
are biased or sparse, causing these models to overfit. To mitigate this issue, most existing approaches
have focused on advancing techniques in (1) forward modeling that penalize high-value surrogate
predictions at out-of-distribution (OOD) inputs [60, 13, 70], (2) inverse modeling that find most
promising and reliable regions that contain high-performing inputs [40, 45, 39, 10] to sidestep the
OOD issue of forward modeling, and (3) search policies that learn a direct plan to navigate from
low-value inputs to high-value inputs [10, 38].

Limitations. Despite their promising results, forward and inverse approaches depend on learning a
mapping (or inverse mapping) between input designs and their corresponding performance outputs
using offline data. As a result, their effectiveness is inherently limited by the availability of data.
Likewise, learning direct search policies also suffers from the same data bottleneck since these
methods still need to sample heuristic trajectories from the offline dataset to use as learning feedback.

Furthermore, information regarding regions with high-performing inputs is often not observable
from the offline data, especially in low-data scenarios, which might further restrict the effectiveness
of the learned models/policies. To mitigate such data bottleneck, we propose to approach offline
optimization from a new perspective of distributional translation, as highlighted below.

Distributional Translation. In essence, we view the offline data as an implicit distribution over low-
value designs, and recast offline optimization as the task of learning a probabilistic transformation, or
bridge, that transports this distribution toward a regime of higher-value inputs. By moving along the
learned probabilistic bridge, we can reach regions of the input space associated with better designs.
However, learning such a transformation is fundamentally limited by the scarcity of high-value
examples. Our key insight to overcome this bottleneck is:

Although the feedback needed to learn such low-to-high probabilistic transformation is
absent in the offline dataset, it can be derived from a distribution of synthetic functions
that are similar to the (unknown) target function (up to a scale factor).

These synthetic functions can be provably constructed across various output scales, alleviating the
data bottleneck and broadening the solution scope of offline optimization.

Technical Contributions. Our solution perspective is substantiated via the following:

1. A general-purpose probabilistic bridge model that learns a direct mapping between two implicit
data distributions. This perspective rethinks offline optimization through the lens of probabilistic
transport. The resulting bridge can incorporate external guiding information from synthetic functions
similar to the oracle to mitigate the data bottleneck. Once trained, it enables simulation of paths that
move from low-value to high-value regimes (Section 3.1).

2. A pre-training and adaptation framework that (1) learns multiple Gaussian process priors [66] over
synthetic functions resembling the target function, and (2) samples representative low- and high-value
inputs from their corresponding closed-form mean functions. This generates high-quality training
data that better delineates the low- and high-value regimes for learning the probabilistic bridge. The
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intuition is that if the bridge can consistently map between these regimes across a wide range of
functions similar to the oracle, it will be able to do the same for the oracle (Section 3.3).

3. An extensive empirical evaluation on a variety of benchmark datasets [59] and numerous existing
baselines, establishing a new state-of-the-art performance, which significantly and consistently
improves over previous work. Our empirical evaluation also features rich ablation studies examining
in detail the practical impact of different components of our framework on its performance (Section 4).

2 Problem Definition and Preliminaries

This section provides a concise formulation of offline black-box optimization (Section 2.1) and
important background on Gaussian processes (Section 2.2), which was used later for sampling
additional data from synthetic functions similar to the oracle behind the offline data.

2.1 Offline Black-Box Optimization

Offline black-box optimization is formulated as the maximization of a black-box function f(x) using
only an offline dataset of observations Do = {(xi, yi)}ni=1 which xi denote a past experiment design
and yi = f(xi) is its corresponding evaluation. A direct approach to this problem is to learn a
surrogate g(x;ω∗) of f(x) via fitting its parameter ω∗ to the offline dataset,

ω⋆ ≜ argmin
ω

L(ω) ≜ argmin
ω

n∑
i=1

ℓ
(
g(xi;ω), yi

)
, (1)

where ω denotes a parameter candidate of the surrogate and ℓ(g(x;ω), y) denotes the prediction loss
of g(.;ω) on x if its oracle output is y. The (oracle) maxima of f(x) is then approximated via,

x∗ ≜ argmax
x

g(x;ω∗) . (2)

The main issue with this approach is that g(x;ω∗) often predicts erratically at out-of-distribution
(OOD) inputs. To mitigate this, numerous surrogate or search regularizers have been proposed to
either penalize the high-value surrogate prediction at OOD inputs [13, 60, 70] or find an inverse
mapping from the desired output to potential inputs [39, 45], as detailed in Section 5. Nonetheless all
these approaches are restricted by the limited amount of offline data. Alleviating this bottleneck to
reach new SOTA performance is main aim of our proposed approach.

2.2 Gaussian Processes

A Gaussian process (GP) [50] defines a probabilistic prior over a random function h(x). It is
parameterized by a mean function m(x) = 03 and a kernel function k(x,x′). These functions induce
a marginal Gaussian prior over the evaluations h = [h(x1) . . . h(xn)]

⊤ of any finite subset of inputs
{x1, . . . ,xn}. Let xτ be an unseen input whose corresponding output hτ = h(xτ ) we wish to
predict. The Gaussian prior over [h(x1) . . . h(xn) h(xτ )]

⊤ implies:

h(xτ ) | h ∼ N
(
k⊤τ K

−1h, k(xτ ,xτ )− k⊤τ K
−1kτ

)
, (3)

where kτ = [k(xτ ,x1) . . . k(xτ ,xn)]
⊤ andK denotes the Gram matrix induced on {x1, . . . ,xn}

for whichKij = k(xi,xj). Assuming a Gaussian likelihood y ∼ N(h(x), σ2), it follows that

h(xτ ) | y ∼ N
(
k⊤τ (K + σ2I)−1y, k(xτ ,xτ )− k⊤τ (K + σ2I)−1kτ

)
, (4)

which explicitly forms the predictive distribution of a Gaussian process. The choice of the kernel
function k(x,x′) dictates certain properties of the sample functions. In this context, we adopt
the commonly used RBF kernel, k(x,x′) = σ2 exp(−0.5 · ∥x − x′∥2/ℓ2) with the parameter
σ2 represents the signal variance, controlling the function’s amplitude, while ℓ denotes the unit
length-scale which regulates the function’s smoothness. There also exists an extensive literature on
improving the complexity of Gaussian process via sparse approximation [47, 48, 56, 41, 24, 42, 57, 8]
that enables fast inference with linear complexity in large-scale datasets [24, 30, 31, 28, 32, 29]
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Figure 1: Overview of the ROOT workflow: (1) Multiple Gaussian process posteriors are fitted to
the offline data, and low- and high-value inputs from the posterior mean functions are sampled to
construct a synthetic dataset. (2) This dataset is used to construct our probabilistic bridge model,
which learns to map between two different implicit data distributions. (3) The backward process of
the learned bridge model is applied to the top-performing inputs from the offline data to generate
high-quality candidates for the unknown target function.

3 Rethinking Offline Optimization as Distributional Translation

This section introduces a new perspective on offline optimization by framing it as a translation
task. We intuitively view the offline data as a source language composed of low-value designs
and aim to translate it into a target language of high-value inputs. To enable this translation, we
introduce the concept of a probabilistic bridge, which identifies local translation examples by explicitly
conditioning on both the source and target contexts. This conditioning enables the construction of
feasible transformation paths that connect selected low- and high-value designs within their local
neighborhoods, grounding the translation process in meaningful design correspondences (Section 3.1).

These local bridges serve as examples of how to move between regimes when both endpoints are
known. The learning algorithm then weaves together these examples to form a global translator
capable of generalizing beyond the observed pairs and enabling translation in new contexts where
only the source is known. This approach generalizes diffusion models [25], which translate between
data and noise, and allows external guiding information to be incorporated, enriching the context and
addressing the data bottleneck in offline optimization (Section 3.3).

3.1 Probabilistic Bridge for Distributional Translation

This section formalizes the concept of a probabilistic bridge, which generalizes the widely used
Denoising Diffusion Probabilistic Model (DDPM) [25]. While DDPM defines a forward diffusion
process that maps data to Gaussian noise and learns to reverse it, the probabilistic bridge constructs a
space of localized transformation flows conditioned on both the source and the target, representing
low-value and high-value designs drawn from implicit data distributions. Learning and applying a
probabilistic bridge model for distributional translation involves two phases: a construction phase
(Section 3.1) and a learning phase (Section 3.3).

In the construction phase, the transition kernel of each conditioned bridge is derived, capturing a
source-to-target translation plan within its local context. These localized examples serve as concrete
demonstrations of how to move between regimes. In the learning phase, they are used to train a
global, target-agnostic transformation flow that generalizes beyond the observed pairs and enables
translation from arbitrary source inputs to valid target outputs. These two phases are described in
detail below. A concrete example of a probabilistic bridge is also given in Section 3.2.

3.1.1 Probabilistic Bridge Construction

Given two endpoints x0 and xT , we define a probabilistic bridge between them as a discrete
observation of a vector-value, time-indexed random function x1,x2, . . . ,xT−1 which is distributed
by Gaussian process [50] with mean function ψt(x0,xT ) and covariance kernel κt,kI 4.

3We assume a zero mean function since the output can always be re-centered around 0.
4We use κt,kI to denote the cross-covariance matrix between xt and xk under the joint distribution.
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This implies a marginal Gaussian on the probabilistic bridge x = vec[x1,x2, . . . ,xT−1] with mean
ψ = vec[ψ1(x0,xT ); . . . ;ψT−1(x0,xT )] which reveals a mass-moving flow between xT and x0,

q
(
x | x0,xT

)
≜ N

(
x; ψ,κ⊗ I

)
⇒ q

(
xt | x0,xT

)
= N

(
xt;ψt(x0,xT ), κt,tI

)
, (5)

where ⊗ denotes the Kronecker product, κ is a matrix containing the entries κt,k and the mean
function ψt(x0,xT ) must meet boundary conditions ψ0(x0,xT ) = x0 and ψT (x0,xT ) = xT . This
further reveals a closed-form expression for backward transition conditioned on both endpoints,

q
(
xt−1 | xt,x0,xT

)
= N

(
xt−1;µ(xt,x0,xT ), κ̃t−1I

)
, (6)

with the transition mean µ(xt,x0,xT ) = ψt−1(x0,xT )+κt−1,tκ
−1
t,t

(
xt−ψt(x0,xT )

)
and covari-

ance κ̃t−1 = κt−1,t−1 − κt−1,tκ
−1
t,t κt,t−1. This reveals a (step-wise) conditional backward transition

that induces a valid transformation flow mapping xT back to x0. This means for each sampled pair
(xT ,x0), the corresponding target-conditioned backward transition q(xt−1 | xt,x0,xT ) provides
an example of a localized transformation flow between them, which can be used to train the desired
target-agnostic map pθ(xt−1 | xt,xT ) as detailed next.

3.1.2 Learning Probabilistic Bridge Model

To learn the target-agnostic transformation that maps from a source to a plausible target without
knowing it beforehand, we parameterize it as

pθ
(
xt−1 | xt,xT

)
= N

(
xt−1;µθ(xt,xT , t), κ̃t−1I

)
. (7)

which uses the same (known) variance parameter as the localized flow/bridge example above and a
(learnable) spatio-temporal network ϵθ(xt, t) to parameterize the target-agnostic mean transition. This
is the centerpiece of the probabilistic bridge model in Eq. 7 which can now be learned via optimizing
its parameter θ to match the example flows generated using Eq. 6,

θPB = argmin
θ

E
(x0,xT ,t)

[
DKL

(
q
(
xt−1 | xt,x0,xT

)
∥pθ
(
xt−1 | xt,xT

))]
. (8)

The KL divergence in Eq. 8 above is between two Gaussians and can be computed in closed form
which allows for a direct optimization of θ. Given the optimized θPB and a source xT (low-value
design), we can now simulate the generic transformation flow in Eq. 7 to obtain a plausible target x0

(high-value design) which is not known apriori,

xt−1 = µθPB
(xt,xT , t) +

√
κ̃ ϵ , (9)

where we sample ϵ ∼ N(0, I) when t > 1 and set ϵ = 0 otherwise. This gives us the desired
transformation that translates a candidate in the low-value regime to another in the high-value
regime. Furthermore, to improve training efficiency, we can also adopt the practical approach in
guided diffusion which further conditions µθ(xt,xT , t) = µθ(xt,xT , y0, yT , t) on the source and
target outputs (i.e., yT and y0) [26].

3.2 Example and Practical Setup

This section provides an working example to substantiate the above probabilistic bridge frame-
work. Choosing ψt(x0,xT ) = x0(1−t/T )+xT (t/T ) and κt,k = (min(t, k)/T )(1−max(t, k)/T )
results in a Brownian bridge construction,

q
(
xt | x0,xT

)
= N

(
xt;x0

(
1− t

T

)
+ xT

t

T
,
t

T

(
1− t

T

)
I

)
. (10)

This specifies a transport plan that moves the unit point mass located as xT to x0. To see this, note
that when t = 0, Eq. 10 reduces to N(x0, 0) and when t = T , it reduces to N(xT , 0). This setup
emphasizes a point-to-point transformation which is particularly suitable for offline optimization.

As we substantiate Eq. 10 with the appropriate (low-value, high-value) pairs (xT ,x0) and derive
examples of localized flow mapping from the low- and high-value regimes following the blueprint in
Section 3.1.1, we can learn a target-agnostic transformation consistent with using Eq. 8. This setup
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has been used in our experiments to achieve significant performance improvement over prior work,
effectively establishing new SOTA. Further details regarding the specific derivation of the Brownian
bridge and its practical traning procedure is detailed in Appendix B.2.

Remark. The above framework offers a broad and flexible perspective on offline optimization that
has not been fully explored in the existing literature. From this viewpoint, there are many promising
directions for future investigation. Each valid specification of the mean and kernel functions in
the probabilistic bridge model in Eq. 5 defines a distinct way of transporting probability mass
from low-value to high-value regions. While offline optimization ultimately requires only one
such transport plan, different choices may lead to significantly different learning behaviors and
complexities. Understanding how the choice of bridge design influences learning performance
remains an important and open question for future work.

▷ Learning θPB however requires access to paired samples of low-value and high-value designs,
which is nontrivial in the offline optimization setting where the dataset typically reflects only the
low-value regime. This raises a fundamental question: where can we obtain representative samples
from the high-value regime to support bridge construction? Addressing this challenge is critical for
making the probabilistic bridge framework operational, and is the focus of Section 3.3.

3.3 Synthetic Data Generation and Practical Black-Box Optimization Algorithm: ROOT

This section revisits the challenge introduced in Section 1: Learning a probabilistic bridge requires
examples of localized flows from low- to high-value regimes. Yet, such examples are not available
in standard offline datasets, which by design lack high-performing solutions. To address this, we
propose a key hypothesis: if a probabilistic bridge can consistently translate low-value inputs to
high-value outputs across a sufficiently large set of functions similar to the oracle, it is likely to
generalize well to the oracle.

Motivation. This motivates an alternative data generation strategy. Rather than depending solely
on the offline dataset, we construct a collection of synthetic functions with closed-form structure,
allowing us to sample large quantities of low- and high-value inputs. These synthetic examples enable
us to train a meta probabilistic bridge with strong zero-shot adaptation. This strategy reflects the
common pre-training paradigm in foundation model development, where knowledge accumulated
from broad synthetic tasks can be readily transferred to any target task of interest. This motivation
leads to our overall workflow, which is illustrated in Figure 1.

Function Sampling. Collecting data from such similar functions is fortunately possible using the
Gaussian process [50] which specifies a prior over functions around a given mean function. Assuming
that the mean function is set to be the oracle, most sampled functions from the corresponding GP will
be similar to it. Since we do not know the oracle function, another approach is to begin with a generic
GP prior with kernel parameters ϕ = (σ, ℓ) and compute the corresponding GP posterior using the
offline data Do. The resulting GP posterior mean is

gϕs
(x) = k(ϕs)

⊤(K(ϕs) + σ2I
)−1

y , (11)

which has a closed form and is similar the oracle function around the offline data Do. To obtain
a wider range of functions similar to the oracle, we compute multiple GP posteriors according
to a diverse range of GP priors with different signal and length-scale parameters. These can be
obtained from learning a hierarchical GP prior with top-level prior over kernel parameters defining
the corresponding GP posteriors at the lower level. We can then sample kernel parameters {ϕs}

ng

s=1
and extract the corresponding posterior means – see Eq. 11.

Low- and High-Value Simulation. Given these functions, we can construct X−
s and X+

s as the
set of low- and high-value inputs of gϕs

(x) via running M -step gradient descent and ascent from a
subset of np offline input points:

X−
s ≜

{
x−
M ≜ x−

0 − η
M−1∑
m=0

∇xgϕs
(x−

m) |x−
0 ∈D0

}
, (12)

X+
s ≜

{
x+
M ≜ x+

0 + η

M−1∑
m=0

∇xgϕs
(x+

m) |x+
0 ∈D0

}
, (13)
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where x+
m+1 ≜ x+

m + η∇xgϕs
(x+

m) and x−
m+1 ≜ x−

m − η∇xgϕs
(x−

m). Here, x+
0 = x−

0 ∈ Do.
The corresponding outputs for the above inputs can also be computed using the closed-form of the
posterior means. A synthetic dataset Ds collecting low- and high-values from those closed-form
posterior mean functions can then be created:

Ds =
{
(X−

s ,y
−
s ), (X

+
s ,y

+
s )
}ng

s=1
where y−

s = gϕs
(X−

s ) and y+
s = gϕs

(X+
s ) , (14)

where ng is the number of sampled functions.

Learning Probabilistic Bridge. Following the blueprint in Section 3.1.1, we can sample
(xT , yT ,x0, y0) ∼ Ds as training data to train our probabilistic bridge mapping between low-
and high-value regions across the aforementioned posterior mean functions, which follows Eq. 8. Fur-
thermore, we also adopt the guided diffusion [26] technique to incorporate the output information yT
and y0 as part of the input to the prediction network µθ(xt,xT , y0, yT , t) as stated after Eq. 9.

Simulation. Once this probabilistic bridge model has been trained, we can utilize its corresponding
(step-wise) source-to-target transition in Eq. 9 to map each offine input (presumbaly in the low-
value regime) to a better solution candidate (in a high-value regime). For example, we can run this
simulation for the top 128 offline inputs with highest values. The effectiveness of this approach
is thoroughly evaluated in Section 4, where we demonstrate its ability to generate high-quality
candidates across various benchmarks. A full description of our algorithm and implementation is
presented in Appendix B. Our algorithm’s computational complexity is discussed in Appendix. C.4.

4 Experiments

This section evaluates our proposed method, ROOT, through extensive empirical comparisons against
various recent baselines on a standard offline optimization benchmark [59]. The experiment setup is
summarized in Section 4.1, with detailed results in Section 4.2 and ablation studies in Section 4.3.

4.1 Experiments Settings

Benchmark Tasks. Our investigation covers four real-world tasks selected from the Design-Bench
[59]5 and three RNA-Binding tasks from ViennaRNA [44]. In Design-Bench, the chosen tasks cover
both discrete and continuous domains. The discrete tasks, TF-Bind-8 and TF-Bind-10 [3], aim to
discover DNA sequences with high binding affinity to a specific transcription factor (SIX6 REF R1).
On the continuous side, Ant Morphology [6] and D’Kitty Morphology [2] focus on optimizing
the physical structure of a simulated robot ant from OpenAI Gym [6] and the D’Kitty robot from
ROBEL [2]. For ViennaRNA, we include three RNA-Binding tasks as RNA-A, RNA-B, and RNA-C
[44, 35]. For further details on these tasks, please read Appendix A.

Baselines. We selected 21 widely recognized methods, including BO-qEI [59], CMA-ES [23],
REINFORCE [67], COMs [60], CbAS [7], MINs [40], RoMA [69], DDOM [39], ICT [70],
Tri-mentoring [13], GTG [72], BDI [12], RGD [11], LTR [55], BONET [38], MATCH-OPT [27],
PGS [10], GABO [68], DEMO [71], GA on GP (Section 4.3) and standard GA.

Evaluation Protocol. Following the approach in [59], each method generates 128 optimized design
candidates, which are then evaluated by the oracle function. The performances are ranked, and results
are recorded at the 50th, 80th, and 100th percentiles. To ensure consistency, all results are averaged
over 8 independent runs with reported standard deviation.

Hyper-parameter Configuration. For each baseline, we adopt the optimized settings from the
original papers. For GP kernel hyper-parameters in our data generation, we sample lengthscales
ℓs and variances σ2

s uniformly from [ℓ0 − δ, ℓ0 + δ] and [σ2
0 − δ, σ2

0 + δ], with ℓ0 = σ2
0 = 1.0 for

continuous tasks and 6.25 for discrete tasks, and δ = 0.25. We use M = 100 gradient steps with step
sizes 0.001 (continuous) and 0.05 (discrete). Additional data generation details are in Appendix B.1
and Table 6. For training the Probabilistic Bridge model, we use a Brownian Bridge diffusion process
with the Adam optimizer over E = 100 epochs and ng = 800 synthetic functions, running on a
single NVIDIA A100-SXM4-80GB GPU. More training details are provided in Appendix B.2.

5We exclude tasks marked by previous works as having high oracle function noise and inaccuracy (ChEMBL,
Hopper, and Superconductor) and tasks that require substantial computational resources to evaluate (NAS)
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4.2 Experimental Results

Table 1: Experiment results on Design-Bench Tasks. We report the maximum score (100th percentile)
among Q = 128 candidates. Blue denotes the best entry in the column, while Brown indicates the
second best. Mean Rank is the average rank across all benchmark tasks.

Benchmarks
Method Ant D’Kitty TFBind8 TFBind10 Mean Rank
Do (best) 0.565 0.884 0.439 0.467 -

BO-qEI 0.812 ± 0.000 0.896 ± 0.000 0.825 ± 0.091 0.627 ± 0.033 16.75 / 22
CMA-ES 1.561 ± 0.896 0.724 ± 0.001 0.939 ± 0.039 0.664 ± 0.034 8.00 / 22
REINFORCE 0.263 ± 0.026 0.573 ± 0.204 0.961 ± 0.034 0.618 ± 0.011 17.00 / 22
GA 0.293 ± 0.029 0.860 ± 0.021 0.985 ± 0.011 0.638 ± 0.032 12.75 / 22
COMs 0.882 ± 0.044 0.932 ± 0.006 0.940 ± 0.027 0.621 ± 0.033 13.25 / 22
CbAS 0.846 ± 0.033 0.895 ± 0.016 0.903 ± 0.028 0.649 ± 0.055 12.50 / 22
MINs 0.894 ± 0.022 0.939 ± 0.004 0.908 ± 0.063 0.630 ± 0.019 12.50 / 22

GA on GP 0.948 ± 0.013 0.946 ± 0.001 0.770 ± 0.087 0.654 ± 0.038 9.25 / 22
RoMA 0.593 ± 0.066 0.829 ± 0.020 0.665 ± 0.000 0.553 ± 0.000 20.00 / 22
ICT 0.911 ± 0.030 0.945 ± 0.011 0.888 ± 0.047 0.624 ± 0.033 13.50 / 22
Tri-mentoring 0.944 ± 0.033 0.950 ± 0.015 0.899 ± 0.045 0.647 ± 0.039 9.00 / 22
MATCH-OPT 0.931 ± 0.011 0.957 ± 0.014 0.977 ± 0.004 0.543 ± 0.002 9.50 / 22
PGS 0.949 ± 0.017 0.966 ± 0.013 0.981 ± 0.015 0.532 ± 0.000 7.75 / 22
LTR 0.907 ± 0.032 0.960 ± 0.014 0.973 ± 0.000 0.652 ± 0.039 6.25 / 22

DDOM 0.930 ± 0.029 0.925 ± 0.008 0.885 ± 0.061 0.634 ± 0.015 13.75 / 22
GTG 0.865 ± 0.040 0.935 ± 0.010 0.901 ± 0.039 0.639 ± 0.016 12.50 / 22
BDI 0.964 ± 0.000 0.941 ± 0.000 0.973 ± 0.000 0.636 ± 0.020 7.50 / 22
RGD 0.922 ± 0.020 0.883 ± 0.014 0.889 ± 0.068 0.644 ± 0.048 13.00 / 22
BONET 0.948 ± 0.025 0.957 ± 0.008 0.894 ± 0.086 0.606 ± 0.024 10.75 / 22
GABO 0.224 ± 0.051 0.719 ± 0.001 0.939 ± 0.038 0.639 ± 0.033 15.25 / 22
DEMO 0.948 ± 0.013 0.956 ± 0.011 0.812 ± 0.054 0.648 ± 0.042 9.25 / 22

ROOT (ours) 0.965 ± 0.014 0.972 ± 0.005 0.986 ± 0.007 0.685 ± 0.053 1.25 / 22

Table 2: Experiments on Biological RNA Design Tasks.
We report the maximum score among Q = 128 candidates.

Benchmarks
Method RNA-A RNA-B RNA-C Mean Rank
CbAS 0.270 ± 0.098 0.249 ± 0.088 0.261 ± 0.093 6.00 / 8
BO-qEI 0.537 ± 0.106 0.517 ± 0.108 0.481 ± 0.100 3.67 / 8
GA 0.518 ± 0.120 0.499 ± 0.100 0.496 ± 0.091 4.33 / 8
COMs 0.187 ± 0.123 0.144 ± 0.121 0.209 ± 0.100 7.67 / 8
REINFORCE 0.166 ± 0.096 0.149 ± 0.081 0.225 ± 0.075 7.33 / 8
BDI 0.604 ± 0.000 0.505 ± 0.000 0.411 ± 0.000 4.00 / 8
Boot-Gen 0.913 ± 0.064 0.881 ± 0.024 0.786 ± 0.039 2.00 / 8

ROOT (ours) 0.956 ± 0.023 0.955 ± 0.013 0.922 ± 0.013 1.00 / 8

Table 3: Effect of initial-point se-
lection on ROOT’s performance.

Type Ant TFBind8
Random 0.953 ± 0.014 0.976 ± 0.007
Lowest 0.545 ± 0.214 0.969 ± 0.009
Highest 0.965 ± 0.014 0.986 ± 0.007

Table 4: ROOT vs ExPT in few-
shot settings.

Method Ant TFBind8
ExPT 0.940 ± 0.027 0.874 ± 0.071
ROOT 0.942 ± 0.035 0.895 ± 0.086

This section compares our method to 21 baselines, evaluating the 50th, 80th, and 100th percentiles.
Due to limited space, we report only the 100th percentile results in the main text; details on the 50th
and 80th percentiles and score distributions for our method versus others are in Appendix C.2.

Results on Continuous Tasks: Table 1 (first two columns) shows our continuous-task results. On
D’Kitty, we set a new SOTA at 0.972 with a small standard deviation 0.005. On Ant, although
CMA-ES surpasses us at the 100th percentile, its standard deviation (0.896) is nearly 64× ours
(0.014) and it collapses near zero at the 80th/50th percentiles (see Appendix C.2).

Results on Discrete Tasks: Table 1 (last two columns) present our discrete-task results. Our
ROOT achieves both the top rank for the TFBind10 task with a mean score 0.685 and the TFBind8
task with 0.986. Our standard deviation 0.007 for the TFBind8 task is even smaller than that of all
other baselines, except for RoMa, which performs poorly.
Results on RNA-Binding Tasks: Table 2 demonstrates ROOT’s superior performance, ranking first
on all three RNA benchmarks. We outperform Boot-Gen[35] by margins of 0.043 (RNA-A), 0.074
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Table 5: Performance on TF-Bind-8 and Ant of different methods trained by only the p% poorest-
performing designs from the offline dataset.

TF-Bind-8 Ant
Method 50% 20% 10% 50% 20% 10%
GA 0.580 ± 0.199 0.480 ± 0.218 0.559 ± 0.170 0.394 ± 0.023 0.663 ± 0.065 0.619 ± 0.120
COMs 0.935 ± 0.052 0.872 ± 0.085 0.771 ± 0.128 0.898 ± 0.035 0.880 ± 0.027 0.845 ± 0.041
REINFORCE 0.915 ± 0.039 0.917 ± 0.040 0.913 ± 0.038 0.317 ± 0.016 0.261 ± 0.052 0.281 ± 0.034
LTR 0.959 ± 0.022 0.927 ± 0.033 0.909 ± 0.034 0.909 ± 0.042 0.871 ± 0.059 0.813 ± 0.026
ROOT 0.964 ± 0.015 0.946 ± 0.045 0.915 ± 0.019 0.909 ± 0.012 0.930 ± 0.023 0.861 ± 0.051

(RNA-B), and 0.136 (RNA-C), while our standard deviations are roughly half those of Boot-Gen,
achieving better performance and lower variance (hence, more stable).

Overall, ROOT achieved a mean rank of 1.25 across both discrete and continuous domains, setting
a new SOTA on 3 out of 4 Design-Bench tasks, as well as on all three RNA-binding tasks. This
demonstrates the robust and consistent effectiveness of ROOT across diverse settings.

4.3 Ablation Experiments

Selection Strategies for Initial Points. We explore 3 initial point strategies for x+
0 ,x

−
0 in (Eq. 12

and Eq. 13): random sampling, and selecting points with the lowest or highest objective values from
Do. As shown in Table 3, the third strategy achieves the best results.

Few-Shot Experimental Designs Setting. In offline optimization, the few-shot experimental designs
(ED) setting, introduced in ExPT [45], presents a more challenging task where only a small set
of labeled data points, Dlabel = {(xi, yi)}nl

i=1 is available alongside a larger set of unlabeled data,
Dunlabeled = {xi}nu

i=1. To evaluate our model in this scenario, we follow ExPT’s protocol, using a
random 1% of the offline data as labeled points and the remaining 99% as unlabeled. For synthetic
function generation, we first fit a prior Gaussian process (GP) to Dlabel, then use the posterior
to generate pseudo-labels for Dunlabeled. We combine the labeled and pseudo-labeled data and fit
another GP to this dataset. The mean function of this refitted GP is used as the synthetic function,
following the same procedure as in the main method. As shown in Table 4, ROOT outperforms the
ExPT model in this setting by substantial margins.

Poor Offline data Coverage Setting. Beyond the Few-Shot Experimental Design scenario with
limited coverage, we further evaluated ROOT’s robustness under varying dataset support quality.
Specifically, we trained ROOT and the baselines using only the p% lowest-performing designs from
the offline dataset. As shown in Table 5, ROOT achieves the best performance across all settings on
both TF-Bind-8 and Ant. These results demonstrate that ROOT adapts effectively in challenging
scenarios where training data is heavily biased toward low-quality designs.

Effectiveness of Learning the Probabilistic Bridge Model. To demonstrate/ablate the effectiveness
of our learning probabilistic bridge model (see Section 3.1.1), we further conducted an experiment
that runs gradient ascent on GP posterior mean function for comparison. This simple baseline is
denoted as GA on GP in Table 1. It is observed that our method significantly outperforms this
baseline, confirming the impact of learning probabilistic bridge.

Number of Gradient Steps (M ). We experimented with various numbers of gradient steps (M ), from
the set {25, 50, 75, 100} to constructX−

s andX+
s during the data generation phase (see Section 3.3).

Our experiments reveal that increasing M consistently improves the overall performance of the
algorithm as illustrated in Table 6. Increasing the number of gradient steps allows our model to
more precisely distinguish between low-value and high-value regions in the distribution, substantially
enhancing our performance. However, increasing the number of gradient steps also increases
computational time, so we select M = 100 as the best balance between performance and efficiency.

Number of Initial (np). For each synthetic function generated by the Gaussian process, we will
draw a number of initial data points (np) from the offline dataset to initiate the exploration into the
low-value and high-value regions via gradient descent and ascent, respectively. We experimented
with different numbers of initial points from the set {128, 256, 512, 1024}. As shown in Table 7,
increasing the number of initial points np consistently improves performance. This observation is
similar to a previous observation that having more well-curated training data tends to enhance the
overall performance. We selected np = 1024 as the best balance between cost and performance.
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Table 6: Impact of gradient steps M on ROOT.

Steps (M ) Ant D’Kitty TF-Bind-8 TF-Bind-10
25 0.968 ± 0.009 0.972 ± 0.003 0.952 ± 0.024 0.640 ± 0.039
50 0.968 ± 0.015 0.969 ± 0.003 0.945 ± 0.025 0.639 ± 0.024
75 0.950 ± 0.011 0.969 ± 0.005 0.972 ± 0.013 0.652 ± 0.033

100 0.965 ± 0.014 0.972 ± 0.005 0.986 ± 0.007 0.685 ± 0.053

Table 7: Impact of number of initial
data points on ROOT.

Initial Points (np) Ant TF-Bind-8
128 0.915 ± 0.020 0.948 ± 0.024
256 0.950 ± 0.010 0.968 ± 0.018
512 0.964 ± 0.010 0.974 ± 0.006

1024 0.965 ± 0.014 0.986 ± 0.007

Additional Ablation Studies. We further performed a series of ablation studies, examining key
hyperparameters of our method, alternative strategies for sampling GP kernel parameters, different
data sampling techniques beyond GP, the impact of measurement noise, performance on high-
dimensional continuous tasks, and settings with limited query budgets. For completeness, we also
report computational complexity analysis and empirical runtime comparisons of ROOT against
baselines. Due to space constraints, all these results are deferred to Appendices C.

5 Related Works

Existing approaches in offline optimization can be categorized into three main families: forward
modeling, inverse modeling, and learning search policies.

Forward Modeling tackles out-of-distribution (OOD) issues by penalizing high surrogate predictions
on OOD inputs [60, 13, 70, 69, 14, 15, 27, 46, 19, 18]. For example, COM [60] identifies OOD regions
early during gradient updates and re-trains the surrogate with regularizers to penalize high-value
predictions at these inputs. BOSS[14] introduces a sensitivity-aware regularizer for offline optimizers,
while ICT, Tri-mentoring [70, 13] use co-teaching among surrogates to improve performance.

Inverse Modeling avoids OOD problems by directly learning high-value regions [40, 45, 39]. For
instance, MIN [40] uses model inversion networks to map scores back to inputs, while ExPT [45]
combines unsupervised learning and few-shot experimental design for optimizing synthetic functions.
DDOM [39] develops a guided diffusion model to generate designs conditioned on function values.
The model is trained using weighted sampling from the offline dataset.

Learning Search Policies aims to replicate optimization paths from low- to high-value designs [38,
10]. BONET [38] synthesizes trajectories from offline data using a heuristic for monotonic transitions
and trains an auto-regressive model. PGS [10] reinterprets offline optimization as a reinforcement
learning task, which optimizes for an effective policy using sampled trajectories from offline data.

Overall, these methods remain constrained by the availability of offline data. For instance,
DDOM [39] employs guided diffusion to learn an inverse mapping from desired performance outputs
to potential input designs. However, the adopted diffusion model must be trained on weighted sam-
pling from the offline data, which may lack critical information regarding potential high-performing
input regions that are far from the offline regimes.

To address the challenges posed by limited data, we reframe offline optimization as a distributional
translation task. This perspective unveils an intriguing direction: rather than depending solely on
scarce high-value observations, one can learn a global translation model by stitching together localized
transformation examples between low- and high-value regimes. This allows the optimization process
to be guided by a learned probabilistic bridge that generalizes across design landscapes, offering a
flexible and data-efficient alternative to traditional surrogate-based methods.

6 Conclusion

We proposed a new perspective on offline black-box optimization by reframing it as a distributional
translation task between low-value and high-value input regimes. At the core of this approach is the
probabilistic bridge, a model that learns localized transformation flows conditioned on both source
and target designs, and synthesizes them into a global translation mechanism. To address the lack
of high-value examples in offline datasets, we introduced a synthetic data generation framework
that enables pre-training of a meta probabilistic bridge with strong zero-shot generalization. This
shifts the focus from modeling the objective function to modeling design transitions, opening new
possibilities for data-efficient optimization. Future directions include exploring alternative bridge
parameterizations and extending the framework to more complex optimization settings.
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A Task Details

A.1 Design-Bench Task

Design-Bench [59] is a widely adopted benchmark for evaluating offline black-box optimization
algorithms. Table 8 presents the summary of five evaluation tasks in Design-Bench.

Table 8: Overview of tasks in the Design-Bench benchmark. The ground-truth oracle functions for
these tasks (unknown to our algorithm) are accessible during evaluation.

Task Offline Size Input Dimension Input Category Input Type Oracle
TF Bind 8 32,898 8 4 Discrete Exact
TF Bind 10 10,000 10 4 Discrete Exact
Ant Morphology 10,004 60 N/A Continuous Exact
D’Kitty Morphology 10,004 56 N/A Continuous Exact
RNA-Binding 5000 14 4 Discrete Exact

TF Bind 8 and TF Bind 10: DNA Sequence Optimization. The goals of the TF Bind 8 and TF
Bind 10 tasks are to discover, respectively, the length-8 and length-10 DNA sequences with the
strongest binding affinity to a specific transcription factor (SIX6_REF_R1 by default) [3]. In these
settings, each DNA candidate is a sequence of nucleotides where each nucleotide has 4 possible
categorical values. The Design-Bench benchmark grants access to the full oracle functions for the
TF-Bind-8 and TF-Bind-10 tasks, which correspond to databases containing exact binding affinities
for all possible sequences (i.e., 48 and 410 combinations, respectively). Following the evaluation
protocol in [59], a fixed subset of sequences is sampled from each oracle and used as the offline
dataset for all baselines. In particular, TF-Bind-8 provides an offline dataset of 32, 898 sequences
while TF-Bind-10 provides an offline dataset with 10, 000 sequences.

Ant and D’Kitty Morphology: Robot Morphology Optimization. These tasks focus on optimizing
the physical structure of two simulated robots: (1) Ant from OpenAI Gym [6] and (2) D’Kitty from
ROBEL [2]. In Ant Morphology, the objective is to find the structure of a quadruped robot to
maximize its running speed. In D’Kitty Morphology the goal is to find the most effective structure
for the D’Kitty robot that enables it to reach a specific target. In particular, each structure candidate
specifies the morphology parameters, such as the size, orientation, and placement of limbs, for a robot
controller which will be trained using the Soft Actor-Critic algorithm [22]. For the Ant robots, there
are 60 morphology parameters. For the D’Kitty robots, there are 56 morphology parameters. The
solution quality of each structure candidate is obtained by simulating the corresponding trained
controller in the MuJoCo [58] environment. Each simulation runs for 100 steps and the overall
solution quality is obtained by averaging simulation results across 16 independent runs.

A.2 RNA Task

RNA-Binding [44]. This is an inverse-folding task whose objective is to optimize RNA sequences
of fixed length (14 nucleotides) over the alphabet {A,U,C,G}, which are abbreviations for adenine,
uracil, cytosine, and guanine, respectively. In particular, the task is to find a sequence whose predicted
minimum-free-energy (MFE) structure maximizes its binding affinity to a given transcription factor.
We follow the benchmark setup of Bootgen [35] by considering three target structures RNA-A (L14
RNA1), RNA-B (L14 RNA2), and RNA-C (L14 RNA3). To construct the offline dataset Do, we use
the FLEXS codebase [51] to generate sequences uniformly at random. The RNAinverse algorithm
from ViennaRNA 2.0 is then applied iteratively until 5,000 sequences with minimum free energy
(MFE) below 0.12 are obtained, forming the final offline dataset.

B Detailed Algorithmic Description and Implementation of ROOT

B.1 Generating Synthetic Data with GP

To generate a diverse range of synthetic functions which are sufficiently similar to the oracle, we
first sample the kernel parameters ℓs (lengthscale) and σ2

s (variance) uniformly from the ranges
[ℓ0− δ, ℓ0 + δ] and ]σ2

0 − δ, σ2
0 + δ], where ℓ0, σ2

0 and δ are fixed initial hyperparameters, as reported
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Table 9: Hyperparameters for the synthetic data generation of ROOT.

Hyperparameter Value

ℓ0, σ
2
0

1.0 (continuous)
6.25 (discrete)

δ 0.25

Step size (η) 0.001 (continuous)
0.05 (discrete)

Number of gradient steps (M ) 100

Threshold (τ ) 0.001

Algorithm 1 Synthetic Data Generation via Simulating Gaussian Process (GP) Posteriors
1: Input: Offline dataset Do = {xi, yi}ni=1, number of functions per epoch ne, number of points

per function np, number of gradient steps M
2: Output: Synthetic dataset Ds = {(X−,y−), (X+,y+)}
3: Ds ← ∅
4: for s = 1 to ne do
5: Sample kernel parameters ϕs = (ℓs, σ

2
s): ℓs ∼ U(ℓ0 − δ, ℓ0 + δ), σ2

s ∼ U(σ2
0 − δ, σ2

0 + δ)
6: Compute the mean function ḡϕs of the posterior Gaussian process via Eq. 11
7: Sample a subset of np points from offline data: D0 ⊂ Do where |D0| = np
8: Compute the set of low-value designsX−

s using Eq. 12
9: Compute the set of high-value designsX+

s using Eq. 13
10: Compute corresponding low and high scores: y−

s = ḡϕs(X
−
s ), y

+
s = ḡϕs(X

+
s )

11: Ds ← Ds ∪ {(X−
s ,y

−
s ), (X

+
s ,y

+
s )}

12: end for
13: Return Ds

in Table 9. After sampling, we compute the mean function of the Gaussian process posterior based on
the offline data. We then sample np points from the offline data and performM = 100 gradient ascent
and gradient descent steps with a step size η (more details are provided in Section 3.3). To enhance
the quality of our synthetic data, we filter out any pair of low- and high-value points (x−, y−) and
(x+, y+) whose difference between y+ and y− is smaller than a threshold τ . All key hyperparameters
for this process are listed in Table 9. The pseudocode of the algorithm is presented in Algorithm 1.

B.2 Learning the Probabilistic Bridge Model

This section provides further details regarding the implementation of the learning loss in Eq. 8 with
respect to its Brownian bridge instantiation in Section 3.2. In particular, following the formulation of
q(xt | x0,xT ) in Eq. 10, we can express xt

xt =

(
1− t

T

)
x0 +

t

T
xT +

√
κt,tϵt (15)

where ϵt ∼ N(0, I) and κt,t = 2(mt −m2
t ) with mt = t/T . This reproduces the Brownian Bridge

Diffusion Model [43]. Following the derivation in [43], we obtain:

q(xt−1 | xt,x0,xT ) = N (µ(xt,x0,xT ), κ̃t−1 · I) ,

where the mean is

µ(xt,x0,xT ) = ut · xt + vt · xT + wt ·
(
mt(xT − x0) +

√
κt,tϵ

)
, (16)

and the variance is

κ̃t−1 =

(
κt,t − κt−1,t−1 ·

(1−mt)
2

(1−mt−1)2

)
· κt−1,t−1

κt,t
. (17)
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Algorithm 2 Learning the Probabilistic Bridge and Simulation for Offline Optimization (ROOT)
1: Input: Offline dataset Do = {xi, yi}ni=1, number of epochs E, number of diffusion steps T ,

scale α, best objective value y∗, conditional dropout probability ρ, number of iterations I
2: Output: High-value candidate x∗

0
3:
4: Learning Probabilistic Bridge Phase:
5: Initialize model parameters θ
6: for e = 1 to E do
7: Generate synthetic dataset Ds from Algorithm 1
8: for i = 1 to I do
9: Sample {xT , yT ,x0, y0} ∼ Ds = {X−,y−,X+,y+}

10: Sample timestep t ∼ Uniform(1, T ), γ ∼ Ber(ρ), y = [yT , y0]
11: Forward diffusion: xt = (1−mt) · x0 +mt · xT +

√
κt,tϵ where ϵ ∼ N(0, I)

12: Gradient descent step: ∇θ

∥∥mt(xT −x0)+
√
κt,tϵ−ϵθ(xt, t, (1−γ) ·y+γ · ∅)

∥∥2 (Eq. 24)
13: end for
14: end for
15:
16: Simulation Phase:
17: {xT , yT } ← 128 best designs in Do, y = [yT , α · y∗]
18: for t = T to 1 do
19: z ∼ N(0, I) if t > 0 else z = 0
20: Compute ϵθ(xt, t, y) via Eq. 25
21: xt−1 = ut · xt + vt · xT + wt · ϵθ(xt, t, y) +

√
κ̃t−1 · z

22: end for
23:
24: Return: high-value design x∗

0 = x0

Furthermore, the coefficients for the above mean function were derived as

ut =
κt−1,t−1

κt,t
· 1−mt

1−mt−1
+

κt,t − κt−1,t−1 · (1−mt)
2

(1−mt−1)2

κt,t
· (1−mt−1) , (18)

vt = mt−1 − mt ·
1−mt

1−mt−1
· κt−1,t−1

κt,t
, (19)

wt = (1 − mt−1) ·
κt,t − κt−1,t−1 · (1−mt)

2

(1−mt−1)2

κt,t
. (20)

This setup thus provides training examples of localized flows which can be used to learn a parame-
terized target-agnostic transformation that maps from a source xT to a plausible target x0 without
knowing it beforehand using the loss in Eq. 8. To implement this loss, we parameterize the transition
probability of the aforementioned target-agnostic transformation pθ(xt−1|xt,xT ) as:

pθ(xt−1|xt,xT ) = N
(
xt−1;µθ(xt,xT , t), κ̃t−1 · I

)
, (21)

where the µθ is parameterized following Eq. 16:

µθ(xt,xT , t) = ut · xt + vt · xT + wt · ϵθ(xt, t) , (22)

which features a parameterized noise prediction network ϵ(xt, t) to predict the noise perturbed
quantity mt(xT − x0) +

√
κt,tϵ of a local flow at time t. Under this parameterization, the training

loss in Eq. 8 can be simplified as,

θPB = argmin
θ

E
x0,xT ,ϵ

[
∥mt(xT − x0) +

√
κt,tϵ− ϵθ(xt, t)∥2

]
. (23)

It is then approximately optimized via sampling (xT ,x0) from the synthetic dataset Ds created using
Algorithm 1 above. For a more practical implementation, we further leverage the corresponding
socres yT and y0 of xT and x0 which are also included in Ds. In particular, we further parameterize
ϵθ(xt, t) as ϵθ(xt, t, (1− γ)y + γ∅) with y = (y0, yT ) and γ ∼ Ber(ρ) following similar practice
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in guided diffusion [26]. The intuition is that we want to leverage the output scores to guide the noise
prediction network but ath the same time, we do not want the network to overly depend on such
guidance. This is enforced using the dropout trick which randomly removes the guiding information
during training with probability ρ ∈ (0, 1). The above learning loss can then be recast as:

θ∗PB ≜ argmin
θ

E
x0,y0,xT ,yT ,ϵ

[
∥mt(xT − x0) +

√
κt,tϵ− ϵθ(xt, t, (1− γ) · y + γ · ∅)∥2

]
, (24)

where γ ∼ Ber(ρ). Once trained, the noise network ϵθ is used as below during the simulation phase:

ϵθ(xt, t, y) = (1 + β) · ϵθ(xt, t, y) − β · ϵθ(xt, t, ∅) , (25)

where β is the classifier free guidance weight and y = [yT , α · y∗] with y∗ denotes the maximum
oracle score. Our detail algorithm is presented in Algorithm 2.

For more details, we utilize an MLP ϵθ(xt, t, y) comprising four layers, each with 1024 units. Each
layer employs the Swish activation function, Swish(z) = zσ(z), where σ(z) denotes the sigmoid
function. The MLP is trained using the Adam optimizer for 100 epochs with a learning rate of 0.001.
During each epoch, we sample ne = 8 synthetic functions from the Gaussian process (the total
number of synthetic functions is ng = ne ×E = 8× 100 = 800 functions) and generate np = 1024
samples for each function. At the testing phase, we sample high-value design candidates from the 128
best designs in the offline dataset, using T = 200 sequential denoising steps. All hyperparameters for
modeling, training, and sampling with our model are summarized in Table 10.

Table 10: Hyperparameters for the generalized Brownian Bridge diffusion process in ROOT .

Hyperparameter Value

Architecture
Hidden size 1024
Number of layers 4
Activation Swish

Training

Number of epochs (E) 100
Number of functions (ne) (per epoch) 8
Number of data points (np) (per function) 1024
Learning rate 0.001
Optimizer Adam
Batch size 64
Conditional dropout (ρ) 0.15

Sampling
α 0.8
β -1.5
Denoising steps 200

C Additional Experiment Results

C.1 Computation Resource

All our experiments were conducted on a system with the following specifications: Ubuntu 20.04.5, a
single NVIDIA A100-SXM4-80GB GPU, and CUDA 10.1. Notably, our method requires less than
6GB of GPU memory per run.

C.2 Additional Performance Evaluation of ROOT

In the main text, we have reported the 100th percentile scores. In this section, we present addi-
tional evaluation results at 80th and 50th percentiles, providing further insights into the performance
distribution of our ROOT.

C.2.1 Performance Evaluation at 80th Percentile

As shown in Table 11, our method ROOT consistently demonstrates strong performance at the 80th

percentile level, achieving the best mean rank, i.e., 1.5. Notably, in the Ant and D’ Kitty tasks,
ROOT achieves significant improvements over all baselines with remarkable score differences of
0.098 and 0.025 over the runner-ups in those tasks, respectively. ROOT also achieves the best result in
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TF-Bind-8, outperforming the runner-up with a margin of 0.011. In the TF-Bind-10, ROOT performs
competitively to the best baselines. Overall, these results demonstrate the consistent reliability and
stability of our model’s performance.

Table 11: Experiments on Design-Bench Tasks. We report 80th percentile score among Q = 128
candidates. Blue denotes the best entry in the column, and Brown denotes the second best. Mean
Rank means the average rank of the method over all the experiment benchmarks.

Benchmarks
Method Ant D’Kitty TFBind8 TFBind10 Mean Rank
Do (best) 0.565 0.884 0.439 0.467 -

BO-qEI 0.629 ± 0.000 0.884 ± 0.000 0.439 ± 0.000 0.510 ± 0.011 11.00 / 15
CMA-ES 0.007 ± 0.013 0.718 ± 0.001 0.652 ± 0.017 0.543 ± 0.013 9.50 / 15
REINFORCE 0.182 ± 0.017 0.562 ± 0.197 0.622 ± 0.030 0.519 ± 0.007 11.25 / 15
GA 0.189 ± 0.014 0.762 ± 0.036 0.828 ± 0.027 0.516 ± 0.004 8.75 / 15
COMs 0.635 ± 0.031 0.887 ± 0.004 0.738 ± 0.027 0.526 ± 0.012 5.25 / 15
CbAS 0.542 ± 0.034 0.813 ± 0.012 0.585 ± 0.030 0.517 ± 0.008 10.25 / 15
MINs 0.746 ± 0.011 0.908 ± 0.004 0.545 ± 0.031 0.519 ± 0.010 6.50 / 15
RoMA 0.298 ± 0.033 0.738 ± 0.018 0.661 ± 0.010 0.525 ± 0.003 9.00 / 15
DDOM 0.749 ± 0.029 0.865 ± 0.009 0.526 ± 0.017 0.506 ± 0.004 9.75 / 15
ICT 0.708 ± 0.019 0.898 ± 0.004 0.667 ± 0.035 0.525 ± 0.016 6.00 / 15
Tri-mentoring 0.722 ± 0.015 0.902 ± 0.003 0.683 ± 0.047 0.531 ± 0.007 4.00 / 15
GTG 0.725 ± 0.077 0.913 ± 0.007 0.611 ± 0.038 0.506 ± 0.006 7.75 / 15
LTR 0.679 ± 0.016 0.902 ± 0.002 0.734 ± 0.025 0.508 ± 0.010 7.00 / 15
GABO 0.016 ± 0.009 0.705 ± 0.002 0.676 ± 0.021 0.512 ± 0.008 11.25 / 15

ROOT (ours) 0.847 ± 0.005 0.938 ± 0.002 0.839 ± 0.015 0.526 ± 0.007 1.50 / 15

C.2.2 Performance Evaluation at 50th Percentile

Table 12 reports the results achieved by all baselines at 50-th percentile. Consistent with our earlier
observations, ROOT again achieves the best mean rank of 2.0. In particular, we surpass the runner-up
baseline, Gradient Ascent (GA), in the TF-Bind-8 task with a significant score difference of 0.072,
securing the top rank among all other methods. In the Ant and D’Kitty tasks, ROOT also achieves
substantial score gaps of 0.067 and 0.018 over the corresponding runner-ups, respectively. Further-
more, the reported standard deviations of ROOT in those tasks are 0.014 and 0.003 which are much
lower than those of other baselines. This further ascertains the stability and superior performance of
our method across the evaluation benchmark.

C.3 Score Distribution of ROOT

To provide a more holistic comparison between the score distribution of ROOT and those of others,
we collect the design candidates obtained from 8 runs (128×8 = 1024 designs) to plot the distribution
of scores achieved by ROOT and several other representative baselines. The results are shown in
Fig. 2. Due to the wide range of scores produced by CMA-ES on the Ant task, we separately plot
and compare its score distribution against ROOT. The remaining plots visualize and compare the
score distributions of ROOT and 5 representative baselines. In each plot, we annotate the max and
median lines to ease the visual comparison. In particular, Fig 2 reveals that ROOT often has a score
distribution skewed towards higher-value regions, especially in the D’Kitty task. In the Ant task,
although ROOT ’s max score is not as high as that of CMA-ES, CMA-ES only produces a single
good design while the rest (in its solution set) perform poorly, as also observed in Table 11 and
Table 12. Otherwise, it can be observed consistently across all plots ROOT achieves better score
distributions compared to other baselines.

Summary. In conclusion, all reported results have demonstrated consistently that our proposed
method ROOT is, on average, the best-performing baseline in both score distributions and targeted
evaluation percentiles. This consistent performance not only highlights the effectiveness and stability
of ROOT but also reaffirms the robustness of our approach across a wide range of tasks.
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Table 12: Experiments on Design-Bench Tasks. We report 50th percentile score among Q = 128
candidates. Blue denotes the best entry in the column, and Brown denotes the second best. Mean
Rank means the average rank of the method over all the experiment benchmarks.

Benchmarks
Method Ant D’Kitty TFBind8 TFBind10 Mean Rank
Do (best) 0.565 0.884 0.439 0.467 -

BO-qEI 0.569 ± 0.000 0.883 ± 0.000 0.439 ± 0.000 0.469 ± 0.005 7.75 / 15
CMA-ES -0.043 ± 0.007 0.674 ± 0.016 0.536 ± 0.012 0.490 ± 0.015 8.75 / 15
REINFORCE 0.140 ± 0.026 0.510 ± 0.203 0.450 ± 0.024 0.470 ± 0.010 11.00 / 15
GA 0.137 ± 0.014 0.591 ± 0.132 0.603 ± 0.045 0.469 ± 0.006 8.75 / 15
COMs 0.471 ± 0.034 0.862 ± 0.003 0.598 ± 0.031 0.475 ± 0.010 5.75 / 15
CbAS 0.369 ± 0.008 0.748 ± 0.016 0.441 ± 0.021 0.465 ± 0.006 10.75 / 15
MINs 0.618 ± 0.016 0.889 ± 0.003 0.421 ± 0.017 0.467 ± 0.010 7.25 / 15
RoMA 0.224 ± 0.020 0.545 ± 0.170 0.519 ± 0.073 0.518 ± 0.003 8.50 / 15
DDOM 0.568 ± 0.066 0.814 ± 0.016 0.404 ± 0.012 0.456 ± 0.002 11.00 / 15
ICT 0.554 ± 0.018 0.872 ± 0.007 0.557 ± 0.031 0.457 ± 0.033 8.25 / 15
Tri-mentoring 0.572 ± 0.016 0.884 ± 0.001 0.562 ± 0.051 0.475 ± 0.009 4.25 / 15
GTG 0.645 ± 0.098 0.901 ± 0.005 0.460 ± 0.032 0.452 ± 0.010 7.25 / 15
LTR 0.568 ± 0.016 0.885 ± 0.002 0.566 ± 0.026 0.466 ± 0.011 6.00 / 15
GABO -0.039 ± 0.004 0.674 ± 0.005 0.496 ± 0.011 0.457 ± 0.008 11.50 / 15

ROOT (ours) 0.712 ± 0.014 0.919 ± 0.003 0.675 ± 0.026 0.473 ± 0.004 2.00 / 15
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Figure 2: Score distribution of found candidates of ROOT compared to others. To avoid cluttering
the plots with long chunks of text, we use the abbreviation Tri-men* to denote Tri-mentoring.

C.4 Computational Complexity Analysis

Computational Complexity. Computational cost of ROOT is as follows:

• For each training epoch: Fitting nf Gaussian processes requires O(nfn
3) where n is the offline

data size. Performing M gradient steps (querying the GP’s mean function) to generate np synthetic
points from each of nf functions requires O(nfMnpn). Training the BBDM model requires T
diffusion steps per sample, where each step involves a forward and backward pass through the score
network ϵθ, giving a total cost of O(T (fθ + bθ)nfnp), where fθ, bθ denote the cost of forward and
backward, respectively.

• For the whole training process, the overall cost is O(E(nfn
3 + nfMnpn + T (fθ + bθ)nfnp))

where E is the number of epochs.
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• For the inference process, the overall cost is O(QDfθ) where Q and D are the number of selected
candidates and denoising steps.

Therefore, the total computational cost of ROOT is:

O(E(nfn
3 + nfMnpn+ T (fθ + bθ)nfnp)) +O(QDfθ)

Furthermore, we note that the most complex term in ROOT’s computational cost, GP fitting, can be
further mitigated by using sparse GP techniques [49], which scales linearly in the number of inputs.

Empirical Runtime. We empirically evaluate the runtime of our method and compare it against
several baselines across a range of tasks. As shown in Table 13, the results demonstrate that
ROOT achieves faster execution time than several widely used baselines, including CMA-ES,
MINS, and Tri-mentoring, while maintaining competitive or superior performance. All experiments
are conducted on a single GPU, with each task requiring approximately 4GB of memory.

Table 13: Runtime (in seconds) of different models across four tasks.

Model Ant D’Kitty TF-Bind-8 TF-Bind-10
GA 122 200 124 420
BO-QEI 219 310 402 383
CMA-ES 5747 4889 2667 4323
MINS 797 998 2213 792
REINFORCE 240 257 507 373
CBAS 394 390 835 529
ICT 188 189 216 639
Tri-mentoring 4276 3921 4673 3410
DEMO 668 1489 1024 1696

ROOT 298 297 407 575

C.5 Effectiveness of Gaussian process for Generating Synthetic Data.

C.5.1 DNN-based Approach for Generating Synthetic Data

There are several strategies for sampling closed-form functions fitted to offline data (to provide
functions that are similar to the oracle). In ROOT, we adopt a standard Gaussian process (GP)
approach due to its efficiency, ease of implementation, and strong empirical performance. GPs
are particularly advantageous for their simplicity in debugging and their effectiveness in modeling
predictive uncertainty. Our motivation is further motivated by ExPT [45], a recent few-shot offline
optimization baseline, which similarly employs GPs to generate pseudo labels for offline data.

While alternative generative models exist, they often introduce additional complexity and compu-
tational overhead. For instance, we conducted experiments using deep neural networks (DNNs) in
place of GPs. One such approach involves randomly initializing the weights of a DNN and training
it to fit the offline dataset, then serving as a single sampled function. However, this approach is
computationally expensive. Generating 800 such functions using DNNs, each requiring 800 separate
training runs, takes approximately 100 minutes, compared to under 300 seconds for the entire training
process using our GP-based method.

To further investigate this, we evaluated two less costly alternative setups: (1) an ensemble of five
DNNs replacing all 800 GP functions, denoted as DNN5, and (2) a single DNN replacing all 800 GP
sampled functions, denoted as DNN1. As shown in the Table 14, both alternatives perform worse
than our GP-based approach and incur significantly higher computational costs.

C.5.2 Bins-based Approach for Generating Synthetic Data

Beyond the DNN-based approach, we also explore two other heuristic methods that do not depend on
Gaussian processes (GP). The first method, 2 bins, partitions the offline data into two bins, the lowest
50th percentile and the highest 50th percentile, and samples low- and high-value designs (X−,X+)
from the corresponding bins respectively. The second method, 64 bins, divides the data into 64
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Table 14: Performance and runtime of different methods for sampling function on the Ant task.

Model Performance Time (s)
DNN5 0.637 ± 0.268 1297
DNN1 0.630 ± 0.201 751

ROOT 0.965 ± 0.014 298

bins based on the y values and then samples X− from the lowest bin and X+ from the highest.
This approach is similar to the sampling strategy in [38], where trajectories with increasing outputs
are selected from offline data to train a model that progressively guides designs from the lowest
to the highest bin. In addition, we also examine another GP-based approach that utilizes only one
GP function to generate synthetic data. As reported in Table 15, the GP-based methods consistently
outperform the above bin-based heuristic approaches, with GP (800 functions) achieving the best
performance.

Table 15: Effectiveness of Gaussian process for generating synthetic data.

Type Ant D’Kitty TF-Bind-8 TF-Bind-10

No-GP 2 bins 0.745 ± 0.097 0.952 ± 0.007 0.775 ± 0.057 0.641 ± 0.034
64 bins 0.941 ± 0.020 0.952 ± 0.009 0.837 ± 0.055 0.651 ± 0.054

GP GP (1 function) 0.955 ± 0.013 0.971 ± 0.004 0.984 ± 0.012 0.657 ± 0.029
GP (800 functions) 0.965 ± 0.014 0.972 ± 0.005 0.986 ± 0.007 0.685 ± 0.053

C.6 GP Hyperparameters Sampling Methods

To diversify the GP mean functions, various approaches can be used to sample GP hyperparameters.
In our work, we adopt a simple strategy by uniformly sampling the GP hyperparameters, i.e., the
lengthscale ℓs and variance σs, from a fixed range, as presented in line 5 of Algorithm 1. This approach
follows the prior practice in ExPT [45], which also samples these hyperparameters uniformly from a
small range and achieves strong performance.

To explore alternative strategies, we have conducted additional experiments. In a MAP-based setting,
we first optimize the hyperparameters ℓ0 and σ0 by minimizing the negative log marginal likelihood
(NLML) on Do = {xi, yi}ni=1, which is commonly used in Gaussian processes:

LNLML(ϕ) =
1

2
y⊤K−1

ϕ y +
1

2
log |Kϕ| +

n

2
log 2π ,

where Kϕ is the kernel matrix parameterized by ϕ = {ℓ0, σ0}, and n is the number of training data
points. After obtaining these MAP estimates, we sample new hyperparameters uniformly around
them: ℓs ∼ [ℓ0 − δ, ℓ0 + δ] and σs ∼ [σ0 − δ, σ0 + δ], instead of setting ℓ0, σ0 as in Table 9.

In addition, we have also experimented with an MCMC-based approach to sample these hyper-
parameters. In this setting, we first define a prior distribution p(ℓs, σs) (e.g., a Gaussian prior)
and a likelihood p(Do | ℓs, σs), derived similarly from the marginal likelihood. We then apply
MCMC sampling to draw ng hyperparameter combinations from the posterior distribution, i.e
p(ℓs, σs | Do) ∝ p(Do | ℓs, σs)× p(ℓs, σs).
As shown in Table 16, our uniform sampling method consistently outperforms the aforementioned
alternatives. Also, both alternatives introduce significant computational overhead. In particular, the
MCMC-based approach requires substantial runtime, incurring approximately 1000 seconds per
run, even when using only 8 warmup steps. We leave further exploration of more sophisticated
hyperparameter sampling strategies to future work.

C.7 Hyper-parameter Tuning

Number of GP mean functions. We additionally conducted experiments on the number of GP mean
functions to generate synthetic data. In our original method, we use ng = ne ×M = 800 functions;
here, we vary this number from 100 to 1000. The empirical results in Table 17 indicate that the final
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Table 16: Performance and runtime of different GP hyperparameter sampling methods on Ant task.

Method Performance
MAP (ng = 800) 0.940 ± 0.023
MCMC (ng = 200) 0.884 ± 0.017
MCMC (ng = 400) 0.921 ± 0.010
MCMC (ng = 600) 0.932 ± 0.016
MCMC (ng = 800) 0.916 ± 0.009

ROOT (ng = 800) 0.965 ± 0.014

performance improves as the number of Gaussian Processes (GPs) increases. However, there may
exist a saturation point (e.g., 800 GPs), beyond which further increasing the number of GPs could
lead to a decline in performance.

Table 17: Performance on Ant and TF-Bind-10 with varying number of GPs.

#GPs Ant TF-Bind-10

100 0.914 ± 0.015 0.632 ± 0.020
200 0.914 ± 0.015 0.677 ± 0.038
400 0.959 ± 0.010 0.631 ± 0.018
600 0.956 ± 0.021 0.674 ± 0.044
800 (ROOT) 0.965 ± 0.014 0.685 ± 0.053
1000 0.960 ± 0.016 0.662 ± 0.033

GP hyperparameters. We also employed an ablation study to see the effect of Gaussian hyperpa-
rameters (i.e., initial lengthscale ℓ0) on our final results. As can be seen clearly from the Fig. 3, the
optimal range for ℓ0 yields around 1.0 for the continuous tasks and 6.25 for the discrete tasks.

Figure 3: Effect of lengthscale on performance for Ant and DKitty.

GP hyperparameters range size δ and step size η. In the data-generation phase, we uniformly
sample the Gaussian process lengthscale and variance from the intervals [ ℓ0 − δ, ℓ0 + δ ] and
[σ0 − δ, σ0 + δ ], respectively (see Line 5 Algorithm 1). Choosing δ is a trade-off: if it is too large,
the probabilistic bridge will learn on functions that deviate excessively from the oracle, but if it is too
small, we lose the diversity needed for robust generalization. We conducted a sweep over different
values of δ; as shown in Table 18, δ = 0.25 achieves the best performance across both the Ant and
TF-Bind-8 tasks. In addition, during this phase we apply M gradient steps with fixed step size η
(see Eq.12 and Eq. 13). Our experiments in Table 19 demonstrate that for continuous tasks, setting
η = 0.001 achieves the best score.

GP kernel choice. We experimented with the Matern kernel for the GP-based synthetic data
generation, as reported in Table 20. The results indicate that the commonly used RBF kernel
consistently yields better performance, supporting our decision to use it as the default.

Incorporating explicit uncertainty via acquisition functions. In Gaussian Process literature,
incorporating explicit uncertainty via acquisition functions like UCB or LCB is a promising approach
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Table 18: Performance on Ant and TF-Bind-8
with varying δ.
δ Ant TF-Bind-8
0.05 0.953 ± 0.011 0.982 ± 0.005
0.10 0.957 ± 0.014 0.986 ± 0.006
0.25 (ours) 0.965 ± 0.014 0.986 ± 0.007
0.50 0.959 ± 0.013 0.981 ± 0.007
1.00 0.959 ± 0.014 0.989 ± 0.003

Table 19: Performance on Ant and D’Kitty with
varying η.
η Ant D’Kitty
0.0005 0.969 ± 0.017 0.971 ± 0.003
0.00075 0.968 ± 0.013 0.969 ± 0.005
0.001 (ours) 0.965 ± 0.014 0.972 ± 0.005
0.0025 0.964 ± 0.010 0.976 ± 0.004
0.005 0.948 ± 0.011 0.977 ± 0.003

Table 20: Performance comparison of different
GP kernels on Ant and TF-Bind-8.

Kernel Ant TFBind8
Matern 0.966 ± 0.013 0.848 ± 0.055
RBF 0.965 ± 0.014 0.986 ± 0.007

Table 21: Performance of ROOT when replacing
the GP’s mean function with UCB and LCB.

Method Ant TF-Bind-8
UCB 0.964 ± 0.017 0.966 ± 0.017
LCB 0.949 ± 0.008 0.961 ± 0.025

ROOT 0.965 ± 0.014 0.986 ± 0.007

for balancing exploration and exploitation. To evaluate this, we conducted a small-scale experiment
replacing the GP’s mean function with UCB and LCB scores to generate synthetic data. The
results, shown in Table 21, indicate that while UCB and LCB perform reasonably well, they do
not outperform our original approach based on the GP’s mean function. We believe this is because
uncertainty has already been implicitly captured through a different mechanism, by sampling multiple
mean functions from a population of posterior GPs trained on the same offline dataset using different
kernel configurations.

C.8 Score and Pseudo-Value Distribution of Generated Samples from GP

Figure 4: Distribution of pseudo-values (GP) and oracle values on low- and high-value regions.

To further demonstrate the efficiency of Gaussian processes, we conducted an experiment on the Ant
task using low and high regions produced by 800 GP mean functions. Each function produces 1024
low-value points (X− or x_low) along with 1024 high-value points (X+ or x_high). We concatenate
all 1024 × 800 points to form the distribution for the low-value and high-value designs. We then
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plotted both the oracle value distribution by using the oracle function to evaluate and the pseudo-value
distribution (y− and y+ predicted by GP). As shown in Figure 4, the low and high regions correspond
to two clearly separated distributions. The oracle values in X+ are skewed toward higher values,
while those inX− are skewed toward lower values. This separation facilitates effective training of
our probabilistic bridge model as it learns to transform between two distinct distributions.

C.9 Limited Budget Settings

While a budget of Q = 128 candidates is a commonly adopted setting, we also conduct experiments
under more constrained budgets to evaluate the robustness of our method. The results, shown in
Table 22, demonstrate that ROOT continues to achieve strong performance even in these highly
limited-query scenarios, outperforming existing baselines.

Table 22: Performance of different methods under extremely limited offline data budgets (Q).
ROOT consistently outperforms baselines on both Ant and TF-Bind-8.

Q Budget Method Ant TFBind8

16
GA 0.250 ± 0.033 0.938 ± 0.020
COMs 0.789 ± 0.070 0.917 ± 0.059
ROOT 0.938 ± 0.022 0.956 ± 0.028

32
GA 0.252 ± 0.036 0.961 ± 0.024
COMs 0.776 ± 0.033 0.871 ± 0.030
ROOT 0.942 ± 0.019 0.974 ± 0.020

64
GA 0.281 ± 0.023 0.978 ± 0.020
COMs 0.834 ± 0.051 0.922 ± 0.036
ROOT 0.942 ± 0.020 0.974 ± 0.021

C.10 Strong measurement noise setting

Although ROOT uses synthetic labels from deterministic GP means, it remains robust to strong
measurement noise. This is due to the use of a diverse GP ensemble with varied hyperparameters,
which implicitly captures a wide range of uncertainties present in the offline dataset. Sampling from
this ensemble produces synthetic data that reflects variability in the objective, helping the bridge
model generalize more effectively. To validate this, we ran additional experiments on TF-Bind-8
with label perturbed by Gaussian noise N(0, ϵ). As shown in the Table 23, ROOT maintains strong
performance and outperforms other baselines across noise levels, demonstrating its resilience to
measurement noise.

Table 23: Performance of different methods on TF-Bind-8 task with label perturbed by measurement
noise N(0, ϵ).

ϵ 0.01 0.1 0.2
GA 0.967 ± 0.015 0.970 ± 0.006 0.963 ± 0.010

COMs 0.956 ± 0.024 0.925 ± 0.034 0.952 ± 0.013
REINFORCE 0.947 ± 0.030 0.933 ± 0.025 0.930 ± 0.042

ROOT 0.969 ± 0.016 0.971 ± 0.007 0.965 ± 0.014

C.11 High-dimensional continuous task

In the Design-Bench benchmark, the Hopper task represents a high-dimensional continuous task
with 5,126 input dimensions. Although prior work has noted a highly noisy and inaccuracy oracle
function for this task, we conducted a small experiment to evaluate ROOT’s performance on Hopper
as a test of scalability. As shown in the Table 24, ROOT outperforms some representative baselines,
demonstrating its ability to effectively handle high-dimensional design spaces.
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Table 24: Performance of different methods on the Hopper Controller task.

Method Hopper Controller
GA -0.068 ± 0.001

MINs 0.267 ± 0.350
Reinforce -0.009 ± 0.067

ROOT 0.541 ± 0.042

Table 25: Performance of ROOT with different bridge configuration across the benchmark tasks.

Bridges Ant D’Kitty TF-Bind-8 TF-Bind-10
ROOT (BBDM) 0.965 ± 0.014 0.972 ± 0.005 0.986 ± 0.007 0.685 ± 0.053
ROOT (OUDM) 1.940 ± 0.599 0.723 ± 0.001 0.927 ± 0.049 0.675 ± 0.124

D Other Practical Setups for Our Probabilistic Bridge Framework

In this paper, we employ the Brownian bridge as our practical probabilistic bridge (see Appendix
B.2), which achieves significant performance across our experiments. However, our proposal method
is a flexible framework that can be universally adapted to other probabilistic bridges. In this section,
we will demonstrate another design: Ornstein-Uhlenbeck Bridge.

From our definition of the probabilistic bridge in Section 3.1.1, we can choose ψt and κt,k as

ψt(x0,xT ) = x0 ·
sinh(α(T − t))

sinh(αT )
+ xT ·

sinh(αt)

sinh(αT )
, (26)

κt,k =
sinh(α ·min(t, k)) · sinh(α · (T −max(t, k))

α · sinh(αT )
. (27)

This choice will result in the formula of the Ornstein-Uhlenbeck bridge [1] with the hyperparameter α.
Once this bridge is learned, we can simulate xt following the previously derived simulation approach
in Eq. 5 which, under the OU instantiation, becomes,

xt = x0 ·
sinh(α(T − t))

sinh(αT )
+ xT ·

sinh(αt)

sinh(αT )
+

√
sinh(αt) · sinh(α(T − t))

α · sinh(αT )
· ϵt (28)

where ϵt ∼ N(0, I). From the above equation, we can also represent x0 in terms of xt and xT :

x0 =

(
xt − xT ·

sinh(αt)

sinh(αT )
−

√
sinh(αt) · sinh(α(T − t))

α · sinh(αT )
· ϵt

)
· sinh(αT )

sinh(α(T − t))
. (29)

The transition probability of the localized bridge/flow, i.e., q(xt−1 | xt,x0,xT ) in Eq. 6, can be
derived by using the conditional Gaussian rule which results in the following transition mean,

µ(xt,x0,xT ) = ψt−1(x0,xT ) + κt−1,tκ
−1
t,t (xt − ψt(x0,xT )) . (30)

Substituing xt = ψt(x0,xT ) +
√
κt,t · ϵt, the above transition mean can be rewritten as:

µ(xt,x0,xT ) = ψt−1(x0,xT ) + κt−1,tκ
−1/2
t,t ϵt (31)

= x0

sinh
(
α (T − t+ 1)

)
sinh(αT )

+ xT

sinh
(
α (t− 1)

)
sinh(αT )

+ ϵt
sinh

(
α (t− 1)

)
sinh

(
α (T − t)

)√
α sinh(αT ) sinh

(
αt
)
sinh

(
α(T − t)

) . (32)
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By substituting x0 from Eq. 29, we get a closed-form formula for µ(xt,x0,xT ) = ut · xt + vt ·
xT + wt · ϵt where the coefficients are computed as

ut =
sinh

(
α (T − t+ 1)

)
sinh

(
α (T − t)

) , vt =

[
sinh

(
α (t− 1)

)
sinh(αT )

−
sinh

(
α (T − t+ 1)

)
sinh(αt)

sinh(αT ) sinh
(
α (T − t)

) ]
,(33)

wt =

√
sinh

(
α (T − t)

)
α sinh(αT ) sinh(αt)

·

[
sinh

(
α (t− 1)

)
− sinh(αt) ·

sinh
(
α (T − t+ 1)

)
sinh

(
α (T − t)

) ]
. (34)

Next, following prior practice, we again reparameterize the target-agnostic transformation
pθ(xt−1|xt,xT ) as a neuralized Gaussian with mean µθ(xt,x0,xT ) = ut · xt + vt · xT + wt +
ϵθ(xt,xT , t) and same covariance matrix as the local transition, the (training) ELBO loss in Eq. 8
can be simplified as:

θPB = argmin
θ

E(x0,xT )∼Ds,ϵt∼N(0,I)

∥∥∥ϵθ(ψt(x0,xT ) + κt,t · ϵt ,xT , t)− ϵt
∥∥∥2 . (35)

In addition, incorporating the classifier-free guidance techniques leads to:

θPB = argmin
θ

E(x0,y0,xT ,yT ),ϵt

∥∥∥ϵθ(ψt(x0,xT ) + κt,t · ϵt , t, γ · y + (1− γ) · ∅)− ϵt
∥∥∥2 , (36)

where γ ∼ Ber(ρ). Once the training process is done, we can employ the trained network ϵθ for our
optimization-via-simulation process:

xt−1 = ut · xt + vt · xT + wt · ϵθ(xt, t, y) +
√
κ̃t−1 · ϵ , (37)

where κ̃t−1 = κt−1,t−1 − κt−1,tκ
−1
t,t κt,t−1 and ϵ ∼ N(0, I).

The performance of the OU-based ROOT is compared against the original Brownian-based ROOT in
Table 25 . The results show that the OU-based variant of ROOT performs competitively to the original
Brownian variant on TF-Bind-8 and TF-Bind-10. On the Ant task, the OU-based variant is better
while on the D’Kitty task, the Brownian variant is better. We leave a more thorough investigation
across different variants of ROOT with different bridge configuration to future work as such detailed
investigation is beyond the scope of our current work.

E Broader Impact and Limitation

Broader Impact. This work provides a novel lens for offline black-box optimization by reframing it
as a distributional translation problem, potentially inspiring new probabilistic modeling techniques
in low-data regimes. The approach opens up new possibilities for data-efficient optimization in
applications where function evaluations are expensive or infeasible. These include (but are not limited
to) materials discovery, policy design, and automated experimentation. However, caution must be
exercised when deploying such methods in safety-critical domains, as reliance on synthetic priors
may introduce epistemic uncertainty that requires careful quantification and calibration.

Limitation. One practical consideration is the additional computational overhead introduced by
fitting multiple Gaussian processes to construct the synthetic function ensemble. While this step is
performed offline and enables better data efficiency during optimization, it may require tuning and
parallelization to scale effectively with large input dimensions or limited compute resources.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contribution can be found in Section 3.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss our limitations in Appendix E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not provide theoretical results. Our main contribution is translating the
offline optimization problem to a probabilistic bridge framework.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information regarding our experiments are disclosed in Section 4 and in
the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is available at an anonymous repository (see Appendix B), and all
experiments are run on publicly available datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We included such details in the Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We do report error bars in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information about our computation resources is detailed C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and believe that our work does not
violate any of its principles.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We did discussed it in Appendix E

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not create any new datasets or pre-trained models. We solely
use existing, publicly available datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets used in our experiments are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released as part of our work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve human subjects or crowdsourcing

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs assistance at any point in our core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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