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Abstract

While diffusion models excel at generating high-quality images, prior work reports1

a significant performance gap between diffusion and autoregressive (AR) methods2

on language modeling. In this work, we show that simple masked discrete diffusion3

is more performant than previously thought. We apply an effective training recipe4

that improves the performance of masked diffusion models and derive a simplified,5

Rao-Blackwellized objective that results in additional improvements. Our objective6

has a simple form—it is a mixture of classical masked language modeling losses—7

and can be used to train encoder-only language models that admit efficient samplers,8

including ones that can generate arbitrary lengths of text semi-autoregressively9

like a traditional language model. On language modeling benchmarks, a range of10

masked diffusion models trained with modern engineering practices achieves a new11

state-of-the-art among diffusion models, and approaches AR perplexity.12

1 Introduction13

In this work we describe (1) a simple masked diffusion language modeling (MDLM) framework with14

a well-engineered implementation that outperforms all existing diffusion models across language15

modeling benchmarks (LM1B [4], OWT [11], DNA [33]), and that significantly improves the16

performance of existing baselines [1, 17]. Our MDLM framework implements (2a) a substitution-based17

parameterization (SUBS) of the reverse unmasking diffusion process; SUBS allows us to derive (2b)18

a simple, continuous-time, Rao-Blackwellized objective that improves tightness and variance of the19

ELBO, further increasing performance. We complement MDLM with (3) fast samplers that support20

semi-autoregressive (SAR) generation and outperform previous SAR models.21
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Table 1: Test perplexities (PPL; ↓) on LM1B. †Reported in He et al. [17]. Best diffusion value is bolded.
Parameters PPL (↓)

Ar Transformer-X Base [8] 0.46B 23.5
OmniNetT [40] 100M 21.5

Dif

BERT-Mouth [41] 110M ≤142.89
D3PM (absorb) [1] 70M ≤77.50
Diffusion-LM [20]† 80M ≤118.62
DiffusionBert [17] 110M ≤63.78
SEDD [21] (33B tokens) 110M ≤ 32.79

Ar
(Retrained)

Transformer (33B tokens) 110M 22.32
Transformer (330B tokens) 20.86

Dif
(Ours)

MDLM (33B tokens) 110M ≤27.04
MDLM (330B tokens) ≤23.00



Figure 1: (Left) Our proposed masked diffusion language model (MDLM) is trained using a weighted
average of masked cross entropy losses. (Top Right) In comparison to masked language models (MLM),
MDLM’s objective correspond to a principled variational lower bound, and supports generation via
ancestral sampling. (Bottom Right) Perplexity (PPL) on One Billion Words benchmark.

2 Background22

2.1 Diffusion Models23

Diffusion models are trained to iteratively undo a forward corruption process q that takes clean data24

x drawn from the data distribution q(x) and defines latent variables zt for t ∈ [0,1] that represent25

progressively noisy versions of x [18, 34, 36]. The standard forward process for continuous x is26

zt=
√
αt ·x+

√
1−αt ·ϵ (1)

where ϵ ∼ N (0, I) and (αt)t∈[0,1] is a noise schedule, monotonically decreasing in t. The27

parameterized reverse diffusion model pθ over x and zt is trained to maximize a variational lower28

bound on log-likelihood (ELBO). Given a number of discretization steps T, defining s(i)=(i−1)/T29

and t(i)= i/T , and using DKL[·] to denote the Kullback–Leibler divergence, the ELBO equals [34]:30

Eq

[
logpθ(x|zt(0))︸ ︷︷ ︸

Lrecons

−
T∑

i=1

DKL[q(zs(i)|zt(i),x)∥pθ(zs(i)|zt(i))]︸ ︷︷ ︸
Ldiffusion

]

−DKL[q(zt(T )|x)∥pθ(zt(T ))]︸ ︷︷ ︸
Lprior

(2)

For brevity, we drop i from t(i) and s(i) below; in general, s will denote the time step before t.31

3 Simple Masked Diffusion Models32

While previous work on discrete diffusion supports general forward processes (e.g., general Qt in33

D3PM), absorbing state (i.e., masking) diffusion consistently achieves the best performance [1, 21].34

In this work, instead of supporting general noise processes, we focus on masking and derive tight35

Rao-Blackwellized objectives that outperform general approaches and do not require CTMC theory.36

We denote our overall approach as masked diffusion (MDLM in the context of language models).37

Notation. We denote scalar discrete random variables with K categories as ‘one-hot’ column vectors38

and define V ∈ {x ∈ {0,1}K :
∑K

i=1xi = 1} as the set of all such vectors. Define Cat(·;π) as the39

categorical distribution over K classes with probabilities given by π∈∆K , where ∆K denotes the40

K-simplex. We also assume that the K-th category corresponds to a special [MASK] token and let41

m∈V be the one-hot vector for this mask, i.e., mK =1. Additionally, let 1= {1}K and ⟨a,b⟩ and42

a⊙b respectively denote the dot and Hadamard products between two vectors a and b.43
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3.1 Interpolating Discrete Diffusion44

We restrict our attention to forward processes q that interpolate between clean data x∈V and a target45

distribution Cat(.;π), forming a direct extension of Gaussian diffusion in (1) given as:46

q(zt|x)=Cat(zt;αtx+(1−αt)π), (3)

where αt∈ [0,1] is a strictly decreasing function in t, with α0=1 and α1=0. This implies transition47

probabilities q(zt|zs) = Cat(zt;αt|szt + (1−αt|s)1π
⊤zt) where αt|s = αt/αs and q(zs|zt,x) is48

given as:49

Cat

(
zs;

[αt|szt+(1−αt|s)1π
⊤zt]⊙[αsx+(1−αs)π]

αtz⊤t x+(1−αt)z⊤t π

)
(4)

See Suppl. 14 for details. While (3) and (4) represent a special case of the more general diffusion50

processes proposed in D3PM [1], we show below that they yield a simplified variational lower bound51

objective and admit straightforward continuous time extensions.52

3.2 Masked Diffusion53

Forward Masking Process In masked (i.e., absorbing state) diffusion, we set π =m. At each54

noising step, the input x transitions to a ‘masked’ state m with a probability increasing in t. If an input55

transitions to m at any time t′, it will remain in this state for all t> t′ : q(zt |zt′ =m)=Cat(zt;m).56

The marginal of the forward process (3) is given by q(zt|x)=αtx+(1−αt)m. Using properties of57

the masking process, the posterior q(zs|zt,x) simplifies (4); see Suppl. A:58

q(zs|zt,x)=

{
Cat(zs;zt) zt ̸=m,

Cat
(
zs;

(1−αs)m+(αs−αt)x
1−αt

)
zt=m.

(5)

Reverse Unmasking Process: SUBS Parameterization The reverse process inverts the noise59

process defined by q. We consider both a finite number of stepsT , as well as a continuous time model cor-60

responding toT →∞. We begin with the discrete-time case for which the generative model is expressed61

as pθ(x)=
∫
z
pθ(z1)pθ(x|z0)

∏T
i=1pθ(zs|zt)dz0:T . We introduce a model xθ(zt,t) :V×[0,1]→∆K62

that approximates x with a neural network. The specific parameterization for pθ(zs|zt) that we use is63

pθ(zs|zt)=

{
Cat(zs;zt), zt ̸=m,

Cat
(
zs;

(1−αs)m+(αs−αt)xθ(zt,t)
1−αt

)
. zt=m.

(6)

In order for pθ(zs|zt) to be a valid probability, xθ(zt,t) must satisfy two requirements. We implement64

these as substitutions to the output of xθ(zt,t), hence we call our parameterization SUBS.65

Zero Masking Probabilities First, notice that by definition, ⟨x,m⟩=0. For this reason, we design66

the denoising network such that ⟨xθ(zt,t),m⟩=0, i.e., we substitute the logit index corresponding67

to the [MASK] token with −∞. This property enables the simplified expression of (6) (Suppl. A.3.2)68

and ensures that case 2 in (6) is a valid probability.69

Carry-Over Unmasking Second, if zt is unmasked, then we desire xθ(zt,t)=zt, i.e., unmasked70

latents are ‘carried over’. We accomplish this by substituting the output of our network to simply copy71

unmasked inputs. This ensures that case 1 in (6) always holds, and furthermore reduces Lrecons to 0.72

3.3 Rao-Blackwellized Likelihood Bounds73

Recall from (2) that the diffusion traning objective has the form Lrecons +Ldiffusion +Lprior. For the74

simplified reverse process in (6), the discrete-time diffusion loss for finite T simplifies to (Suppl. B.1):75

Ldiffusion=

T∑
i=1

Eq

[
αt(i)−αs(i)

1−αt(i)
log⟨xθ(zt(i)),x⟩

]
. (7)
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Note that this objective is simpler and more well-behaved than the expression one would obtain for76

DKL(q(zs|zt,x)∥pθ(zs|zt)) under the parameterization induced by using pθ(zs|zt) = q(zs|zt,x=77

xθ(zt,t)) from (4), which is similar to what is used by D3PM [1] (see Suppl. 27):78 [
αs−αt

1−αt
log

αt⟨xθ(zt,t),m⟩+(1−αt)

(1−αt)⟨xθ(zt,t),x⟩

+
1−αs

1−αt
log

(1−αs)(αt⟨xθ(zt,t),m⟩+(1−αt))

(1−αt)(αs⟨xθ(zt,t),m⟩+(1−αs))

]
⟨zt,m⟩. (8)

We refer to the process of obtaining (7) in lieu of (8) as a form of Rao-Blackwellization.79

3.4 Continuous-Time Likelihood Bounds80

Previous works have shown empirically and mathematically that increasing the number of steps T81

yields a tighter approximation to the ELBO [19]. Following a similar argument, we form an continuous82

extension of (7) by taking T→∞ (see Suppl. B.2), which yields83

L∞
diffusion=Eq

∫ t=1

t=0

α′
t

1−αt
log⟨xθ(zt,t),x⟩dt (9)

3.5 Masked Diffusion Language Models84

Next, we apply masked diffusion to language modeling over sequences x1:L of L tokens, with85

xℓ denoting the ℓ-th token. We make the assumption that the forward noising process is applied86

independently across a sequence and that, conditioned on a sequence of latents z1:Lt , the denoising87

process factorizes independently across tokens, i.e., pθ(z1:Ls | z1:Lt )=
∏L

ℓ=1pθ(z
ℓ
s | z1:Lt ). Thus, we88

use a single model to compute xℓ
θ(z

1:L
t ,t) for each ℓ from a masked sequence zt, optimizing:89

L∞
diffusion=Eq

∫ t=1

t=0

α′
t

1−αt

∑
ℓ

log⟨xℓ
θ(zt),x

ℓ⟩dt (10)

Interestingly, our objective has a simple form: it is the weighted average of masked language modeling90

(MLM) losses [9]. Thus our work establishes a connection between generative diffusion models and91

encoder-only BERT models. Our objective enables principled selection of a (randomized) masking92

rate, and also endows BERT-style models with principled generation capabilities, see Sec. 6.93

4 Inference and Sampling in Masked Diffusion Language Models94

4.1 Efficient Ancestral Sampling95

To generate a sequence of length L, the reverse diffusion process starts with the sequence z1:Lt=196

where zℓt=1=m, ∀ℓ∈{1,...,L}. Then the subsequent latents, z1:Lt are generated by discretizing the97

reverse diffusion process with some finite T. Given z1:Lt , we construct z1:Ls by sampling each token98

zℓs independently from the distribution pθ(z
ℓ
s|z1:Lt ) given in (6).99

4.2 Semi-Autoregressive Masked Diffusion Language Models100

Our method also admits an effective semi-autoregressive (SAR) decoding method that allows the model101

to generate sequences of arbitrary length. Let x̃1:L represent the output from sampling a sequence of102

L tokens using the reverse diffusion process described above. To generate additional L′<L tokens, we103

propose a generation algorithm in which the latter L−L′ tokens x̃L′:L−L′
are used as a prefix for an ad-104

ditional round of generation. Given the carry-over unmasking described in Sec. 3.2, these prefix tokens105

will simply be copied over at each decoding step. The remaining tokens are generated as above with106

zℓs∼pθ(z
ℓ
s |zL

′:L+L′

t ) for all ℓ∈{L+1,...L+L′}, with zL
′:L−L′

1 initialized to x̃L′:L−L′
as opposed107

to being initialized as masked tokens m. At the end of this process, we have produced L+L′ tokens108

concat[x̃1:L,x̃L+1:L+L′
], where concat[·] denotes concatenation along the sequence length dimension.109

This process can repeat indefinitely, with the prefix shifted for every new round of generation.110
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5 Experiments111

The experiment setup is described in Suppl. C.1112

5.1 Masked Diffusion Language Models113

Likelihood Evaluation On LM1B, MDLM outperforms all previous diffusion methods (Table 1).114

Compared to the SEDD baseline reported by Lou et al. [21], trained for 66B tokens, MDLM, which115

we train for the same amount, achieves a 17% improvement on the perplexity bound. Finally, MDLM116

gets within 14% of an AR baseline and continues to improve with more training. We see the same trend117

for models trained on OWT, a larger dataset, shown in Table 9 – MDLM outperforms prior diffusion118

methods, closing the gap towards AR models. Results on OWT time step conditioning are in Table119

6, Suppl. C.5 where we find that models trained with and without time conditioning attain similar120

perplexities. Additionally, Figure 2 demonstrates the reduced variance we achieve from our objective,121

when compared to previous masked diffusion models, such as SEDD [21].122

Zero-Shot Likelihood Evaluation We also explore models’ ability to generalize by taking models123

trained on OWT and evaluating how well they model unseen datasets. MDLM consistently outperforms124

the SEDD diffusion parameterization on all datasets. In some cases, e.g., for Lambada and Scientific125

Papers, MDLM attains better perplexity than AR. Details in Suppl. C.6.126

Downstream Task Evaluation In Table 8, we find that BERT fine-tuned with MDLM to be a127

generative model results in strong perplexities while preserving performance on downstream tasks.128

Semi-Autoregressive Modeling To test the SAR decoding algorithm presented in Sec. 4.2, we129

compare to SSD-LM [16]. In Table 11, we find that in addition to achieving better generative perplexity,130

MDLM enables ∼25-30x faster SAR decoding relative to SSD-LM (details in Suppl. C.10).131

5.2 Masked Diffusion DNA Models132

Table 2: Genomic Benchmarks. Top-1 accuracy (↑) across 5-fold cross-validation (CV) for a pre-trained
AR Mamba, and pre-trained Caduceus model fine-tuned with different diffusion parameterizations.
Best values per task are bolded and second best are italicized. Error bars indicate difference between
maximum and minimum values across 5 random seeds used for CV.

Model / Fine-Tuning (Params) Mamba / AR (465K) Caduceus / MLM (467K) Caduceus / Plaid (507k) Caduceus / SEDD (467k) Caduceus / MDLM (467k)

Mouse Enhancers 0.763 {±0.008} 0.810 {±0.016} 0.745 {±0.079} 0.784 {±0.058} 0 .795 {±0.029}
Coding vs. Intergenomic 0.897 {±0.004} 0.913 {±0.003} 0 .908 {±0.003} 0.913 {±0.005} 0.913 {±0.003}
Human vs. Worm 0.967 {±0.002} 0 .970 {±0.002} 0.971 {±0.001} 0 .970 {±0.003} 0 .970 {±0.003}
Human Enhancers Cohn 0.734 {±0.027} 0.737 {±0.001} 0 .743 {±0.010} 0.746 {±0.015} 0 .743 {±0.016}
Human Enhancer Ensembl 0.856 {±0.003} 0.907 {±0.000} 0.885 {±0.003} 0 .905 {±0.006} 0.899 {±0.004}
Human Regulatory 0.861 {±0.008} 0.874 {±0.003} 0 .868 {±0.010} 0.828 {±0.037} 0 .868 {±0.004}
Human OCR Ensembl 0.806 {±0.005} 0 .821 {±0.000} 0.820 {±0.004} 0.816 {±0.008} 0.823 {±0.008}
Human NonTATA Promoters 0.926 {±0.008} 0 .935 {±0.014} 0 .935 {±0l007} 0 .935 {±0.014} 0.940 {±0.007}

We also explore the use of our generative formulation in conjunction with Structured State Space133

models [14]. Namely, we build on the recently proposed Caduceus [33] model, which uses as a134

backbone the data-dependent SSM Mamba block [13]. We pre-train the encoder-only Caduceus [33],135

which is an MLM, on the HG38 human reference genome [7] and perform fine-tuning using our136

diffusion parameterization. We use a context length of 1024 tokens and follow Schiff et al. [33]137

for the experimental setup, other than learning rate which was reduced to 1e-3. See Suppl. I.4 for138

full experimental details. We assess both generative performance using perplexity and downstream139

performance on Genomics Benchmarks [12] across language diffusion paradigms and AR models.140

Generative Performance We fine-tune the Caduceus MLM across diffusion parameterizations and141

compare perplexities against AR models. We report perplexity values in Table 3. MDLM outperforms142

all other diffusion language modeling schemes.143

Downstream Task Fine-tuning We perform downstream evaluation with the Genomics Bench-144

marks [12], a recently proposed benchmark with eight regulatory element classification tasks. As145

shown in Table 2, our generative fine-tuning paradigm preserves or improves upon downstream146
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Table 3: Test perplexities (PPL; ↓) of generative fine-tuning of the Caduceus MLM [33] on the HG38
reference genome. Best diffusion model values are bolded. Error bars indicate the difference between
the maximum and minimum values across 5 random seeds used for fine-tuning. † denotes retrained
models.

Params PPL (↓)

AR† Mamba 465K 3.067 ± .0104
HyenaDNA 433K 3.153 ± .001

Dif †
Plaid 507K ≤ 3.240 ± .005
SEDD 467K ≤ 3.216 ± .003

Dif (Ours) MDLM 467K ≤ 3.199 ± .010

performance from MLM pre-training. Absorbing-state diffusion methods outperform Plaid across147

tasks except for the simplest task Human vs. Worm, where all methods have roughly the same148

performance. For tasks where the input is a biased subsample of the full genome, we observe that149

the correlation between perplexity and downstream performance is weaker; see Suppl. I.4.150

6 Conclusion151

Conclusion In this work, we explore masked diffusion. With a well-engineered implementation that152

supports a simple variational objective, we attain state-of-the-art diffusion perplexities on language153

benchmarks and demonstrate how to efficiently convert BERT-style encoders into generative models.154
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A Discrete time ELBO274

This section is organized as follows: First, we derive the expressions for the true posterior and the275

approximate posterior as outlined in Suppl. A.2. We then simplify these expressions specifically for276

the case of absorbing state diffusion in Suppl. A.3. Finally, we derive the expression for the ELBO277

for absorbing state diffusion in Suppl. A.3.3.278

A.1 Discrete Diffusion Models279

Applications of diffusion modeling to discrete data can be broken into two broad categories. First280

are works that embed discrete structures in continuous space and then perform the Gaussian diffusion281

defined above on these continuous representations [5, 10, 15, 16, 20, 22, 37]. More related to our282

method are works that define a diffusion process directly on discrete structures. D3PM [1] introduces a283

framework with a Markov forward process q(zt|zt−1)=Cat(zt;Qtzt−1) defined by the multiplication284

of matrices Qt over T discrete time steps. This process induces marginals285

q(zt|x)=Cat(zt;Q̄tx)=Cat(zt;Qt ·Qt−1···Q1x) (11)

that represent the discrete-state form of (1). Extending this formalism to continuous time (as in (1))286

relies on continuous time Markov chain (CTMC) theory [3]. The CTMC framework in turns leads to287

generalizations of the score matching perspective on diffusion modeling [35] to discrete data [21, 39].288

Notably, SEDD [21] connects score-based approaches with ELBO maximization, enabling performant289

likelihood-based training of score-based models.290

A.2 Generic case291

A.2.1 q(zs|zt,x)292

Given the state transition matrixQt, priorπ, and the latent variables zs and zt, where s<t, the forward293

process defined in (11) has the following posterior [1]:294

q(zs|zt,x)=Cat

(
zs;

Qt|szt⊙Q⊤
s x

z⊤t Q
⊤
t x

)
(12)

Qt|s=αt|sIn+(1−αt|s)1π
⊤ (13)

which we simplify to the following:295

q(zs|zt,x)

=Cat

(
zs;

[αt|sIn+(1−αt|s)1π
⊤]zt⊙[αsIn+(1−αs)1π

⊤]⊤x

z⊤t [αtIn+(1−αt)1π⊤]⊤x

)

=Cat

(
zs;

[αt|szt+(1−αt|s)1π
⊤zt]⊙[αsx+(1−αs)π]

z⊤t [αtx+(1−αt)π1⊤x]

)
Using the property 1⊤x=1 we get,

=Cat

(
zs;

[αt|szt+(1−αt|s)1π
⊤zt]⊙[αsx+(1−αs)π]

αtz⊤t x+(1−αt)z⊤t π

)
. (14)

A.2.2 pθ(zs|zt)296

Austin et al. [1] approximate the reverse process in the following manner:297

pθ(xs|xt)=q(zs|zt,x=xθ(zt,t))=Cat

(
xs;

Qt|sxt⊙Q⊤
s xθ(zt,t)

x⊤
t Q

⊤
t xθ(zt,t)

)
. (15)

where xθ(zt,t) :V×[0,1]→∆K is an approximation for x.298

A.3 Absorbing state299

For the absorbing state diffusion process we have π=m.300
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A.3.1 q(zs|zt,x)301

Since, zt∈{x,m}, takes only 2 values we consider the separate cases: zt=x and zt=m.302

Case 1. Consider the case zt=x i.e. zt is unmasked. From (14), we have the following:303

q(zs|zt=x,x)

=Cat

(
zs;

[αt|sx+(1−αt|s)1m
⊤x]⊙[αsx+(1−αs)m]

αtx⊤x+(1−αt)x⊤m

)

=Cat
(
zs;

[αt|sx]⊙[αsx+(1−αs)m]

αt

)
since x⊤m=0

=Cat
(
zs;

αtx

αt

)
since x⊤m=0 and αt=αt|sαs

=Cat(zs;x) since αt=αt|sαs (16)

Thus, we have the following:304

q(zs|zt=x,x)=Cat(zs;x). (17)

Case 2. Consider the case zt=m. By substituting zt=m and π=m in (14), q(zs|zt,x) simplifies305

to the following:306

q(zs|zt=m,x)=Cat
(
(αt|sm+(1−αt|s)1)⊙(αsx+(1−αs)m)

(1−αt)

)
=Cat

(
(αt|s(1−αs)m+(1−αt|s)(1−αs)m+(αs−αt)x)

(1−αt)

)
=Cat

(
zs;

(1−αs)m+(αs−αt)x

1−αt

)
(18)

Note that the above categorical distribution is non-zero for zs∈{x,m} and zero for every other value.307

The non-zero values are specified as follows:308

q(zs=x|zt=m,x)=
αs−αt

1−αt
(19)

q(zs=m|zt=m,x)=
1−αs

1−αt
(20)

A.3.2 pθ(zs|zt)309

For the absorbing state diffusion process with π=m, we want to simplify the (15). For this reason,310

we consider 2 cases: first, when zt ̸=m (case 1), second, when zt ̸=m (case 2).311
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Case 1. Consider the case when zt ̸=m. (15) simplifies to the following:312

pθ(zs|zt ̸=m)=Cat

(
xs;

Qt|szt⊙Q⊤
s xθ(zt,t)

z⊤t Q
⊤
t xθ(zt,t)

)
(21)

=Cat

(
xs;

Qt|szt⊙Q⊤
s xθ(zt,t)

[Qtzt]⊤xθ(zt,t)

)

=Cat

(
xs;

[αt|szt]⊙[αsIn+(1−αs)m1⊤]xθ(zt,t)

[αtzt]⊤xθ(zt,t)

)

=Cat
(
xs;

[αt|szt]⊙[αsxθ(zt,t)+(1−αs)m⟨1,xθ(zt,t)⟩]
αt⟨zt,xθ(zt,t)⟩

)
since ⟨1,xθ(zt,t)⟩=1, we have the following:

=Cat
(
xs;

[αt|szt]⊙[αsxθ(zt,t)+(1−αs)m]

αt⟨zt,xθ(zt,t)⟩

)
since zt⊙m=0, we have the following:

=Cat
(
xs;

αtzt⊙xθ(zt,t)

αt⟨zt,xθ(zt,t)⟩

)
(22)

Case 2. Consider the case when zt=m. (15) simplifies to the following:313

pθ(xs|zt=m)=Cat

(
xs;

Qt|sm⊙Q⊤
s xθ(zt,t)

m⊤Qtxθ(zt,t)

)

=Cat

(
xs;

Qt|sm⊙Q⊤
s xθ(zt,t)

[Q⊤
t m]⊤xθ(zt,t)

)

=Cat

(
xs;

[αt|sm+(1−αt|s)1]⊙[αsIn+(1−αs)m1⊤]xθ(zt,t)

[αtm+(1−αt)1]⊤xθ(zt,t)

)

=Cat
(
xs;

[αt|sm+(1−αt|s)1]⊙[αsxθ(zt,t)+(1−αs)m⟨1,xθ(zt,t)⟩]
αt⟨m,xθ(zt,t)⟩+(1−αt)⟨1,xθ(zt,t)⟩

)
=Cat

(
xs;

[αt|sm+(1−αt|s)1]⊙[αsxθ(zt,t)+(1−αs)m]

αt⟨xθ(zt,t),m⟩+(1−αt)

)
=Cat

(
xs;

αtm⊙xθ(zt,t)+(αs−αt)xθ(zt,t)+(1−αs)m

αt⟨xθ(zt,t),m⟩+(1−αt)

)
(23)

Note that the above categorical distribution, we can obtain the values for pθ(xs = x|xt =m) and314

pθ(xs=m|xt=m) which are as follows:315

pθ(xs=x|xt=m)=
(αs−αt)⟨xθ(zt,t),x⟩

αt⟨xθ(zt,t),m⟩+(1−αt)
(24)

pθ(xs=m|xt=m)=
αs⟨xθ(zt,t),m⟩+(1−αs)

αt⟨xθ(zt,t),m⟩+(1−αt)
(25)

As a sanity check, we can verify that (24) reduces to (19), and (25) reduces to (20) if our denoising316

network can reconstruct x perfectly, i.e., xθ(zt,t)=x.317

A.3.3 Diffusion Loss318

For a given T , Let LT =Et∈{1,...,T}Eq(xt|x)TDKL(q(xs|xt,x)∥pθ(xs|xt)) denote the diffusion loss.319

We break down the computation of DKL(q(xs|xt,x)∥pθ(xs|xt)) into 2 cases: zt = x (case 1) and320

zt=m (case 2).321

Case 1. consider the case zt=x. Let’s simplify DKL(q(zs|zt=x,x)∥pθ(zs|zt=x)).322
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DKL(q(zs|zt=x,x)∥pθ(zs|zt=x))

=
∑
zs

q(zs|zt=x,x)log
q(zs|zt=x,x)

pθ(zs|zt=x)

Since q(zs|zt,x) is 1 only for zs=x we get,

=log
1

pθ(zs=x|zt=x)

=log1 From (21)

=0 (26)

Case 2. Consider the case zt=m. Let’s simplify DKL(q(xs|xt=m,x)∥pθ(xs|xt=m)).323

DKL(q(xs|xt=m,x)∥pθ(xs|xt=m))

=
∑
xs

q(xs|xt=m,x)log
q(xs|xt=m,x)

pθ(xs|xt=m)

=
∑

xs∈{x,m}

q(xs|xt=m,x)log
q(xs|xt=m,x)

pθ(xs|xt=m)

=q(xs=x|xt=m,x)log
q(xs=x|xt=m,x)

pθ(xs=x|xt=m)︸ ︷︷ ︸
Simplify using (19) and (24)

+q(xs=m|xt=m,x)log
q(xs=m|xt=m,x)

pθ(xs=m|xt=m)︸ ︷︷ ︸
Simplify using (20) and (25)

=
αs−αt

1−αt
log

αt⟨xθ(zt,t),m⟩+(1−αt)

(1−αt)⟨xθ(zt,t),x⟩

+
1−αs

1−αt
log

(1−αs)(αt⟨xθ(zt,t),m⟩+(1−αt))

(1−αt)(αs⟨xθ(zt,t),m⟩+(1−αs))
(27)

Thus, DKL(q(xs|xt,x)∥pθ(xs|xt)) can be written in the following manner where ⟨zt,x⟩ evaluates324

to 1 if zt=x and ⟨zt,m⟩ evaluates to 1 if zt=m:325

DKL(q(xs|xt,x)∥pθ(xs|xt))

=DKL(q(xs|xt=x,x)∥pθ(xs|xt=x))︸ ︷︷ ︸
=0 , from (26)

⟨zt,x⟩+DKL(q(xs|xt=m,x)∥pθ(xs|xt=m))︸ ︷︷ ︸
Given by (27)

⟨zt,m⟩

(28)

Thus, we derive the diffusion loss, LT , in the following manner:326

LT =Et∈{1,...,T}Eq(xt|x)TDKL(q(xs|xt,x)∥pθ(xs|xt))

=Et∈{1,...,T}Eq(xt|x)T

[
αs−αt

1−αt
log

αt⟨xθ(zt,t),m⟩+(1−αt)

(1−αt)⟨xθ(zt,t),x⟩

+
1−αs

1−αt
log

(1−αs)(αt⟨xθ(zt,t),m⟩+(1−αt))

(1−αt)(αs⟨xθ(zt,t),m⟩+(1−αs))

]
⟨zt,m⟩ (29)

Note that LT is 0 if zt is an unmasked token i.e. zt=x.327

B MDLM: Rao-Blackwelization using SUBS parameterization328

In this section we show how SUBS parameterization can simplify the functional form of the ELBO329

as defined in (29).330
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B.1 ELBO331

The SUBS parameterization, as described in Sec. 3.2, simplifies DKL(q(xs|xt =m,x)∥pθ(xs|xt =332

m)) ((27)) to the following:333

DKL(q(xs|xt=m,x)∥pθ(xs|xt=m))

=
αs−αt

1−αt
log

αt⟨xθ(zt,t),m⟩+(1−αt)

(1−αt)⟨xθ(zt,t),x⟩

+
1−αs

1−αt
log

(1−αs)(αt⟨xθ(zt,t),m⟩+(1−αt))

(1−αt)(αs⟨xθ(zt,t),m⟩+(1−αs))

Since SUBS sets ⟨xθ(zt,t),m⟩=0, the above equation simplifies to the following:

=
αs−αt

1−αt
log

(1−αt)

(1−αt)⟨xθ(zt,t),x⟩

=
αt−αs

1−αt
log⟨xθ(zt,t),x⟩

(30)

Using this, we obtain the following expression for the diffusion loss, LT :334

LT =TEt∈{1,...,T}Eq(xt|x)DKL(q(xs|xt=m,x)∥pθ(xs|xt=m))⟨zt,m⟩

=TEt∈{1,...,T}Eq(xt|x)
αt−αs

1−αt
log⟨xθ(zt,t),x⟩⟨zt,m⟩

When zt=m, log⟨xθ(zt,t),x⟩=0; hence, the term ⟨zt,m⟩ can be safely dropped to obtain:

=TEt∈{1,...,T}Eq(xt|x)
αt−αs

1−αt
log⟨xθ(zt,t),x⟩

(31)

B.2 Continous Time ELBO335

To derive the continuous-time diffusion loss, L∞
diffusion, we consider the limiting case limT→∞LT :336

L∞
diffusion= lim

T→∞
LT

=Et∈{1,...,T}Eq(xt|x)

[
lim

T→∞
T
αt−αs

1−αt
log⟨xθ(zt,t),x⟩

]
Using lim

T→∞
T (αs−αt)=α′

t, we obtain:

=Et∼[0,1]Eq(xt|x)

[
α′
t

1−αt
log⟨xθ(zt,t),x⟩

]
(32)

C Additional Experiments337

C.1 Experimental Setup338

We evaluate MDLM as a generative model of language and as a representation model via fine-tuning339

on downstream tasks.340

For language modeling likelihood evaluation, we conduct experiments on two datasets: The One341

Billion Words Dataset (LM1B; [4]) and OpenWebText (OWT; [11]). We use the bert-base-uncased342

tokenizer for One Billion Words, and report perplexities on the test split. Models have a context size343

of 128. For OWT, which does not have a pre-defined split, we reserve the last 100K documents as344

a held-out validation set and report perplexities on this set. We use the GPT2 tokenizer [31] for OWT.345

Models have a context size of 1,024. We utilize the transformer architecture from Lou et al. [21], which346

augments the diffusion transformer [28] with rotary embeddings [38]. MDLM was trained for 1M347

or 10M steps (corresponding to 33B, 330B tokens, respectively) on LM1B and 1M steps on OWT348

(which corresponds to 262B tokens). The corresponding AR baseline was trained for half the number349

of steps to ensure similar number of tokens seen (details in Suppl. F). Full hyperparameters are given350

in Suppl. I.1. On OWT, we train with and without time step conditioning.351
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For representation learning, we pre-train models on the C4 dataset [32], then fine-tune and352

evaluate models on the GLUE benchmark [42]. Models have a context size of 128. We use353

the bert-base-uncased tokenizer for the representation learning experiments. We utilize the354

MosaicBERT architecture from Portes et al. [29], an extension of the original BERT architecture [9].355

We pre-train a bidirectional MosaicBERT using an MLM objective for 37B tokens of C4, as well as356

a causal variant on the same data. We further fine-tune MosaicBERT model using the MDLM for357

327M tokens, less than 1% of the pre-training data. We provide the full hyperparameters in Suppl. I.3.358

C.2 LM1B perplexity359

Table 4: Test perplexities (PPL; ↓) on LM1B. †Reported in He et al. [17]. Best diffusion value is bolded.

Parameters PPL (↓)

Autoregressive Transformer-X Base [8] 0.46B 23.5
OmniNetT [40] 100M 21.5

Diffusion

BERT-Mouth [41] 110M ≤142.89
D3PM (absorb) [1] 70M ≤77.50
Diffusion-LM [20]† 80M ≤118.62
DiffusionBert [17] 110M ≤63.78
SEDD [21] (33B tokens) 110M ≤ 32.79

Autoregressive
(Retrained)

Transformer (33B tokens) 110M 22.32
Transformer (330B tokens) 20.86

Diffusion
(Ours)

MDLM (33B tokens) 110M ≤27.04
MDLM (330B tokens) ≤23.00

C.3 LM1B ablations360

We assess the importance of our continuous-time framework by performing ablation on diffusion steps361

T . In Table 5, we compare NLL and PPL under continuous and discrete T in MDLM. We find that362

NLL consistently decreases as T →∞.

Table 5: Discrete vs continuous time evaluation for MDLM on LM1B. MDLM was trained with
T =∞ and a smaller model containing 70M non-embedding parameters for 200K steps. We report test
perplexity for a discrete T .

Method NLL PPL

MDLMT=∞ ≤3.61±0.001 ≤37.25
MDLMT=10 ≤4.14±0.003 ≤62.83
MDLMT=100 ≤3.66±0.002 ≤39.04
MDLMT=1000 ≤3.62±0.000 ≤37.38

363

C.4 Train NLL curves on OWT364

In Figure 2, we show that MDLM achieves lower variance loss during training compared to a previous365

diffusion language model, SEDD. Training is performed over 1M steps on OWT (which corresponds366

to 524B tokens).367

C.5 Time-conditioning ablation on OWT368

In Table 6, we assess the importance of time conditioning in MDLM on OWT. We observe that369

time-conditioning has minimal impact on perplexity. Training is performed over 1M steps on OWT370

(which corresponds to 524B tokens).371
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Figure 2: Train negative log-likelihood (NLL) curves across 1M gradient steps (524B tokens) on
OpenWebText [11]. NLL is logged every 1K steps without value smoothing.

Table 6: Ablation on time-conditioning in MDLM on OWT.

Method PPL

MDLM w/ time-conditioning 23.21
MDLM w/o time-conditioning 23.05

C.6 Zero shot evaluations372

We also explore models’ ability to generalize by taking models trained on OWT and evaluating373

how well they model unseen datasets. We compare the perplexities of our MDLM with a SEDD374

parameterization and an AR Transformer language model. Our zero-shot datasets include the validation375

splits of Penn Tree Bank (PTB; [24]), Wikitext [25], LM1B, Lambada [27], AG News [43], and376

Scientific Papers (Pubmed and Arxiv subsets; [6]). Full experimental details are available in Suppl. I.1.377

MDLM consistently outperforms the SEDD diffusion parameterization. In some cases, e.g., for378

Lambada and Scientific Papers, MDLM attains better perplexity than AR. We hypothesize that these379

datasets are farther from OWT, and that diffusion models may be more robust to out-of-domain380

evaluation due to the unmasking-based objective.381

Table 7: Zero-shot validation perplexities (↓) of models trained for 524B tokens on OWT. All perplexi-
ties for diffusion models are upper bounds.

PTB Wikitext LM1B Lambada AG News Pubmed Arxiv

AR (Retrained) 82.05 25.75 51.25 51.28 52.09 49.01 41.73

SEDD (Retrained) 100.09 34.28 68.20 49.86 62.09 44.53 38.48
MDLM (Ours) 95.26 32.83 67.01 47.52 61.15 41.89 37.37

16



Table 8: GLUE evaluation results. Evaluation measures (↑) are F1 score for QQP and MRPC, Spearman
correlations for STS-B, and accuracy for the rest. For MNLI, we report match/mismatch accuracies.

MNLI
(m/mm) QQP QNLI SST-2 COLA STS-B MRPC RTE Avg

AR 80.94/80.78 86.98 86.16 90.14 33.43 84.32 83.88 47.29 74.88
BERT 84.43/85.35 88.41 90.46 92.20 54.81 88.41 89.16 61.37 81.62
+MDLM-FT 84.76/85.07 88.49 90.30 92.20 57.69 87.48 90.53 62.09 82.06

Table 9: Test perplexities (PPL; ↓) on OWT for models trained for 262B tokens. † denotes retrained
models.

PPL (↓)

AR† 17.54

SEDD† ≤24.10
MDLM (Ours) ≤23.21

Table 10: Test perplexities (PPL; ↓) for MDLM ablations on LM1B. All the models were trained for
200K steps. Standard deviation is measured over 5 seeds during evaluation.

PPL

MDLM 33.59±.11
w/o Continuous time 33.70±.07

& carry-over 35.57±.15
& zero masking 35.31±.16

C.7 Glue Evaluation382

C.8 OWT perplexity383

C.9 Ablation Analysis384

In Table 10, we can see the effect of our streamlined masked diffusion implementation. The improve-385

ments described in Sec. ?? allow us to greatly reduce perplexity of previously discounted models, such386

as D3PM (see the bottom row of this table, which is mathematically equivalent to the D3PM formu-387

lation). While most works assumed that D3PM achieves mediocre log-likelihoods, we show that is is388

incorrect: our re-implementation almost matches state-of-the-art score-based methods. This introduces389

a new strong baseline that opens new research opportunities. Additionally, in Table 10, we ablate differ-390

ent components of MDLM. We observe that the perplexity for MDLM trained with a discrete T =1000391

marginally worsens by 0.1 compared to MDLM trained in continuous time. Additionally, removing the392

“carry over” operation from the SUBS parameterization increases the perplexity by 2 points. However,393

further removing the “zero masking” operation does not lead to any meaningful change in perplexity.394

We provide further ablations for the continuous time formulation in the Appendix, showing in Table 5395

that for a pre-trained model, at inference, increasing T yields better likelihoods.396

C.10 SEMI-AR397

To test the SAR decoding algorithm presented in Sec. 4.2, we compare to SSD-LM [16] a diffusion398

model that was designed to generate blocks of text autoregressively. We generate 200 sequences399

of length 2048 tokens on a single 3090 GPU and evaluate generative perplexity under a pre-trained400

GPT-2 [31] model. The SSD-LM sequences are generated using blocks of 25 tokens (as implemented401

in their pre-trained model) and the MDLM sequences are generated using L′=512. In Table 11, we402

find that in addition to achieving better generative perplexity, MDLM enables ∼25-30x faster SAR403

decoding relative to SSD-LM.404
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Table 11: Semi-AR generative perplexity (Gen. PPL; ↓) for sequences of 2048 tokens.
Gen. PPL (↓) Sec/Seq (↓)

SSD-LM 35.43 2473.9
MDLM (Ours) 27.18 89.3

C.11 Generative Performance405

Table 12: Test perplexities (PPL; ↓) of generative fine-tuning of the Caduceus MLM [33] on the HG38
reference genome. Best diffusion model values are bolded. Error bars indicate the difference between
the maximum and minimum values across 5 random seeds used for fine-tuning. † denotes retrained
models.

Params PPL (↓)

AR† Mamba 465K 3.067 ± .0104
HyenaDNA 433K 3.153 ± .001

Dif † Plaid 507K ≤ 3.240 ± .005
SEDD 467K ≤ 3.216 ± .003

Dif (Ours) MDLM 467K ≤ 3.199 ± .010

D Noise schedule parameterization406

As described in Sec. 3.4, the ELBO is invariant to the functional form of αt. To demonstrate this,407

we evaluate MDLM, initially trained using a log-linear schedule on OWT, by replacing the noise408

schedule with various other noise schedules as mentioned below. Following prior works [1, 21, 34], we409

parameterize αt=e−σ(t), where σ(t) : [0,1]→R+. Various functional forms of σ(t) are listed below:410

Log Linear [1, 21, 34] The log linear schedule is given as:411

σ(t)=−logt (33)

Cosine Squared schedule [16] The Cosine Squared schedule is given as:412

σ(t)=−logcos2
(π
2
(1−t)

)
(34)

Cosine schedule The Cosine schedule is given as:413

σ(t)=−logcos2
(π
2
(1−t)

)
(35)

Linear The Linear schedule is given as:414

σ(t)=σmax(1−t) (36)

where σmax is a very large number. In our experiments we set it to 108.415

In Table 13 we demonstrate empirically that noise schedules with different functional forms evaluate416

to the same Likelihood which is consistent with our theory in Sec. 3.4. However, different schedules417

lead to different per data point variance.418

E Likelihood Evaluation419

How you do it Say that it incurs lower variance by referencing to the Ablattions table The variance420

is low because of the low discrepancy sampler421
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Table 13: Likelihood in bits per dimension (BPD) for different noise schedules on OWT dataset, is
reported along with the mean and variance associated with each noise schedule per data point. We
empirically observe that noise schedules with different functional forms yield the same likelihood,
consistent with our theory in Sec. 3.4; however, different schedules result in different variances. Notably,
the log-linear schedule exhibits the lowest variance among all the noise schedules considered.

σ(t) Mean Variance per datapoint

Log Linear (33) 3.30 1.81
Cosine (35) 3.30 3.30
Cosine Squared (34) 3.30 3.30
Linear (36) 3.30 7.57

F Avg. Number of Tokens seen422

Given training_steps, batch_size, context_length, the number of tokens seen by the AR
model is given as:

training_steps×batch_size×context_length.

However, this expression doesn’t hold true for a diffusion model, since at each training step, the423

model sees masked input. Let pm be the probability of a token being masked at a timestep t. Then424

the diffusion model sees the following number of tokens in expection:425

Et[training_steps×batch_size×context_length×pm]

=training_steps×batch_size×context_length×Et[pm]

For log-linear schedule used in our experiments pm= t; thus,

=training_steps×batch_size×context_length×0.5 (37)

G Low discrepancy sampler426

To reduce variance during training we use a low-discrepancy sampler, similar to that proposed427

in Kingma et al. [19]. Specifically, when processing a minibatch ofN samples, instead of independently428

sampling N from a uniform distribution, we partition the unit interval and sample the time step for each429

sequence i∈{1,...,N} from a different portion of the interval ti∼U [ i−1
N , i

N ]. This ensures that our430

sampled timesteps are more evenly spaced across the interval [0,1], reducing the variance of the ELBO.431

H Faster sampling with caching432

In Figure 14 we compare the wall clock times of variaous methods: AR, SEDD, MDLM with caching,433

and MDLM without caching for generating 64 samples on a single GPU. We observe that MDLM434

without caching yields samples that consistently get better generative perplexity than SEDD. For435

T ={5k,10k}, both SEDD and MDLM get better generative perplexity than the AR model.436

Table 14: Wall clock time reported in seconds.
T =5k T =10k

MDLM 4215.9 7675.4
+ caching 2407.3 3626.6

Speedup 1.75x 2.12x

I Experimental details437

I.1 Language Modeling438

For our forward noise process, we use a log-linear noise schedule similar to Lou et al. [21].439
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Figure 3: Generative perplexities across wall clock time for generating 64 samples on OWT using a
single 32GB A5000 GPU are compared by varying T ∈{100,500,1000,5000,10000} in the reverse
diffusion process. The samples are generated in mini-batches with a batch size of 16 for AR, SEDD,
and MDLM without caching, as it is the largest batch size that fits on this GPU. For MDLM with
caching, we vary the batch size.

We detokenize the One Billion Words dataset following Lou et al. [21], whose code can be found here.440

We tokenize the One Billion Words dataset with the bert-base-uncased tokenizer, following He441

et al. [17]. We pad and truncate sequences to a length of 128.442

We tokenize OpenWebText with the GPT2 tokenizer. We do not pad or truncate sequences – we443

concatenate and wrap them to a length of 1,024. When wrapping, we add the eos token in-between444

concatenated. We additionally set the first and last token of every batch to be eos. Since OpenWebText445

does not have a validation split, we leave the last 100k docs as validation.446

We parameterize our autoregressive baselines, SEDD, and MDLM with the transformer architecture447

from Lou et al. [21]. We use 12 layers, a hidden dimension of 768, 12 attention heads, and a timestep448

embedding of 128 when applicable. Word embeddings are not tied between the input and output.449

We use the AdamW optimizer with a batch size of 512, constant learning rate warmup from 0 to a450

learning rate of 3e-4 for 2,500 steps. We use a constant learning rate for 1M, 5M, or 10M steps on451

One Billion Words, and 1M steps for OpenWebText. We use a dropout rate of 0.1.452

I.2 Zeroshot Likelihood453

We evaluate zeroshot likelihoods by taking the models trained on OpenWebText and evaluating like-454

lihoods on the validation splits of 7 datasets: Penn Tree Bank (PTB; Marcus et al. [24]), Wikitext [25],455

One Billion Word Language Model Benchmark (LM1B; Chelba et al. [4]), Lambada [27], AG News456

[43], and Scientific Papers (Pubmed and Arxiv subsets; Cohan et al. [6]). We detokenize the datasets457

following Lou et al. [21]. For the AG News and Scientific Papers (Pubmed and Arxiv), we apply both the458

Wikitext and One Billion Words detokenizers. Since the zeroshot datasets have different conventions for459

sequence segmentation, we wrap sequences to 1024 and do not add eos tokens in between sequences.460

I.3 Representation Learning461

Following Devlin et al. [9], we evaluate on all GLUE tasks [42], but exclude WNLI.462

We pre-train a MosaicBERT model on C4 [32] for 70k steps, corresponding to 36B tokens. We pad463

and truncate the data to 128 tokens using the bert-base-uncased tokenizer.464
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MosaicBERT [29] has a similar architecture to bert-base-uncased and has 137M parameters,465

12 layers, 12 attention heads, a hidden dimension of 768, an intermediate size of 3072, and ALiBi466

attention bias [30].467

For pre-training, we use the following hyperparameters: A global batch size of 4096 with gradient468

accumulation, a learning rate of 5e-4, linear decay to 0.02x of the learning rate with a warmup of 0.06x469

of the full training duration, and the decoupled AdamW optimizer with 1e-5 weight decay and betas470

0.9 and 0.98.471

For diffusion fine-tuning we use AdamW with a warmup of 2,500 steps from a learning rate of 0 to 5e-5,472

betas 0.95 and 0.999, and batch size 512. We train for 5k steps total, corresponding to 32M tokens.473

For GLUE evaluation, we use the HuggingFace script found here. We use the default parameters for474

all datasets, except for a batch size of 16, which we found helped with smaller datasets. This includes475

the default of 3 epochs for all datasets and learning rate of 2e-5.476

I.4 Diffusion DNA Models477

Dataset We pre-train the Caduceus MLM [33] on the HG38 human reference genome [7].478

Following Schiff et al. [33], we use character- / base pair-level tokenization. The dataset is based479

on the splits used in Avsec et al. [2]: the training split comprises of 35 billion tokens covering the480

human genome. This consists of 34,021 segments extended to a maximum length of 1,048,576 (220481

segments). We maintain a constant 220 tokens per batch. For the Genomics Benchmark tasks, we482

use 5-fold cross-validation where we split the training set into 90/10 train/validation splits.483

Architecture The Caduceus MLM uses as a backbone a bi-directional variant of the data-dependent484

SSM Mamba block proposed in Gu et al. [14]. This architecture is ideal as it contains inductive485

biases that preserve reverse complement (RC) equviariance, respecting the inherent symmetry of486

double-stranded DNA molecules [23, 33, 44].487

Training details All models are pre-trained on 10B tokens (10K steps) and fine-tuned on a generative488

objective for an additional 50B tokens (50K steps). We use a global batch size of 1024 for a context489

length of 1024 tokens. Downstream task fine-tuning is performed for 16K steps ( 1B tokens).490

For performing Caduceus MLM pre-training, we follow Schiff et al. [33] for the model size491

configuration, and hyperparameter selection. For pre-training, we use a fixed 15% mask rate as done492

in Devlin et al. [9]. Of the ’masked’ tokens, 80% are replaced with [MASK] , 10% are replaced with493

a random token from the vocabulary, and 10% are left unchanged.494

For fine-tuning all Mamba-based models (including Caduceus) on diffusion objectives, we lower the495

learning rate from 8e-3 to 1e-3. For fine-tuning HyenaDNA [26], we lower the learning rate from496

6e-4 to 5e-5. Similar to Gu et al. [14], Schiff et al. [33], we found that Mamba-based models were497

robust to higher learning rates. We exclude timestep embeddings for all Diffusion DNA experiments,498

as we show it has minimal impact on generative performance (see Table 6, Suppl. C.5).499

We perform downstream task fine-tuning on the final hidden state embedding from pre-training. We500

perform mean pooling across the sequence length, which may vary from 200 to approximately 2,000501

bps. We report the mean and ± on max/min classification accuracy over 5-fold cross-validation (CV)502

using different random seeds, with early stopping on validation accuracy. For each task, we do a503

hyperparameter sweep over batch size and learning rate and report the values of the 5-fold CV for504

the best configuration.505

Genomic Benchmark Task Distributions We use a subset of the Genomic Benchmark tasks with506

an emphasis on tasks from Human data. The positive samples for each dataset were generated by507

selecting samples that were annotated, either computationally or experimentally, in previous work508

(e.g enhancers, promoters, open chromatin regions (OCR)) [12]. These annotations each correspond509

to subsets of the genome of varying sizes that may exhibit different distributions of DNA than those510

observed globally over the reference genome. Due to this, the observed dataset may have a different511

distribution than the data used for pre-training and calculating perplexity. This might in turn lead to512

a case where perplexity and downstream performance may not necessarily correlate.513
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