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Abstract

Self-supervised learning (SSL) has opened new opportunities in bioacoustics
by enabling scalable modeling of animal vocalizations without the need for
expensive manual annotation. However, current SSL models in this domain
prioritize broad generalization across species and are not optimized for
uncovering the fine-grained structure of individual communication systems.
In this work, we collect and release a novel dataset of over five years of
longitudinal recordings, from five known dolphins in a semi-naturalistic
marine environment—an unprecedented resource for studying dolphin com-
munication. We adapt the Wav2Vec2.0 (1) architecture to this domain and
introduce Dolph2Vec, the first large-scale, species-specific SSL model trained
exclusively on this data. We benchmark our model on two biologically rele-
vant tasks: signature whistle classification and whistle detection. Dolph2Vec
significantly outperforms general-purpose baselines in both tasks. Beyond
performance, we show that learned embeddings and codebook structure
capture interpretable acoustic units aligned with dolphin whistle categories
and possibly sub-whistle structure, enabling fine-grained analysis of commu-
nication patterns. Our findings demonstrate how SSL can serve as both a
model and a scientific tool to explore hypotheses in animal communication
research.

1 Introduction

Bioacoustics—the study of sound production, perception, and function in animals—is
foundational for understanding animal behavior, ecology, and conservation (2; 3). A key
application is the study of animal communication, which reveals social structures, cognitive
abilities, and survival mechanisms (4; 5).

Among vocal species, dolphins are especially intriguing due to their sophisticated commu-
nication system. Their most studied vocalizations are tonal whistles (6), which include
signature whistles (SWs)—individually distinctive sounds functioning as acoustic labels
akin to names (7)—and non-signature whistles (NSWs), whose function remains unknown.
Whistles are learned, mimicked (8; 9), and exchanged in sequences that maintain social
bonds and coordination (10; 11). Despite these advances, our understanding of the function
of dolphin whistles remains limited.

In recent years, deep learning (12) has become a pivotal tool in bioacoustics (13–16) by
enabling scalable analysis of large audio datasets. Self-supervised learning (SSL) is particularly
powerful for extracting structure from raw, unlabeled recordings (17–19). By designing proxy
tasks that derive supervisory signals from the data itself, SSL removes the need for costly
manual annotations—a major advantage in animal communication studies, where labeling is
especially ambiguous due to the lack of ground truth.

Despite growing interest in SSL for animal vocalizations, most bioacoustic models remain
general-purpose. Typically trained on large, heterogeneous datasets spanning a handful of
vocalizations from many species—including diverse background and non-animal sounds (20–
23)—they achieve broad generalization for tasks such as species detection and classification
but dilute the species-specific structure needed to understand communication systems.
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To address this limitation, we introduce the first large-scale, species-specific dataset of
dolphin vocalizations: about 180,000 whistles collected over five years from a stable pod
in a semi-naturalistic setting—up to three orders of magnitude larger than prior datasets.
This longitudinal resource captures vocal behavior over time, enabling analysis of individual
identity, social dynamics, and potential drift due to age or group reorganization.

Building on this dataset, we release Dolph2Vec, the first self-supervised model pre-trained
exclusively on dolphin vocalizations. We adapt the Wav2Vec2.0 architecture (1) to dolphin
whistle acoustics and benchmark it on a novel downstream task reflecting biologically
relevant questions in dolphin communication. Unlike generalist models, our Wav2Vec-based
architecture also enables hypothesis testing via learned codebooks, providing interpretable
units grounded in the structure of the vocal signal.

More broadly, this work highlights the reciprocal value of combining deep learning with ani-
mal communication research. Animal vocalization datasets offer a rich testbed for developing
and stress-testing machine learning models on species with acoustically rich, high-frequency,
and continuously varying signals. Conversely, machine learning—particularly self-supervised
models—provides a transformative approach to studying non-human communication, uncov-
ering latent structure directly from raw data. These models can serve both as analytical
tools and as hypothesis-generating engines in animal acoustic research. By demonstrating
the power of SSL to reveal structure in bioacoustic data, we aim to strengthen the growing
intersection of machine learning and animal communication and inspire new approaches to
investigating the evolution and mechanisms of animal communication.

2 Related work

Animal studies Dolphins produce three main sound types—echolocation clicks, burst
pulses, and whistles—of which the latter two are central to communication (24; 25). A key
element is the signature whistle (SW), an individually distinctive and stereotyped call used
for identification and group cohesion (26). SWs, along with non-signature whistles (NSWs),
constitute the majority of dolphin vocal output, with SWs accounting for up to 70% of
whistles emitted in the wild (7). Recent work indicates SWs may include transient frequency
modulations conveying information beyond identity (27), suggesting greater structural
complexity than previously assumed, though their functional roles remain unclear.

Research on dolphin communication has largely relied on either behavioral studies of captive
individuals in controlled environments (28; 29), or acoustic data from free-ranging dolphins
(26; 30). The latter remains challenging to obtain, and, to the best of our knowledge,
long-term, consistent datasets from the same individuals in the wild have not been released.
Datasets typically provide short-term recordings of isolated instances of a mix of dolphin
sounds (23; 31), or lack ecological realism due to captivity constraints. In addition, these
datasets are often not publicly available (32). In contrast, our dataset consists of longitudinal
recordings from a dolphin population living in a large, naturalistic marine environment
we refer to as semi-captive (i.e. enclosed from boats but with openings to the sea). To
our knowledge, this is the first publicly available dolphin dataset combining semi-captivity,
longitudinal data, and whistle-level annotations, providing a new resource for studying both
individual-specific and social aspects of dolphin acoustic communication.

Deep learning for animal studies The growing availability of acoustic data (33) has
enabled deep learning across bioacoustics (14–16), with spectrogram-based convolutional
networks (34) widely used for detection, classification, and clustering. For dolphins, supervised
whistle-classification approaches have been proposed (35; 36), but these rely entirely on
labeled data and cannot uncover structure in an unsupervised fashion. While some studies
have leveraged very large audio datasets to improve performance (37; 38), they still require
vast amounts of annotated data, which is costly and labour-intensive to obtain.

Self-supervised learning (SSL) directly addresses this constraint by exploiting the abundance
of unlabeled acoustic data. Instead of relying on human-provided labels, SSL models learn
meaningful representations by defining proxy tasks that capture inherent audio patterns (see
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Figure 1: A) Schematic of the data collection setup, showing the dolphin area with three
hydrophones and a rope with openings which allow dolphin passage to the open sea, while
preventing boat access. B) A representative spectrogram of dolphin signature whistles
showing distinct frequency patterns. The first example belongs to an individual named Nana,
and the second one to Nikita.

Sec. A for details). This allows researchers to bypass annotation constraints and exploit
large collections of raw recordings.

Models such as AVES (39), Nature-LM (22), and BioLingual (21) show that SSL can achieve
strong downstream performance in species detection and classification. Nature-LM trains a
generative audio–language model, while BioLingual uses a dual-tower audio–text approach
with over a million synthetic captions—a powerful but less scalable strategy for homogeneous
single-species datasets like ours. Our work instead uses an encoder-only architecture, well-
suited for extracting representations for downstream tasks. Most similar to our work is AVES,
which trains a HuBERT (18) model with several pre-training data mixes. While this model
performs well for multi-species classification tasks, our focus is on an animal-specific model
that shows good performance while also enabling testing theories grounded in biological
studies of animal communication, an aspect overlooked in AVES (40; 41).

Transferability across domains remains unresolved. SSL models pretrained on human speech
support species identification and call-type classification (42; 43), yet species-specific embed-
dings outperform general audio for birdsong (44; 45). WhaleLM (46) shows that SSL can also
capture biologically relevant features in whale communication, while Gubnitsky et al. (47)
stress species-specificity with a click detector for sperm whale codas. Our work contributes
to this debate by introducing individual dolphin signature whistle identification with a
dolphin-specific SSL model. Dolph2Vec combines large-scale pretraining with interpretable
analyses to yield more generalizable and biologically informative embeddings.

3 Experimental Setup

In this section, we present the setup used for our data collection pipeline, the unique properties
of our dataset, the pre-training of Dolph2Vec, as well as the data used for downstream tasks.

3.1 Data Collection

We present a novel dataset of bottlenose dolphin vocalizations collected in a semi-captive yet
ecologically valid setting. Recordings were made in a natural marine enclosure in the Red
Sea, where a resident pod of Tursiops truncatus ponticus coexists with human caregivers
and visitors. Dolphins on the reef are untrained and free to enter and leave the area without
restriction. This distinctive setup enables natural vocal behavior to be recorded while
supporting long-term tracking of the same individuals (27; 48). Fig. 1A provides a schematic
overview of the data-collection setup; a photo is shown in Appendix B.

The dataset consists of longitudinal acoustic recordings from four previously identified
dolphins (48). In 2019, a fifth individual (Tursiops aduncus), an extralimital female from the
Indian Ocean, joined the pod sporadically. Her signature whistle was identified from temporal
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Figure 2: A) The Wav2Vec2.0 architecture used in Dolph2Vec. Raw audio is encoded into
latent representations by a convolutional feature encoder, discretized via a quantization
module with a learned codebook, and contextualized using a Transformer network. B)
Downstream tasks: Top—whistle detection on spectrograms with highlighted whistles;
Bottom—whistle classification of three distinct signature whistles from different individuals.

production patterns using the Signature Identification (SIGID) method (49). Additional
information on the software and equipment used for data collection is provided in Appendix B.

Currently, the only large, publicly available dataset of dolphin sounds contains 566 dolphin
whistles (23). Our dataset contains around 180,000 whistles, almost continuously recorded for
5 years, from the same and known pod of dolphins living in natural conditions. Furthermore,
it includes whistle category labels for a subset of the data (around 8,000 whistles), enabling
detailed analysis of vocal behavior over time. To support reproducibility, we will publicly
release all data, providing a valuable resource for animal communication and computational
bioacoustics research.

3.2 Pre-training Data

Our pre-training dataset contains 100 hours of audio resampled at 44.1 kHz, spanning
all recordings from October 2019 to April 2024 (excluding 2022 due to technical issues
which prevented stable recordings). This corresponds to roughly 180,000 individual whistles,
estimated from the labeled subset using empirical whistle durations and inter-whistle intervals
(both 1 s). Under this assumption, 100.73 hours of recordings yield about 50 hours of
whistling. The total amount of whistles is roughly 300 times more than other existing dolphin
datasets.

To select pretraining data, we use a custom convolutional neural network (CNN) based on
the VGG16 architecture (50) pre-trained on ImageNet (51) to extract recordings containing
vocalizations. The CNN takes spectrograms as input and was fine-tuned on over 8,500
whistles identified by a custom algorithm leveraging spectral features and dynamic time
warping (DTW) to known whistle templates (27). The resulting dataset comprises 33,267
segments (max duration 246 s), truncated to 20 s during training.

3.3 Dolph2Vec - Architecture

Unlike written language, which provides discrete symbols as natural supervision, audio is a
continuous signal without predefined units. Dolph2Vec follows the Wav2Vec2.0 architecture
(1), illustrated in Fig. 2A. It consists of a convolutional feature encoder, a quantization module,
and a Transformer-based context network. The encoder processes raw audio into latent
representations, which are discretized by the quantization module into learned codewords
drawn from a codebook. These discrete units serve as targets in a contrastive SSL task,
where a context network captures temporal dependencies to learn high-level speech features
without labels. A diversity loss promotes balanced codebook usage.
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3.4 Dolph2Vec - Training

We pre-trained a modified Wav2Vec2.0 model (1) on our dolphin vocalization dataset for
400K steps using 32 A100 GPUs with two steps of gradient accumulation and a batch size of
4 sound files per device (total 64× 4 = 256). We used two codebooks with 320 vectors each
and trained with the AdamW optimizer (52). Additional details on the pre-training setup
and hyperparameters are in Sec. D.

Because our recordings are sampled at 44.1 kHz rather than the standard 16 kHz of speech, we
modified the feature encoder to preserve the original model’s temporal resolution. Specifically,
we increased the first convolutional layer’s kernel size from 10 to 30 and stride from 5 to 15,
matching the receptive-field granularity of the original Wav2Vec2.0. All other architectural
parameters follow the base configuration; see (1) for details.

3.5 Downstream tasks

We test the models on two downstream tasks of increasing granularity. First, we follow
the detection task proposed in (39), and identify the presence or absence of specific whistle
types in fixed-length audio segments. Secondly, we perform classification by assigning a
label to isolated whistle sounds. Task representation is in Fig. 2B. For both tasks, we
trained a logistic regression model with 5-fold stratified cross-validation using scikit-learn
(53). We use the lbfgs solver and a maximum of 1500 iterations to ensure convergence. We
use stratified splits to maintain the class distribution across folds. We test L2 regularization
parameters with value 0.1, 1.0 and 10 and report the best score. Classification performance is
measured by average accuracy across folds, and detection by mean average precision (mAP),
following (20).

Detection Detection is the task of predicting whether a whistle is present in 0.5-second
audio segments, by also classifying its whistle category. Each segment receives binary labels
for all known whistle types; segments without any are labeled non-whistle. The dataset
was built by segmenting recordings and assigning labels based on annotations from the
classification task, supplemented with manually labeled data from (23). The final dataset
consists of 660 segments containing at least one labeled whistle, along with additional
segments containing no whistles to serve as background.

Classification For classification, we constructed a dataset of whistles labeled with the
whistle type, containing 10 classes (5 signature whistles and 5 non-signature whistles). The
classes were obtained by first classifying all whistles into categories using ARTwarp (27)
(54), an unsupervised neural network algorithm which incorporates dynamic time warping
(55). The automatically assigned labels were then manually corrected by expert annotators
following visual inspection of spectrograms. Since the original dataset was highly imbalanced,
with four classes having fewer than 300 samples each, we excluded these four categories. We
then randomly sampled 500 instances from each of the remaining classes, creating a balanced
dataset consisting of six classes. We use this dataset to train a linear regression model with
stratified 5-fold cross validation.

3.6 Baseline Models

Acoustic Baselines As acoustic baselines, we evaluated traditional hand-crafted fea-
tures including spectral features (spectral centroid, spectral bandwidth, spectral contrast,
and spectral rolloff), Mel-frequency cepstral coefficients (MFCCs), and mean spectrogram
representations.

BioLingual As a baseline, we include BioLingual, a contrastive language-audio model
based on the CLAP-LAION architecture (56) which was trained on AnimalSpeak (21), a
large-scale dataset comprising over one million captioned bioacoustic recordings from 25,000
species. Using audio-text alignment, BioLingual enables zero-shot retrieval and classification
across taxa. We evaluate its performance on dolphin vocalizations using its pre-trained audio
encoder without additional tuning.
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Feature Type Whistle Classification Whistle Detection

Chance level 16.7 8.3

Spectral Features 34.2 ± 0.01 44.7 ± 4.44
MFCCs 47.2 ± 0.02 53.3 ± 3.72
Mean Spectrogram 61.6 ± 0.02 65.5 ± 3.74

AVES-core (39) 74.0 ± 0.01 64.5 ± 3.44
AVES-bio (39) 76.3 ± 0.01 63.9 ± 2.03
BioLingual (21) 74.5 ± 0.01 67.6 ± 4.33
Dolph2Vec (ours) 82.0 ± 0.01 67.8 ± 2.85

Table 1: Accuracy on the whistle classification dataset and mAP on the whistle detection
one. Scores computed using stratified 5-fold cross validation.

AVES We also include AVES, a self-supervised transformer-based audio model adapted
from HuBERT (57) and pre-trained on a large corpus of unannotated audio comprising
animal vocalizations, human speech, and environmental sounds. AVES learns discrete latent
targets through clustering and predicts masked waveform segments. We evaluate two variants:
AVES-core, pre-trained on general audio datasets including FSD50K (58) and the balanced
subset of AudioSet (37); and AVES-bio, pre-trained on a curated subset of AudioSet and
VGGSound (59) containing only animal vocalizations. We use the AVES encoder without
further fine-tuning.

4 Results

4.1 Dolph2Vec - The First Large-Scale Species-Specific Self-Supervised
Model

During training loss decreases steadily, with both contrastive and diversity losses contribut-
ing to this trend, as shown in Fig. 6. The declining contrastive loss indicates improved
discrimination of latent representations, while the diversity loss ensures utilization of the full
representational space. This confirms effective convergence of the pre-training process.

4.2 Dolph2Vec Matches State-of-the-Art Performance on Whistle
Detection

Following standard practice in the field of self-supervised learning (60–62), after training
Dolph2Vec, we froze its weights and use the model to extract embeddings for downstream
tasks. Performance on these tasks acts as a measure of quality of model representations.
Audio was resampled to 44.1 kHz models. Although the AVES models were originally
pre-trained on 16 kHz inputs, we found that 44.1 kHz yielded better results on our data and
was more appropriate given the frequency characteristics of our dolphin whistles dataset.
For BioLingual, we retained the original 48 kHz sampling rate used during its pre-training
to ensure compatibility and optimal performance.

Table 1 reports performance on the whistle classification and detection tasks across all feature
types and embedding models. BioLingual and Dolph2Vec achieve the highest detection
scores, with BioLingual at 67.6 mAP and Dolph2Vec slightly higher at 67.8 mAP, indicating
that Dolph2Vec matches state-of-the-art performance on the whistle detection task.

4.3 Dolph2Vec Achieves New State-of-the-Art in Whistle Classification

Traditional acoustic features, used as baselines, achieved limited classification accuracy
(Table 1, with spectral features reaching only 34.2% and MFCCs slightly higher at 47.2%.
Mean spectrograms performed best among the baselines, achieving 61.6% accuracy.

Embedding-based models yielded significantly stronger results. AVES-core (39), AVES-
bio (39), and BioLingual (21) all surpassed 70% classification accuracy. Our model, Dolph2Vec,
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Figure 3: A) UMAP projection of learned embeddings from AVES-bio, BioLingual and
Dolph2Vec, colored by their true label (Signature Whistle Category) B) RSA matrices of the
three models.

achieved the highest overall performance, reaching 82% accuracy, demonstrating the strongest
representation quality across both tasks. Notably, SW_Yosefa and SW_Nana are consistently
confused by all models, reflecting their actual acoustic similarity and highlighting the
biological realism of the benchmark. BioLingual was trained on the largest amount of data
between all models while using an audio-text contrastive objective. While this showed
remarkable performance on multi-species classification tasks (21), its inferior score on our
task suggests that the model might not be able to pick up narrow features that are necessary
when transferring to single-species benchmarks. This suggests a trade-off between broad and
narrow performance when modeling bioacoustic data. Investigating this trade-off in relation
to pre-training data is a valuable avenue for future work.

4.4 Strong Disentanglement of Signature Whistle Representations in
Dolph2Vec Embeddings

To examine how well our model disentangles signature whistles from different individuals,
we qualitatively and quantitatively analyze embeddings from AVES-bio, BioLingual, and
Dolph2Vec using dimensionality-reduction techniques. We cluster UMAP projections of
each model’s representations with Gaussian Mixture Models (GMMs), which provide soft
assignments and accommodate non-spherical cluster shapes, making them well suited to
high-dimensional embeddings (Fig. 3).

Dolph2Vec embeddings show the clearest visual separation of the six ground-truth whistle
categories (Fig. 3A). We further evaluate clustering performance with Adjusted Rand
Index (ARI) and Normalized Mutual Information (NMI): Dolph2Vec achieves the highest
scores (ARI = 0.3565, NMI = 0.4226), outperforming BioLingual (ARI = 0.2963, NMI =
0.3480) and AVES-bio (ARI = 0.1984, NMI = 0.2488). These results confirm that domain-
specific self-supervised pretraining yields more structured and separable dolphin vocalization
representations than general-purpose models.

To further characterize representational structure, we computed Representational Similarity
Analysis (RSA) matrices between Dolph2Vec and the two baselines (63). RSA correlates
pairwise similarity scores across models, capturing how their representational structures align.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: A) Codebook activations by signature whistle category in Dolph2Vec trained (top)
and Dolph2Vec randomly initialized (bottom). B) 2D Projection of mean codevectors by
SW category.

We computed RSA on unseen test data used for classification, reporting similarity matrices in
Fig. 3B. Dolph2Vec shows stronger within-category similarity and clearer diagonal blocks (red)
than baselines, indicating higher within-category consistency and better between-category
differentiation. Cross-model Spearman correlations revealed that Dolph2Vec representations
differed meaningfully from AVES-bio (rs = 0.35, p < 10−5) and BioLingual (rs = 0.31,
p < 10−4), suggesting each model captures distinct statistical regularities.

4.5 Dolph2Vec Codebook Units Exhibit Partial Specialization for Signature
Whistles

To test whether the discrete latent representations capture signature whistle (SW) information,
we use Dolph2Vec to compute quantized latents qt and codebook indices qi across the full
evaluation set, then calculate co-occurrence between annotated SW labels and codebook
indices. Fig. 4A shows the conditional probability P (SW | qi): many discrete latents
in Dolph2Vec (top) specialize for specific whistle types, unlike the randomly initialized
model (bottom), which nonetheless retains some structure—consistent with prior findings
on generalization in random networks (64). This may explain why specialization mainly
occurs in the first codebook, while the second stays closer to its random state; all analyses
in Fig. 4A therefore use one code set.

We then compute conditional entropy H(SW | qi) and mutual information I(qi; SW), com-
paring against an untrained Dolph2Vec (Table 2) to quantify how strongly the learned
latent space reflects class-specific encoding. Training Dolph2Vec markedly reduces condi-
tional entropy and increases mutual information, indicating more informative and structured
codebook representations.

The partial specialization of codebook indices—some highly specific, others shared across
SW types—suggests they capture acoustic structure at a sub-whistle level. Fig. 4B supports
this, showing that SW-type–averaged codevectors do not form distinct clusters, implying
the learned codebook represents recurring acoustic features rather than whole whistle types.
This aligns with hypotheses that meaningful information may occur at the sub-whistle
level (27; 65; 8). We propose these learned units can act as fine-grained building blocks to
investigate order effects and generate new hypotheses about dolphin acoustic communication

Model Conditional Entropy Mutual Information

Dolph2Vec-Random 2.13 0.43 (17%)
Dolph2Vec 1.85 0.70 (28%)

Table 2: Information-theoretic metrics comparing untrained and trained codebooks.
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4.6 Perturbation of temporal features

To test how temporal structure contributes to individual-identity classification, we compared
performance on original versus temporally shuffled vocalizations. Shuffling the feature-
encoder output along the time axis preserves local acoustic content but disrupts global call
sequence. Accuracy dropped from 82.0% on unshuffled input to 75.1% on shuffled input,
indicating a modest but significant reliance on temporal structure. This suggests identity-
relevant information is mainly encoded in short-timescale acoustic features, consistent with
findings in human speech where models such as Audio-MAE (66) and WavLM (67) achieve
above-chance performance even on temporally ablated inputs (40). The small effect further
implies temporal structure is not pivotal for categorizing signature whistles. As future work,
we propose systematically perturbing the frequency dimension (e.g., pitch shifting or spectral
warping) to test its contribution, clarifying spectral versus temporal encoding strategies and
informing hypotheses on key acoustic features in dolphin communication.

5 Limitations

While Dolph2Vec surpasses general-purpose models on a dolphin-specific task, its specializa-
tion compromises performance on multi-species or cross-ecological applications. Optimal
performance on downstream tasks in a broad range of bioacoustic domains may be achieved
by fine-tuning general models on large-scale, species-specific datasets, combining cross-species
representational breadth with domain-specific granularity. The model focuses exclusively on
acoustic features, omitting behavioral and environmental context critical for interpreting
communicative function. Future integration of multimodal data—such as the individuals’
movements, social dynamics, or environmental cues—will be necessary to ground acoustic
signals in biologically meaningful events.

6 Conclusion

This work introduces the first large-scale dataset of dolphin vocalizations—over five years
of longitudinal recordings from a pod of five dolphins in a naturalistic marine environment.
With roughly 180,000 estimated whistles, it enables communication-focused research at a
scale and resolution previously unavailable, bridging the gap between ecological realism and
machine learning scalability.

We show that Dolph2Vec, a domain-adapted self-supervised model trained on this dataset,
achieves state-of-the-art performance on new whistle classification and detection tasks. A
large-scale, species-specific model can thus deliver both high performance and scientific
insight. Analysis of Dolph2Vec’s internal structure reveals interpretable patterns in dolphin
vocal behavior, including possible sub-whistle acoustic units—offering new ways to test
hypotheses in animal communication.

Future work should explore domain-specific pretraining enhancements such as augmentations
tailored to dolphin vocal features, adjusting the convolutional extractor and codebook to
better match species-specific acoustics, and studying how human or background sounds in
pretraining data affect performance. On the interpretability front, perturbing features such
as frequency or duration could test classification robustness and clarify spectral vs. temporal
encoding strategies. Another promising avenue is examining whether learned codebook units
act as discrete building blocks in dolphin vocal sequences, shedding light on compositionality
in dolphin communication.

Beyond technical advances, our findings highlight the mutual benefits of combining animal
studies and deep learning. By releasing both our dataset and pre-trained model, we aim
to catalyze cross-disciplinary research and promote integrative approaches to non-human
communication, inspiring broader efforts to build species-specific resources and interpretable
computational tools.
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A Additonal related work: self-supervised learning

The traditional supervised learning approach for dolphin vocalization embeddings has long
been criticized for enforcing a human-biased perspective (68). This bias stems from linking
each vocalization directly to expert annotations or predefined features assumed by humans
to be important. For instance, analyses of dolphin whistles have often focused either on the
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identity of the putative emitter or on the assumption that the whistle envelope is the primary
carrier of information. However, this reliance on human interpretation and predefined
notions risks overlooking crucial communication cues within the signal or misidentifying
their significance, potentially missing the true underlying structure and meaning of the
vocalizations.

To remedy this problem, unsupervised approaches may provide a new perspective that
avoids human biases. Recent progress in natural language processing has demonstrated
that the meaning and structure of language could be re-discovered through an unsupervised,
machine-learning-based approach. Self-supervised approaches such as (69–72) have first
proposed embeddings of words as vectors. These approaches are based on the distributional
hypothesis (73): a word is defined by the context of its use. These unsupervised, token-based
approaches are not directly applicable to domains where the unit of computation is less
clear, like speech processing. Instead, speech-processing models like Wav2Vec2.0 (1) or
HuBERT (18) simultaneously extract the unit of computation (speech units) and perform the
contextual processing. The Wav2Vec2.0 architecture is composed of two processing blocks
(Fig 2A): First convolutional layers extract the speech units through local computations.
Next, a transformer block performs contextual processing. Learning is achieved by a masking
objective, where the model should unmask speech units, with unmasking evaluated through
a contrastive objective.

B Data-collection setup

Figure 5: An aeral photo of our data collection setup.

The dataset was collected at Dolphin Reef in Eilat, Israel, a coastal site on the northern
Gulf of Aqaba. This location serves as the natural habitat for a resident pod of bottlenose
dolphins that freely move between the reef and open sea. Human-dolphin interactions occur
only when initiated by the dolphins and are entirely voluntary. Hydrophones were placed in
the locations as shown in Fig 5 Acoustic recordings were obtained using a set of 3 Brüel &
Kjær® 8104 hydrophones connected to a 1704 preamplifier and a National Instrument®
PCI-4474 acquisition card installed in a HP Z400 linux computer, sampling at 96 kHz,
controlled by a custom-made code in C++. Recordings were conducted daily for one-hour
periods at different times during the day (around 14 hours a day). The recordings were
acquired between November 1, 2019, and March 12, 2024. Data acquisition was automated
using scheduled crontab commands.
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C Dataset properties

Studying a small, stable pod of five dolphins across several years provides advantages rarely
available in animal communication research. The individuals’ sex, family history, and kinship
relations are well documented (27; 48), enabling integration of acoustic analysis with detailed
social and historical context. The dataset thus combines individual-level identification with
long-term recordings, supporting investigation of both fine-grained whistle structure and
long-range social-linguistic patterns.

The pre-training dataset comprises 33,267 audio segments automatically extracted with a
custom convolutional neural network. Segments average 12.91 seconds in length (sd = 19.15s),
ranging from 2 to 246 seconds, and each contains at least one whistle. Whistles typically
last about 1 second, with an average interval of 0.5 seconds between whistles, yielding an
estimated total of roughly 180,000 individual whistles.

For the downstream classification task, a subset of about 8,000 whistles was annotated by
domain experts through spectrogram inspection. These annotations distinguish signature
whistles (SW) that serve as individual identifiers from non-signature whistles (NSW). The
distribution of labeled data across categories is shown in Table 3.

Category Count

SW_Luna 2,934
SW_Neo 2,239
SW_Nikita 888
NSW_9 658
SW_Yosefa 626
SW_Nana 521
SW_Dana 335
SW_Shy 81
NSW_3 45
NSW_6 27

Table 3: Distribution of annotated whistle categories.

To balance categories, all classes with at least 500 examples were subsampled to 500 instances
each (SW_Luna, SW_Neo, SW_Nikita, NSW_9, SW_Yosefa, SW_Nana), ensuring an
even distribution for downstream evaluation.

D Pre-training setup

Figure 6: Pretraining losses over total training steps.

Training was conducted using the AdamW optimizer (52) with β1 = 0.9, β2 = 0.98, and
ϵ = 10−6. The learning rate was set to 5× 10−4 with a linear decay scheduler and 32,000
warmup steps. Weight decay was fixed at 0.01. Training proceeded for a maximum of 400,000
steps with a per-device batch size of 4 on 32 GPUs. Mixed precision training was used to
reduce memory consumption (74). The Gumbel quantization module (75; 76) employed a
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temperature schedule starting at 2.0 and decaying multiplicatively by a factor of 0.999995 at
each step, with a floor of 0.5. Fig. 6 shows the total loss, contrastive loss and diversity loss
steadily decreasing, confirming convergence during training.

E Additional baselines

Feature Type Whistle Classification

Chance level 16.7

Dolph2Vec2 (random init) 37.9
Wav2Vec2-base (pre-trained) 47.0
Dolph2Vec2-shuffled 75.1

Table 4: Accuracy of additional baselines on our dolphin classification task.

We report performance on the signature whistle classification task for additional baselines
in Table 4. Wav2Vec2 refers to the base model pretrained on human speech at 16 kHz (1).
Dolph2Vec-random init denotes the Dolph2Vec model with randomly initialized weights, i.e.,
before any self-supervised pretraining. Dolph2Vec-shuffled is a variant of Dolph2Vec in which
the temporal structure of the learned representations is disrupted by shuffling the output of
the feature encoder along the time axis.

F Binary Whistle Detection

Feature Type Detection (mAP)

AVES-bio 99.93 ± 0.13
AVES-core 99.92 ± 0.08
Dolph2Vec 99.81 ± 0.14
Mean Spectrogram 99.82 ± 0.10
BioLingual 99.37 ± 0.35
MFCCs 98.17 ± 0.54
Spectral Features 95.94 ± 2.69

Table 5: Detection performance (mAP) on binary whistle vs. non-whistle task. Scores
reported as mean ± standard deviation across stratified 5-fold cross-validation.

Table 5 reports performance on a binary whistle detection task, where the objective is to
distinguish between whistle and non-whistle audio segments. Unlike the main detection
task described in Section 3.5, which involves identifying specific whistle types in a multi-
label setting, this task simplifies the problem to a single binary classification per segment.
All models achieve near-ceiling performance, with mAP scores above 95, indicating that
distinguishing whistle sounds from background noise is relatively easy. AVES-bio and AVES-
core achieve the highest scores (99.93 and 99.92, respectively), followed closely by Dolph2Vec
(99.81) and spectrogram-based features (99.82). BioLingual and other baseline features also
perform well but slightly below the top models. Due to this performance saturation, the
binary detection task provides limited insight into model differences and is included here for
completeness.

G Codebook size analysis

We evaluated the hypothesis that a smaller codebook might better capture the structure of
dolphin whistles by representing them as combinations of a limited set of sub-whistle units.
To test this, we pre-trained several Wav2Vec models with varying codebook sizes: 32, 128,
and 320 codewords per codebook. Model performance was then assessed across multiple
downstream tasks and unsupervised metrics (codebook entropy, clustering quality).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

The results indicate that the configuration reported in the main text, two codebooks with
320 codewords each, achieves the best balance of performance and representation quality.
It outperforms smaller codebooks in downstream classification and detection tasks, while
also producing superior entropy and clustering results. This suggests that a larger codebook
provides a more accurate and flexible representation of dolphin whistle structure.

H Second codebook

Figure 7 shows that the second codebook is visually similar between the trained and randomly
initialized models. Table 1 confirms this, with nearly identical conditional entropy and mutual
information values. While the distribution of categories varies, no specialized or class-specific
activation patterns emerge, indicating limited functional differentiation.

Figure 7: Second Codebook activations by signature whistle category in Dolph2Vec trained
(top) and Dolph2Vec randomly initialized (bottom).

Conditional Entropy Mutual Information

Dolph2Vec 2.5027 0.0687
Dolph2Vec (random init) 2.4675 0.0907

Table 6: Information-theoretic metrics for the second codebook.
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