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Abstract
With the rise of large language models (LLMs)
and concerns about potential misuse, watermarks
for generative LLMs have recently attracted much
attention. An important aspect of such water-
marks is the trade-off between their identifiability
and their impact on the quality of the generated
text. This paper introduces a systematic approach
to this trade-off in terms of a multi-objective opti-
mization problem. For a large class of robust, ef-
ficient watermarks, the associated Pareto optimal
solutions are identified and shown to outperform
existing robust, efficient watermarks.

1. Introduction
In recent years, transformer-based LLMs have proven to be
remarkably powerful. Their societal impact is potentially
enormous. As a consequence of their rapid rise, concerns
about potential misuse have been raised. One can think of,
for example, plagiarism (Meyer et al., 2023), online pro-
paganda (Goldstein et al., 2023), examination in education
(Milano et al., 2023), misinformation (Vincent, 2022) and
copyright infringement (Rillig et al., 2023). One possible
strategy to partially address these concerns is to ensure that
LLM-generated text can be algorithmically distinguished
from human-generated text by means of a watermark.

Initialized by Aaronson (2022) and the seminal work of
Kirchenbauer et al. (2023), the idea of watermarking LLM-
generated text has attracted much attention, in both the
scientific field (see Section 5 for an overview) and the in-
dustry (Bartz & Hu, 2023). Generally speaking, the process
of text generation by an LLM would be adjusted in a con-
trollable manner. Based on the generated text, a detector
with knowledge of the watermarking strategy is then able to
identify a text as generated by an LLM. This is usually done
in the form of a hypothesis test, where the null hypothesis
is that the text has been generated by a human being.

1University of Amsterdam. Correspondence to: Bram Wouters
<b.m.wouters@uva.nl>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

This paper largely follows the watermarking strategy of
Kirchenbauer et al. (2023). Causal LLMs typically generate
text word-by-word. Before a word is generated, the com-
plete vocabulary of the LLM is split in two disjunct lists
labelled green and red. This split is pseudo-random, where
the seed is determined by the previous word(s). Green-list
words are then sampled with a higher probability than the
original LLM prescribes, and red-list words with a lower
probability. A detector with knowledge of the pseudo-
random green-red split can count the number of green-list
words in a text. If this number is larger than one would ex-
pect from a text generated without knowledge of the green-
red split (e.g., a human-generated text), the null hypothesis
is rejected and the text is attributed to an LLM.

There are many perspectives of what a good watermark for
an LLM comprises of, and even their usefulness altogether
is under debate (Sadasivan et al., 2023; Jiang et al., 2023;
Zhang et al., 2023). Roughly speaking, the quality of a
watermark is assessed along four axes. A watermark must
be

• identifiable, meaning that a detector is able to correctly
identify the generator (LLM vs. human) of a text.

• stealthy, meaning that a watermark does not noticeably
change the quality of the generated text.

• robust against (moderate) post-generation adjustments
of the text that could obfuscate the watermark.

• efficient at generation and detection time, i.e., without
the need for computationally costly processes.

This paper focusses on the trade-off between identifiability
and stealthiness of watermarks. The probability that the
hypothesis test of the detector draws the correct conclu-
sion increases when the watermark more strongly promotes
green-list tokens. However, enforcing green-list tokens too
strongly can degrade the quality of the text in unacceptable
manners. We will refer to this trade-off between the quality
of test and text as the test-text trade-off.

Our contribution. For a large class of robust, efficient
watermarks based on the green-red split of the vocabulary,
we translate the test-text trade-off into a multi-objective
optimization problem and identify the associated Pareto op-
timal solutions. We empirically validate the optimality of
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the solutions and show that they outperform existing pro-
posals of robust, efficient watermarks (Kirchenbauer et al.,
2023; Kuditipudi et al., 2024; Wu et al., 2023) with respect
to the test-text trade-off.* The contribution of this paper
is therefore twofold. To the best of our knowledge, this
is the first systematic approach to optimizing the trade-off
between identifiability and stealthiness of watermarks for
LLMs. Secondly, since we optimize over a large class of
robust, efficient watermarks, we believe that the optimal
watermarks introduced in this paper have an excellent stand-
ing with respect to the four criteria for good watermarks for
LLMs.

2. Watermarks for LLMs
In this section a class of watermarks is defined, over which
the test-text trade-off will be optimized. The class can be
seen as a generalization of the watermark introduced by
Kirchenbauer et al. (2023), based on a green-red split of the
vocabulary.

In the context of LLMs, a text is typically represented as
a sequence of tokens. Consider the sequence of random
variables V1, V2, . . . , VT , where Vt corresponds to the token
at position t. They have support set V of size N = |V|,
which is the vocabulary of the LLM. In addition, there
is the prompt V:1 = (V0, V−1, V−2, . . .) , whose length is
left unspecified because most modern causal LLMs do not
require a fixed prompt length. The joint probability mass
function (pmf) is

P[VT , VT−1, . . . V1, V:1] =

T∏

t=1

P[Vt|V:t]× P[V:1] , (1)

where the prefix V:t is the subsequence of tokens prior to
position t, including the prompt. The causal LLM specifies
P[Vt|V:t], whereas P[V:1] represents the distribution of the
text prompts under consideration. Text generation occurs
token-by-token through sampling from the conditional pmf
P[Vt|V:t].

Before defining the watermark, we introduce a function
gγ : V∗ → Θ, where V∗ is the space of all possible prefixes
of arbitrary length and Θ is the space of all subsets of size
⌊γN⌋ of the vocabulary V. The hyperparameter γ ∈ (0, 1)
is fixed. Given a prefix v:t ∈ V∗, the set Gt = gγ(v:t)
contains the so-called green-list tokens. The tokens in the
complement V \ Gt are the red-list tokens. This partitioning
of the vocabulary is pseudo-random, with a seed determined
by a hash of v:t and a key. The detector of the watermark
has the key and is therefore able to reconstruct the list of
green tokens for each position t in the sequence.

This paper considers a large class of watermarks, defined by

*Code is available at https://github.com/brwo/
optimizing-watermarks.

the conditional probability distribution

P̃[Vt|V:t] = P[Vt|V:t]×




1 + ∆(pt,Gt)

Γt
if Vt ∈ Gt,

1− ∆(pt,Gt)
1−Γt

if Vt /∈ Gt,
(2)

where pt is the function pt(v) = P[Vt = v|V:t] for v ∈ V,
representing the conditional pmf of the LLM at position
t, and Γt = P[Vt ∈ Gt|V:t] is the conditional probability
that token t is a green-list token. A watermark is specified
by a so-called shift function ∆ : Ξ × Θ → [0, 1], where
Ξ is the space of all pmfs over the vocabulary V. By de-
manding that ∆(pt,Gt) ≥ 0, the shift function increases
green-list probabilities and decreases red-list probabilities.
To be concrete, P̃[Vt ∈ Gt|V:t] = Γt + ∆(pt,Gt), i.e., the
shift function is the increase due to the watermark of the
conditional probability that a token is on the green list. For
P̃[Vt|V:t] to be a valid conditional pmf, we also must demand
that ∆(pt,Gt) ≤ 1 − Γt, where it is important to realize
that Γt, pt and Gt are all functions of the prefix V:t. A wa-
termarked LLM generates text by sampling from P̃[Vt|V:t].

We believe that the watermarks under consideration here, de-
fined by Equation (2), have two important conceptual bene-
fits in terms of their simplicity. First of all, the shift function
∆(·, ·) is not a function of Vt and therefore the watermark
does not alter the relative probabilities among green-list to-
kens, i.e., P̃[Vt|V:t, Vt ∈ Gt] = P[Vt|V:t, Vt ∈ Gt]. In other
words, the watermark rescales the probabilities of all green-
list tokens by the same factor, and vice versa for red-list
tokens. In this sense, the change to the conditional probabil-
ity distribution due to the watermarks is minimal. Secondly,
the alteration of the conditional probabilities of the LLM
due to the watermark is solely determined by the conditional
probabilities themselves. This must be contrasted by several
recent proposals for watermarks that also use a green-red
split of the vocabulary, whose watermarking strategy aims
to address the test-text trade-off by means of an external
model (Fang et al., 2023; Li et al., 2023b; Chen et al., 2024)
and/or a word similarity score defined by a metric on the
embedding space of word vectors (Fu et al., 2024; Chen
et al., 2024).

2.1. The KGW Watermark

Arguably the simplest example of the class of watermarks
defined by Equation (2) is the so-called hard watermark,
∆HARD(pt,Gt) = 1−Γt, implying that P̃[Vt ∈ Gt|V:t] = 1.
Green-list tokens are generated with probability one. This
watermark is maximally strong, but at the same time impacts
the text quality in an unacceptable manner (Kirchenbauer
et al., 2023).

This is mitigated by the introduction of what we call the
KGW watermark, after the first three author names of
Kirchenbauer et al. (2023). Green-list logits are shifted
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by a watermark parameters δ ≥ 0, while red-list logits are
left unaltered,

P̃KGW[Vt|V:t] =
exp[ℓ(Vt|V:t) + δ IGt(Vt)]∑

V ′
t ∈V exp[ℓ(V ′

t |V:t) + δ IGt
(V ′

t )]
,

where ℓ(Vt|V:t) are the logits of the original LLM and IGt
(·)

is an indicator function. As already mentioned, the KGW
watermark is a member of the class of watermarks defined
by Equation (2), with

∆KGW(pt,Gt) =
Γt(1− Γt)(e

δ − 1)

1− Γt + Γteδ
.

The parameter δ controls the test-text trade-off, where a
large δ corresponds to a high watermark identifiability.

The logic behind the KGW watermark is that green-list
tokens are only substantially favored if this does not hurt text
quality. Selecting a green-list token would hurt text quality
if all meaningfully probable tokens are on the red list. But
these tokens have much higher logits and a moderate shift δ
of green-list logits will not change that. We emphasize that
this particular choice of watermark is based on a heuristic
argument regarding the test-text trade-off, rather than an
optimization objective.

The KGW watermark is generally considered to be robust
(Shi et al., 2024; Kirchenbauer et al., 2024; Piet et al., 2023)
and efficient (Wu et al., 2023). Other watermarks defined by
Equation (2) only differ from the KGW watermark through
the shift function, which does not impact robustness. In-
stead, robustness of watermarks based on a green-red split
is typically determined by the choice of the green-list gener-
ator gγ (Liu et al., 2024b). And unless the shift function is
computationally expensive, which will not be the case in the
applications discussed in this paper, all watermarks defined
by Equation (2) have a comparable efficiency. We therefore
conclude that the watermarks introduced in this paper can
be considered robust and efficient.

3. Optimizing Watermarks
Optimization of the test-text trade-off requires a precise
definition of both test and text quality. A simple criterion
for a good test is a high number of generated green-list
tokens, compared to the baseline of the non-watermarked
LLM. Let Ng be the number of green-list tokens in the
sequence V1, V2, . . . , VT . The expected number of green-list
tokens shifts, as a consequence of the watermark, by ∆Ng =
Ẽ[Ng]− E[Ng] , where E[·] is the expectation with respect
to the joint pmf of Equation (1) and Ẽ[·] is the watermarked
counterpart. It follows that

∆Ng =

T∑

t=1

Ẽ[∆(pt,Gt)] , (3)

as the shift function is the increase (due to the watermark)
of the probability that the token is a green-list token.

One common measure for text quality of an LLM is the
perplexity, which is the exponential of the negative (normal-
ized) log-likelihood. We consider the log-perplexity

log PPL = − 1

T

T∑

t=1

log P[Vt|V:t],

and note that a high text quality corresponds to a low log-
perplexity. The shift in expected log-perplexity due to the
watermark, ∆log PPL = Ẽ[log PPL]−E[log PPL] , is given
by

∆log PPL =
1

T

T∑

t=1

Ẽ[∆(pt,Gt)B(pt,Gt)] , (4)

where

B(pt,Gt) =
∑

v∈V

Γt − IGt
(v)

Γt(1− Γt)
pt(v) log pt(v).

This quantity B(pt,Gt) is the expected rate of change of
the log-perplexity, given the prefix V:t, due to a shift in the
conditional probability that the token is a green-list token.
Roughly speaking, B(pt,Gt) is large when there are no or
few green-list tokens with a (relatively) large probability. It
should be interpreted as the expected damage that promot-
ing green-list tokens has on the text quality. Equations (3)
and (4) are derived under the mild assumption that expecta-
tions are unaffected by watermark-induced changes in the
distribution of the prefix V:t. For details, see Appendix A.

We are now in a position to find a watermark that optimizes
the text-test trade-off. Let Υ be the set of all shift func-
tions ∆(·, ·), as defined in Section 2, representing the class
of watermarks defined in Equation 2. The aim to maxi-
mize test quality and simultaneously minimize a decrease in
text quality translates into the multi-objective optimization
problem

max
∆∈Υ

∆Ng and min
∆∈Υ

∆log PPL, (5)

which has Pareto optimal solutions parametrized by β ≥ 0,

∆OPT(pt,Gt) =

{
1− Γt if B(pt,Gt) ≤ β,

0 if B(pt,Gt) > β.
(6)

We will call this the OPT watermark, or simply OPT. For
a token at position t there are two options. If the expected
damage to the text quality is small, at most β, then the
watermark is maximally enforced by generating a green-list
token with probability one. Otherwise, no watermark is
imposed and the token is sampled from the original LLM.
In other words, tokens that are expected to damage the text
quality the least are maximally watermarked before other
tokens get any watermark at all.
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For an intuitive explanation and a formal proof of the Pareto
optimality of the OPT watermark, see Appendix A.3. We
emphasize that no additional assumptions about the joint
pmf in Equation (1) are needed, as the sums of Equations
(3) and (4) can be maximized/minimized token-by-token.

Note that maximally watermarking tokens for which
B(pt,Gt) < 0 is actually favorable for the text quality,
because you make the sampling more greedy towards green-
list tokens and this (potentially) decreases the perplexity.
In fact, in the context of LLMs without watermarks greedy
sampling minimizes E[log PPL] .

3.1. Other Optimized Watermarks

The choice of optimization objectives in Equation (5) is not
unique. Different objectives could lead to different optimal
watermarks. When a detector performs a hypothesis test
based on a sequence of size T, it will typically count the
number of green-list words Ng and reject the null hypothesis
of a human-generated text if Ng ≥ n∗. Here, n∗ is set
beforehand and corresponds to a false-positive rate α∗ =
P[Ng ≥ n∗] . This is the probability of falsely attributing
a text to an LLM (type-I error). The quality of the test is
then commonly quantified as the power/sensitivity πn∗ =
P̃[Ng ≥ n∗] , i.e., the probability of correctly identifying an
LLM-generated text.

Suppose we want to maximize the power of the test for
the class of watermarks of Equation (2), i.e., consider the
multi-objective optimization problem

max
∆∈Υ

πn∗ and min
∆∈Υ

∆log PPL. (7)

The OPT watermark defined in Equation (6) is also Pareto
optimal for this optimization problem, provided the follow-
ing assumptions hold for all t and all t′ ̸= t :

(i) the green-red split is unbiased, E[Γt] = γ,

(ii) the events Vt ∈ Gt and Vt′ ∈ Gt′ , which can be seen
as Bernoulli random variables, are independent and
identically distributed for watermarked text.

The number of green-list tokens is then binomially dis-
tributed, Ng ∼ BIN(T, γ + Ẽ[∆(pt,Gt)]), and this means
that maximizing the power of the test is equivalent to maxi-
mizing ∆Ng (see Appendix A.1 for details).

It should be stressed that the required assumptions are im-
plicitly made throughout the literature about watermarks
for LLMs, whenever test quality is measured in terms of
a z-score, p-value or power of a test, as this requires that
Ng is binomially distributed. We also emphasize that the
assumptions are only about the events of a token being a
green-list token, and not about the distributions of the tokens

themselves. In particular, we do not assume that the tokens
V1, . . . , VT are independent and/or identically distributed.
The validity of the assumptions is further investigated in
Section 4.3.

To show that our approach can lead to different optimal
watermarks, consider the following possible alternative ob-
jective for text quality: minimize the expectation of

1

T

T∑

t=1

(− log P[Vt|V:t])
2 = log PPL2

+
1

T

T∑

t=1

(− log P[Vt|V:t]− log PPL)2,

which can be interpreted as the bias with respect to zero
(squared) plus the variance. The idea behind this objective
is that it seeks to reduce the overall perplexity of a sequence,
but also large deviations from this overall perplexity at the
level of individual tokens. When simultaneously maximiz-
ing the power of the test, the Pareto optimal watermark is
now

∆OPT′(pt,Gt) =

{
1− Γt if B′(pt,Gt) ≤ β′,

0 if B′(pt,Gt) > β′,
(8)

parametrized by β′ ≥ 0, where

B′(pt,Gt) =
∑

v∈V

IGt
(v)− Γt

Γt(1− Γt)
pt(v)[log pt(v)]

2.

We will refer to this watermark as OPT′.

4. Experiments
The test-text trade-off is the main focus of this paper. We
start by analyzing how the OPT watermark performs in this
respect against a baseline of existing proposals for efficient,
robust watermarks.

In the subsequent three sections we discuss potential limita-
tions of the general idea of using Pareto optimal watermarks,
and the OPT watermark in particular. They can be read as
cautionary tales. In Section 4.2 we give two examples of the
fact that optimality with respect to one metric for text qual-
ity does not necessarily generalize to other metrics. We then
investigate in Section 4.3 the validity of the assumptions
that were needed to derive the OPT watermark. Finally,
in Section 4.4 we present a novel analysis of the effect of
watermarking on text diversity.

4.1. Comparing the Test-Text Trade-off of Watermarks

Our experimental setup largely follows Kirchenbauer et al.
(2023). From the C4 dataset (Raffel et al., 2020) a sam-
ple of 500 (news) articles is drawn randomly. For each
text the first (at most) 200 tokens serve as prompt, while
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the rest is discarded. Based on a prompt, 64 sequences of
length T = 30 are generated by means of the OPT-1.3B
causal LLM (Zhang et al., 2022), or by a watermarked ver-
sion thereof. With this setup both the prefix V:1 and the
watermarked sequence V1, . . . , VT are sampled. The fact
that we restrict ourselves to T = 30 is not a limitation.
Under the assumption that the tokens V1, . . . , VT are iden-
tically distributed, the results obtained for sequence length
T = 30 are easily extendable to larger sequences. Follow-
ing Kirchenbauer et al. (2023), we let the list of green tokens
for position t be determined by only the token at position
t− 1, i.e., Gt = gγ(vt−1). This may not be optimal in the
trade-off between tampering-resistancy and invisibility (Liu
et al., 2024b), but we consider this outside the scope of this
paper. For more details about the setup, see Appendix B.
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E[log PPL]

optimal bound

LLM

HARD

KGW (δ)

OPT (β)

DiP (α)

Figure 1. Test quality, measured as the expected number of green-
list tokens, versus text quality, measured as the expected log-
perplexity, for different watermarks. For DiP we have taken param-
eter values α = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5. As reference, the orig-
inal language model without watermark is also included (LLM).
Also shown is the Pareto optimal bound. Error bars (vertical and
horizontal) are omitted, as they are never larger than the marker
sizes.

Figures 1 and 2 contain the main empirical results of this
paper. Figure 1 shows test quality, measured in terms of
the expected number of green-list tokens, versus text qual-
ity, measured in terms of the expected log-perplexity. In
Figure 2 test quality is measured in terms of the power of
the test. In addition to the hard and KGW watermarks,
two more robust and (relatively) efficient watermarks are
included in the baseline: the distribution-preserving water-
mark from Wu et al. (2023), with hyperparameter α, and
the inverse-transform-sampling watermark from Kuditipudi
et al. (2024). We will refer to them as DiP and ITS, respec-
tively. The latter is only shown in Figure 2, as it is not based
on a green-red split of the vocabulary and therefore does not
have an expected number of green-list tokens. Both these
watermarks have the merit of being distortion free, meaning

that the watermark does not alter the sampling distribution
of the LLM, when averaged over the randomness of the
watermark key.
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Figure 2. Similar to Figure 1, but now with test quality measured
as the power of the test. The panels correspond to different tests
(n∗ = 12, 15, 18) and false-positive rates (α∗). Also included is
the ITS watermark.

For the purpose of a fair comparison, we deliberately do not
include the watermark from Kuditipudi et al. (2024) that
is based on exponential minimum sampling. It is known
to incur significant computational costs at detection time
and therefore cannot be considered as efficient (Wu et al.,
2023; Gu et al., 2024). We also exclude from our analysis
the two watermarks of Hu et al. (2024), referred to as δ- and
γ−reweighting. In the generation phase they are equivalent
to ITS and DiP at parameter value α = 0.5, respectively.
However, their detectors make use of the weights of the
LLM, which might not be available in practice. It also
makes them (relatively) inefficient (Kuditipudi et al., 2024).

Figures 1 and 2 show that OPT outperforms KGW in terms
of the test-text trade-off, which was expected because of the
Pareto optimality of OPT. It also outperforms DiP and ITS.
This was not obvious beforehand, as the two watermarks
are not in the class of watermarks defined by Equation (2).

Figure 1 also exhibits the curve of E[∆OPT(pt,Gt)T ] against
E[∆OPT(pt,Gt)B(pt,Gt)] , parametrized by β. Under the
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assumptions that V1, V2, . . . , VT are identically distributed
and that the distribution of (pt,Gt) does not shift due to the
presence of a watermark, this represents the Pareto optimal
bound for the class of watermarks defined in Equation (2).
The OPT watermark attains this bound, thereby validating
these assumptions. We stress that this is non-trivial, as
the optimal bound is computed based on properties of the
original LLM only and without reference to any watermark.
In addition, we note that the optimal bound can be used
for tuning of the hyperparameter γ, which determines the
fraction of green-list tokens (see Appendix C for details).

Also note that, strictly speaking, solutions with β < 0 are
not Pareto optimal, because β = 0 is better. This means
that, as long as β < 0, increasing test quality also increases
text quality. In Section 3 this was associated with the greed-
iness of the watermarking strategy. Finally, we also ran the
experiments for the other optimal watermark OPT′, defined
in Equation (8). We found that OPT and OPT′ perform
rather similarly. See Appendix E for the results of these
experiments.

4.2. Performance on other Text Quality Metrics

The performance of LLMs is commonly assessed with a
variety of metrics, often depending on the specific task and
type of model under consideration. Examples are perplexity,
ROUGE (Lin, 2004) and BLEU (Papineni et al., 2002). It
is well known that these metrics measure different aspects
of an LLM and are not necessarily in agreement with each
other. This means that it is not guaranteed that the OPT
watermark, which has been optimized for a low perplexity,
also outperforms the other watermarks when text quality is
measured differently.

To illustrate this, we perform two experiments (inspired by
Hu et al. (2024)) consisting of typical tasks of LLMs: text
summarization (TS) and machine translation (MT). Instead
of log-perplexity, we now measure text quality in terms of
ROUGE-1, which quantifies similarity between two texts
in terms of the overlap of uni-grams. ROUGE scores are
standard metrics to assess LLMs for summarization and
translation.

For TS we use the BART-large model (Liu et al., 2020) and
apply this to a randomly selected subset of the CNN-DM
(test) dataset (Hermann et al., 2015). For MT we use the
WMT 2016 dataset and use the Multilingual BART model
(Liu et al., 2020) to translate from English to Romanian.
Both models were fine-tuned and the sample size of both
experiments is 300.

Figure 3 shows the test-text trade-off for both experiments
and the different watermarks under consideration. Prefer-
able is a large power of the test, corresponding to a high
identifiability, and a large ROUGE-1 score close to the origi-
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Figure 3. The power of the test versus the ROUGE-1 score, a met-
ric for text quality, for the TS and MT tasks. For the DiP watermark
the same parameter values as in Figures 1 and 2 are used. The ITS
watermark has much lower ROUGE-1 scores, as it is incompatible
with beam search.

nal LLM, corresponding to a high text quality and a stealthy
watermark. We see that for TS as well as MT our OPT
watermark is outperformed by the KGW watermark. This
shows that watermarks, optimized for one metric, are not
necessarily optimal or superior in terms of another met-
ric. Optimized watermarks should therefore be used with
caution.

Note that the ITS watermark is missing in the results. The
ROUGE-1 score of ITS was very poor, as the deterministic
sampling strategy is incompatible with beam search, which
is standard for these types of experiments. Also note that the
DiP watermark shows its distortion-free property by having
a ROUGE score close to the original LLM, but performs
poorly in terms of identifiability. This is in accordance with
what was observed in Wu et al. (2023).

4.3. Biasedness and Dependence within Watermarks

This section investigates the validity of the assumptions that
are used in the derivation of the Pareto optimal solutions
to optimization problems like Equation (7), which involves
the power of the test. The derivation uses that Ng is binomi-
ally distributed, which requires two additional assumptions.
The first one is unbiasedness, i.e., E[Γt] = γ, which is dis-
cussed in Appendix D. The second assumption is that the
events that a token is a green-list token are independent
and identically distributed for different tokens in the same
sequence of watermarked text. The latter can be stated as
that Ẽ[∆(pt,Gt)] must be the same for all t. This is a mild
assumption, as this is an unconditional expectation value
and therefore does not depend on the prefix of token t.
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Figure 4. The Kullback-Leibler divergence between a binomial
distribution for Ng, based on the empirical fraction of green-list
tokens, and the empirical distribution of Ng, as a function of the
strength (δ and β) of the respective watermarks.

However, it turns out that independence is violated and that
the dependence becomes stronger for stronger watermarks.
Figure 4 shows the Kullback-Leibler divergence between an
exact binomial distribution and the empirical distribution of
Ng. The KL-divergence increases with the strength of the
watermarks, indicating a stronger (stochastic) dependence.
For very strong watermarks the KL-divergence decreases
again, as there is less space to deviate when almost all tokens
are green-list tokens. Additional evidence of the breakdown
of the binomial assumption can be found in Appendix D. It
can be explained by the fact that not all texts allow for the
same semantic freedom. Hence, the events of tokens being a
green-list token are positively correlated within a sequence.

It is important to realize that Pareto optimality of the OPT
watermark and the Pareto optimal bound both depend on
this assumption. In our experiments its breakdown seems
of little consequence, indicated by the fact that the OPT
watermark outperforms other watermarks and that it coin-
cides with the Pareto optimal bound in Figures 1 and 2. But
the impact might be bigger in situations with less semantic
freedom, for example in code generation (Wang et al., 2024;
Lee et al., 2023).

4.4. The Impact of Watermarks on Text Diversity

Watermarks like KGW and OPT are expected to decrease
the n-gram diversity, which is the fraction of unique n-grams
within the n-grams of a text corpus (Li et al., 2016). The
reasoning is that at position t, given the prefix V:t, the wa-
termark (potentially) gives preference to green-list tokens,
which form a randomly selected subset of the total vocabu-
lary V. Also recall our interpretation of the OPT watermark
with β ≤ 0 as greedier than the original LLM. Figure 5
indeed shows that bi- and tri-gram diversity decrease as a
consequence of the watermarks, an effect that is relatively

large for the OPT watermark.

The latter is a potential disadvantage of OPT compared to
other watermarks. However, n-gram diversity is not the
same as semantic diversity or how humans perceive diver-
sity. In fact, there is evidence that n-gram diversity is a poor
metric for diversity judgements from humans (Tevet & Be-
rant, 2021). It requires further research to find out whether
this concern about OPT watermarks is warranted. Note that,
although distortion-free, DiP also shows a decrease in bi-
and tri-gram diversity. It is unbiased at the level of individ-
ual tokens, but it is not invisible (Liu et al., 2024b) when
considering pairs or triplets of consecutive tokens.
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Figure 5. Uni-, bi- and tri-gram diversities for different watermarks.
An n-gram diversity is the fraction of unique n-grams within the
total set of n-grams of a text corpus. The results are based on the
same data as Figures 1 and 2.

Another interesting feature of Figure 5 is that, when the
KGW and OPT watermarks approach the hard watermark
(large δ or β, respectively), the n-gram diversity starts to in-
crease again. A possible explanation is that for these ‘harder’
watermarks a more diverse set of rather unlikely green-list
tokens are sampled at the expense of more standard red-list
tokens. This also explains why a hard watermark has a
larger uni-gram diversity than the original LLM.

5. Related Work
Watermarking LLM-generated texts is an example of
steganography, the practice of representing information (e.g.,
a watermark) in other information (e.g., a text). The idea
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of watermarking machine-learning generated text has been
around for some time (Venugopal et al., 2011; Ziegler et al.,
2019) and has different realizations.

A first option is to impose a distribution shift on the LLM
that is tractable for a detector, with Kirchenbauer et al.
(2023) as the most prominent example. Since then, mostly
in view of mitigating between the four criteria for water-
marks outlined in Section 1, a myriad of alternatives has
been proposed (Zhao et al., 2024; Wang et al., 2024; Fang
et al., 2023; Lee et al., 2023; Liu et al., 2024a; Fu et al., 2024;
Liu et al., 2024b; Chen et al., 2024). A notable subclass
of examples, including DiP, are unbiased or distortion-free
watermarks. This means that the distribution shift of the wa-
termark is unbiased when averaged over the pseudo-random
aspect of the watermark (Hu et al., 2024; Wu et al., 2023).

A second option, which includes ITS, is to instill a wa-
termark into the pseudo-random sampling from the LLM
(Christ et al., 2023; Kuditipudi et al., 2024). This also has
the advantage that it can be made distortion-free. However,
examples come also with disadvantages of low robustness
or inefficiency (Wu et al., 2023).

A third option is a watermark based on an additional ML-
model (Abdelnabi & Fritz, 2021; Qiang et al., 2023; Yoo
et al., 2023; Yang et al., 2023; Munyer et al., 2024). The
watermark is then imposed by making alterations to a text
that is already generated by the LLM. This requires extra
training and due to the extra flexibility ensuring the quality
of the watermark can be difficult. Finally, one could instill
a watermark into the weights of the LLM by adjusting the
training procedure (Li et al., 2023a; Gu et al., 2024).

Another branch of this developing field is the analysis of wa-
termarks for LLMs. This includes the design of benchmark
tasks and metrics to test the quality of watermarks (Piet
et al., 2023), some with a special focus on text quality (Tang
et al., 2023; Tu et al., 2023; Ajith et al., 2023) or robustness
(Krishna et al., 2023; Sadasivan et al., 2023; Shi et al., 2024;
Kirchenbauer et al., 2024; Zhang et al., 2023).

To conclude, watermarking is not the only option to dis-
tinguish LLM-generated texts from human-generated texts.
An alternative is to train a binary classifier to detect LLM-
generated texts (see, e.g., Mitchell et al. (2023)). With the
rapid improvement of LLMs, this has become increasingly
difficult (Gambini et al., 2022). Another option is to let the
vendor of the LLM keep a copy of all generated output and
provide an API that compares a text with this database of
outputs (Krishna et al., 2023).

6. Conclusion and Discussion
It was posited in Section 1 that the contribution of this paper
is twofold. It introduces a new watermark, OPT, correspond-

ing to the Pareto optimal solutions of the multi-objective
optimization problem into which the test-text trade-off was
translated. Since the watermarks over which we optimize
are generally considered robust and efficient, we believe that
OPT has an excellent standing with respect to the four crite-
ria for good watermarks for LLMs: identifiability, stealthi-
ness, robustness and efficiency. This is notwithstanding the
provisions that were made about Pareto optimal watermarks
in Sections 4.2, 4.3 and 4.4.

But this paper should also be read as the introduction of a
systematic approach to optimizing the test-text trade-off for
watermarks of LLMs. The chosen translation of the trade-
off into an optimization problem is not unique, as it depends
on how you quantify test and text quality. And also the class
of watermarks over which we optimize, defined in Equation
(2), is not unique. It was chosen to be based on a green-red
split of the vocabulary, such that it is a generalization of the
original watermark of Kirchenbauer et al. (2023). And its
form was chosen to be so-called minimal, i.e., all green-list
probabilities are rescaled by the same factor and the same
holds for all red-list tokens.

It is conceivable that different choices regarding the above
lead, after optimization, to more preferable watermarks.
One option is to remove some of the implicit restrictions that
are imposed by Equation (2). The shift function ∆(pt,Gt)
that determines P̃[Vt|V:t] is the same for each Vt ∈ V, but
this does not have to be the case. Also note that the shift
function is determined by properties of token t alone. One
could try to make it dependent on subsequent tokens; a
choice for a red token at position t could enable a string of
green tokens in what follows. Another possibility is to keep
track of the number of green-list tokens already generated
and use this to adjust the shift function.
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A. Optimization objectives and their solutions
A.1. Measures for test quality

One measure for test quality is Ng, the number of green-list tokens in a watermarked sequence of length T. A strong test,
i.e. a test with a large identifiability, corresponds to a large number of green-list tokens. If we define binary random variables
Yt such that

Yt =

{
1 if Vt ∈ Gt,
0 if Vt /∈ Gt,

(9)

then Ng = Y1 + Y2 + . . .+ YT . The conditional random variables Yt|V:t are Bernoulli distributed,

Yt|V:t ∼ BIN(1,Γt) (10)

in the absence of a watermark and
Yt|V:t ∼ BIN(1,Γt +∆(pt,Gt)) (11)

in the presence of a watermark. The shift, due to a watermark defined by Equation (2), in the expected number of green-list
tokens is given by Equation (3) and can be derived as follows:

Ẽ[Ng] =

T∑

t=1

Ẽ
[
Ẽ[Yt|V:t]

]
(12a)

=

T∑

t=1

Ẽ[Γt +∆(pt,Gt)] (12b)

=

T∑

t=1

{
Ẽ[Γt] + Ẽ[∆(pt,Gt)]

}
(12c)

=

T∑

t=1

{
E[Γt] + Ẽ[∆(pt,Gt)]

}
(12d)

= E[Ng] +

T∑

t=1

Ẽ[∆(pt,Gt)] (12e)

where in (12d) we used the assumption that expectations are unaffected by watermark-induced changes in the distribution of
the prefix V:t. Explicitly, the assumption that Ẽ[Γt] = E[Γt] means

∑

v:t∈V∗

P[Vt ∈ Gt|V:t = v:t]P̃[V:t = v:t] =
∑

v:t∈V∗

P[Vt ∈ Gt|V:t = v:t]P[V:t = v:t] , (13)

where V∗ is the space of all possible prefixes of arbitrary length. It should be emphasized that this is an approximate
assumption, based on the idea that watermark-induced changes in the distribution of the prefix V:t are (approximately)
averaged out in the sum over V∗. We also emphasize that this assumption does not mean that the marginal distribution of the
prefix V:t is unaffected by the watermark, which would be a much stronger assumption.

Another measure for test quality is the power of the test, πn∗ = P̃[Ng ≥ n∗] . If we assume that Ẽ[Γt] = E[Γt] = γ, that the
Yt are identically distributed and that they are (stochastically) independent, then

Ng ∼ BIN(T, γ + Ẽ[∆(pt,Gt)]), (14)

because Ẽ[Yt] = Ẽ
[
Ẽ[Yt|V:t]

]
= Ẽ[Γt +∆(pt,Gt)] . This implies

πn∗ =

T∑

n=n∗

(
T

n

)(
γ + Ẽ[∆(pt,Gt)]

)n (
1− γ − Ẽ[∆(pt,Gt)]

)T−n
. (15)

In other words, the watermark determines the power of the test only through Ẽ[∆(pt,Gt)] and does this in a monotonically
increasing way. Hence, maximizing the power of the test over a class of watermarks is equivalent to maximizing Ng.
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A.2. Measures for text quality

One measure for text quality is the log-perplexity, defined in Section 3. A large log-perplexity is interpreted as a low text
quality. The shift, due to a watermark defined by Equation (2), in the expected log-perplexity is given by Equation (4) and
can be derived as follows:

Ẽ[log PPL] = − 1

T

T∑

t=1

Ẽ[log P[Vt|V:t]] (16a)

= − 1

T

T∑

t=1

Ẽ

[∑

v∈V
P̃[Vt = v|V:t] log P[Vt = v|V:t]

]
(16b)

= − 1

T

T∑

t=1

Ẽ[E[log P[Vt|V:t] |V:t]] (16c)

− 1

T

T∑

t=1

Ẽ

[∑

v∈V
∆(pt,Gt)

{
IGt

(v)

Γt
− 1− IGt

(v)

1− Γt

}
P[Vt = v|V:t] log P[Vt = v|V:t]

]
(16d)

= − 1

T

T∑

t=1

Ẽ[E[log P[Vt|V:t] |V:t]] +
1

T

T∑

t=1

Ẽ[∆(pt,Gt)B(pt,Gt)] (16e)

= − 1

T

T∑

t=1

E[log P[Vt|V:t]] +
1

T

T∑

t=1

Ẽ[∆(pt,Gt)B(pt,Gt)] (16f)

= E[log PPL] +
1

T

T∑

t=1

Ẽ[∆(pt,Gt)B(pt,Gt)] . (16g)

In (16e) we used the definition of B(pt,Gt), see Section 3. In (16f) we used a similar approximate assumption as in (12d).
See (13) for a discussion.

A.3. Derivation of Pareto optimal solutions

The multi-objective optimization problem of Equation (5) can be written as

max
∆∈Υ

Ẽ[∆(pt,Gt)] and min
∆∈Υ

Ẽ[∆(pt,Gt)B(pt,Gt)] , (17)

where Υ is the set of shift functions ∆ : Ξ×Θ → [0, 1], where Ξ is the space of all pmfs over the vocabulary V, and Θ is the
space of all subsets of size ⌊γN⌋ of the vocabulary V, with the additional (consistency) requirement that ∆(pt,Gt) ≤ 1−Γt.

The expectations Ẽ[·] are taken over all possible sequences V1, . . . , VT generated by a watermarked LLM, and all possible
prompts V:1. However, in the definition of the optimization problem only two functions of the individual tokens play a
role: Γt and B(pt,Gt). The optimization problem can therefore be rephrased in terms of the search for a function h(x, y)
of a bivariate random variable (X,Y ), where X plays the role of Γt and Y plays the role of B(pt,Gt), that has support
[0, 1]× R :

max
h(·,·)

E(X,Y )[h(X,Y )] and min
h(·,·)

E(X,Y )[h(X,Y )Y ] , (18)

where the expectations are with respect to the joint distribution of (X,Y ), and where the function h(x, y) obeys the
constraint 0 ≤ h(x, y) ≤ 1− x. We claim that

h∗(x, y) =

{
1− x if y ≤ β,
0 if y > β,

(19)

which corresponds to Equation (6), is Pareto optimal if β ≥ 0. We begin by giving an intuitive argument for this claim,
which is then followed by a more formal proof.
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INTUITIVE ARGUMENT FOR PARETO OPTIMALITY

If f(x, y) is the joint pdf of (X,Y ), the optimization problem of Equation (18) can simply be rephrased as

max
h̃(·,·)

∫ [∫
h̃(x, y) dy

]
dx and min

h̃(·,·)

∫ [∫
h̃(x, y)y dy

]
dx, (20)

where h̃(x, y) = h(x, y)f(x, y) and the constraint is now 0 ≤ h̃(x, y) ≤ (1− x)f(x, y). We see that for each value of x,
this is a separate multi-objective optimization problem. Given a value for x, we want

max
h̃(x,·)

∫
h̃(x, y) dy and min

h̃(x,·)

∫
h̃(x, y)y dy. (21)

In words, we are looking for a function h̃(x, ·) of only a single variable y. We want its area under the curve to be maximized.
At the same time, we want the volume of variable height y above this area to be minimized.

Suppose we want the area under the curve to be of a certain value, how do we approach this problem? The solution is to
start making the function h̃(x, ·) maximal for the smallest possible values of y, because for those values the contribution to
the volume is the smallest. You continue doing this for larger and larger values of y, until you have reached the desired
area. This will minimize the volume. If, on the other hand, you wish the volume to be of a certain value, you take the same
approach until you have reached that volume. This will maximize the area under the curve.

To make the optimization problem of Equation (21) more tangible, imagine the following analogy. You are standing at
location A next to a pile of stones of variable weights. If someone asks you to bring 10 stones to location B, you choose to
bring the 10 lightest stones to make your life easy. If someone asks you to bring as many stones as possible to location B,
but with a total weight of 5kg. Then you again choose to bring the lightest stones until you have reached a total 5kg. In this
analogy the stones are selected by the function h̃(x, ·), which plays the role of an indicator function, whereas the weight of
the individual stones is the variable y.

FORMAL PROOF OF PARETO OPTIMALITY

We continue with a more formal proof of the Pareto optimality of the function h∗(x, y) defined in Equation (19). We do this
by showing that a function h′(x, y) that obeys the same constraints and that improves the first objective in Equation (18),
necessarily does worse for the second objective in Equation (18).

Hence, assume that E(X,Y )[h
′(X,Y )] > E(X,Y )[h

∗(X,Y )] . Suppose h′(x, y) ̸= h∗(x, y) if y ∈ A1 ∪ A2, where A1 ⊂
(−∞, β] and A2 ∈ (β,∞). This means that h′(x, y) < 1− x if y ∈ A1 ⊂ (−∞, β] and h′(x, y) > 0 if y ∈ A2 ⊂ (β,∞).
The initial assumption then translates into

∫

A1

∫ 1

0

[(1− x)− h′(x, y)] f(x, y) dx dy <

∫

A2

∫ 1

0

h′(x, y)f(x, y) dx dy, (22)

where f(x, y) is the joint pdf of (X,Y ). Note that A1 can be empty. Let’s now focus on the second objective, which is to

14
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minimize (assuming β > 0)

E[h′(x, y)y] =
∫ ∞

−∞

∫ 1

0

h′(x, y)yf(x, y) dx dy (23a)

=

∫ ∞

−∞

∫ 1

0

h∗(x, y)yf(x, y) dx dy (23b)

+

∫

A2

∫ 1

0

h′(x, y)yf(x, y) dx dy −
∫

A1

∫ 1

0

[(1− x)− h′(x, y)] yf(x, y) dx dy (23c)

>

∫ ∞

−∞

∫ 1

0

h∗(x, y)yf(x, y) dx dy (23d)

+ β

[∫

A2

∫ 1

0

h′(x, y)f(x, y) dx dy −
∫

A1

∫ 1

0

[(1− x)− h′(x, y)] f(x, y) dx dy
]

(23e)

>

∫ ∞

−∞

∫ 1

0

h∗(x, y)yf(x, y) dx dy (23f)

= E[h∗(x, y)y] (23g)

where in (23f) we used that E(X,Y )[h
′(X,Y )] > E(X,Y )[h

∗(X,Y )] and (23d) is a strict inequality because
E(X,Y )[h

′(X,Y )] > E(X,Y )[h
∗(X,Y )] is a strict inequality. Note that the second inequality is an equality in the spe-

cial case β = 0. This derivation shows that the second objective is worse off. One can make a similar argument for
improving on the second objective in Equation (18) and showing that the first objective will then necessarily become worse.

As already explained in Appendix (A.1), the multi-objective optimization problem defined by Equation (7) has the same
Pareto optimal solutions.

The watermarks OPT’, defined in Equation (8), can be shown to be Pareto optimal in a similar fashion. The only difference
is that − log P[Vt = v|V:t] must be replaced by [− log P[Vt = v|V:t]]

2.

B. Experimental details
All experiments have been implemented by means of the Huggingface library (Wolf et al., 2020).

B.1. Details of the experiments described in Sections 4.1, 4.3, 4.4

Prompts are created by randomly selecting (news) texts from the C4 dataset (Raffel et al., 2020). Only texts of at least 250
tokens are taken into account. If a text has at most 400 tokens, the final 200 tokens are removed and the remainder forms the
prompt. If a text has more than 400 tokens, the first 200 tokens are used as prompt and the rest is discarded. All prompts
have a length between 50 and 200 tokens.

Sampling from the LLM takes place with a temperature of 1.0. In order to generate sequences of a fixed length T, the EOS
token is suppressed.

B.1.1. ESTIMATION OF THE LOG-PERPLEXITY

Suppose v1, v2, . . . , vT is an actual realization of the random variables V1, V2, . . . , VT . The log-perplexity of this sequence
is

− 1

T

T∑

t=1

log P[Vt = vt|V:t = v:t]. (24)

In order to estimate Ẽ[log PPL] , the above formula could be used. However, in order to reduce estimation noise, we used

− 1

T

T∑

t=1

∑

v∈V
P̃[Vt = v|V:t = v:t] log P[Vt = v|V:t = v:t]. (25)
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B.2. Details of the experiments described in Section 4.2

For the text summarization (TS) and machine translation (MT) tasks, we have used the default setup. Samples of size 300
were randomly selected from the respective test sets. We used the default sampling strategy: beam search with 4 beams.

B.3. A note about the implementation of other watermarks

The vanilla implementation of the ITS watermark (Kuditipudi et al., 2024) lead to a much higher log-perplexity that one
would expect from a distortion-free watermark. Tokens with extremely small probabilities are sampled with unrealistically
high frequencies. Even tokens with a probability of strictly zero were sometimes sampled. We believe that the underlying
cause is numerical inprecision when selecting the index that makes the cumulative distribution function pass a certain
threshold. To address this problem, we forbid sampling from tokens with probability below 10e-6.

Furthermore, for the ITS watermark we do not use Levenshtein distance, because their purpose is to robustify the watermark
against insertions and deletions and we did not consider this.

C. Hyperparameter tuning
Watermarks defined by Equation (2) have a hyperparameter γ, the fraction of the vocabulary V that is on the green list. A
large γ means that for each token relatively many green-list options are available. This makes the expected deterioration
of text quality relatively small. However, when γ is large a powerful test also requires relatively many green tokens in a
sequence of length T. For small γ the trade-off is vice versa. This raises the question of an optimal value of γ with respect
to the test-text trade-off.
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Figure 6. Pareto optimal bounds for different values of the hyperparameter γ, for tests with different false-positive rates α∗. It shows that
there is no universally “best” γ.
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Figure 7. The power of OPT watermarks that do not affect text quality ( Ẽ[log PPL] = E[log PPL] ), as a function of the hyperparameter
γ, for tests with different false-positive rates α∗. The “best” value for γ usually lies between 0.1 and 0.2.
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In Figure 6 Pareto optimal bounds are plotted for different values of the hyperparameter γ. It shows that there is no
universally best γ, i.e., a hyperparameter value that gives the best test-text trade-off for every possible false-positive rate
α∗. One possible definition of a “best” γ is the one that, given a false-positive rate α∗, maximizes the power of the OPT
watermark that does not affect text quality, i.e., Ẽ[log PPL] = E[log PPL] . Figure 7 shows that this “best” γ usually lies
between 0.1 and 0.2, where it should be noted that the range of “near-best” hyperparameter values increases with increasing
α∗. Interestingly, Kirchenbauer et al. (2023) found a “best” γ around 0.1 for their non-optimal KGW watermark. It should
be emphasized that the optimal value of γ is not only dependent on how the test-text trade-off is defined, but is also a
property of the LLM. A different LLM could give a different optimal value for γ.

D. Additional results on biasedness and indepedence within watermarks
As mentioned in Section 3.1, the derivation of the Pareto optimal solutions to optimization problems involving the power of
the test, e.g. Equation (7), uses that Ng is binomially distributed and this requires two additional assumptions. The first one
is unbiasedness of the (conditional) probability of a token being a green-list token in the absence of a watermark, E[Γt] = γ.
To test this, for 10,000 prompts from the C4 dataset a sequence of 30 tokens is generated without watermark. For each
token Γt is computed for a green-red split with γ = 0.25. The sample average is Γt = 0.2574. Under the null hypothesis of
unbiasedness, and under the assumption of independence of the observations in the sample, this corresponds to a z-score of
16.1. This strongly suggests that E[Γt] ̸= γ.
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Figure 8. A comparison between the empirical distribution of Ng, the number of green-list tokens in a sequence of T = 30 tokens, and
the exact binomial distribution, for text generated without watermark (left panel) and with the OPT watermark with β = 4.0 (middle
panel). The oracle OPT (right panel) is the OPT watermark, but with a different, randomly selected key for green-red split generation at
every generation step. Because oracle OPT and OPT differ from the exact binomial distribution similarly, we conclude the discrepancy is
not because of the pseudo-random green-red split. Also included is a simulation sampled from the exact binomial distribution, of the same
sample size as the LLM generated data.

This bias has its origin in the pseudo-random green-red split of the vocabulary. For each pair of subsequent tokens in a
sentence, the key of the function gγ determines whether the second token of the pair is green or red. This is the same for each
occurrence of the pair. Hence, the occurrence frequencies of all possible pairs of tokens, together with the key, determine the
bias of E[Γt] with respect to γ. We verified that a different generator gγ , based on a different key, gives a different bias. We
emphasize that it is unlikely that this bias has an effect on the Pareto optimality of the solutions presented in this paper,
because also in the presence of a bias the power of the test remains a monotonic function of ∆Ng.

The second assumption, which was discussed in Section 4.3, is that the event that a token is a green-list token is (stochasti-
cally) independent for different tokens in the same sequence. It turns out that this is not the case, and that the dependence
becomes stronger for stronger watermarks. Figure 8 shows additional empirical evidence that the distribution of Ng for
watermarked text is generally not binomial. The heavier tails indicate a positive correlation between the events that tokens
from the same list are green-list tokens. This is understandable, as different sentences can have different amounts of freedom
(i.e. entropy) to insert green-list tokens.
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E. Additional results
Additional descriptive statistics of the effect of different watermarks on text quality can be found in Figure 9, where the qth
percentile of − log P[Vt|V:t] is plotted for different values of q. The relative difference in percentiles between the KGW and
OPT watermarks decreases with increasing q and is virtually absent when q = 0.99. In other words, the OPT watermark is
not better than the KGW watermark for tokens with a very large log-perplexity. This is not necessarily problematic, as the
original LLM already generates these very large log-perplexities.
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Ẽ
[N

g
]

q = 0.5

5 6 7

− log P[Vt|V:t]

10

20

30

q = 0.9

8 10 12

− log P[Vt|V:t]

10

20

30

Ẽ
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Figure 9. The qth percentile of − log P[Vt|V:t] is shown for different watermarks and q = 0.01, 0.1, 0.5, 0.9 and 0.99.

Figures 10, 11 and 12 are the same experiments as described in Section 4.1, but now including the OPT′ watermark. They
were conducted with the OPT-350m model.
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Figure 10. same as Figure 1, but now including the OPT′ watermark. Note that OPT and OPT′ hardly differ in terms of test-text trade-off,
when text quality is defined in terms of expected log-perplexity. Error bars (vertical and horizontal) are never larger than the marker sizes.
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Figure 11. Test quality, measured as the expected number of green-list tokens, versus between-token variance of the log-perplexity, is
shown for different watermarks. For completeness, the original language model without watermark is included (LLM). Error bars (vertical
and horizontal) are never larger than the marker sizes. Note that, as expected, OPT′ outperforms OPT, albeit marginally. Also note that
the KGW watermark outperforms the optimized watermarks. This is not in contradiction with our method, as we did not optimize for this
trade-off.
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Figure 12. Test quality, measured as the expected number of green-list tokens, versus expected log-perplexity squared plus between-token
variance of the log-perplexity, is shown for different watermarks. For completeness, the original language model without watermark is
included (LLM). Error bars (vertical and horizontal) are never larger than the marker sizes. Note that, as expected, OPT′ outperforms
both OPT and KGW, as this trade-off is the optimization objective for which OPT′ is optimized.
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