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Abstract
Test-time inference has emerged as a powerful paradigm for enabling
language models to “think” longer and more carefully about complex chal-
lenges, much like skilled human experts. While reinforcement learning (RL)
can drive self-improvement in language models on verifiable tasks, some
models exhibit substantial gains while others quickly plateau. For instance,
we find that Qwen-2.5-3B far exceeds Llama-3.2-3B under identical RL train-
ing for the game of Countdown. This discrepancy raises a critical question:
what intrinsic properties enable effective self-improvement? We introduce a
framework to investigate this question by analyzing four key cognitive behav-
iors — verification, backtracking, subgoal setting, and backward chaining —
that both expert human problem solvers and successful language models
employ. Our study reveals that Qwen naturally exhibits these reasoning
behaviors, whereas Llama initially lacks them. In systematic experimen-
tation with controlled behavioral datasets, we find that priming Llama
with examples containing these reasoning behaviors enables substantial
improvements during RL, matching or exceeding Qwen’s performance.
Importantly, the presence of reasoning behaviors, rather than correctness
of answers, proves to be the critical factor — models primed with incor-
rect solutions containing proper reasoning patterns achieve comparable
performance to those trained on correct solutions. Finally, leveraging con-
tinued pretraining with OpenWebMath data, filtered to amplify reasoning
behaviors, enables the Llama model to match Qwen’s self-improvement
trajectory. Our findings establish a fundamental relationship between initial
reasoning behaviors and the capacity for improvement, explaining why
some language models effectively utilize additional computation while
others plateau.1

“The limits of my language mean the limits of my world.”
—Wittgenstein

1 Introduction
When humans encounter a difficult but solvable problem, we spend more time thinking
deeply and deliberately to arrive at a solution. Remarkably, recent language models have
begun demonstrating similar reasoning behaviors when trained to self-improve via rein-
forcement learning (Guo et al., 2025; Jaech et al., 2024). Training language models with
reinforcement learning (RL) on verifiable problems is not a new approach (Zelikman et al.,
2022; Havrilla et al., 2024; Hoffman et al., 2023), but older methods leveraging RL plateaued
after a few iterations without exploring many effective ways to use test-time compute for
thinking. In this work, we investigate the reasons behind this change in self-improvement
capabilities, focusing on the presence of key cognitive behaviors in base language models.

We focus our investigation on two base models, Qwen-2.5-3B (Qwen et al., 2025) and
Llama-3.2-3B (Grattafiori et al., 2024), which show striking differences when trained with

1Code available at https://github.com/kanishkg/cognitive-behaviors
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Let's start with the sum of the largest two 
numbers and then subtract the smallest 

two: 84 + 83 - 34 - 72. This gives us 167 - 
76 which equals 91. That's not 39. Let's 
try another combination: 84 + 83 - 72 - 
34. This gives us 167 - 106 which equals 
61. That's still not 39. Let's try 84 + 72 - 
83 - 34. This gives us 156 - 117 which 
equals 39. This is the correct equation.

84 is the difference between 108 and 34. 
<answer> (84 - 34) / 108 </answer>

Verifications
“Let me check 
my answer …”

Backtracking
“Let’s try a different 

approach, what if we …”

Subgoal Setting
“Let’s try to get to a 

multiple of 10”

Backward Chaining
“Working backwards, 24 

is 8 times 3”

A contrast in behaviors explored by the two models

Priming with behaviors reduces performance gap We can curate a continued pre-training set so that 
Llama shows similar improvements to Qwen

Filter for behaviors

Reformat as:
Query, Thought, 

Answer

RL steps RL steps

RL steps RL steps

RL steps RL steps

A tale of two models: Qwen 2.5 3B and Llama 3.2 3B
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Figure 1: Comparative analysis of Qwen-2.5-3B and Llama-3.2-3B models with RL on
Countdown. (Top) (a) Performance scores on Countdown for both models (b) Evolution
of response lengths throughout RL training. (Middle) Emergence of specific reasoning
characteristics as a function of training steps for Qwen-2.5-3B (left) and Llama-3.2-3B (right).
(Bottom-Left) (a) Countdown performance when base models are primed with a synthetic
dataset of desired reasoning behaviors; (b) Differential impact of RL on reasoning behav-
iors of the primed Llama3.2-3B: amplification of backtracking and verification contrasted
with suppression of backward chaining and subgoal setting. (Bottom-Right) Comparative
efficacy of teaching reasoning behaviors through fine-tuning on a curated OpenWebMath
dataset, demonstrating that Llama’s reasoning capabilities can be improved to match Qwen’s
through targeted training.

reinforcement learning on the game of Countdown (Countdown, 2024; Gandhi et al., 2024).
While Qwen demonstrates substantial improvements in problem-solving ability, Llama2

shows limited gains under an identical training process. What properties of the initial
language model enable such improvements?

To systematically investigate this question, we develop a framework for analyzing cognitive
behaviors that are useful for solving problems. We characterize four key cognitive behaviors:
verification (systematic error-checking), backtracking (abandoning failing approaches),
subgoal setting (decomposing problems into manageable steps), and backward chaining
(reasoning from desired outcomes to initial inputs). These behaviors mirror how expert
problem solvers approach difficult tasks — a mathematician verifies each step of a proof,
backtracks when encountering contradictions, and breaks complex theorems into simpler
lemmas. We examine these four behaviors because they can be used to represent search-
based reasoning that goes beyond the typical “linear” reasoning shown by language models.

2For the remainder of this paper, we refer to Qwen2.5-3B as “Qwen” and Llama3.2-3B as “Llama”,
though full model names are also occasionally used. All other models are specified with complete
designations.
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While many other cognitive behaviors exist, we begin with these as they are well-defined
and easily identifiable in model outputs.

Our initial analysis reveals that Qwen naturally exhibits these reasoning behaviors, particu-
larly verification and backtracking, while Llama lacks them. This observation motivates
our central hypothesis: certain reasoning behaviors in the initial policy are necessary for
efficiently utilizing increased test-time compute through extended reasoning sequences.
We test this hypothesis through interventions on the initial model. First, we demonstrate
that priming Llama with synthetic reasoning traces containing these behaviors, especially
backtracking, enables substantial improvements during RL, matching Qwen’s performance
trajectory. Second, these gains persist even when primed on incorrect solutions, if they ex-
hibit proper reasoning patterns, suggesting that the presence of reasoning behaviors, rather
than access to correct solutions, is the critical factor enabling successful self-improvement.
Third, by curating pretraining data from OpenWebMath (Paster et al., 2023) that emphasizes
these reasoning behaviors, we show that targeted modification of the pretraining distribu-
tion can successfully induce the behavioral patterns necessary for efficient use of test-time
compute — the improvement trajectory of Llama matches that of Qwen.

Our investigation reveals a strong relationship between a model’s initial reasoning behaviors
and its capacity for improvement. This connection helps explain why some language models
discover effective ways to use additional compute while others plateau. Understanding
these dynamics may be key to developing AI systems that can meaningfully improve their
problem-solving abilities.

2 Related Work
Recent approaches to improving reasoning capabilities in language models can be broadly
categorized into three complementary directions: external search methods that leverage
multiple samples, in-context search that enables models to reason over their own outputs,
and reinforcement learning approaches that allow models to discover reasoning strategies
autonomously.

External Search for Reasoning. Recent work has shown that language models can signifi-
cantly improve their performance on complex tasks when given additional inference-time
compute. Snell et al. (2024) systematically explore this space by developing various methods
to search through reasoning trajectories. These approaches range from simple parallel
sampling (Li et al., 2024; Brown et al., 2024) to more sophisticated methods using verifiers
or process reward models (PRMs) (Lightman et al., 2023; Yao et al., 2023). Some researchers
have taken this further by using the search process itself to improve the underlying reason-
ing model (Wang et al., 2023; Luo et al., 2024). However, these methods typically operate
without awareness of previously explored solutions, limiting their efficiency through redun-
dant exploration.

In-Context Search and Self-Improvement. In contrast to external search methods, another
line of research focuses on enabling models to search sequentially in language. This has
been achieved through various approaches such as 1) in-context examples (Gandhi et al.,
2023), 2) finetuning on linearized search traces (Gandhi et al., 2024; Lehnert et al., 2024), and
3) training on self-correction examples (Ye et al., 2024; Qu et al., 2025; Kumar et al., 2024;
Hwang et al., 2024). Recent work by Schultz et al. (2024) bridges the gap between in-context
and external search methods, demonstrating improved performance on strategic games (cf.
Xiang et al., 2025). While effective, these approaches often require careful engineering of
training data to incorporate desired behaviors like self-correction and backtracking.

Reinforcement Learning for Reasoning. The prospect of models autonomously discov-
ering effective reasoning strategies has motivated significant research in reinforcement
learning approaches. Early work in teaching language models to reason with verifiable
outcomes explored various RL methodologies, from off-policy and batch methods (Ze-
likman et al., 2022; Havrilla et al., 2024; Hoffman et al., 2023) to on-policy approaches
(Zelikman et al., 2024; Kazemnejad et al., 2024; Cui et al., 2025). These methods differ in
their approaches to credit assignment in reasoning trajectories. A notable breakthrough
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Figure 2: The effects of priming with different cognitive behaviors. (a, b) Performance
comparison on the Countdown task between Llama-3.2-3B, Qwen-2.5-3B and their primed
variants, illustrating the influence of reasoning behavior priming on scores. (c, d) Response
length analysis for standard and primed Llama and Qwen models, showing how priming
influences reasoning length.

came with Deepseek-R1 (Guo et al., 2025; Jaech et al., 2024), which demonstrated that even
a simplified version of PPO (Schulman et al., 2017) called GRPO (Shao et al., 2024) could
lead to significant improvements and the emergence of in-context search behaviors. Recent
analyses (Li et al., 2025), Wu et al. (2024), Liu et al. (2025), Ye et al. (2025) and Yeo et al.
(2025) have begun to unpack these results, revealing that supervised fine-tuning with long,
structured chains of thought enhances both the efficiency and performance of RL compared
to shorter reasoning chains. However, a crucial question remains unanswered: why do some
models successfully learn through RL while others fail to improve? (Yeo et al., 2025)briefly
discuss this issue by analyzing the frequency of phrases related to reflective reasoning in
the pretraining dataset but their analysis remains limited. Our work addresses this gap by
investigating the essential properties of initial models that enable successful reinforcement
learning of reasoning behaviors.

3 Identifying and Engineering Self-Improving Behavior

3.1 Initial Investigation: A tale of two models

We begin by investigating a surprising observation: language models of comparable size but
from different families show markedly different capacities for improvement through rein-
forcement learning. The Countdown game serves as our primary testbed — a mathematical
puzzle where players must combine a set of input numbers using the four basic arithmetic
operations (+,−,×,÷) to reach a target number. For example, given the numbers 25, 30,
3, 4 and a target of 32, the solution involves combining these numbers through a series of
operations to reach exactly 32: (30 − 25 + 3)× 4.

We selected Countdown for our analysis because it demands mathematical reasoning,
planning, and search strategies that mirror key aspects of general problem-solving similar to
other reasoning domains such as math. Unlike more complex domains, Countdown offers
a restricted search space that enables tractable analysis while still requiring sophisticated
reasoning. Additionally, success in the game depends more on problem-solving abilities than
mathematical knowledge, compared to other mathematical tasks where domain knowledge
might confound the evaluation of reasoning capabilities.
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Figure 3: Analysis of four key reasoning behaviors with Llama-3.2-3B, Qwen-2.5-3B, and
primed versions of Llama-3.2-3B. Plots show mean frequency of (a) solution verification
steps, (b) problem-solving backtracking instances, (c) explicit subgoal setting, and (d)
backward chaining reasoning approaches across different tasks.

We use two base models to contrast how learning varies across model families: Qwen-2.5-
3B and Llama-3.2-3B. Our reinforcement learning experiments build on the VERL library
(Sheng et al., 2024), utilizing the TinyZero (Pan et al., 2025) implementation. We train models
with PPO (Schulman et al., 2017) for 250 steps, sampling 4 trajectories per prompt. We chose
PPO over alternatives like GRPO (Shao et al., 2024) and REINFORCE (Williams, 1992; Hu,
2025; Ahmadian et al., 2024) as it demonstrated superior stability across hyperparameter
settings, though performance was anecdotally similar across algorithms.

The results reveal strikingly different learning trajectories. Though both models start at a
similar, low performance on the task, Qwen demonstrates a qualitative shift around step 30,
characterized by significantly longer responses and improved accuracy (Fig. 1 (top)). By the
end of training, Qwen achieves approximately 60% accuracy, substantially outperforming
Llama’s 30%. Later in training, we observe an interesting change in Qwen’s behavior: the
model transitions from explicit verification statements in language, "8*35 is 280 which is too
high" to implicit solution checking, where the model sequentially tries different solutions
until it finds the right answer without using words to evaluate its own work.

This contrast raises a fundamental question: what underlying capabilities enable success-
ful reasoning-based improvement? To answer this, we need a systematic framework for
analyzing cognitive behaviors.

3.2 A Framework for Analyzing Cognitive Behaviors

To understand these divergent learning trajectories, we develop a framework for identifying
and analyzing key behaviors in model outputs. We focus on four fundamental behaviors:
(1) Backtracking or the explicit revision of approaches when errors are detected (e.g., “This
approach won’t work because...”), (2) Verification or the systematic checking of intermediate
results (e.g., “Let’s verify this result by...”), (3) Subgoal Setting, where a complex problem is
broken down into manageable steps (e.g., “To solve this, we first need to...”), and (4) Back-
ward Chaining, where in a goal-directed reasoning problem, the solution works backwards
from a desired outcomes (e.g., “To reach the target of 75, we need a number divisible by...”).

We selected these behaviors because they represent problem-solving strategies that deviate
from the linear, monotonic reasoning patterns commonly observed in language models.
These behaviors enable more dynamic, search-like reasoning trajectories where solutions
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can evolve non-linearly. While this set is not exhaustive, these behaviors were chosen
because they are easy to identify and they align naturally with human problem-solving
strategies in both the Countdown game and broader mathematical reasoning tasks like
proof construction.

Each behavior can be identified by its pattern in the reasoning tokens. Backtracking is seen
as token sequences that explicitly contradict and replace previous steps, verification pro-
duces tokens that compare outcomes against solution criteria, backward chaining generates
tokens that construct solution paths from the goal to the initial state, and subgoal setting
explicitly proposes an intermediate step to target on the path to the final goal. We develop a
classification pipeline using GPT-4o-mini3 to reliably identify these patterns in the outputs
of the model (see App. F for analysis of agreement with humans and larger models).

3.3 The Role of Initial Behaviors in Self-Improvement

Verifications Backtracking Subgoal 
Setting

Backward 
Chaining

av
g 

co
un

t

Figure 4: Exploration of different reasoning
behaviors in base models. An analysis with
Qwen2.5-3B, Llama3.2-3B, and Llama3.1-70B
on Countdown.

Applying this framework to our initial ex-
periment reveals a key insight: Qwen’s
dramatic performance improvements coin-
cided with the emergence of cognitive be-
haviors, particularly verification and back-
tracking (Fig. 1 (middle)). Llama, in con-
trast, showed minimal evidence of these
behaviors throughout training.

To better understand this disparity, we ana-
lyzed the baseline reasoning patterns across
three models: Qwen-2.5-3B, Llama-3.2-3B,
and Llama-3.1-70B. Our analysis revealed
that Qwen-2.5-3B naturally exhibits sub-
stantially higher rates of all four behaviors
compared to both Llama variants (Fig. 4).
While the larger Llama-3.1-70B showed gen-
erally increased activation of these behav-
iors compared to Llama-3.2-3B, this im-
provement was notably uneven — back-
tracking, in particular, remained limited even in the larger model. These observations
suggest two insights: 1) certain cognitive behaviors in the initial policy may be necessary
for models to effectively utilize increased test-time compute through extended reasoning
sequences 2) increased model scale can improve the contextual activation of these behaviors.
This pattern is particularly significant because reinforcement learning can only amplify be-
haviors that appear in successful trajectories — making these initial behavioral capabilities
a precondition for effective learning.

3.4 Intervening on initial behaviors
Having established the importance of cognitive behaviors in base models, we next investi-
gate whether we could artificially induce these behaviors through targeted interventions.
Our hypothesis is that by creating variants of base models that selectively exhibit specific
cognitive behaviors before RL training, we can better understand which behavioral patterns
are crucial for enabling effective learning.

We begin by curating seven distinct priming datasets using Countdown problems. Five
of these datasets emphasize different behavioral combinations: all strategies combined,
backtracking only, backtracking with verification, backtracking with subgoal setting, and
backtracking with backward chaining. We generate these datasets using Claude-3.5-Sonnet4,
leveraging its ability to produce reasoning trajectories with precisely specified behavioral
characteristics. While Claude does not always produce the correct answer (see Fig. 9), it
consistently demonstrates the requested reasoning patterns, providing clean behavioral

3We chose GPT-4o-mini to balance inference cost and model capability
4We chose Claude-3.5-Sonnet as it reliably followed instructions to show the desired behaviors we

wanted in the reasoning trajectories.
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Figure 5: Impact of Empty Chain-of-Thought Priming on Model Performance and Re-
sponse Characteristics Comparative analysis of (a) performance scores on the Countdown
task and (b) response length distributions across different model configurations: baseline
models (Llama3.2-3B, Qwen2.5-3B), unprimed conditions, length-matched empty CoT prim-
ing, and all-strategies-primed Llama3.2-3B.

primitives for our analysis. To verify that improvement stems from specific cognitive behav-
iors rather than simply increased computation time, we introduce two control conditions:
1) an empty chain-of-thought, where the thoughts are empty, “<think></think>” and 2) a
chain-of-thought where the thoughts have the same length as those of the all-strategies
control, but filled with placeholder tokens, “<think>. . . . . </think>”. We also create a
variant of our all-strategies dataset containing only incorrect solutions while maintaining
the desired reasoning patterns. This variant allows us to disentangle the importance of
cognitive behaviors from the accuracy of solutions.

Priming with different behaviors When initialized with datasets containing backtrack-
ing behaviors, both Llama and Qwen demonstrate substantial improvements through RL
training (Fig. 2). Behavioral analysis reveals that RL selectively amplifies empirically useful
behaviors while suppressing others (Fig. 3). For instance, in the all-strategies condition
(Fig. 1 (bottom-left)), the models retain and strengthen backtracking and verification while
diminishing backward chaining and subgoal setting. However, the suppressed behav-
iors (backward chaining and subgoal setting) when paired only with backtracking persist
through training.

Testing Behavioral Necessity. When primed with the empty chain-of-thought controls,
in both conditions, the models performance is comparable to the base Llama model (≈30-
35%; see Fig. 5), demonstrating that the mere allocation of additional tokens without the
inclusion of cognitive behaviors fails to enable effective use of test-time compute. Further,
training with an empty chain-of-thought has a detrimental effect, where the Qwen model
stops exploring the behaviors. This suggests that these cognitive behaviors are specifically
necessary for models to make productive use of extended computation through longer
reasoning sequences.

Behaviors versus Correctness. Surprisingly, models primed with incorrect solutions, but
with the right behaviors achieve identical performance to those trained on datasets with
correct solutions (Fig. 6). This suggests that the presence of cognitive behaviors in the
priming data, rather than the access to correct solutions, is the crucial factor enabling
successful self-improvement through reinforcement learning. This extends prior work
demonstrating learning from corrupted reasoning trajectories (Li et al., 2025) in a significant
way — we show that reasoning patterns from weaker models can effectively bootstrap
the learning process to build more capable ones, suggesting that the presence of cognitive
behaviors matter more than just the correctness of the outcomes.

The above results show that certain cognitive behaviors are necessary for self-improvement.
However, our priming method for inducing behaviors in the initial model was domain-
specific, relying on the Countdown game. This may adversely impact the generalization of
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Figure 6: Effects of Incorrect Chain-of-Thought Priming on Model Performance and
Output Characteristics Evaluation of (a) Countdown task performance scores and (b)
response length distributions comparing four conditions: Llama3.2-3B and Qwen2.5-3B
base models, Llama3.2-3B with correct all-strategy priming, and Llama3.2-3B primed with
incorrect reasoning examples.

the resulting reasoning. Can we instead enable self-improvement by modifying a model’s
pretraining distribution to increase the frequency of beneficial reasoning behaviors?

Behavioral Frequencies in Pretraining Data. We first analyze the natural frequency of
cognitive behaviors in pre-training data, focusing on OpenWebMath (Paster et al., 2023), and
FineMath (Allal et al., 2025), which are constructed specifically for mathematical reasoning.
Using Qwen-2.5-32B as a classifier5, we analyze 200,000 randomly sampled documents for
the presence of our target behaviors. Even in this math-focused corpus, cognitive behav-
iors such as backtracking and verifications appear infrequently, suggesting that standard
pretraining provides limited exposure to these crucial patterns (see Fig. 7).

3.5 Selectively amplifying behaviors in pretraining data

Figure 7: Behaviors present in Math Pretrain-
ing Datasets. An analysis of the behaviors
present in 200,000 randomly sampled docu-
ments of OpenWebMath and FineMath. We
measure the average count of the behaviors in
each document.

Behavioral Augmentation of the Pretrain-
ing Data. To test whether artificially in-
creasing exposure to cognitive behaviors en-
hances the potential for self-improvement,
we develop a targeted continued pretrain-
ing dataset from OpenWebMath. First, us-
ing Qwen-2.5-32B as a classifier, we ana-
lyze mathematical documents from the pre-
training corpus for the presence of our tar-
get reasoning behaviors. This allows us to
create two contrasting sets: one with the
cognitive behaviors and a control set that
shows minimal evidence of these behav-
iors. We then use Qwen-2.5-32B to rewrite
each document in the set into a structured
question-thought-answer format, preserv-
ing the natural presence or absence of cogni-
tive behaviors from the source documents.
The final pretraining datasets each contain
a total of 8.3 million tokens. This approach
allows us to isolate the impact of reasoning
behaviors while controlling for the format and amount of mathematical content during
pre-training.

5We use Qwen-2.5-32B to balance throughput, capability and cost.
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Figure 8: Impact of curated pretraining on model performance and behavior. (a) Com-
parison of performance scores across base models (Llama-3.2-3B, Qwen-2.5-3B) and Llama
variants with curated pretraining versus behavior-minimized control. (b) Evolution of
response lengths during training for each model configuration. (c) Emergence and develop-
ment of specific cognitive behaviors in the curated pretraining model over training steps.

After pre-training Llama-3.2-3B on these datasets and applying reinforcement learning, we
observe that: 1) the behavior-enriched model achieves performance comparable to Qwen,
while the control model shows limited improvement (Fig. 8a) and 2) behavioral analysis
of the trained models reveals that the behavior-enriched variant maintains high activation
of reasoning behaviors throughout training, while the control shows behaviors similar to
the base Llama model (Fig. 8c). These results demonstrate that targeted modification of
pre-training data can successfully induce the cognitive behaviors necessary for effective
self-improvement through reinforcement learning.

4 Discussion
We have found that a model’s initial exploration of cognitive behaviors – particularly its
tendency toward verification, backtracking, subgoal setting, and backward chaining – plays
a crucial role in enabling self-improvement. Models that naturally exhibit these reason-
ing behaviors (such as Qwen-2.5-3B) show dramatically better improvement through RL
compared to models lacking these behaviors (such as Llama-3.2-3B). Priming models with
cognitive behaviors, by a small amount of finetuning, enabled significant performance gains
even in models that initially lack these capabilities. Remarkably, this holds even when
primed with incorrect solutions that exhibit the target behavioral patterns, suggesting that
cognitive behaviors matter more than solution accuracy. Together these results indicate that
the presence of cognitive behaviors is a causal factor enabling self-improvement through
RL. Our initial priming experiments used data based on the Countdown game for train-
ing, possibly limiting generality. We thus developed a more diverse behavior-enriched
training dataset derived from OpenWebMath. Training Llama on this set then led to self-
improvement comparable to Qwen, demonstrating that the capacity for improvement can
be engineered through careful curation of pretraining data.

When humans try to solve problems that are difficult but not unsolvable for them, they
exhibit certain behaviors that support the problem-solving processes, structuring search
over the space of possible solutions to a problem. These cognitive behaviors are usually
sequential, deliberate and dependent on the problem space (Simon & Newell, 1971). Corre-
spondingly, the cognitive behaviors that are amplified or suppressed during RL training
are likely to be highly dependent on the tasks and environments being optimized for. In
our studies using Countdown, backtracking and verification were the most critical. This
raises important questions about the patterns that enable self-improvement in tasks such
as coding, game play or creative writing. We believe that the principle described here will
extend to other domains, but future work should explore how task-specific constraints
interact with cognitive behaviors. Further, the cognitive behaviors specified in this work are
not exhaustive; other behaviors are worth exploring, such as making analogies (Mitchell,
2021) and identifying one’s existing state of knowledge (Metcalfe, 1986).

In conclusion, our findings show how cognitive behaviors enable language models to show
self-improvement — effectively using increased test-time compute to solve increasingly
more challenging problems. Humanity has a rich inheritance of cognitive behaviors that
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enable effective reasoning. Future artificial intelligence may go beyond learning to use
these existing behaviors – it may discover new ones, potentially revealing entirely new
approaches to reasoning and computation.
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Figure 9: Scores of the priming datasets generated with Claude. Analyzing the average
scores of Claude when instructed to solve Countdown employing different cognitive behav-
iors.

A Data Generation

For our experimental setup, we implemented the Countdown task according to the method-
ology outlined by Gandhi et al. (2024) and Pan et al. (2025). The task consists of an equal
distribution (50-50 split) between 3-digit and 4-digit Countdown problems. Both the start-
ing numbers and the target number were generated using random sampling to ensure
variability across trials while maintaining consistent difficulty parameters. This random-
ization approach allowed us to assess mathematical problem-solving capabilities across a
representative range of Countdown games.

B Priming

To prepare our supervised fine-tuning (SFT) data, we use Claude 3.5 Sonnet (claude-3-5-
sonnet-20241022) to generate reasoning trajectories. We developed five distinct SFT datasets,
each designed to capture different cognitive behaviors:

1. Backtracking Only: This dataset focuses exclusively on the backtracking strategy,
where the model explores solution paths and retreats when encountering dead
ends.

2. Backtracking with Answer Verification: In addition to backtracking, this dataset
incorporates answer verification, where the model checks its intermediate solutions
with the target number.

3. Backtracking with Subgoal Setting: This dataset combines backtracking with explicit
subgoal setting, where the model breaks down complex problems into manageable
intermediate steps.

4. Backtracking with Backward Chaining: This dataset demonstrates backward chain-
ing with backtracking, where the model works backward from the goal state to the
initial state.

5. All Strategies: This comprehensive dataset incorporates all four reasoning strategies
mentioned above.

To control specific reasoning behaviors across each dataset, we implemented customized
system prompts that explicitly guide Claude toward the desired reasoning patterns. These
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Figure 10: Behaviors present in priming datasets. Analyzing the average counts of behav-
iors when Claude is instructed to only show specific behaviors in its thoughts.

system prompts 6 were carefully crafted to elicit distinct problem-solving approaches while
maintaining consistency across datasets (see Fig. 10 for an analysis of behaviors present).
To create datasets rich in only the targeted behaviors and determine causal efficacy, we
instructed Claude to use exclusively the specified cognitive behavior while prohibiting all
others. For example, in the "Backtracking Only" condition, we emphasized through the
system prompt that Claude could only use backtracking and was explicitly not permitted
to verify answers, set subgoals, or work backwards from the target. For each of the five
datasets, we selected 1,200 unique Countdown games as our problem set. We prompted
Claude to solve these games while adhering to the specified reasoning strategy for each
dataset. We then evaluated the accuracy of Claude’s solution trajectories, with results
presented in Fig. 9.

We provide the SFT hyperparameters in Tab. 1.

Data & Model
Training/Validation Dataset Size 1000 / 200
Context Window 2048
Training/Validation Batch Size 64 / 64

Optimization
Optimizer AdamW (Loshchilov & Hutter, 2019)
Peak Learning Rate 1e-5
Warmup Linear (5% of total steps)
Annealing Cosine
Total Epochs 5

Table 1: SFT Hyperparameters

C Reinforcement Learning

We provide the PPO training hyperparameters in Tab. 2.

6All prompts are available in our Github repository: https://github.com/kanishkg/cognitive-
behaviors.
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Data & Model
Training/Validation Batch Size 256 / 1312
Context Window 256 prompt + 1024 response tokens

Optimization
Actor Learning Rate 1e-6
Critic Learning Rate 1e-5
KL Coefficient 0.001
PPO Mini-batch Size 128
Number of Rollouts 4
Rollout Temperature 1.0

Reward Structure
Correct Answer 1.0
Incorrect Answer 0.0
Correct Format Bonus 0.1

Table 2: PPO Training Hyperparameters

D Metrics

Next, we describe our behavioral evaluation metrics. The 4 behavioral metrics we track are:

1. Average Backtracking Count
2. Average Verification Count
3. Average Backward-Chaining Count
4. Average Subgoal-Setting Count

We generate samples from the trained model at using a temperature of 1.0, and a maximum
of 1024 tokens. Each of these metrics track the average occurrence of each reasoning behavior.
We develop a classification pipeline using GPT 4o-mini (the classifier model).

Our classification pipeline asks the classifier model 4 questions per reasoning trajectory. In
each question, we provide the classifier model examples of each behaviors, so for instance
for answer verification in Countdown, we add examples like “This sequence results in 1,
which is not equal to 22” in the prompt.

For each reasoning behavior, we ask the classifier model to count up and report the number
of distinct occurrences. We sample 512 tokens from the classifier model with temperature
set to 0 for reproducibility.

E Pretraining Data Interventions.

Analyzing Frequency in Pretrained Data. To investigate the natural frequency distribu-
tion of various reasoning behaviors in the OpenWebMath (Paster et al., 2023) and FineMath
(Allal et al., 2025) datasets, we used the Qwen2.5-32B model as the classifier, deployed
via vLLM (Kwon et al., 2023) for efficient inference. The analysis encompassed 200,000
randomly sampled documents from both datasets. For each document, the classifier model
was prompted with examples demonstrating specific cognitive behaviors, following the
classification framework described in App. D. For instance, to identify instances of Subgoal
Setting, we provided examples such as: "To solve this system of equations, let’s first isolate
x in the first equation, then substitute it into the second." To ensure reproducibility, all
classification runs were conducted with a temperature setting of 0. Each document was
processed with a generation length of 1024 tokens per cognitive behavior. This methodical
approach enabled us to quantitatively assess the prevalence of different cognitive behaviors
across the mathematical content in both datasets.
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Figure 11: Inter-rater reliability for counting and classifying behaviors. Intraclass Correla-
tion Coefficient (ICC3) values for (a) Verification (b) Backtracking (c) Subgoal Setting (d)
Backward chaining for labels from GPT-4o-mini, Claude, and two human raters.

Curating Pretraining Data. We write similar scripts using the same classification pipeline
to perform two data preprocessing steps:

1. Isolating Reasoning Behaviors. We leverage our classification pipeline to sys-
tematically identify and extract passages exhibiting specific cognitive behaviors
from the source datasets. For each document, the classifier determines whether
each of the cognitive behaviors is exhibited in that document. These binary evalua-
tions, are then used to populate two datasets - the behavior curated training, and
behavior-minimized control training datasets.

2. Re-formatting for Training. We process the data into a structured format utilizing
XML tags to delineate question, thinking process, and answer components while
maintaining the integrity of the original question content. During the paraphrasing
process, we implement first-person language specifically within the thinking sec-
tions to accurately represent cognitive processes. For the behavior-curated training
dataset, we incorporate explicit instructions to ensure the paraphrased thoughts
contain the targeted cognitive behaviors under investigation. Conversely, for the
behavior-minimized dataset, we omit these specific instructions to establish an
appropriate control condition.

F Interrater Reliability for Classifying Behaviors

To assess the reliability of classification and counting of behaviors from GPT-4o-mini, we
conducted an inter-rater reliability analysis using the Intraclass Correlation Coefficient
(ICC3). We compared agreement of GPT-4o-mini, Claude, and two human annotators — of
four key problem-solving behaviors: verification, backtracking, subgoal setting, and back-
ward chaining. We randomly sample 100 reasoning trajectories from different conditions
and trained models to measure agreement.

GPT-4o-mini showed (see Fig. 11) strong agreement with other raters across most behav-
iors, though with varying levels of consistency. For verification, GPT-4o-mini achieved
substantial agreement with both Claude (ICC3 = 0.70) and human raters (ICC3 = 0.66 and
0.65). For backtracking, GPT-4o-mini maintained robust reliability with Claude (ICC3 =
0.74) and slightly lower but consistent agreement with human raters (ICC3 = 0.67). Subgoal
setting showed the strongest consistency, with GPT-4o-mini achieving high agreement
with Claude (ICC3 = 0.88) and human raters (ICC3 = 0.70 and 0.77). Backward chaining
demonstrated lower agreement levels, with GPT-4o-mini showing stronger correlation with
Claude (ICC3 = 0.78) than with human raters (ICC3 = 0.55 and 0.40). These results suggest
that GPT-4o-mini can reliably identify and classify most cognitive behaviors.

G Test-time Scaling.

We test how model performance scales with different token budget constraints at inference
time. By varying the maximum allowed token length from 27 (128) to 210 (1024) tokens, we

18



Published as a conference paper at COLM 2025

1.0

0.8

0.6

0.4

0.2

0.0
27 28 29 210

0

10

20
30
40
50
150
200
100

token budget

sc
or

e

Figure 12: Test-time Scaling by Varying Token Budgets during Inference. The graph
shows how different training checkpoints of the Llama model, fine-tuned with RL using
the all-strategies primed model when tested with different maximum token lengths (128,
256, 512, and 1024 tokens). This analysis demonstrates how model performance scales with
available computational resources at inference time.

analyzed the relationship between computational resources and model performance. We
test training checkpoints ranging from 0 to 200 steps of PPO training for the all-strategies
primed Llama model. Performance consistently improves with larger token budgets across
all checkpoints, but with diminishing returns after 512 tokens (see Fig. 12). Later checkpoints
(150-200 steps) show stronger performance even with restricted token budgets, achieving
scores of ≈0.4 with just 128 tokens compared to near-zero performance for early checkpoints
under the same constraints. This suggests that training helps the model learn to use limited
token budgets more efficiently — more train-time interactions lead to more efficient test-time
performance (Jones, 2021). The scaling behavior also reveals an interesting convergence
pattern - while early checkpoints (0-20 steps) show nearly log-linear scaling with token
budget increases, later checkpoints exhibit more logarithmic scaling, suggesting they have
learned to make better use of additional tokens. By 1024 tokens, the best checkpoints achieve
scores around 0.7, with relatively small gaps between checkpoints after 100 training steps.

H Transfer of Behaviors to Other Domains.

To evaluate the generalization of learned cognitive behaviors, we investigated whether
models trained to exhibit specific problem-solving strategies in mathematical reasoning
could transfer these behaviors to other data distributions. First, we compared two variants:
a model trained with a curated pretraining dataset designed to amplify cognitive behaviors
in mathematical reasoning, and a control model trained on behavior-minimized data on
200 questions from GPQA (Google Proof Question Answering; Rein et al. (2024)). The
results (see Fig. 13) demonstrate significant transfer of learned behaviors, with the curated
pretraining model exhibiting substantially higher frequencies of all four cognitive strategies
(verification, backtracking, subgoal setting, and backward chaining) when solving general
knowledge questions. Most notably, subgoal setting showed the strongest transfer effect,
with an average of 6.5 instances per question in the curated model compared to 0.7 in
the control. This suggests that cognitive behaviors amplified in mathematical reasoning
can generalize effectively to broader question-answering contexts. It should be noted that
there is no significant performance difference between the two models (both score about
≈ 12%). This performance parity despite behavioral differences suggests is because the
model is limited in its forward inference capabilities rather than its problem-solving strategy
— in other words, the model can learn to approach problems more systematically, but still
struggles with the basic reasoning and knowledge needed to arrive at correct answers.

RL training on Countdown transfers to other domains. Next, we tested a Qwen model
trained with RL on Countdown and the base Qwen model on 200 questions from GPQA
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Figure 13: Transfer of Behaviors to Question Answering. Average frequency of four
cognitive behaviors (verifications, backtracking, subgoal setting, and backward chaining)
observed when solving GPQA questions. Comparison between a Llama model trained with
curated pretraining data (orange) that amplified these behaviors in mathematical reasoning
versus a behavior-minimized control model (blue).
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Figure 14: Transfer of Behaviors to Question Answering learned through RL. Average
frequency of four cognitive behaviors (verifications, backtracking, subgoal setting, and back-
ward chaining) observed when solving (a) GPQA and (b) MATH questions. Comparison
between a Qwen model RL finetuned on Countdown (green) that amplified these behaviors
in mathematical reasoning versus the base Qwen model (purple).

and MATH each. The results (see Fig. 14) demonstrate a similar accentuation of learned
behaviors, with the RL finetuned model demonstrating higher frequencies of all four
cognitive behaviors. Surprisingly, we find a performance increase from 38% to 50% with
our prompt format and 4-shot 44% to zero-shot 50% with Qwen’s 4-shot prompt format
on the MATH dataset. Similar to the previous finding, we observe substantial increases in
backtracking (0.15 to 0.59) and verification (0.02 to 0.29) in MATH and on GPQA, all four
behaviors show meaningful increases: verification (0.008 to 0.03), backtracking (0.019 to
0.114), subgoal setting (0.478 to 0.616), and backward chaining (0.128 to 0.313). Notably,
subgoal setting and backward chaining were not demonstrated by the Countdown RL
finetuned Qwen model on Countdown (see Fig. 1 (Middle)) but despite this, these particular
cognitive behaviors show accentuated activations post RL finetuning. These results taken
together suggest that cognitive behaviors induced in the context of mathematical reasoning
have a larger signature across other question-answering domains and beyond the training
domain.
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Figure 15: Analysis of the effect of instruction-tuning on the four cognitive behaviors.
Plots compare (a) score and (b) response lengths between base models and their instruction
tuned counterparts; and plotting the four key cognitive behaviors through the course of RL
on Countdown with (c) Qwen2.5-3B-Instruct and (d) Llama3.2-3B-Instruct.

I Results for Instruction-tuned Models

We investigated whether instruction tuning affects the emergence and amplification of
cognitive behaviors during reinforcement learning (RL). Instruction tuning teaches models
to reliably follow user instructions, but its impact on cognitive behaviors through RL is
unclear. Toward this, we ran our behavioral probes on instruction-tuned variants of Llama-
3.2-3B and Qwen-2.5-3B models on Countdown through RL training, following the same
methodology applied to their base model counterparts. Our results (see Fig. 15) show that
instruction-tuned models from both families nearly saturate task score and use more of
their token budgets than the base models. More significantly, we observed the emergence
and progressive strengthening of key cognitive behaviors—particularly verification and
backtracking. These findings suggest that instruction-tuning datasets not only teach models
to follow instructions but also contain examples of the cognitive behaviors that then surface
during subsequent RL finetuning.

J Behavioral Analysis for Larger Models

We conducted scaling experiments to determine whether our findings generalize across
model sizes and to investigate the role of scale in cognitive behavior emergence. Our initial
results revealed a striking difference between model families: Qwen models consistently de-
veloped sophisticated cognitive behaviors during RL training, while Llama models showed
no evidence of such behavioral emergence. This disparity raised the question about whether
the observed differences were artifacts of the specific 3B parameter scale or represented
fundamental data differences between the model families. To address this question sys-
tematically, we extended our analysis to larger model variants, training Qwen2.5-14B and
Llama3.2-8B using GRPO on Countdown. The results (see Fig. 16) provided compelling
evidence that our earlier findings are robust across model scales. Qwen2.5-14B demon-
strated clear and consistent emergence of three of the four cognitive behaviors we identified
with patterns similar to those observed in Qwen2.5-3B. Conversely, Llama3.1-8B failed to
exhibit any meaningful cognitive behaviors throughout RL training, despite its substantial
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Figure 16: Analysis of the effect of scaling on the four cognitive behaviors. Plotting the
four key cognitive behaviors through the course of RL training for (a) Qwen2.5-14B and (b)
Llama3.1-8B on Countdown.

parameter increase over Llama3.2-3B. The results strongly indicate that model scale alone is
insufficient for developing cognitive behaviors during RL training. Instead, the capacity for
cognitive behavior emergence appears to be determined by whether the models are exposed
to the cognitive behaviors through the course of their pretraining, and that these capacities
cannot be reliably induced through scaling alone.
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