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Abstract

Skeleton-based action recognition is a major challenge
in computer vision. In particular, solutions based on graph
convolutional networks (GCNs) have demonstrated notable
performance, but their success is reliant on the availabil-
ity of large collections of hand-labeled skeleton sequences.
However, in real-world applications, these sequences are
often scarce, prompting the exploration of label-frugal GCN
models. In this paper, we introduce a novel label-efficient
GCN model for skeleton-based action recognition. As a first
contribution, we devise a new acquisition function that al-
lows us to design exemplars (a few candidate data for label-
ing) using an adversarial objective function that mixes rep-
resentativity, diversity and uncertainty of these exemplars.
As a second contribution, we make our designed GCNs bidi-
rectional and stable, allowing them to map data from am-
bient to latent spaces (and vice-versa) where the inherent
distribution of the learned exemplars is more easily cap-
tured. Extensive experiments conducted on two challeng-
ing skeleton-recognition datasets, show a substantial gain
of our frugally designed GCNs against the related work.

1. Introduction

Skeleton-based recognition consists in analyzing articulated
body scenes by extracting joint locations and modeling their
spatio-temporal interactions. Early methods rely on hand-
crafted features [14, 17, 26, 34, 35, 38, 58, 59], such as
joint angles and relative distances, fed as inputs to classi-
fiers including support vector machines and hidden Markov
models [11, 47, 49, 50, 57], or combined with manifold
learning techniques [15, 16, 21, 62]. With the resurgence of
deep learning [9, 18, 19, 23, 33], recurrent neural networks,
notably LSTMs and GRUs [7, 27, 28, 30, 61, 63], gained
prominence for capturing the temporal dynamics in skeletal
sequences. Subsequently, Graph Convolutional Networks
(GCNs) emerged, leveraging the inherent graph structure

of skeletons to learn spatial relationships between joints
[32, 39, 40]. Attention-based models [25, 29, 37, 41, 46],
incorporating GCNs, have also demonstrated significant
performance improvements by effectively modeling long-
range dependencies and capturing complex motion patterns.

The efficacy of learning-based methods in skeleton-
based recognition is fundamentally dependent on the avail-
ability of extensive, diverse datasets carefully hand-labeled
with skeleton sequences. However, the acquisition of such
large-scale datasets presents a significant challenge, requir-
ing substantial time and labor. Several strategies have been
proposed to mitigate data and label scarcity, including aug-
mentation techniques [45] that artificially expand data size
and variability. Furthermore, few-shot and transfer learning
approaches [3] leverage pre-existing knowledge from re-
lated domains, while self-supervised learning methods [48]
seek to extract inherent patterns from unlabeled data. De-
spite their contributions, the relative success of these so-
lutions often relies on the implicit assumption that the ex-
isting knowledge, whether derived from augmented data or
pre-trained models, is sufficient to bridge the accuracy gap.
In reality, the quality and relevance of labeled data remain
paramount.

In contrast to the foregoing passive learning approaches,
active learning [43] presents a more efficient and targeted
strategy for dataset construction. Active learning effectively
selects the most informative samples for labeling, thereby
maximizing the model’s learning potential with minimal
human annotation effort. By iteratively querying an oracle
(human annotator) for labels on the most uncertain or repre-
sentative samples, active learning prioritizes the acquisition
of data that may yield the greatest improvement in model
accuracy. This approach not only reduces the overall label-
ing burden but also ensures that the labeled dataset is opti-
mally tailored to the specific recognition task. In scenarios
where data or label acquisition is costly or time-consuming,
active learning offers a compelling alternative, as it directly
addresses the critical need for high-quality, relevant labeled
data.



The selection of informative data within active learn-
ing revolves around identifying samples that maximize a
model’s learning potential. Strategies such as query-by-
committee [44], expected model change maximization [4]
and deep reinforcement learning [8] have emerged as pow-
erful techniques and have been explored to enhance the in-
formativeness of selected samples. These strategies typi-
cally integrate measures of uncertainty [2, 6, 10, 13, 48, 56]
and diversity [1, 52] in different contexts [5, 24, 31, 36, 51].
Uncertainty-based strategies, such as margin sampling and
entropy-based criteria [20, 53], prioritize samples where
the model exhibits low confidence in its predictions, thus
highlighting areas where further training is most benefi-
cial. Diversity-based methods, including coverage maxi-
mization [22, 55] and core-set selection [42], aim to select
samples that span the breadth of the data distribution, en-
suring the model is exposed to a wide range of data vari-
ations. Complementary to these, representativeness-based
approaches [54] seek samples that closely mirror the over-
all data distribution, fostering a balanced learning process.
While these criteria offer valuable insights, many current
solutions rely on heuristic-driven approaches, which may
lack theoretical rigor. A more robust approach would in-
volve developing selection criteria grounded in probabilis-
tic frameworks, enabling the identification of truly optimal
subsets. Such frameworks would not only enhance the effi-
ciency of active learning but also provide a more principled
way for constructing highly informative datasets.

Considering the aforementioned issues, we introduce in
this paper a label-efficient GCN for skeleton-based recogni-
tion. The contribution of the proposed method resides in a
novel principled probabilistic framework that designs unla-
beled exemplars (candidate samples for labeling) instead of
sampling them from a fixed pool of unlabeled data. These
exemplars are obtained as an interpretable solution of an ob-
jective function mixing data representativity, diversity and
uncertainty. Our proposed framework designs these exem-
plars using a novel stable and invertible bidirectional GCN
that allows mapping input graphs (lying on highly nonlin-
ear manifolds) from ambient (input) to latent spaces where
learning these exemplars becomes more tractable; indeed,
with the proposed GCNs, data in the latent space follow a
standard probability distribution (namely gaussian) whose
sampling and search is more tractable compared to the ar-
bitrary distributions in the ambient space. Once learned,
these exemplars are mapped back to the input space thanks
to the invertibility and stability of our GCNs. In sum, the
proposed framework allows designing bidirectional GCNs
exhibiting both strong classification and exemplar design
capabilities — including at frugal data regimes — without
requiring auxiliary generative networks. Extensive experi-
ments, conducted on two challenging skeleton-based recog-
nition tasks, show the outperformance of our label-efficient

method compared to the related work.

2. Display Model
Our proposed Active Learning (AL) framework comprises
two core components: display and learning models. The
display model defines an acquisition function to identify the
most informative unlabeled data points, which are then pre-
sented to an oracle for labeling. Then, the learning model
retrains a label-efficient classifier using the newly acquired
labels. These two steps are iteratively executed until a pre-
determined classification accuracy is achieved or a labeling
budget is exhausted. Formally, let U = {x1, . . . ,xn} ⊂ Rp

be the pool of unlabeled data. At each AL iteration t ∈
{0, . . . , T−1}, the display model, as detailed in section 2.1,
builds a subset Dt—termed the display set—which is used
to query the oracle for corresponding labels Yt. A clas-
sifier ft is then trained on the cumulative labeled dataset⋃t

k=0(Dk,Yk). Our first contribution (introduced in sec-
tion 2.1) is based on a novel model that builds in a flexible
way displays instead of sampling fixed ones from U .

2.1. Display model design
Our proposed method is adversarial and consists in select-
ing the most diverse, representative, and uncertain data to
effectively challenge the current classifier ft, leading to an
improved classifier ft+1 in the subsequent AL iteration. In-
stead of directly sampling the display set Dt+1 from the
unlabeled pool U , we use a probabilistic framework to con-
struct Dt+1 (denoted for short as D). Let X ∈ Rp×n and
D ∈ Rp×K be two matrices representing U and D, respec-
tively, where K = |D|. In order to construct the display
D, we assign a conditional probability distribution to each
column Dk, quantifying the membership (or contribution)
µik of each xi ∈ U in forming Dk. The memberships
µ = {µik}ik and the display D are found by minimizing
the following constrained objective function

min
µ∈Ω,D

tr(µ d(X,D)⊤) + α

K,N∑
k,k′

exp

{
− 1

σ

∥∥Dk −Hk′
∥∥2
2

}
+ β tr(D⊤D) + γ tr(µ⊤ logµ),

(1)
being Ω = {µ : µ ≥ 0,1⊤

nµ = 1K} a convex set constrain-
ing µ to be column-stochastic (i.e., each column represents
a conditional probability distribution), where 1K and 1n are
vectors of K and n ones, respectively, and ⊤ denotes the
transpose. The objective function (in Eq. 1) comprises four
terms
• Representativity: this term minimizes the discrepancy

between the designed exemplars in D and the data distri-
bution in U . This ensures that the oracle’s annotations are
based on realistic exemplars, preventing the selection of
trivial or meaningless data.



• Diversity: it maximizes the dissimilarity between the N
previously selected exemplars (represented by a matrix
H) and the K currently selected exemplars (matrix D).
This enforces that new exemplars are as distinct as possi-
ble from the previous ones.

• Uncertainty: it measures the ambiguity associated with
exemplars in D. It encourages the selection of exem-
plars near the decision boundaries of the learned classi-
fiers. This term also acts as a regularizer on D. Minimiz-
ing this term identifies ambiguous exemplars, which are
crucial for reducing model uncertainty, and accelerating
convergence to well-defined decision functions.

• Regularization of µ: this term regularizes µ, promoting
flat conditional probabilities µ = {µik}ik in the absence
of a priori knowledge about the other three terms.

All these terms are weighted by α, β, γ ≥ 0, whose setting
is discussed later.

Proposition 1. The optimality conditions of Eq. 1 lead to
the solution as the fixed-point of

µ(τ+1) := µ̂(τ+1) diag
(
1⊤
n µ̂

(τ+1)
)−1

D(τ+1) := D̂(τ+1)
(
diag(1⊤

nµ
(τ)) + βI

)−1
,

(2)

being µ̂(τ+1), D̂(τ+1) respectively

exp
{
− 1

γ
d(X,D(τ))

}
,

X µ(τ) − 2α

σ

(
D(τ) diag(1′

NS)−HS
)
,

(3)

where S equates (with D(τ) written for short as D)

exp

{
− 1

σ

(
1Ndiag(D⊤D)⊤ + diag(H⊤H)1⊤

K − 2H⊤D
)}

,

(4)
here S is a similarity matrix between D and H, 1N is a
vector of N ones, and diag maps a vector to a diagonal
matrix.

Due to space limitation, the detailed proof, derived from
the optimality conditions of Eq. 1’s gradient, is omitted.
More notably, the solution for µ in Eq. 3 demonstrates an
inverse relationship between data distances and member-
ship values: low distances result in high memberships of
input data X to exemplars D, and vice versa. The solution
for D shows that each exemplar Dk is a combination of
two terms. The first one is a normalized linear combination
of data weighted by their memberships to Dk. The second
term, controlled by α, disrupts Dk to maximize its dissimi-
larity from previously selected exemplars H.
Initially, µ(0) and D(0) are set to random values. In prac-
tice, the iterative procedure converges to an optimal solu-
tion (µ̃, D̃) within a few iterations. This solution defines
the subsequent display Dt+1 used to train ft+1 (see algo-
rithm. 1). The parameters α and β are set to balance the

impact of their respective terms, specifically α = 1
KN and

β = 1
Kp . In Eq. 3, σ is set proportional to α in order to ab-

sorb the former by the latter, and to reduce the total number
of hyperparameters. The hyperparameter γ, which scales
the exponential function in µ̂(τ+1), is iteration-dependent
and proportional to the input of that exponential, namely
log(µ̂(τ+1)); therefore, γ = 1

nK ∥ log(µ̂
(τ+1))∥1 in prac-

tice.
Now considering the aforementioned AL formulation, two
variants of the proposed solution are considered in this pa-
per. The first one finds exemplars using the above formula-
tion directly in the ambient (input) space, while the second
one finds the exemplars in the latent space, and maps them
back to the ambient space thanks to the invertibility and also
stability of the learned GCNs (as shown in section 3). As
shown subsequently, relying on invertible and stable GCN
mapping leads to an extra gain in AL performances as also
shown later through experiments.

Algorithm 1: Exemplar learning
Input: U , D0 ⊂ U , budget T .
Output: ∪T−1

t=0 (Dt,Yt) and {ft}t.
for t := 0 to T − 1 do
Yt ← oracle(Dt);
ft ← argminf Loss(f,∪tk=0(Dk,Yk)) (loss in

Eqs. 6 or 7);
τ ← 0; µ̂(0) ← random; D̂(0) ← random;
Set µ(0) and D(0) using Eqs. (2) and (3);

while
(∥µ(τ+1) − µ(τ)∥1 + ∥D(τ+1) −D(τ)∥1 ≥ ϵ
∧ τ < maxiter) do

Set µ(τ+1) and D(τ+1) using Eqs. (2) and
(3);
τ ← τ + 1;

µ̃← µ(τ); D̃← D(τ).

3. Learning Model
As previously discussed, the efficacy of the active learn-
ing process hinges on the suitability of the display model.
Specifically, the generated displays should accurately re-
flect the data distribution within the input space. However,
when dealing with complex, nonlinear data distributions,
the display model defined in Eq. 1 may encounter a sig-
nificant limitation. Data lying on nonlinear manifolds pose
a challenge for ensuring that the generated displays remain
consistent with these manifolds. Consequently, in the fol-
lowing section, we revisit GCNs and introduce — as a sec-
ond contribution —– a novel learning model designed to
address this limitation by making our trained GCNs bidi-
rectional, invertible and stable (see Fig. 1).
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Figure 1. This figure shows the display model under three different
configurations: (top row) when exemplars are learned in the input
(ambient) space, fixed-point iteration (FPI) may lead to out-of-
distribution (OOD) exemplars, (middle row) when using the latent
space, any slight update of the exemplars (using FPI), may lead
to OOD data when the learned bidirectional GCNs are not stable,
(bottom row) in contrast, when using stable bidirectional GCNs,
slight updates in the latent space also result in slight updates in the
ambient space preventing OODs. “Red-colored disks” stand for
exemplars while “blue-colored arrows” stand for the direction of
updates obtained with FPI (better to zoom the PDF version).

3.1. Graph convnets at a glance
Let {Gi = (Vi, Ei)}i denote a collection of graphs, where Vi
and Ei represent the node and edge sets of Gi, respectively.
For simplicity, consider a single graph G = (V, E) from
this collection; G is associated with a signal {ψ(v) ∈ Rs}
for all nodes v ∈ V , and an adjacency matrix A. GCNs
aim to learn a set of C filters, represented by the matrix
W ∈ Rs×C , that define a convolution operation on the m
nodes of G, where m = |V|. This operation is defined as
(G ⋆ F)V = g

(
A U⊤ W

)
, where U ∈ Rs×m is the graph

signal, and g(·) is a nonlinear activation function applied
entrywise. In this operation, the input signal U is projected
using the adjacency matrix A, effectively aggregating sig-
nals from the neighbors of each node v. The entries of A
can be either pre-defined or learned. Thus, (G ⋆ F)V can
be interpreted as a two-layer convolutional block. The first
layer aggregates signals from the neighborhood N (V) of
each node v by multiplying U with A, whilst the second
layer performs the convolution by multiplying the resulting
aggregated signals with the C filters in W.

3.2. Proposed stable bidirectional GCNs
We formally subsume a given GCN as a multi-layered neu-
ral network f with weights θ = {W1, . . . ,WL}, where L
represents the depth of the network. The weight tensor for
the ℓ-th layer is denoted as Wℓ ∈ Rdℓ−1×dℓ , being dℓ its
ℓ-th layer dimension. The output of a given layer, denoted
as ϕℓ, is defined as ϕℓ = gℓ(Wℓ

⊤ ϕℓ−1), ℓ ∈ {2, . . . , L},
where gℓ is a nonlinear activation function. Without loss of
generality, we omit the bias in the definition of ϕℓ.

In this section, we are interested in designing invertible
and stable bidirectional networks. The invertibility (bijec-
tion) of the function f : Rp → Rq ensures the existence
of a one-to-one correspondence between Rp and Rq (with
necessarily p = q)1 guaranteeing that (i) no two distinct net-
work inputs, ϕ11 and ϕ21, map to the same output ϕL, and (ii)
for every output ϕL, there exists at least one input ϕ1 such
that f(ϕ1) = ϕL; effectively, making the trained GCNs
bidirectional. Stability pushes invertibility “one step fur-
ther” to guarantee that f−1 — when evaluated on a given
targeted latent distribution (e.g., gaussian) — does not di-
verge from the ambient (input) distribution, and vice versa.

Definition 1 (Stability). A bidirectional network f : Rp →
Rq is called bi-Lipschitzian (or KM-Lipschitzian), if f is
K-Lipschitzian and its inverse f−1 is M-Lipschitzian. The
KM-Lipschitz constant of a bidirectional network is defined
as K ×M .

In general, making both K and M small for any given non-
linear function is challenging [12]; thereby making the KM
constant small is also challenging. However, considering
our following bidirectional network design, it becomes pos-
sible under specific conditions to make KM small (namely
close to 1 as a result of our subsequent proposition).

Proposition 2. Provided that (i) the entrywise activations
{gℓ(.)}Lℓ=2 are bijective in Rp, (ii) l ≤ |g′ℓ(.)| ≤ u, and
(iii) the condition numbers of the weight matrices in θ are
bounded by κ, then the bidirectional network f is KM-
Lipschitzian with

KM = (κ u/l)L−1. (5)
1As the output of f depends on the number of classes, a simple trick

consists in adding fictional outputs to match any targeted dimensionality
(similarly for other layers).



Sketch of the proof is given in the appendix. More impor-
tantly, following the aforementioned proposition, when f is
invertible in Rp, then one may derive f−1(ϕL) = ϕ1 be-
ing ϕℓ−1 = (W⊤

ℓ )
−1g−1

ℓ (ϕℓ). The condition number of
a matrix Wℓ — defined as ∥Wℓ∥2.∥W−1

ℓ ∥2 — measures
how sensitive Wℓ to small changes in ϕℓ−1 and ϕℓ. A small
condition number indicates a well-conditioned matrix Wℓ.
When κ, l and u are close to 1, then KM ≈ 1 meaning that
the bidirectional network f is 1-Lipschitzian so any slight
update of exemplars in the latent space (with the fixed-point
iteration in Eq. 2) will also result into a slight update of
these exemplars in the ambient space when applying f−1.
This eventually leads to stable exemplar design in the am-
bient space, i.e., they follow the actual distribution of data
manifold.

As the Lipschitz constant of f is
∏

ℓ ∥Wℓ∥2.
∣∣g′ℓ∣∣, and

for f−1 is
∏

ℓ ∥(W⊤
ℓ )

−1∥2 |g−1
ℓ

′| (see proof in appendix),
the sufficient conditions that guarantee that the bidirec-
tional network is KM-Lipschitzian (with small KM ) cor-
responds again to (1) small condition numbers {∥Wℓ∥2 ×
∥W−1

ℓ ∥2}ℓ, and (2) l, u ≈ 1 (with l < u in order to guar-
antee the nonlinearity of f ). Hence, by design, conditions
(1)+(2) could be satisfied by choosing the slope of the ac-
tivation functions to be close to one (in practice u = 0.99
and l = 0.95 corresponding respectively to the positive and
negative slopes of the leaky-ReLU2), and also by constrain-
ing all the weight matrices to have a low condition num-
ber. This is obtained by adding a regularization term, to the
cross-entropy (CE) loss, when training GCNs, as

min
{Wℓ}ℓ

CE(f ; {Wℓ}ℓ) + λ
∑
ℓ

∥∥Wℓ

∥∥
2
×
∥∥W−1

ℓ

∥∥
2
. (6)

While this formulation is well grounded and specifically
tailored to our goal (i.e., learning stable bidirectional net-
works), the optimization of condition number presents a
significant challenge primarily due to its non-convexity and
non-smoothness, rendering traditional optimization tech-
niques (such as gradient descent) difficult. Furthermore, the
condition number’s dependence on eigenvalues, as nonlin-
ear measures of matrices, makes gradients estimation unsta-
ble and optimization challenging especially for large-scale
matrices. Besides, striking a balance between cross-entropy
and condition number minimization makes the problem
even harder (see later performances in tables 5-6). In
what follows, we consider a surrogate term that formally
has optima with unitary condition numbers —similarly to
the regularizer in Eq. 6— while making optimization more
tractable in practice; thereby exhibiting better performances
(as shown later in experiments). Hence, instead of minimiz-
ing directly the condition number in the loss, we constrain

2This setting guarantees a small ratio between u, l, and contributes in
making the KM constant (κ u/l)L−1 small, depending also on the condi-
tion number κ (see again proposition 2).

the matrices in θ to be orthonormal which also guarantees
their invertibility. With this update, the global loss, when
training GCNs, becomes

min
{Wℓ}ℓ

CE(f ; {Wℓ}ℓ) + λ
∑
ℓ

∥∥W⊤
ℓ Wℓ − I

∥∥
F
, (7)

here I stands for identity, ∥.∥F denotes the Frobenius norm
and λ > 0 (with λ = 1

p in practice3); in particular, when
W⊤

ℓ Wℓ − I = 0, then W−1
ℓ = W⊤

ℓ and ∥Wℓ∥2 =
∥W−1

ℓ ∥2 = 1, so κ = 1 and the KM-Lipschitz constant in
Eq. 5 becomes tighter. With this updated loss, the learned
GCNs are guaranteed to be invertible and stable while also
being discriminative as shown later in experiments.

3.3. Weight reparametrization
In order to further enhance the stability of the learned net-
work f , we consider a weight reparametrization (WR) as
{Wℓ = Ŵℓ + δI}ℓ, with δ ≥ 0. This transformation en-
sures that the eigenvalues of Wℓ — given by {δi + δ}i,
with {δi}i the eigenvalues of Ŵℓ — are bounded below
by δ. Therefore, the condition number of Wℓ is further
reduced to maxi |δi + δ| ×maxi |1/(δi + δ)|. A lower con-
dition number signifies that any slight update of exemplars
in the latent space (with the fixed-point iteration in Eq. 2)
will also result into a slight update of these exemplars in
the ambient (input) space when applying f−1. Conversely,
this also guarantees that slight updates of data in the ambi-
ent space will also results into stable responses when apply-
ing f . Nonetheless, achieving an optimal condition number
(approaching unity) — without overestimating δ and com-
promising the expressiveness of the learned networks — re-
mains challenging when using only this reparametrization.
Thus, an explicit regularization of the cross-entropy loss,
as shown in Eqs. 6 and 7, is also necessary in order to cir-
cumvent the need for overestimated δ values (see later ta-
bles 5-6). Note that, with this WR, the gradient of the loss
in Eqs. 6-7 w.r.t. Ŵ, denoted as∇ŴL, remains identical to
∇WL as∇ŴL = ∇WL· ∂W∂Ŵ (chain rule), and ∂W

∂Ŵ
is sim-

ply the identity matrix (as W = Ŵ + δI). Hence, this WR
directly shifts the eigenvalues, and further improves stabil-
ity, without changing the gradient of the loss.

4. Experiments
This section presents an evaluation of the performance
of baseline and our label-frugal GCNs for skeleton-based
action recognition. The evaluation is conducted using the
SBU Interaction [58] and First Person Hand Action (FPHA)
[11] datasets. The SBU Interaction dataset, acquired via
Microsoft Kinect, comprises 282 skeleton sequences

3Note that at frugal data regimes, the cross entropy term involves few
labeled data, so it is enough to set λ to small values in order to guarantee
the minimization of both terms.



representing dyadic interactions. These interactions are
categorized into eight predefined action classes. Each
sequence consists of two 15-joint skeletons, with each
joint represented by its 3D spatial coordinates across the
temporal domain. Evaluation adheres to the established
train-test partitioning specified in [58]. The FPHA dataset
encompasses 1175 skeleton sequences, covering 45 diverse
hand-action categories. These actions are performed by
six subjects across three distinct scenarios, exhibiting
significant intra-class variability in style, velocity, scale,
and viewpoint. Each skeleton sequence represents 21 hand
joints, with each joint’s 3D coordinates taken over time.
Following the evaluation protocol defined in [11], a 1:1
train-test split is employed, with 600 sequences allocated
for training and 575 for testing. For both datasets, we
report the average classification accuracy across all action
categories.

(raw coordinates)
Temporal Chunking

ψ(v)

Motion trajectory (v)

Figure 2. This figure shows the whole keypoint tracking and de-
scription process.

Input graphs. Each skeleton sequence, denoted as
{St}Tt=1, is represented as a temporal series of 3D joint
coordinates, St = {p̂tj}Jj=1, where T denotes the sequence
length and J the number of joints. The trajectory of a joint
j, {p̂tj}Tt=1, describes its spatial displacement over time. A
graph representation, referred to as G = (V, E), is defined
where V corresponds to nodes vj ∈ V , each one represent-
ing a joint trajectory {p̂tj}Tt=1. The set E contains edges
(vj , vi) ∈ E connecting spatially adjacent joint trajectories.
To facilitate temporal processing, each joint trajectory is
partitioned into Mc equal temporal intervals (chunks),
with Mc = 4 in practice. Joint coordinates {p̂tj}Tt=1 are
assigned to these intervals based on their temporal indices.
The mean 3D coordinates within each interval is computed,

Method Accuracy (%)
Raw Position [58] 49.7
Joint feature [17] 86.9

CHARM [26] 86.9
H-RNN [7] 80.4

ST-LSTM [27] 88.6
Co-occurrence-LSTM [63] 90.4

STA-LSTM [46] 91.5
ST-LSTM + Trust Gate [27] 93.3

VA-LSTM [60] 97.6
GCA-LSTM [28] 94.9

Riemannian manifold. traj [21] 93.7
DeepGRU [30] 95.7

RHCN + ACSC + STUFE [25] 98.7
Our baseline GCN 98.4

Table 1. Comparison of our baseline GCN (not label-efficient)
against related work on the SBU database.

Method Color Depth Pose Accuracy (%)
2-stream-color [9] ✓ ✗ ✗ 61.56
2-stream-flow [9] ✓ ✗ ✗ 69.91
2-stream-all [9] ✓ ✗ ✗ 75.30
HOG2-dep [34] ✗ ✓ ✗ 59.83

HOG2-dep+pose [34] ✗ ✓ ✓ 66.78
HON4D [35] ✗ ✓ ✗ 70.61

Novel View [38] ✗ ✓ ✗ 69.21
1-layer LSTM [63] ✗ ✗ ✓ 78.73
2-layer LSTM [63] ✗ ✗ ✓ 80.14
Moving Pose [59] ✗ ✗ ✓ 56.34

Lie Group [47] ✗ ✗ ✓ 82.69
HBRNN [7] ✗ ✗ ✓ 77.40

Gram Matrix [62] ✗ ✗ ✓ 85.39
TF [11] ✗ ✗ ✓ 80.69

JOULE-color [14] ✓ ✗ ✗ 66.78
JOULE-depth [14] ✗ ✓ ✗ 60.17
JOULE-pose [14] ✗ ✗ ✓ 74.60
JOULE-all [14] ✓ ✓ ✓ 78.78

Huang et al. [15] ✗ ✗ ✓ 84.35
Huang et al. [16] ✗ ✗ ✓ 77.57

HAN [29] ✗ ✗ ✓ 85.74
Our baseline GCN ✗ ✗ ✓ 88.17

Table 2. Comparison of our baseline GCN (not label-
efficient) against related work on the FPHA database.

and these coordinates are concatenated to form a trajectory
descriptor ψ(vj) ∈ Rs of dimensionality s = 3Mc (see
Fig. 2). This temporal chunking effectively encodes the
temporal dynamics while ensuring invariance to frame rate
and sequence duration.

Implementation details & baseline GCNs. All GCN mod-
els are trained using the Adam optimizer for 2700 epochs.
The training batch size is set to 200 for the SBU Interac-
tion dataset and 600 for the FPHA dataset. A momentum
parameter of 0.9 is used. The global learning rate ν is dy-
namically adjusted based on the temporal derivative of the
loss function, as defined in Eqs. 6-7. Specifically, ν is scaled
by a factor of 0.99 when the temporal derivative of the loss
function increases, and by a factor of 1/0.99 otherwise, im-



plementing an adaptive learning rate strategy. Training has
been conducted on a GeForce GTX 1070 GPU with 8 GB
of memory. No dropout regularization or data augmenta-
tion are employed. For the SBU Interaction dataset, the
GCN architecture consists of three sequential layers, each
comprising a mono-head attention mechanism followed by
a convolutional layer with 8 filters. This is succeeded by
a fully connected layer and a classification layer. For the
FPHA dataset, a comparatively larger GCN architecture is
used, differing from the SBU architecture primarily in the
number of convolutional filters, employing 16 filters instead
of 8. Both GCN architectures, when evaluated on the SBU
Interaction and FPHA benchmarks, demonstrate high clas-
sification accuracy as detailed in Tables 1 and 2. Subse-
quently, the objective is to achieve label-efficient learning
while maintaining performance as close as possible to the
baseline accuracy.

Labeling rates Accuracy Observation
100% 98.40 Baseline GCN (not label-efficient)

45%

89.23 wo display model (random display)
89.23 + display model + ambient (our)
93.84 + display model + latent (our)
67.69 uncertainty (margin-based)
83.07 diversity (coreset-based)

30%

80.00 wo display model (random display)
86.15 + display model + ambient (our)
87.69 + display model + latent (our)
61.53 uncertainty (margin-based)
83.07 diversity (coreset-based)

15%

69.23 wo display model (random display)
75.38 + display model + ambient (our)
75.38 + display model + latent (our)
56.92 uncertainty (margin-based)
66.15 diversity (coreset-based)

Table 3. This table shows detailed performances and ablation
study on SBU for different labeling rates. Here “wo” stands for
“without”. Best results are shown in bold and second best results
underlined.

4.1. Display model: comparison & ablation
Tables 3-4 present a comparative analysis and ablation
study of the proposed method on the SBU and FPHA
datasets, respectively. The results demonstrate that the ap-
plication of our display model within the ambient space
yields high classification accuracy, often surpassing com-
parative display selection strategies by a significant margin.
Furthermore, the use of the latent space results in a fur-
ther performance improvement, highlighting the efficacy of
our model and its synergy with latent space representations.
Comparative analysis against alternative display selection
strategies, including random sampling, diversity-based [22]
and uncertainty-based selection [53], all integrated with
our GCN learning framework, reveals a substantial perfor-
mance gain achieved by our method. As showcased in Ta-

bles 3-4, our method exhibits significant performance ad-
vantages across various equivalent labeling rates. The re-
sults also indicate that random sampling achieves competi-
tive performance, particularly at higher sampling rates (e.g.,
45%), consistent with prior observations (e.g., [43]). How-
ever, at lower sampling rates (e.g., 15%), the performance
of random sampling diminishes, necessitating more elab-
orate selection strategies. While uncertainty-based selec-
tion refines classifications, it lacks sufficient diversity. Ran-
dom and diversity-based selection methods, conversely, fail
to adequately refine classifications. Moreover, all compar-
ative methods suffer from the inherent rigidity of select-
ing displays from a fixed pool. In contrast, our display
model learns adaptable exemplars constrained within the
latent space of the proposed stable and invertible bidirec-
tional GCNs, resulting in improved performance, especially
under frugal labeling regimes. This adaptability allows for
a more effective representation of the data, leading to en-
hanced classification accuracy.

Labeling rates Accuracy Observation
100% 88.17 Baseline GCN (not label-efficient)

45%

75.47 wo display model (random display)
72.52 + display model + ambient (our)
75.65 + display model + latent (our)
63.30 uncertainty (margin-based)
70.26 diversity (coreset-based)

30%

67.47 wo display model (random display)
61.21 + display model + ambient (our)
63.65 + display model + latent (our)
56.17 uncertainty (margin-based)
62.08 diversity (coreset-based)

15%

40.52 wo display model (random display)
45.21 + display model + ambient (our)
49.21 + display model + latent (our)
41.73 uncertainty (margin-based)
46.26 diversity (coreset-based)

Table 4. This table shows detailed performances and ablation
study on FPHA for different labeling rates. Here “wo” stands for
“without”. Best results are shown in bold and second best results
underlined.

4.2. Regularization and weight reparametrization
Tables 5-6 show an analysis of the individual and combined
effects of our used regularizers –— namely, Condition
Number (CN) and Orthogonality Regularization (OR)—–
and WR. The observed results demonstrate a consistent
positive impact of WR, both individually and in conjunc-
tion with regularization. Notably, with the exception of
OR regularization (configs #7,#8), WR significantly re-
duces both the observed CN and Fréchet Inception Distance
(FID), especially when δ is sufficiently large, while con-
currently improving classification accuracy relative to the
non-reparametrized baseline (configs #2,#3,#4 vs #1 and
#6 vs #5). This behavior is observed across a range of δ



Regularizer WR (W + δI) Acc ↑ Observed CN ↓ FID Score ↓ config
No No 9.23 1.85× 1029 6.44× 1015 #1
No Yes, δ = 106 58.46 2.022 7.16 #2
No Yes, δ = 105 83.07 154.52 8.88 #3
No Yes, δ = 101 83.07 5.01× 1011 92.04 #4
CN No 9.23 3× 109 3973.2 #5
CN Yes, δ = 101 44.23 1.015 15.85 #6
OR No 93.84 5.410 10.18 #7
OR Yes, δ = 101 81.53 1.010 8.70 #8

Table 5. This table shows the impact of different regularizers (OR
and CN) and WR (for different setting of δ) when taken individ-
ually and combined. Here Acc (accuracy), observed CN and FID
scores are shown on the SBU dataset. Best results are shown in
bold and second best results underlined.

Regularizer WR (W + δI) Acc ↑ Observed CN ↓ FID Score ↓ config
No No 54.78 2.91× 1022 5.30× 109 #1
No Yes, δ = 106 2.26 4.666 6.32 #2
No Yes, δ = 105 54.78 32.362 5.87 #3
No Yes, δ = 101 57.04 1.19× 1011 13.33 #4
CN No 2.08 2.89× 1030 1.86× 1012 #5
CN Yes, δ = 101 64.17 1.000 7.05 #6
OR No 75.65 1.052 2.37 #7
OR Yes, δ = 101 68.34 1.055 5.54 #8

Table 6. This table shows the impact of different regularizers (OR
and CN) and WR (for different setting of δ) when taken individ-
ually and combined. Here Acc (accuracy), observed CN and FID
scores are shown on the FPHA dataset. Best results are shown in
bold and second best results underlined.

values. An overestimated δ (config #2) imposes excessive
rigidity, resulting in minimal FID and CN values. How-
ever, this rigidity impedes the network’s ability to minimize
cross-entropy, thereby compromising classification accu-
racy. Conversely, an underestimated δ (config #4) grants
higher model flexibility, facilitating effective cross-entropy
minimization. Nevertheless, this leads to limited general-
ization, evidenced by elevated FID and CN scores, indicat-
ing out-of-distribution exemplars. An intermediate δ value
(config #3) achieves a more favorable balance, optimizing
the efficacy of reparametrization. When combined with CN
regularization (config #6), the reparametrization exhibits re-
duced dependency on large δ values, and effectively mit-
igates FID and CN, diminishing the criticality of precise
δ tuning with large values. Consequently, the selection
of δ becomes easier. Across all experimental results, OR
(configs #7,#8) provides a consistent and notable improve-
ment in accuracy, FID and observed CN, with or without
reparametrization. This confirms the effectiveness of OR as
a stronger regularizer against CN.

5. Conclusion

This paper introduces a label-efficient method for skeleton-
based action recognition using graph convolutional net-
works (GCNs). By minimizing the need for extensive la-
beled data, this approach enhances the practicality of GCNs

in scenarios with limited annotation. The primary contribu-
tion of this work lies in the design of a new acquisition func-
tion as the solution of an objective function. This function
balances representativity, diversity, and uncertainty, yield-
ing a solution that optimally reflects the underlying data dis-
tribution. Furthermore, we upgrade our design by making
our GCNs bidirectional and stable thereby yielding learned
latent spaces with enhanced representational and discrim-
inative power. Extensive experiments on two challeng-
ing skeleton-based recognition datasets validate the efficacy
and superior performance of our method.

Appendix
Sketch of the Proof (Proposition 2). Given a metric space
(A, dA), where dA denotes the metric on the set A (by de-
fault dA is taken as ℓ2 and A as Rp); considering a sub-
sumed version of our GCNs, and using the Lipschitz conti-
nuity, one may write dA(f(ϕ11), f(ϕ

1
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being ϕ11, ϕ12 two network inputs. From above inequality,
it follows that dA(f(ϕ11), f(ϕ
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2) with
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ℓ ∥Wℓ∥A. Similarly for f−1, given an out-
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ℓ )
−1g−1

ℓ (ϕℓ);
considering two network outputs ϕL1 , ϕL2 , one may write
dA(f

−1(ϕL1 ), f
−1(ϕL2 )) = (∗) with

(∗) = dA((W
⊤
2 )

−1g−1
2 (ϕ21), (W

⊤
2 )

−1g−1
2 (ϕ22))

≤ ∥(W⊤
2 )

−1∥A dA(g
−1
2 (ϕ21), g

−1
2 (ϕ22))

≤ ∥(W⊤
2 )

−1∥A (1/l) dA(ϕ
2
1, ϕ

2
2)

≤
∏

ℓ ∥(W⊤
ℓ )

−1∥A (1/l)L−1 dA(ϕ
L
1 , ϕ

L
2 ).

It follows that dA(f−1(ϕL1 ), f
−1(ϕL2 )) ≤ MdA(ϕ

L
1 , ϕ

L
2 )

with M = (1/l)L−1
∏

ℓ ∥(W⊤
ℓ )

−1∥A. Now by combing-
ing K and M , the KM-Lipschitz constant can be obtained
as

KM = (u/l)L−1 (1/l)L−1
L−1∏
ℓ=1

∥(Wℓ)∥A∥W−1
ℓ ∥A

≤ (κ u/l)L−1.
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