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Abstract

Skeleton-based action recognition is a major challenge001
in computer vision. In particular, solutions based on graph002
convolutional networks (GCNs) have demonstrated notable003
performance, but their success is reliant on the availabil-004
ity of large collections of hand-labeled skeleton sequences.005
However, in real-world applications, these sequences are006
often scarce, prompting the exploration of label-frugal GCN007
models. In this paper, we introduce a novel label-efficient008
GCN model for skeleton-based action recognition. As a first009
contribution, we devise a new acquisition function that al-010
lows us to design exemplars (a few candidate data for label-011
ing) using an adversarial objective function that mixes rep-012
resentativity, diversity and uncertainty of these exemplars.013
As a second contribution, we make our designed GCNs bidi-014
rectional and stable, allowing them to map data from am-015
bient to latent spaces (and vice-versa) where the inherent016
distribution of the learned exemplars is more easily cap-017
tured. Extensive experiments conducted on two challeng-018
ing skeleton-recognition datasets, show a substantial gain019
of our frugally designed GCNs against the related work.020

1. Introduction021

Skeleton-based recognition consists in analyzing articulated022
body scenes by extracting joint locations and modeling their023
spatio-temporal interactions. Early methods rely on hand-024
crafted features [15, 18, 25, 26, 32, 33, 36, 51, 52], such as025
joint angles and relative distances, fed as inputs to classi-026
fiers including support vector machines and hidden Markov027
models [12, 44], or combined with manifold learning tech-028
niques [16, 17, 19, 55]. With the resurgence of deep learn-029
ing [10, 23], recurrent neural networks, notably LSTMs and030
GRUs [9, 27, 28, 30, 54, 59], gained prominence for captur-031
ing the temporal dynamics in skeletal sequences. Subse-032
quently, Graph Convolutional Networks (GCNs) emerged,033
leveraging the inherent graph structure of skeletons to034
learn spatial relationships between joints. Attention-based035

models [24, 29, 35, 43], incorporating GCNs, have also 036
demonstrated significant performance improvements by ef- 037
fectively modeling long-range dependencies and capturing 038
complex motion patterns. 039

The efficacy of learning-based methods in skeleton- 040
based recognition is fundamentally dependent on the avail- 041
ability of extensive, diverse datasets carefully hand-labeled 042
with skeleton sequences. However, the acquisition of such 043
large-scale datasets presents a significant challenge, requir- 044
ing substantial time and labor. Several strategies have been 045
proposed to mitigate data and label scarcity, including aug- 046
mentation techniques [34, 42] that artificially expand data 047
size and variability. Furthermore, few-shot and transfer 048
learning approaches [4] leverage pre-existing knowledge 049
from related domains, while self-supervised learning meth- 050
ods [6, 45] seek to extract inherent patterns from unlabeled 051
data. Despite their contributions, the relative success of 052
these solutions often relies on the implicit assumption that 053
the existing knowledge, whether derived from augmented 054
data or pre-trained models, is sufficient to bridge the accu- 055
racy gap. In reality, the quality and relevance of labeled 056
data remain paramount. 057

In contrast to the foregoing passive learning approaches, 058
active learning [39] presents a more efficient and targeted 059
strategy for dataset construction. Active learning effectively 060
selects the most informative samples for labeling, thereby 061
maximizing the model’s learning potential with minimal 062
human annotation effort. By iteratively querying an oracle 063
(human annotator) for labels on the most uncertain or repre- 064
sentative samples, active learning prioritizes the acquisition 065
of data that may yield the greatest improvement in model 066
accuracy. This approach not only reduces the overall label- 067
ing burden but also ensures that the labeled dataset is opti- 068
mally tailored to the specific recognition task. In scenarios 069
where data or label acquisition is costly or time-consuming, 070
active learning offers a compelling alternative, as it directly 071
addresses the critical need for high-quality, relevant labeled 072
data. 073

The selection of informative data within active learn- 074
ing revolves around identifying samples that maximize a 075

1



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

model’s learning potential. Strategies such as query-by-076
committee [41], expected model change maximization [40]077
and deep reinforcement learning [37] have emerged as pow-078
erful techniques and have been explored to enhance the in-079
formativeness of selected samples. These strategies typi-080
cally integrate measures of uncertainty [7, 11, 14, 21, 45,081
49] and diversity [1, 31, 48] in different contexts [2, 5,082
8, 22, 50, 57]. Uncertainty-based strategies, such as mar-083
gin sampling and entropy-based criteria [20, 58], prioritize084
samples where the model exhibits low confidence in its pre-085
dictions, thus highlighting areas where further training is086
most beneficial. Diversity-based methods, including cover-087
age maximization [47, 56] and core-set selection [38], aim088
to select samples that span the breadth of the data distribu-089
tion, ensuring the model is exposed to a wide range of data090
variations. Complementary to these, representativeness-091
based approaches [3, 46] seek samples that closely mirror092
the overall data distribution, fostering a balanced learning093
process. While these criteria offer valuable insights, many094
current solutions rely on heuristic-driven approaches, which095
may lack theoretical rigor. A more robust approach would096
involve developing selection criteria grounded in proba-097
bilistic frameworks, enabling the identification of truly op-098
timal subsets. Such frameworks would not only enhance the099
efficiency of active learning but also provide a more princi-100
pled way for constructing highly informative datasets.101

Considering the aforementioned issues, we introduce in102
this paper a label-efficient GCN for skeleton-based recogni-103
tion. The contribution of the proposed method resides in a104
novel principled probabilistic framework that designs unla-105
beled exemplars (candidate samples for labeling) instead of106
sampling them from a fixed pool of unlabeled data. These107
exemplars are obtained as an interpretable solution of an ob-108
jective function mixing data representativity, diversity and109
uncertainty. Our proposed framework designs these exem-110
plars using a novel stable and invertible bidirectional GCN111
that allows mapping input graphs (lying on highly nonlin-112
ear manifolds) from ambient (input) to latent spaces where113
learning these exemplars becomes more tractable; indeed,114
with the proposed GCNs, data in the latent space follow a115
standard probability distribution (namely gaussian) whose116
sampling and search is more tractable compared to the ar-117
bitrary distributions in the ambient space. Once learned,118
these exemplars are mapped back to the input space thanks119
to the invertibility and stability of our GCNs. In sum, the120
proposed framework allows designing bidirectional GCNs121
exhibiting both strong classification and exemplar design122
capabilities — including at frugal data regimes — without123
requiring auxiliary generative networks. Extensive experi-124
ments, conducted on two challenging skeleton-based recog-125
nition tasks, show the outperformance of our label-efficient126
method compared to the related work.127

2. Display Model 128

Our proposed Active Learning (AL) framework comprises 129
two core components: display and learning models. The 130
display model defines an acquisition function to identify the 131
most informative unlabeled data points, which are then pre- 132
sented to an oracle for labeling. Then, the learning model 133
retrains a label-efficient classifier using the newly acquired 134
labels. These two steps are iteratively executed until a pre- 135
determined classification accuracy is achieved or a labeling 136
budget is exhausted. Formally, let U = {x1, . . . ,xn} ⊂ Rp 137
be the pool of unlabeled data. At each AL iteration t ∈ 138
{0, . . . , T−1}, the display model, as detailed in section 2.1, 139
builds a subset Dt—termed the display set—which is used 140
to query the oracle for corresponding labels Yt. A clas- 141
sifier ft is then trained on the cumulative labeled dataset 142⋃t

k=0(Dk,Yk). Our first contribution (introduced in sec- 143
tion 2.1) is based on a novel model that builds in a flexible 144
way displays instead of sampling fixed ones from U . 145

2.1. Display model design 146

Our proposed method is adversarial and consists in select- 147
ing the most diverse, representative, and uncertain data to 148
effectively challenge the current classifier ft, leading to an 149
improved classifier ft+1 in the subsequent AL iteration. In- 150
stead of directly sampling the display set Dt+1 from the 151
unlabeled pool U , we use a probabilistic framework to con- 152
struct Dt+1 (denoted for short as D). Let X ∈ Rp×n and 153
D ∈ Rp×K be two matrices representing U and D, respec- 154
tively, where K = |D|. In order to construct the display 155
D, we assign a conditional probability distribution to each 156
column Dk, quantifying the membership (or contribution) 157
µik of each xi ∈ U in forming Dk. The memberships 158
µ = {µik}ik and the display D are found by minimizing 159
the following constrained objective function 160

min
µ∈Ω,D

tr(µ d(X,D)⊤) + α

K,N∑
k,k′

exp

{
− 1

σ

∥∥Dk −Hk′
∥∥2
2

}
+ β tr(D⊤D) + γ tr(µ⊤ logµ),

(1) 161
being Ω = {µ : µ ≥ 0,1⊤

nµ = 1K} a convex set constrain- 162
ing µ to be column-stochastic (i.e., each column represents 163
a conditional probability distribution), where 1K and 1n are 164
vectors of K and n ones, respectively, and ⊤ denotes the 165
transpose. The objective function (in Eq. 1) comprises four 166
terms 167

• Representativity: this term minimizes the discrepancy 168
between the designed exemplars in D and the data distri- 169
bution in U . This ensures that the oracle’s annotations are 170
based on realistic exemplars, preventing the selection of 171
trivial or meaningless data. 172

• Diversity: it maximizes the dissimilarity between the N 173
previously selected exemplars (represented by a matrix 174
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H) and the K currently selected exemplars (matrix D).175
This enforces that new exemplars are as distinct as possi-176
ble from the previous ones.177

• Uncertainty: it measures the ambiguity associated with178
exemplars in D. It encourages the selection of exem-179
plars near the decision boundaries of the learned classi-180
fiers. This term also acts as a regularizer on D. Minimiz-181
ing this term identifies ambiguous exemplars, which are182
crucial for reducing model uncertainty, and accelerating183
convergence to well-defined decision functions.184

• Regularization of µ: this term regularizes µ, promoting185
flat conditional probabilities µ = {µik}ik in the absence186
of a priori knowledge about the other three terms.187

All these terms are weighted by α, β, γ ≥ 0, whose setting188
is discussed later.189

Proposition 1. The optimality conditions of Eq. 1 lead to190
the solution as the fixed-point of191

µ(τ+1) := µ̂(τ+1) diag
(
1⊤
n µ̂

(τ+1)
)−1

D(τ+1) := D̂(τ+1)
(
diag(1⊤

nµ
(τ)) + βI

)−1
,

(2)192

being µ̂(τ+1), D̂(τ+1) respectively193

exp
{
− 1

γ
d(X,D(τ))

}
,

X µ(τ) − 2α

σ

(
D(τ) diag(1′

NS)−HS
)
,

(3)194

where S equates (with D(τ) written for short as D)195

exp

{
− 1

σ

(
1Ndiag(D⊤D)⊤ + diag(H⊤H)1⊤

K − 2H⊤D
)}

,

(4)196
here S is a similarity matrix between D and H, 1N is a197
vector of N ones, and diag maps a vector to a diagonal198
matrix.199

Due to space limitation, the detailed proof, derived from200
the optimality conditions of Eq. 1’s gradient, is omitted.201
More notably, the solution for µ in Eq. 3 demonstrates an202
inverse relationship between data distances and member-203
ship values: low distances result in high memberships of204
input data X to exemplars D, and vice versa. The solution205
for D shows that each exemplar Dk is a combination of206
two terms. The first one is a normalized linear combination207
of data weighted by their memberships to Dk. The second208
term, controlled by α, disrupts Dk to maximize its dissimi-209
larity from previously selected exemplars H.210
Initially, µ(0) and D(0) are set to random values. In prac-211
tice, the iterative procedure converges to an optimal solu-212
tion (µ̃, D̃) within a few iterations. This solution defines213
the subsequent display Dt+1 used to train ft+1 (see algo-214
rithm. 1). The parameters α and β are set to balance the215
impact of their respective terms, specifically α = 1

KN and216
β = 1

Kp . In Eq. 3, σ is set proportional to α in order to ab-217
sorb the former by the latter, and to reduce the total number218

of hyperparameters. The hyperparameter γ, which scales 219
the exponential function in µ̂(τ+1), is iteration-dependent 220
and proportional to the input of that exponential, namely 221
log(µ̂(τ+1)); therefore, γ = 1

nK ∥ log(µ̂
(τ+1))∥1 in prac- 222

tice. 223
Now considering the aforementioned AL formulation, two 224
variants of the proposed solution are considered in this pa- 225
per. The first one finds exemplars using the above formula- 226
tion directly in the ambient (input) space, while the second 227
one finds the exemplars in the latent space, and maps them 228
back to the ambient space thanks to the invertibility and also 229
stability of the learned GCNs (as shown in section 3). As 230
shown subsequently, relying on invertible and stable GCN 231
mapping leads to an extra gain in AL performances as also 232
shown later through experiments.

Algorithm 1: Exemplar learning
Input: U , D0 ⊂ U , budget T .
Output: ∪T−1

t=0 (Dt,Yt) and {ft}t.
for t := 0 to T − 1 do
Yt ← oracle(Dt);
ft ← argminf Loss(f,∪tk=0(Dk,Yk)) (loss in

Eqs. 6 or 7);
τ ← 0; µ̂(0) ← random; D̂(0) ← random;
Set µ(0) and D(0) using Eqs. (2) and (3);

while
(∥µ(τ+1) − µ(τ)∥1 + ∥D(τ+1) −D(τ)∥1 ≥ ϵ
∧ τ < maxiter) do

Set µ(τ+1) and D(τ+1) using Eqs. (2) and
(3);
τ ← τ + 1;

µ̃← µ(τ); D̃← D(τ).

233

3. Learning Model 234

As previously discussed, the efficacy of the active learn- 235
ing process hinges on the suitability of the display model. 236
Specifically, the generated displays should accurately re- 237
flect the data distribution within the input space. However, 238
when dealing with complex, nonlinear data distributions, 239
the display model defined in Eq. 1 may encounter a sig- 240
nificant limitation. Data lying on nonlinear manifolds pose 241
a challenge for ensuring that the generated displays remain 242
consistent with these manifolds. Consequently, in the fol- 243
lowing section, we revisit GCNs and introduce — as a sec- 244
ond contribution —– a novel learning model designed to 245
address this limitation by making our trained GCNs bidi- 246
rectional, invertible and stable (see Fig. 1). 247
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Figure 1. This figure shows the display model under three different
configurations: (top row) when exemplars are learned in the input
(ambient) space, fixed-point iteration (FPI) may lead to out-of-
distribution (OOD) exemplars, (middle row) when using the latent
space, any slight update of the exemplars (using FPI), may lead
to OOD data when the learned bidirectional GCNs are not stable,
(bottom row) in contrast, when using stable bidirectional GCNs,
slight updates in the latent space also result in slight updates in the
ambient space preventing OODs. “Red-colored disks” stand for
exemplars while “blue-colored arrows” stand for the direction of
updates obtained with FPI (better to zoom the PDF version).

3.1. Graph convnets at a glance248

Let {Gi = (Vi, Ei)}i denote a collection of graphs, where Vi249
and Ei represent the node and edge sets of Gi, respectively.250
For simplicity, consider a single graph G = (V, E) from251
this collection; G is associated with a signal {ψ(v) ∈ Rs}252
for all nodes v ∈ V , and an adjacency matrix A. GCNs253
aim to learn a set of C filters, represented by the matrix254
W ∈ Rs×C , that define a convolution operation on the m255
nodes of G, where m = |V|. This operation is defined as256
(G ⋆ F)V = g

(
A U⊤ W

)
, where U ∈ Rs×m is the graph257

signal, and g(·) is a nonlinear activation function applied 258
entrywise. In this operation, the input signal U is projected 259
using the adjacency matrix A, effectively aggregating sig- 260
nals from the neighbors of each node v. The entries of A 261
can be either pre-defined or learned. Thus, (G ⋆ F)V can 262
be interpreted as a two-layer convolutional block. The first 263
layer aggregates signals from the neighborhood N (V) of 264
each node v by multiplying U with A, whilst the second 265
layer performs the convolution by multiplying the resulting 266
aggregated signals with the C filters in W. 267

3.2. Proposed stable bidirectional GCNs 268

We formally subsume a given GCN as a multi-layered neu- 269
ral network f with weights θ = {W1, . . . ,WL}, where L 270
represents the depth of the network. The weight tensor for 271
the ℓ-th layer is denoted as Wℓ ∈ Rdℓ−1×dℓ , being dℓ its 272
ℓ-th layer dimension. The output of a given layer, denoted 273
as ϕℓ, is defined as ϕℓ = gℓ(Wℓ

⊤ ϕℓ−1), ℓ ∈ {2, . . . , L}, 274
where gℓ is a nonlinear activation function. Without loss of 275
generality, we omit the bias in the definition of ϕℓ. 276

In this section, we are interested in designing invertible 277
and stable bidirectional networks. The invertibility (bijec- 278
tion) of the function f : Rp → Rq ensures the existence 279
of a one-to-one correspondence between Rp and Rq (with 280
necessarily p = q)1 guaranteeing that (i) no two distinct net- 281
work inputs, ϕ11 and ϕ21, map to the same output ϕL, and (ii) 282
for every output ϕL, there exists at least one input ϕ1 such 283
that f(ϕ1) = ϕL; effectively, making the trained GCNs 284
bidirectional. Stability pushes invertibility “one step fur- 285
ther” to guarantee that f−1 — when evaluated on a given 286
targeted latent distribution (e.g., gaussian) — does not di- 287
verge from the ambient (input) distribution, and vice versa. 288

Definition 1 (Stability). A bidirectional network f : Rp → 289
Rq is called bi-Lipschitzian (or KM-Lipschitzian), if f is 290
K-Lipschitzian and its inverse f−1 is M-Lipschitzian. The 291
KM-Lipschitz constant of a bidirectional network is defined 292
as K ×M . 293

In general, making both K and M small for any given non- 294
linear function is challenging [13]; thereby making the KM 295
constant small is also challenging. However, considering 296
our following bidirectional network design, it becomes pos- 297
sible under specific conditions to make KM small (namely 298
close to 1 as a result of our subsequent proposition). 299

Proposition 2. Provided that (i) the entrywise activations 300
{gℓ(.)}Lℓ=2 are bijective in Rp, (ii) l ≤ |g′ℓ(.)| ≤ u, and 301
(iii) the condition numbers of the weight matrices in θ are 302
bounded by κ, then the bidirectional network f is KM- 303
Lipschitzian with 304

KM = (κ u/l)L−1. (5) 305
1As the output of f depends on the number of classes, a simple trick

consists in adding fictional outputs to match any targeted dimensionality
(similarly for other layers).
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Sketch of the proof is given in the appendix. More impor-306
tantly, following the aforementioned proposition, when f is307
invertible in Rp, then one may derive f−1(ϕL) = ϕ1 be-308
ing ϕℓ−1 = (W⊤

ℓ )
−1g−1

ℓ (ϕℓ). The condition number of309
a matrix Wℓ — defined as ∥Wℓ∥2.∥W−1

ℓ ∥2 — measures310
how sensitive Wℓ to small changes in ϕℓ−1 and ϕℓ. A small311
condition number indicates a well-conditioned matrix Wℓ.312
When κ, l and u are close to 1, then KM ≈ 1 meaning that313
the bidirectional network f is 1-Lipschitzian so any slight314
update of exemplars in the latent space (with the fixed-point315
iteration in Eq. 2) will also result into a slight update of316
these exemplars in the ambient space when applying f−1.317
This eventually leads to stable exemplar design in the am-318
bient space, i.e., they follow the actual distribution of data319
manifold.320

As the Lipschitz constant of f is
∏

ℓ ∥Wℓ∥2.
∣∣g′ℓ∣∣, and321

for f−1 is
∏

ℓ ∥(W⊤
ℓ )

−1∥2 |g−1
ℓ

′| (see proof in appendix),322
the sufficient conditions that guarantee that the bidirec-323
tional network is KM-Lipschitzian (with small KM ) cor-324
responds again to (1) small condition numbers {∥Wℓ∥2 ×325
∥W−1

ℓ ∥2}ℓ, and (2) l, u ≈ 1 (with l < u in order to guar-326
antee the nonlinearity of f ). Hence, by design, conditions327
(1)+(2) could be satisfied by choosing the slope of the ac-328
tivation functions to be close to one (in practice u = 0.99329
and l = 0.95 corresponding respectively to the positive and330
negative slopes of the leaky-ReLU2), and also by constrain-331
ing all the weight matrices to have a low condition num-332
ber. This is obtained by adding a regularization term, to the333
cross-entropy (CE) loss, when training GCNs, as334

min
{Wℓ}ℓ

CE(f ; {Wℓ}ℓ) + λ
∑
ℓ

∥∥Wℓ

∥∥
2
×
∥∥W−1

ℓ

∥∥
2
. (6)335

While this formulation is well grounded and specifically336
tailored to our goal (i.e., learning stable bidirectional net-337
works), the optimization of condition number presents a338
significant challenge primarily due to its non-convexity and339
non-smoothness, rendering traditional optimization tech-340
niques (such as gradient descent) difficult. Furthermore, the341
condition number’s dependence on eigenvalues, as nonlin-342
ear measures of matrices, makes gradients estimation unsta-343
ble and optimization challenging especially for large-scale344
matrices. Besides, striking a balance between cross-entropy345
and condition number minimization makes the problem346
even harder (see later performances in tables 5-6). In347
what follows, we consider a surrogate term that formally348
has optima with unitary condition numbers —similarly to349
the regularizer in Eq. 6— while making optimization more350
tractable in practice; thereby exhibiting better performances351
(as shown later in experiments). Hence, instead of minimiz-352
ing directly the condition number in the loss, we constrain353

2This setting guarantees a small ratio between u, l, and contributes in
making the KM constant (κ u/l)L−1 small, depending also on the condi-
tion number κ (see again proposition 2).

the matrices in θ to be orthonormal which also guarantees 354
their invertibility. With this update, the global loss, when 355
training GCNs, becomes 356

min
{Wℓ}ℓ

CE(f ; {Wℓ}ℓ) + λ
∑
ℓ

∥∥W⊤
ℓ Wℓ − I

∥∥
F
, (7) 357

here I stands for identity, ∥.∥F denotes the Frobenius norm 358
and λ > 0 (with λ = 1

p in practice3); in particular, when 359

W⊤
ℓ Wℓ − I = 0, then W−1

ℓ = W⊤
ℓ and ∥Wℓ∥2 = 360

∥W−1
ℓ ∥2 = 1, so κ = 1 and the KM-Lipschitz constant in 361

Eq. 5 becomes tighter. With this updated loss, the learned 362
GCNs are guaranteed to be invertible and stable while also 363
being discriminative as shown later in experiments. 364

3.3. Weight reparametrization 365

In order to further enhance the stability of the learned net- 366
work f , we consider a weight reparametrization (WR) as 367
{Wℓ = Ŵℓ + δI}ℓ, with δ ≥ 0. This transformation en- 368
sures that the eigenvalues of Wℓ — given by {δi + δ}i, 369

with {δi}i the eigenvalues of Ŵℓ — are bounded below 370
by δ. Therefore, the condition number of Wℓ is further 371
reduced to maxi |δi + δ| ×maxi |1/(δi + δ)|. A lower con- 372
dition number signifies that any slight update of exemplars 373
in the latent space (with the fixed-point iteration in Eq. 2) 374
will also result into a slight update of these exemplars in 375
the ambient (input) space when applying f−1. Conversely, 376
this also guarantees that slight updates of data in the ambi- 377
ent space will also results into stable responses when apply- 378
ing f . Nonetheless, achieving an optimal condition number 379
(approaching unity) — without overestimating δ and com- 380
promising the expressiveness of the learned networks — re- 381
mains challenging when using only this reparametrization. 382
Thus, an explicit regularization of the cross-entropy loss, 383
as shown in Eqs. 6 and 7, is also necessary in order to cir- 384
cumvent the need for overestimated δ values (see later ta- 385
bles 5-6). Note that, with this WR, the gradient of the loss 386
in Eqs. 6-7 w.r.t. Ŵ, denoted as∇ŴL, remains identical to 387

∇WL as∇ŴL = ∇WL· ∂W∂Ŵ (chain rule), and ∂W
∂Ŵ

is sim- 388

ply the identity matrix (as W = Ŵ + δI). Hence, this WR 389
directly shifts the eigenvalues, and further improves stabil- 390
ity, without changing the gradient of the loss. 391

4. Experiments 392

This section presents an evaluation of the performance 393
of baseline and our label-frugal GCNs for skeleton-based 394
action recognition. The evaluation is conducted using the 395
SBU Interaction [51] and First Person Hand Action (FPHA) 396
[12] datasets. The SBU Interaction dataset, acquired via 397
Microsoft Kinect, comprises 282 skeleton sequences 398

3Note that at frugal data regimes, the cross entropy term involves few
labeled data, so it is enough to set λ to small values in order to guarantee
the minimization of both terms.
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representing dyadic interactions. These interactions are399
categorized into eight predefined action classes. Each400
sequence consists of two 15-joint skeletons, with each401
joint represented by its 3D spatial coordinates across the402
temporal domain. Evaluation adheres to the established403
train-test partitioning specified in [51]. The FPHA dataset404
encompasses 1175 skeleton sequences, covering 45 diverse405
hand-action categories. These actions are performed by406
six subjects across three distinct scenarios, exhibiting407
significant intra-class variability in style, velocity, scale,408
and viewpoint. Each skeleton sequence represents 21 hand409
joints, with each joint’s 3D coordinates taken over time.410
Following the evaluation protocol defined in [12], a 1:1411
train-test split is employed, with 600 sequences allocated412
for training and 575 for testing. For both datasets, we413
report the average classification accuracy across all action414
categories.415

416

(raw coordinates)
Temporal Chunking

ψ(v)

Motion trajectory (v)

Figure 2. This figure shows the whole keypoint tracking and de-
scription process.

Input graphs. Each skeleton sequence, denoted as417
{St}Tt=1, is represented as a temporal series of 3D joint418
coordinates, St = {p̂tj}Jj=1, where T denotes the sequence419
length and J the number of joints. The trajectory of a joint420
j, {p̂tj}Tt=1, describes its spatial displacement over time. A421
graph representation, referred to as G = (V, E), is defined422
where V corresponds to nodes vj ∈ V , each one represent-423
ing a joint trajectory {p̂tj}Tt=1. The set E contains edges424
(vj , vi) ∈ E connecting spatially adjacent joint trajectories.425
To facilitate temporal processing, each joint trajectory is426
partitioned into Mc equal temporal intervals (chunks),427
with Mc = 4 in practice. Joint coordinates {p̂tj}Tt=1 are428
assigned to these intervals based on their temporal indices.429
The mean 3D coordinates within each interval is computed,430

Method Accuracy (%)
Raw Position [51] 49.7
Joint feature [18] 86.9

CHARM [25] 86.9
H-RNN [9] 80.4

ST-LSTM [27] 88.6
Co-occurrence-LSTM [59] 90.4

STA-LSTM [43] 91.5
ST-LSTM + Trust Gate [27] 93.3

VA-LSTM [53] 97.6
GCA-LSTM [28] 94.9

Riemannian manifold. traj [19] 93.7
DeepGRU [30] 95.7

RHCN + ACSC + STUFE [24] 98.7
Our baseline GCN 98.4

Table 1. Comparison of our baseline GCN (not label-efficient)
against related work on the SBU database.

Method Color Depth Pose Accuracy (%)
2-stream-color [10] ✓ ✗ ✗ 61.56
2-stream-flow [10] ✓ ✗ ✗ 69.91
2-stream-all [10] ✓ ✗ ✗ 75.30
HOG2-dep [32] ✗ ✓ ✗ 59.83

HOG2-dep+pose [32] ✗ ✓ ✓ 66.78
HON4D [33] ✗ ✓ ✗ 70.61

Novel View [36] ✗ ✓ ✗ 69.21
1-layer LSTM [59] ✗ ✗ ✓ 78.73
2-layer LSTM [59] ✗ ✗ ✓ 80.14
Moving Pose [52] ✗ ✗ ✓ 56.34

Lie Group [44] ✗ ✗ ✓ 82.69
HBRNN [9] ✗ ✗ ✓ 77.40

Gram Matrix [55] ✗ ✗ ✓ 85.39
TF [12] ✗ ✗ ✓ 80.69

JOULE-color [15] ✓ ✗ ✗ 66.78
JOULE-depth [15] ✗ ✓ ✗ 60.17
JOULE-pose [15] ✗ ✗ ✓ 74.60
JOULE-all [15] ✓ ✓ ✓ 78.78

Huang et al. [16] ✗ ✗ ✓ 84.35
Huang et al. [17] ✗ ✗ ✓ 77.57

HAN [29] ✗ ✗ ✓ 85.74
Our baseline GCN ✗ ✗ ✓ 88.17

Table 2. Comparison of our baseline GCN (not label-
efficient) against related work on the FPHA database.

and these coordinates are concatenated to form a trajectory 431
descriptor ψ(vj) ∈ Rs of dimensionality s = 3Mc (see 432
Fig. 2). This temporal chunking effectively encodes the 433
temporal dynamics while ensuring invariance to frame rate 434
and sequence duration. 435

436

Implementation details & baseline GCNs. All GCN mod- 437
els are trained using the Adam optimizer for 2700 epochs. 438
The training batch size is set to 200 for the SBU Interac- 439
tion dataset and 600 for the FPHA dataset. A momentum 440
parameter of 0.9 is used. The global learning rate ν is dy- 441
namically adjusted based on the temporal derivative of the 442
loss function, as defined in Eqs. 6-7. Specifically, ν is scaled 443
by a factor of 0.99 when the temporal derivative of the loss 444
function increases, and by a factor of 1/0.99 otherwise, im- 445
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plementing an adaptive learning rate strategy. Training has446
been conducted on a GeForce GTX 1070 GPU with 8 GB447
of memory. No dropout regularization or data augmenta-448
tion are employed. For the SBU Interaction dataset, the449
GCN architecture consists of three sequential layers, each450
comprising a mono-head attention mechanism followed by451
a convolutional layer with 8 filters. This is succeeded by452
a fully connected layer and a classification layer. For the453
FPHA dataset, a comparatively larger GCN architecture is454
used, differing from the SBU architecture primarily in the455
number of convolutional filters, employing 16 filters instead456
of 8. Both GCN architectures, when evaluated on the SBU457
Interaction and FPHA benchmarks, demonstrate high clas-458
sification accuracy as detailed in Tables 1 and 2. Subse-459
quently, the objective is to achieve label-efficient learning460
while maintaining performance as close as possible to the461
baseline accuracy.462

Labeling rates Accuracy Observation
100% 98.40 Baseline GCN (not label-efficient)

45%

89.23 wo display model (random display)
89.23 + display model + ambient (our)
93.84 + display model + latent (our)
67.69 uncertainty (margin-based)
83.07 diversity (coreset-based)

30%

80.00 wo display model (random display)
86.15 + display model + ambient (our)
87.69 + display model + latent (our)
61.53 uncertainty (margin-based)
83.07 diversity (coreset-based)

15%

69.23 wo display model (random display)
75.38 + display model + ambient (our)
75.38 + display model + latent (our)
56.92 uncertainty (margin-based)
66.15 diversity (coreset-based)

Table 3. This table shows detailed performances and ablation
study on SBU for different labeling rates. Here “wo” stands for
“without”. Best results are shown in bold and second best results
underlined.

4.1. Display model: comparison & ablation463

Tables 3-4 present a comparative analysis and ablation464
study of the proposed method on the SBU and FPHA465
datasets, respectively. The results demonstrate that the ap-466
plication of our display model within the ambient space467
yields high classification accuracy, often surpassing com-468
parative display selection strategies by a significant margin.469
Furthermore, the use of the latent space results in a fur-470
ther performance improvement, highlighting the efficacy of471
our model and its synergy with latent space representations.472
Comparative analysis against alternative display selection473
strategies, including random sampling, diversity-based [56]474
and uncertainty-based selection [58], all integrated with475
our GCN learning framework, reveals a substantial perfor-476
mance gain achieved by our method. As showcased in Ta-477

bles 3-4, our method exhibits significant performance ad- 478
vantages across various equivalent labeling rates. The re- 479
sults also indicate that random sampling achieves competi- 480
tive performance, particularly at higher sampling rates (e.g., 481
45%), consistent with prior observations (e.g., [39]). How- 482
ever, at lower sampling rates (e.g., 15%), the performance 483
of random sampling diminishes, necessitating more elab- 484
orate selection strategies. While uncertainty-based selec- 485
tion refines classifications, it lacks sufficient diversity. Ran- 486
dom and diversity-based selection methods, conversely, fail 487
to adequately refine classifications. Moreover, all compar- 488
ative methods suffer from the inherent rigidity of select- 489
ing displays from a fixed pool. In contrast, our display 490
model learns adaptable exemplars constrained within the 491
latent space of the proposed stable and invertible bidirec- 492
tional GCNs, resulting in improved performance, especially 493
under frugal labeling regimes. This adaptability allows for 494
a more effective representation of the data, leading to en- 495
hanced classification accuracy. 496

Labeling rates Accuracy Observation
100% 88.17 Baseline GCN (not label-efficient)

45%

75.47 wo display model (random display)
72.52 + display model + ambient (our)
75.65 + display model + latent (our)
63.30 uncertainty (margin-based)
70.26 diversity (coreset-based)

30%

67.47 wo display model (random display)
61.21 + display model + ambient (our)
63.65 + display model + latent (our)
56.17 uncertainty (margin-based)
62.08 diversity (coreset-based)

15%

40.52 wo display model (random display)
45.21 + display model + ambient (our)
49.21 + display model + latent (our)
41.73 uncertainty (margin-based)
46.26 diversity (coreset-based)

Table 4. This table shows detailed performances and ablation
study on FPHA for different labeling rates. Here “wo” stands for
“without”. Best results are shown in bold and second best results
underlined.

4.2. Regularization and weight reparametrization 497

Tables 5-6 show an analysis of the individual and combined 498
effects of our used regularizers –— namely, Condition 499
Number (CN) and Orthogonality Regularization (OR)—– 500
and WR. The observed results demonstrate a consistent 501
positive impact of WR, both individually and in conjunc- 502
tion with regularization. Notably, with the exception of 503
OR regularization (configs #7,#8), WR significantly re- 504
duces both the observed CN and Fréchet Inception Distance 505
(FID), especially when δ is sufficiently large, while con- 506
currently improving classification accuracy relative to the 507
non-reparametrized baseline (configs #2,#3,#4 vs #1 and 508
#6 vs #5). This behavior is observed across a range of δ 509
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Regularizer WR (W + δI) Acc ↑ Observed CN ↓ FID Score ↓ config
No No 9.23 1.85× 1029 6.44× 1015 #1
No Yes, δ = 106 58.46 2.022 7.16 #2
No Yes, δ = 105 83.07 154.52 8.88 #3
No Yes, δ = 101 83.07 5.01× 1011 92.04 #4
CN No 9.23 3× 109 3973.2 #5
CN Yes, δ = 101 44.23 1.015 15.85 #6
OR No 93.84 5.410 10.18 #7
OR Yes, δ = 101 81.53 1.010 8.70 #8

Table 5. This table shows the impact of different regularizers (OR
and CN) and WR (for different setting of δ) when taken individ-
ually and combined. Here Acc (accuracy), observed CN and FID
scores are shown on the SBU dataset. Best results are shown in
bold and second best results underlined.

Regularizer WR (W + δI) Acc ↑ Observed CN ↓ FID Score ↓ config
No No 54.78 2.91× 1022 5.30× 109 #1
No Yes, δ = 106 2.26 4.666 6.32 #2
No Yes, δ = 105 54.78 32.362 5.87 #3
No Yes, δ = 101 57.04 1.19× 1011 13.33 #4
CN No 2.08 2.89× 1030 1.86× 1012 #5
CN Yes, δ = 101 64.17 1.000 7.05 #6
OR No 75.65 1.052 2.37 #7
OR Yes, δ = 101 68.34 1.055 5.54 #8

Table 6. This table shows the impact of different regularizers (OR
and CN) and WR (for different setting of δ) when taken individ-
ually and combined. Here Acc (accuracy), observed CN and FID
scores are shown on the FPHA dataset. Best results are shown in
bold and second best results underlined.

values. An overestimated δ (config #2) imposes excessive510
rigidity, resulting in minimal FID and CN values. How-511
ever, this rigidity impedes the network’s ability to minimize512
cross-entropy, thereby compromising classification accu-513
racy. Conversely, an underestimated δ (config #4) grants514
higher model flexibility, facilitating effective cross-entropy515
minimization. Nevertheless, this leads to limited general-516
ization, evidenced by elevated FID and CN scores, indicat-517
ing out-of-distribution exemplars. An intermediate δ value518
(config #3) achieves a more favorable balance, optimizing519
the efficacy of reparametrization. When combined with CN520
regularization (config #6), the reparametrization exhibits re-521
duced dependency on large δ values, and effectively mit-522
igates FID and CN, diminishing the criticality of precise523
δ tuning with large values. Consequently, the selection524
of δ becomes easier. Across all experimental results, OR525
(configs #7,#8) provides a consistent and notable improve-526
ment in accuracy, FID and observed CN, with or without527
reparametrization. This confirms the effectiveness of OR as528
a stronger regularizer against CN.529

5. Conclusion530

This paper introduces a label-efficient method for skeleton-531
based action recognition using graph convolutional net-532
works (GCNs). By minimizing the need for extensive la-533
beled data, this approach enhances the practicality of GCNs534

in scenarios with limited annotation. The primary contribu- 535
tion of this work lies in the design of a new acquisition func- 536
tion as the solution of an objective function. This function 537
balances representativity, diversity, and uncertainty, yield- 538
ing a solution that optimally reflects the underlying data dis- 539
tribution. Furthermore, we upgrade our design by making 540
our GCNs bidirectional and stable thereby yielding learned 541
latent spaces with enhanced representational and discrim- 542
inative power. Extensive experiments on two challeng- 543
ing skeleton-based recognition datasets validate the efficacy 544
and superior performance of our method. 545

Appendix 546

Sketch of the Proof (Proposition 2). Given a metric space 547
(A, dA), where dA denotes the metric on the set A (by de- 548
fault dA is taken as ℓ2 and A as Rp); considering a sub- 549
sumed version of our GCNs, and using the Lipschitz conti- 550
nuity, one may write dA(f(ϕ11), f(ϕ

1
2)) = (∗) with 551

(∗) = dA(gL(W
⊤
Lϕ

L−1
1 ), gL(W

⊤
Lϕ

L−1
2 )) 552

≤ u dA(W
⊤
Lϕ

L−1
1 ,W⊤

Lϕ
L−1
2 ) 553

≤ u.∥WL∥A dA(ϕ
L−1
1 , ϕL−1

2 ) 554

≤ uL−1∥WL∥A . . . ∥W2∥A dA(ϕ
1
1, ϕ

1
2), 555

being ϕ11, ϕ12 two network inputs. From above inequality, 556
it follows that dA(f(ϕ11), f(ϕ

1
2)) ≤ K dA(ϕ

1
1, ϕ

1
2) with 557

K = uL−1
∏

ℓ ∥Wℓ∥A. Similarly for f−1, given an out- 558
put ϕL, f−1(ϕL) = ϕ1 with ϕℓ−1 = (W⊤

ℓ )
−1g−1

ℓ (ϕℓ); 559
considering two network outputs ϕL1 , ϕL2 , one may write 560
dA(f

−1(ϕL1 ), f
−1(ϕL2 )) = (∗) with 561

(∗) = dA((W
⊤
2 )

−1g−1
2 (ϕ21), (W

⊤
2 )

−1g−1
2 (ϕ22)) 562

≤ ∥(W⊤
2 )

−1∥A dA(g
−1
2 (ϕ21), g

−1
2 (ϕ22)) 563

≤ ∥(W⊤
2 )

−1∥A (1/l) dA(ϕ
2
1, ϕ

2
2) 564

≤
∏

ℓ ∥(W⊤
ℓ )

−1∥A (1/l)L−1 dA(ϕ
L
1 , ϕ

L
2 ). 565

It follows that dA(f−1(ϕL1 ), f
−1(ϕL2 )) ≤ MdA(ϕ

L
1 , ϕ

L
2 ) 566

with M = (1/l)L−1
∏

ℓ ∥(W⊤
ℓ )

−1∥A. Now by combing- 567
ing K and M , the KM-Lipschitz constant can be obtained 568
as 569

KM = (u/l)L−1 (1/l)L−1
L−1∏
ℓ=1

∥(Wℓ)∥A∥W−1
ℓ ∥A

≤ (κ u/l)L−1.

570

571
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tial active learning for image classification. In IEEE Inter-621
national Conference on Machine Learning and Applications622
(ICMLA), pages 1265–1270, 2020. 2623

[15] J.-F. Hu, W. Yang, L. Duan, and J. Yuan. Jointly learn-624
ing heterogeneous features for rgb-d activity recognition. In625
IEEE Conference on Computer Vision and Pattern Recogni-626
tion (CVPR), pages 3696–3704, 2015. 1, 6627

[16] Z. Huang and L. Van Gool. A riemannian network for spd628
matrix learning. In AAAI Conference on Artificial Intelli-629
gence (AAAI), pages 2206–2212, 2017. 1, 6630

[17] Z. Huang, R. Wang, and S. Shan. Building deep networks 631
on grassmann manifolds. In AAAI Conference on Artificial 632
Intelligence (AAAI), pages 3669–3676, 2018. 1, 6 633

[18] Y. Ji, Y. Wang, and Y. Liu. Interactive body part contrast min- 634
ing for human interaction recognition. In IEEE International 635
Conference on Multimedia and Expo Workshops (ICMEW), 636
pages 1–6, 2014. 1, 6 637

[19] A. Kacem, G. R. Naik, and R. Chellappa. A novel geometric 638
framework on gram matrix trajectories for human behavior 639
understanding. IEEE Transactions on Pattern Analysis and 640
Machine Intelligence (IEEE Trans. Pattern Anal. Mach. In- 641
tell.), 42(1):109–122, 2018. 1, 6 642

[20] T. Kim and Others. Batch active learning with ensembles. 643
In International Conference on Learning Representations 644
(ICLR), 2023. 2 645

[21] Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. 646
Bayesian batch active learning via determinantal point pro- 647
cesses. In Advances in Neural Information Processing Sys- 648
tems (NeurIPS), pages 13837–13851, 2022. 2 649

[22] Y. Kondo and Others. Active learning for vision transformers 650
with noisy data. In Proceedings of the IEEE/CVF Interna- 651
tional Conference on Computer Vision (ICCV). IEEE/CVF, 652
2023. 2 653

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 654
Imagenet classification with deep convolutional neural net- 655
works. Advances in neural information processing systems 656
(NeurIPS), 25:1097–1105, 2012. 1 657

[24] S. Li, J. Liu, C. Lan, and A. Shahroudy. Global co- 658
occurrence feature learning and active coordinate system 659
conversion for skeleton-based action recognition. In IEEE 660
Winter Conference on Applications of Computer Vision 661
(WACV), pages 1966–1975, 2020. 1, 6 662

[25] W. Li, C. Lan, J. Liu, and S. Z. Li. Category-blind human 663
action recognition: A practical recognition system. In IEEE 664
International Conference on Computer Vision (ICCV), pages 665
4207–4215, 2015. 1, 6 666

[26] Jun Liu and Atiq Shahroudy. A survey of handcrafted 667
and deep learning-based features for skeleton-based action 668
recognition. IEEE Transactions on Pattern Analysis and Ma- 669
chine Intelligence, 44(10):6982–7001, 2022. 1 670

[27] J. Liu, A. Shahroudy, G. Xu, and D. G. Kotzias. Spatio- 671
temporal lstm with trust gates for 3d human action recogni- 672
tion. In European Conference on Computer Vision (ECCV), 673
pages 816–833, 2016. 1, 6 674

[28] J. Liu, A. Shahroudy, D. Xu, and G. Xu. Skeleton-based 675
human action recognition with global context-aware atten- 676
tion lstm networks. IEEE Transactions on Image Processing 677
(IEEE Trans. Image Process.), 27(4):1564–1575, 2017. 1, 6 678

[29] J. Liu, C. Lan, and A. Shahroudy. Han: An efficient hi- 679
erarchical self-attention network for skeleton-based gesture 680
recognition. arXiv:2106.13391, 2021. 1, 6 681

[30] M. Maghoumi and J. J. LaViola. Deepgru: Deep gesture 682
recognition utility. In International Symposium on Visual 683
Computing (ISVC), pages 126–140, 2019. 1, 6 684

9



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[31] Baharan Mirzasoleiman, Mohammad Rouhani, and Jeff685
Bilmes. Graph-based diversity for active learning. In In-686
ternational Conference on Machine Learning (ICML), pages687
2482–2496, 2023. 2688

[32] E. Ohn-Bar and M. M. Trivedi. Hand gesture recognition689
in real time for automotive interfaces: A multimodal vision-690
based approach and evaluations. IEEE Transactions on In-691
telligent Transportation Systems (IEEE Trans. Intell. Transp.692
Syst.), 15(6):2464–2477, 2014. 1, 6693

[33] O. Oreifej and Z. Liu. Hon4d: Histogram of oriented 4d694
normals for activity recognition from depth sequences. In695
IEEE Conference on Computer Vision and Pattern Recogni-696
tion (CVPR), pages 716–723, 2013. 1, 6697

[34] Dongseok Park, Jongheon Kim, and Jaegul Lee. Skeleton698
augmentation with motion consistency for 3d action recogni-699
tion. In Proceedings of the IEEE/CVF International Confer-700
ence on Computer Vision (ICCV), pages 1123–1132, 2023.701
1702

[35] Carlo Plizzari, Marco Cannici, and Matteo Matteucci.703
Spatio-temporal transformer for skeleton-based action704
recognition. In Proceedings of the IEEE/CVF Conference705
on Computer Vision and Pattern Recognition (CVPR), pages706
1656–1665, 2023. 1707

[36] H. Rahmani and A. Mian. 3d action recognition from novel708
viewpoints. In IEEE Conference on Computer Vision and709
Pattern Recognition (CVPR), pages 1049–1058, 2016. 1, 6710

[37] Yuan Ren, Xiaojun Chang, Xiaodan Liang, and Chi Zhang.711
Learning deep active learning for image classification. In712
Proceedings of the IEEE Conference on Computer Vision713
and Pattern Recognition (CVPR), pages 7014–7023, 2018.714
2715

[38] Ozan Sener and Silvio Savarese. Active learning for convolu-716
tional neural networks: A core-set approach. In International717
Conference on Learning Representations (ICLR), 2018. 2718

[39] B. Settles. Active learning literature survey. Technical report,719
University of Wisconsin–Madison, 2009. 1, 7720

[40] Burr Settles and Mark Craven. Active learning with real-721
world data. In Proceedings of the 2010 workshop on Active722
learning for robotics, pages 1–8, 2010. 2723

[41] H. Sebastian Seung, Manfred Opper, and Haim Sompolin-724
sky. Query by committee. Proceedings of the fifth annual725
workshop on Computational learning theory, pages 287–726
294, 1992. 2727

[42] C. Shorten and T. M. Khoshgoftaar. A survey on image data728
augmentation for deep learning. Journal of Big Data (J. Big729
Data), 6(1), 2019. 1730

[43] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu. An end-to-731
end spatio-temporal attention model for human action recog-732
nition from skeleton data. In AAAI Conference on Artificial733
Intelligence (AAAI), pages 4209–4215, 2017. 1, 6734

[44] R. Vemulapalli, A. Agarwala, and R. Chellappa. Human ac-735
tion recognition by representing 3d skeletons as points in a736
lie group. In IEEE Conference on Computer Vision and Pat-737
tern Recognition (CVPR), pages 2660–2667, 2014. 1, 6738

[45] K. Wang, J. Wang, L. Wang, G. Li, and Y. Li. Cost-effective 739
object detection: Active sample mining with switchable se- 740
lection criteria. CoRR, abs/1807.00147, 2018. 1, 2 741

[46] Dongyang Wei, Yong Li, and Jie Tang. Towards balanced 742
active learning: A deep reinforcement learning approach. In 743
Proceedings of the 26th ACM SIGKDD International Con- 744
ference on Knowledge Discovery & Data Mining (KDD), 745
pages 1025–1034, 2020. 2 746

[47] J. Wu, S. Chen, H. Yang, J. Li, and X. Cao. Adaptive diver- 747
sity promoting for active learning. In Advances in Neural In- 748
formation Processing Systems (NeurIPS), pages 3306–3319, 749
2022. 2 750

[48] Y. C. Wu. Active learning based on diversity maximization. 751
Applied Mechanics and Materials (Appl. Mech. Mater.), 347: 752
697–700, 2013. 2 753

[49] D. Yoo and I. S. Kweon. Learning loss for active learning. 754
In IEEE Conference on Computer Vision and Pattern Recog- 755
nition (CVPR), pages 3263–3272, 2019. 2 756

[50] Yuning You, Tianlong Chen, and Zhangyang Wang. 757
Graph active learning: A survey. In arXiv preprint 758
arXiv:2307.03823, 2023. 2 759

[51] K. Yun, J. H. Kim, and J. Y. Choi. Two-person interaction de- 760
tection using body-pose features and multiple instance learn- 761
ing. In IEEE Conference on Computer Vision and Pattern 762
Recognition Workshops (CVPRW), pages 578–583, 2012. 1, 763
5, 6 764

[52] M. Zanfir, A. Zanfir, and C. Sminchisescu. The moving pose: 765
An efficient 3d kinematics descriptor for low-latency action 766
recognition and detection. In IEEE International Conference 767
on Computer Vision (ICCV), pages 1425–1432, 2013. 1, 6 768

[53] P. Zhang, W. Li, and W. Ouyang. View adaptive recurrent 769
neural networks for high performance human action recog- 770
nition from skeleton data. In IEEE International Conference 771
on Computer Vision (ICCV), pages 2235–2244, 2017. 6 772

[54] S. Zhang, X. Liu, and J. Liu. On geometric features for 773
skeleton-based action recognition using multilayer lstm net- 774
works. In IEEE Winter Conference on Applications of Com- 775
puter Vision (WACV), pages 148–157, 2017. 1 776

[55] X. Zhang, R. Vemulapalli, and R. Chellappa. Efficient tem- 777
poral sequence comparison and classification using gram 778
matrix embeddings on a riemannian manifold. In IEEE 779
Conference on Computer Vision and Pattern Recognition 780
(CVPR), pages 4043–4051, 2016. 1, 6 781

[56] X. Zhang, Y. Li, and J. Tang. Multi-objective active learn- 782
ing for diverse data. In Proceedings of the 28th ACM 783
SIGKDD Conference on Knowledge Discovery and Data 784
Mining (KDD), pages 1415–1425, 2022. 2, 7 785

[57] Tianyu Zhao, Yong Li, and Jie Tang. Active learning with 786
large language models. In arXiv preprint arXiv:2310.08507, 787
2023. 2 788

[58] X. Zhao, Y. Li, and J. Tang. Uncertainty-aware active learn- 789
ing for point cloud semantic segmentation. In IEEE Interna- 790
tional Conference on Computer Vision (ICCV), pages 1426– 791
1436, 2023. 2, 7 792

10



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[59] W. Zhu, C. Lan, J. Xing, W. Zeng, and Y. Chen. Co-793
occurrence feature learning for skeleton based action recog-794
nition using regularized deep lstm networks. In AAAI Con-795
ference on Artificial Intelligence (AAAI), pages 2597–2603,796
2016. 1, 6797

11


	Introduction
	 Display Model
	Display model design

	Learning Model
	Graph convnets at a glance
	Proposed stable bidirectional GCNs
	Weight reparametrization

	Experiments
	Display model: comparison & ablation
	Regularization and weight reparametrization

	Conclusion

