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Abstract

Dynamic concepts in time series are crucial for understanding complex systems
such as financial markets, healthcare, and online activity logs. These concepts
help reveal structures and behaviors in sequential data for better decision-making
and forecasting. Existing models struggle with detecting and tracking concept
drift due to limitations in interpretability and adaptability. This paper introduces
Kolmogorov-Arnold Networks (KAN) into time series and proposes WormKAN,
a KAN-based auto-encoder to address concept drift in co-evolving time series.
WormKAN integrates the KAN-SR module, in which the encoder, decoder, and self-
representation layer are built on KAN, along with a temporal constraint to capture
concept transitions. These transitions, akin to passing through a "wormhole", are
identified by abrupt changes in the latent space. Experiments show that KAN and
KAN-based models (WormKAN) effectively segment time series into meaningful
concepts, enhancing the identification and tracking of concept drifts.

1 Introduction

Time series analysis plays a crucial role in various fields such as finance, healthcare, and meteorology.
Recently, deep learning models have made significant strides in forecasting tasks. Notable advance-
ments include CARD [34], which aligns channels within transformers for accuracy, and TimeMixer
[33], which employs a multiscale mixing approach. MSGNet [4] leverages inter-series correlations for
multivariate forecasting, while Crossformer [45] exploits cross-dimensional dependencies. DeepTime
[36] improves forecasting by integrating time indices into its structure. Additionally, large language
models (LLMs) like Time-LLM [18] and UniTime [23] have been integrated into time series, opening
new avenues for zero-shot and cross-domain forecasting.

Despite these advancements, a critical challenge remains – the ability to detect and track concept
drift, particularly in co-evolving time series where multiple series exhibit interdependent behavior
over time. Concept drift – changes in a series’ statistical properties – can significantly degrade model
performance. This is crucial, particularly in fields like finance, where shifts in market regimes and
nonlinear relationships are just as important as prediction accuracy for decision-makers. While recent
methods like CluStream [1] and DenStream [5] improve scalability, they often fail to capture temporal
dependencies and dynamic transitions. Deep learning models such as OneNet [35] and FSNet [29]
tackle concept drift but prioritize predictive accuracy over understanding the underlying concepts.

Kolmogorov-Arnold Networks (KAN) [25] offer a promising solution to the challenges of concept
drift in time series analysis. Inspired by the Kolmogorov-Arnold representation theorem [21, 20],
KAN replaces linear weights with spline-parametrized univariate functions, allowing the model to
learn more complex relationships while improving both accuracy and interpretability. A notable
advantage of KAN is its ability to refine spline grids, offering deeper insights into how inputs influence
outputs, making the network’s decision-making process more transparent. However, while KAN has
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demonstrated strong performance with smaller network sizes across various tasks, its effectiveness in
identifying and tracking concept drift within the time series domain remains unexplored1.

To this end, our goal is to propose a KAN-based model for addressing concept drift in time series and
evaluate its effectiveness. We introduce WormKAN, a concept-aware KAN-based auto-encoder for
co-evolving time series. WormKAN leverages the KAN-SR module, which consists of a KAN-based
encoder and decoder, along with a self-representation layer and a temporal smoothness constraint
to detect dynamic concept transitions. The key innovation lies in identifying these transitions
by detecting abrupt changes in the latent space, metaphorically described as “passing through a
wormhole.” These transitions mark shifts to new behavior concepts, providing clear boundaries
between different segments. Through experiments, we demonstrate that both the original KAN model
and WormKAN effectively identify and track concept drift in time series.

2 WormKAN

We introduce WormKAN, a framework for concept-aware deep representation learning in co-evolving
time sequences. The model uses Kolmogorov-Arnold Networks (KAN) in both the encoder and
decoder, with a self-representation layer implemented as a 2-layer KAN. Combined with a temporal
smoothness constraint, this architecture captures dynamic concepts and their transitions. To process
co-evolving sequences, we segment the multivariate time series S using a sliding window, resulting
in segments W = w1,w2, . . . ,wn, where each wi contains multiple time steps and channels. The
framework is illustrated in Figure 1.

2.1 Kolmogorov-Arnold Networks

Kolmogorov-Arnold Networks (KAN) leverage the Kolmogorov-Arnold representation theorem
[21], which states that any multivariate continuous function can be represented using univariate
functions. Specifically, a function f(x1, x2, . . . , xn) can be expressed as f(x1, x2, . . . , xn) =∑2n+1

q=1 Φq

(∑n
p=1 φq,p(xp)

)
, where φq,p and Φq are univariate functions. KAN replaces linear

weights with learnable univariate functions, often parametrized using splines, allowing complex
nonlinear relationships to be modeled with fewer parameters and greater interpretability. Inputs xp

are transformed by φq,p(xp), aggregated, and passed through Φq. Stacking multiple KAN layers
allows the network to capture intricate patterns while maintaining interpretability, with the deeper
architecture described as KAN(x) = (ΦL−1 ◦ · · · ◦ Φ0)(x), where L is the total number of layers.

2.2 KAN-Based Deep Representation Learning

WormKAN utilizes KAN to learn robust representations of co-evolving sequences through the
KAN-SR module, which comprises an Encoder, a Self-Representation Layer, and a Decoder.

Encoder: The encoder employs a KAN to map input segments W into a latent representation space.
Specifically, the encoder performs a nonlinear transformation ZΘe = KANΘe(W), where KANΘe

is the encoding function implemented using KAN, and ZΘe represents the latent representations.

Self-Representation Layer: Implemented as a 2-layer KAN (only input and output layers), this
layer captures intrinsic relationships among the latent representations and enforces that each latent
representation can be expressed as a combination of others: ZΘe

= ZΘe
Θs, where Θs ∈ Rn×n is

the self-representation coefficient matrix learned by the KAN. Each column θs,i of Θs represents
the weights used to reconstruct the i-th latent representation from all latent representations. To
promote sparsity in Θs and highlight the most significant relationships, we introduce an ℓ1 norm
regularization: Lself(Θs) = ∥Θs∥1.

Decoder: The decoder reconstructs the input segments from the refined latent representations using
another KAN network: ŴΘ = KANΘd

(ẐΘe
), where KANΘd

is the decoding function implemented
using KAN, and ŴΘ represents the reconstructed time series segments.

Temporal Smoothness Constraint: To ensure that the latent representations vary smoothly over
time, we incorporate a temporal smoothness constraint on Θs. We define a difference matrix

1Due to the space limit, more related works in the Appendix A.
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Figure 1: WormKAN. From the parameters of the self-representation layer, we construct an affinity
matrix, which we use to get the concept.

R ∈ Rn×(n−1), where Ri,i = −1 and Ri,i+1 = 1. The product ΘsR captures the differences
between consecutive columns: ΘsR = [θs,2 −θs,1, θs,3 −θs,2, . . . , θs,n −θs,n−1]. The temporal
smoothness constraint is defined as Lsmooth(Θs) = ∥ΘsR∥1,2, where ∥ · ∥1,2 denotes the sum of the
ℓ2 norms of the columns. This constraint penalizes large deviations, promoting smooth transitions
and effectively capturing dynamic concept changes, see details in Appendix B.

Loss Function: Training involves minimizing a loss function that combines reconstruction loss,
self-representation regularization, and the temporal smoothness constraint:

L(Θ) = 1
2∥W − ŴΘ∥2F + λ1∥Θs∥1 + λ2∥ZΘe − ZΘeΘs∥2F + λ3∥ΘsR∥1,2, (1)

where Θ = {Θe,Θs,Θd} includes all learnable parameters, with λ1, λ2, and λ3 balancing the
different loss components. Specifically, λ1 promotes sparsity in the self-representation Θs, λ2

preserves the self-representation property by minimizing the difference between ZΘe
and ZΘe

Θs,
and λ3 ensures temporal smoothness by reducing deviations in the temporal difference matrix ΘsR.

2.3 Concept Transition Detection

Concept space1 Concept space2

Concept space3

Throat of the wormhole

Concept Drift Space

Figure 2: Concept transition through
"wormhole".

Once the self-representation coefficient matrix Θs is ob-
tained, the next step is to segment the matrix to identify
concept transitions. Unlike most methods, we do not re-
quire the number of concepts to be known beforehand.

Concept transitions can be viewed as passing through
"wormholes," where boundaries between concepts indicate
rapid shifts in behavior. These boundaries are detected
by analyzing the self-representation matrix ΘsR. Signifi-
cant deviations in ΘsR signal concept changes, with large
shifts indicating transitions between disconnected concept
spaces. Within a segment, columns of ΘsR should be
near zero, while deviations suggest boundaries between
segments, akin to transitioning through a wormhole to a
new concept space (Figure 2). To pinpoint these transi-
tions, we compute the absolute value matrix B = |ΘsR|
and calculate the vector of the column-wise means. A peak-finding algorithm is then applied to the
vector, where peaks correspond to concept transition points, effectively detecting dynamic changes in
the time series structure (see Appendix C for details).

3 Experiments

In this section, we first evaluate the original KAN model’s effectiveness in detecting concept drift,
followed by experiments validating the performance of WormKAN for concept-aware deep represen-
tation learning in co-evolving time series.
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Figure 3: Training original KAN and detecting concept drift.

Figure 4: WormKAN identifies concepts and transitions on co-evolving motion series.

Table 1: Comparison of WormKAN and baseline models.

Dataset Metric StreamScope TICC AutoPlait WormKAN

Motion Capture Data F1-Score 0.84 0.48 0.87 0.90
ARI 0.60 0.22 0.60 0.65

Stock Market Data F1-Score 0.75 0.32 0.80 0.86
ARI 0.62 0.20 0.74 0.82

Online Activity Logs F1-Score 0.92 0.80 0.90 0.94
ARI 0.85 0.75 0.83 0.90

3.1 Original KAN Model Evaluation

As illustrated in Figure 3, we use a sliding window to traverse the synthetic time series, creating
input-output pairs for training the KAN model. For simplicity, two historical time steps predict
the next step. Different KAN structures and activation functions represent different concepts, and
observing variations in KAN can reveal concept drift. For example, the learnable activation functions
in KAN1, KAN4, and KAN5 behave consistently, indicating they are within the same concept. Details
on the synthetic data used, the results on real-world datasets, as well as the KAN model’s parameter
settings, can be found in the Appendix D.1.

3.2 WormKAN Performance and Baseline Comparison

We evaluated WormKAN using three co-evolving time series datasets: human motion, financial
markets, and online activity logs (details in the Appendix D.2). WormKAN was compared against
StreamScope [19], TICC [15], and AutoPlait [27], which are methods for discovering patterns in
co-evolving series. The results in Table 1 show that WormKAN outperforms all baselines.

We also visualized the concept transitions detected by WormKAN on the Motion Capture Data.
Figure 4 illustrates time series segments with marked transitions between different motion types, such
as walking and dragging. These visualizations highlight WormKAN’s ability to accurately detect
boundaries between different types of activity, reinforcing its effectiveness in identifying dynamic
changes in co-evolving sequences.

4 Conclusion

This work demonstrates the effectiveness of Kolmogorov-Arnold Networks (KANs) in detecting
concept drift in time series. We introduced WormKAN, which outperforms baseline models in
identifying concept transitions across various datasets. Our results highlight KANs’ potential for
robust, adaptive modeling in dynamic time series environments.
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Supplementary Materials

In this document, we have gathered all the results and discussions that, due to page limitations, were
not included in the main manuscript.

Appendix

A Extended Related Work

B Expanded Explanation of Temporal Smoothness Constraint

C Concept Identification

D Additional Experiments

A Extended Related Work

A.1 Kolmogorov-Arnold Networks (KAN)

Kolmogorov-Arnold Networks (KAN) represent a recent innovation proposed by the MIT team [25].
KAN is a novel neural network architecture designed as a potential alternative to MLPs, inspired by
the Kolmogorov-Arnold representation theorem [21, 20, 3]. Unlike MLPs, KAN applies activation
functions on the connections between nodes, with these functions being capable of learning and
adapting during training. By replacing linear weights with spline-parametrized univariate functions
along the network edges, KAN enhances both the accuracy and interpretability of the network. A
significant advantage of KAN is that a spline can be made arbitrarily accurate to a target function
by refining the grid. This design not only improves network performance but also enables them to
achieve comparable or superior results with smaller network sizes across various tasks [25, 32, 13].

Theoretical Foundation. The Kolmogorov-Arnold representation theorem states that any multivariate
continuous function can be decomposed into a finite sum of compositions of univariate functions
[21]. Formally, the theorem is expressed as:

f(x1, . . . , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

φq,p(xp)

)
, (2)

where φq,p are univariate functions that map each input variable xp, and Φq are continuous functions.
This allows KAN to model complex interactions in high-dimensional data through compositions of
simpler univariate functions.

Network Architecture. KAN leverages the Kolmogorov-Arnold representation theorem by replacing
traditional linear weights in neural networks with spline-parametrized univariate functions. Unlike
conventional Multi-Layer Perceptrons (MLPs), which use fixed activation functions at the nodes,
KAN applies adaptive, learnable activation functions on the edges between nodes. These functions
are parametrized as B-spline curves, which adjust dynamically during training to better capture
the underlying data patterns. This unique structure enables KAN to effectively capture complex
nonlinear relationships within the data. Formally, a KAN layer can be defined as Φ = {φq,p}, p =
1, 2, . . . , nin, q = 1, 2, . . . , nout,, where φq,p are parametrized functions with learnable parameters.
This structure allows KAN to capture complex nonlinear relationships within the data more effectively
than traditional Multi-Layer Perceptrons (MLPs).

To extend the capabilities of KAN, deeper network architectures have been developed. A deeper
KAN is essentially a composition of multiple KAN layers [25], enhancing its ability to model more
complex functions. The architecture of a deeper KAN can be described as:

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ . . . ◦ Φ0)(x), (3)
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Figure 5: Predictive and Interpretable Capabilities of KAN in Time Series.

where each Φl represents a KAN layer. The depth of the network (i.e., the number of layers) allows it
to capture more intricate patterns and dependencies in the data. Each layer l transforms the input x
through a series of learnable functions φq,p, making the network highly adaptable and powerful.

Symbolic Regression for Interpretability. Symbolic regression is incorporated into KAN to
enhance interpretability by fitting mathematical expressions to the learnable activation functions. This
approach allows us to generate human-readable models that explain the underlying patterns in the
data. In our time series application of KAN, symbolic regression decodes the nonlinear relationships
between predictions and prior time steps, significantly improving interpretability, see Figure 5.

Limitation of KAN. Despite the advantages, the implementation of KAN is typically 10 times slower
to train compared to MLPs with the same number of parameters. This inefficiency arises because
KAN’ diverse activation functions cannot fully leverage batch processing. A potential solution is
to group activation functions into "heads" that share the same function, balancing between KAN
and MLPs. For fast training needs, MLPs are preferable, but KAN is valuable for tasks requiring
interpretability and complex relationship modeling.

KAN on Time Series. Kolmogorov-Arnold Networks (KAN) have been increasingly applied to time
series analysis, demonstrating their adaptability and effectiveness in modeling complex temporal
patterns. Vaca-Rubio et al. [32] explored the potential of KAN for time series analysis, showing how
KAN’s structure enhances interpretability while maintaining predictive power. Xu et al. [43, 42]
further advanced KAN’s application by bridging the gap between prediction accuracy and model
interpretability, providing a balanced approach to time series forecasting. Genet and Inzirillo intro-
duced the Temporal Kolmogorov-Arnold Network (TKAN) [13], leveraging the unique architecture
of KAN to model temporal dependencies. Their work demonstrated that TKAN could outperform
traditional methods in forecasting tasks. They further extended this concept with the Kolmogorov-
Arnold Transformer (KAT) [12], which combines KAN with transformer-based architectures to boost
the performance of time series forecasting models. Dong et al. [10] applied KAN to time series
classification and robust analysis, highlighting KAN’s strengths in handling noisy and incomplete
data, while Huang et al. [17] focused on its use in resource-constrained environments. Their study on
abnormality detection in bio-signal time series demonstrated the lightweight nature of KAN, making
it suitable for edge devices in healthcare applications.

A.2 Concept Drift in Time Series

Concept drift has been a significant challenge in time series analysis, particularly in streaming
data environments where the underlying data distributions may change over time [39]. Traditional
models such as Hidden Markov Models (HMM) and Autoregression (AR) have been widely used
but often lack adaptability in the presence of continuous data streams. Recent advancements, such
as OrbitMap [26] and TKAN [43], have improved scalability but still face challenges in capturing
temporal dependencies and dynamic transitions. Additionally, models like Cogra [28] and Dish-
TS [11] have introduced techniques to address concept drift by incorporating stochastic gradient
descent and distribution shift alleviation, respectively.
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Co-Evolving Sequences and Dynamic Concept Identification. The identification of dynamic
concepts in co-evolving sequences is crucial for understanding complex temporal patterns. Various
methods have been proposed to segment time series data into meaningful patterns, including the
use of hierarchical HMM-based models like AutoPlait [27], Kernel-based models [40, 38, 41] and
Clustering-based methods [7, 8, 15].

Deep Representation Learning for Time Series. Deep learning techniques have gained traction
in temporal data analysis, offering powerful tools for representation learning. OneNet [35] and
FSNet [29] are notable examples that enhance time series forecasting by adapting to concept drift.
However, these models primarily aim to improve predictive accuracy rather than offering insights into
the concept identification process. Informer [46], TIMESNET [37], Triformer [9], and Non-stationary
Transformers [24] further extend the capabilities of deep learning models in handling long sequence
time-series forecasting and non-stationary behaviors in time series.

Concept-Aware Models. The idea of concept-aware models, which can detect transitions between
different behaviors or patterns, has been explored in various domains. StreamScope [19] and the
Generative Learning model [16] for financial time series have contributed to this area by automatically
discovering patterns in co-evolving data streams. Other approaches such as online boosting adaptive
learning [44], temporal domain generalization via concept drift simulation [6], and drift-aware
dynamic neural networks [2] have also been proposed to handle concept drift in temporal data.
However, these models do not explicitly address the interpretability of the learned representations, a
gap that Wormhole seeks to fill by providing clear demarcations of concept transitions, enhancing the
understanding of dynamic temporal patterns.

B Expanded Explanation of Temporal Smoothness Constraint

In the main text, we introduced the temporal smoothness constraint, which ensures that the latent
representations vary smoothly over time. This constraint is critical in capturing gradual transitions
and dynamic concept changes in time series data. Here, we provide a more detailed explanation of
the underlying components and their formulation.

Definition of the Difference Matrix:

The key element of the temporal smoothness constraint is the difference matrix R. This matrix
captures the differences between consecutive columns of the self-representation matrix Θs, ensuring
smooth transitions across time steps. Formally, R ∈ Rn×(n−1) is defined as:

R =


−1 0 0 · · · 0
1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . . . . .

...
0 0 0 1 −1


Each row of R captures the difference between two consecutive columns in Θs. By multiplying Θs

with R, we compute the differences between consecutive time steps as follows:

ΘsR = [θs,2 − θs,1, θs,3 − θs,2, . . . , θs,n − θs,n−1].

This constraint measures how the latent representations change over time and is used to enforce
smoothness.

C Concept Identification

Once a solution to Θs has been found, the next step is to segment the coefficient matrix Θs to find
the concept. We discuss methods for segmentation depending on amount and type of prior knowledge
about the original data. Unlike most methods, we do not require the number of concepts to be known
beforehand.

• If we assume that concept is drawn from a set of disconnected subspaces, i.e., Θs is block
diagonal, we can use the information encoded by ΘsR to identify the boundaries between

10



concepts. Ideally, columns of ΘsR, such as θs,i − θs,i−1, that are within a segment should
be close to the zero vector, as columns from the same subspace exhibit similarity. Columns
of ΘsR that significantly deviate from the zero vector indicate the boundary of a segment,
as this deviation suggests a lower degree of similarity. First, let B = (|ΘsRij |) represent
the absolute value matrix of ΘsR. Then, let µB be the vector of column-wise means of
B. We then apply a peak-finding algorithm to µB to locate the segment boundaries. This
method, which we refer to as "intrinsic segmentation," effectively identifies transitions
between distinct segments within the time series.

• Alternatively, if Θs is block diagonal and noiseless, we can analyze the eigenspectrum of
Θs to determine the number and size of each concept segment. Using the eigengap heuristic,
we identify a set of explanatory eigenvalues, where the number of eigenvalues indicates the
number of concept segments, and the magnitude of each eigenvalue represents the segment
size. If Θs contains noise, the eigengap heuristic may fail to accurately determine the
segment sizes, but the number of concept segments will still be correct.

• If the number of segments is known beforehand or estimated through eigenspectrum analysis,
we recommend using Ncut [31] to perform the segmentation. Ncut has proven to be robust
in subspace segmentation tasks and is considered state-of-the-art. In cases where Θs is not
block diagonal or contains significant noise, Ncut will provide more accurate segmentation
than previous methods.

D Additional Experiments Details

D.1 Detailed Evaluation of the Original KAN Model

In this subsection, we provide additional details on the evaluation of the original KAN model using
both synthetic data and real-world datasets.

Detail of Datasets. We utilized a financial time series dataset for our experiments due to its complex
and often unpredictable nature, characterized by high volatility and a lack of consistent periodicities.
This dataset comprises daily OHCLV (open, high, close, low, volume) data spanning from January 4,
2012, to June 22, 20222. Our primary objective was to predict the implied volatility of each stock.
Since true volatility cannot be directly observed, we approximated it using an estimator based on
realized volatility. The conventional volatility estimator is defined as: Vt =

√∑n
t=1(rt)

2, where
rt = ln(ct/ct−1) and ct represents the closing price at time t. We also crafted a Synthetic SyD dataset
comprising 500 simulated time series, each generated by a combination of following five nonlinear
functions. The synthetic dataset allows the controllability of the structures/numbers of concepts and
the availability of ground truth. To make a 780-steps long time series, we randomly choose one of
the five functions ten times; every time, this function produces 78 sequential values – which are
considered as a concept.



g1(t) = cos

(
4πt

5

)
+ cos(π(t− 50)) +

t

100

g2(t) = sin

(
πt

3
− 3

)
− sin

(
πt

6

)
+

t

100

g3(t) = 1− sin

(
πt

2
− 3

)
× cos

(
π(t− 3)

6

)
× cos(π(t− 13)) +

t

100

g4(t) = sin

(
πt

2
− 3

)
× cos

(
π(t− 3)

6

)
× cos(π(t− 13)) +

t

100

g5(t) = cos

(
3πt

5

)
+ sin

(
2πt

5
− t

)
+

t

100

(4)

Experimental setup. For the Original KAN Model, we created two variants, T-KAN and MT-KAN,
designed for univariate and multivariate time series, respectively. Both T-KAN and MT-KAN are
implemented using a spline-based parameterization for the univariate functions. Both T-KAN and
MT-KAN are implemented using a spline-based parameterization for the univariate functions. For
the stock datasets, we use a 21-step window, with four such windows (totaling 84 steps) as inputs to
predict the volatility for the next 21 days. We adopt the network structure from the original KAN
paper, utilizing a simple two-layer (the input layer is not accounted as a layer per se) architecture
with only 5 hidden neurons, i.e., [84, 5, 21]. For MT-KAN, we group 5 variables together for input,

2https://ca.finance.yahoo.com/
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Figure 6: Predicted results using a simple T-KAN: true (blue) and forecasted (red) values for the first
six series.

resulting in a structure of [84*5, 5, 21*5]. This configuration allows MT-KAN to model and predict
the interactions between multiple time series more effectively, especially for stock with m = 503
variables. We set the training steps to 20 iterations, followed by a pruning step with a threshold of
5× 10−2, and then another 20 training iterations. This ensures that the models can effectively learn
and adapt to the data while maintaining computational efficiency.

We compare our models against classical models, including MLP [22], RNN [30], and LSTM [14],
rather than the most recent deep learning methods. Given the early stage of KAN development, it is
fair to compare it as a potential alternative to MLPs and other classical methods. This strategy allows
us to better evaluate the performance improvements brought by KAN relative to well-established
architectures in time series forecasting. The evaluation metrics used in this experiment include Mean
Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean squared Error (RMSE).

Results on Real-world Dataset. The results are summarized in Table 2. The best results are
highlighted in bold, and the suboptimal results are underlined. As shown in Table 2, both T-KAN
and MT-KAN achieve competitive results. Specifically, T-KAN, with only a single layer of 5 hidden
neurons, demonstrates efficiency and robustness comparable to other models that use additional
hidden layers or increase the number of hidden neurons. This indicates that even with a simpler
architecture, T-KAN can achieve results close to those of more complex models. MT-KAN leverages
the nonlinear relationships in multivariate time series to improve prediction accuracy compared to
T-KAN.

Furthermore, the efficiency of KAN-based models in terms of parameter count is evident. For
instance, T-KAN has only 193 parameters, significantly fewer than the comparable LSTM model
with [84, 50, 21] configuration, which has 11,671 parameters. Similarly, MT-KAN, with its [84*5,
5, 21*5] configuration, manages to outperform other models while using 2,132 parameters. This
indicates that KAN-based models can achieve high accuracy with fewer parameters.

We visualized the original series (in blue) and the predicted results (in red) for the first 6 stocks
(Nasdaq: MMM, AOS, ABT, ABBV, ABMD, ACN) from the dataset. As shown in Figure 6, despite
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Table 2: Comparison of forecasting performance between T-KAN, MT-KAN, and baseline models.
Model Configuration MSE MAE RMSE Parameters

MLP [84,5,21] 0.0465 0.1774 0.2141 551
MLP [84,50,21] 0.0002 0.0122 0.0157 5321
MLP [84,200,21] 8.92e-5 0.0072 0.0088 21221
MLP [84,5,5,21] 0.0504 0.1798 0.2230 581
MLP [84,50,50,21] 0.0001 0.0103 0.0130 7871
RNN [84,5,21] 0.0541 0.1737 0.2282 166
RNN [84,50,21] 0.0001 0.0079 0.0098 3721
RNN [84,200,21] 8.03e-5 0.0069 0.0083 44821
RNN [84,5,5,21] 0.0497 0.1691 0.2185 226
RNN [84,50,50,21] 0.0001 0.0079 0.0098 8821
LSTM [84,5,21] 0.0132 0.0737 0.1105 286
LSTM [84,50,21] 6.69e-5 0.0066 0.0078 11671
LSTM [84,200,21] 6.52e-5 0.0064 0.0075 166621
LSTM [84,5,5,21] 0.0136 0.0777 0.1124 526
LSTM [84,50,50,21] 6.67e-5 0.0066 0.0076 32071
T-KAN [84,5,21] 6.91e-5 0.0069 0.0078 193
MT-KAN [84*5,5,21*5] 6.37e-5 0.0062 0.0075 2132

having only 2 layers (including the output layer), 5 hidden neurons, and training for only 40 steps,
the predicted values align closely with the original time series.

D.2 Detailed Evaluation of WormKAN

Detail of Datasets. We evaluated WormKAN using three datasets representing different domains
of co-evolving time series. The Motion Capture Streaming Data from the CMU database3 captures
various motions such as walking and dragging, making it ideal for analyzing transitions between
different types of human activities. The Stock Market Data includes historical prices and financial
indicators from 503 companies4, providing a large-scale, high-dimensional dataset to test the model’s
performance in detecting concept changes in financial markets. Lastly, the Online Activity Logs from
GoogleTrend event streams5 include 20 time series of Google queries for a music player from 2004
to 2022, used to evaluate the model’s ability to detect behavioral shifts in user interactions.

Comparison with Baseline Models. To thoroughly evaluate the effectiveness of our WormKAN
model, we compared it with several baseline models. These included StreamScope[19], a scalable
streaming algorithm for automatic pattern discovery in co-evolving data streams; TICC[15], which
segments time series into interpretable clusters based on temporal dynamics; and AutoPlait[27], a
hierarchical HMM-based model for automatic time series segmentation that identifies high-level
patterns.

More detail of Table 1. Table 1 demonstrates that our model consistently outperforms the baseline
models across all datasets. Notably, WormKAN achieves the highest F1-Score and ARI in both Motion
Capture Data and Online Activity Logs, indicating its superior capability in detecting and segmenting
concept transitions. In the Stock Market Data, despite the complexity and high dimensionality,
WormKAN significantly outperforms the baselines, highlighting its robustness in handling large-scale
co-evolving time series.

3MoCap:http://mocap.cs.cmu.edu/
4https://ca.finance.yahoo.com/
5http://www.google.com/trends/
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