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ABSTRACT

LLM-as-a-Judge has been widely adopted across various research and practical
applications, yet the robustness and reliability of its evaluation remain a critical
issue. A core challenge it faces is bias, which has primarily been studied in terms
of known biases and their impact on evaluation outcomes, while automated and
systematic exploration of potential unknown biases is still lacking. Nevertheless,
such exploration is crucial for enhancing the robustness and reliability of evalua-
tions. To bridge this gap, we propose BIASSCOPE, a LLM-driven framework for
automatically and at scale discovering potential biases that may arise during model
evaluation. BIASSCOPE can uncover potential biases across different model fam-
ilies and scales, with its generality and effectiveness validated on the JudgeBench
dataset. Moreover, based on BIASSCOPE, we propose JudgeBench-Pro, an ex-
tended version of JudgeBench and a more challenging benchmark for evaluating
the robustness of LLM-as-a-judge. Strikingly, even powerful LLMs as evaluators
show error rates above 50% on JudgeBench-Pro, underscoring the urgent need to
strengthen evaluation robustness and to mitigate potential biases further.

1 INTRODUCTION

With the optimization of algorithms and model architectures, the field of Al has gradually entered
the second phase—the era of evaluation (Fe1 et al., [2025). Model improvement no longer relies
solely on training; rather, it increasingly depends on practical evaluation to uncover potential short-
comings and guide further enhancement (Gu et al.,|2025)). LLM-as-a-Judge (Zheng et al.| 2023)), as
a promising new paradigm, offers advantages over traditional methods by leveraging the large lan-
guage model (LLM) as a “judge” to evaluate model outputs at scale in diverse and dynamic settings
with automation and consistency (Wei et al., [2025} [Li et al.| 2025). Moreover, LLM-as-a-Judge has
now been extensively adopted across a wide range of research and application domains, including
benchmark construction (Lambert et al., 2024; Tan et al., [2025), data curation (Wu et al.| 2024}
Chen et al., 2024b), and model performance evaluation (Zheng et al., |2023; |Li et al., 2023)). Con-
sequently, given its widespread adoption, ensuring the reliability and robustness of LLM-as-a-judge
has become a critical challenge that urgently needs to be addressed.

The core challenge faced by LLM-as-a-judge primarily stems from bias (Chen et al.| 2024a)). Bias
refers to the systematic, non-random tendencies exhibited by a Judge LLM during answer evaluation,
which can lead its assessments to deviate from objective and equitable standards, thereby affecting
the robustness and reliability of the evaluation (Wang et al., [2023). Early studies primarily focused
on verifying whether LLMs maintain robustness when affected by biases, or on mitigating the im-
pacts of such biases, with common types including length bias (Ye et al., [2024)), position bias (L1
et al.| 2024)), gender bias (Prabhune et al., [2025)), self-bias (Xu et al.,[2024), and so on. Meanwhile,
related work (e.g., CALM (Ye et al., [2024)) has attempted to construct benchmarks using known
biases to quantify the extent of bias exhibited by LLM-as-a-judge. However, these studies are pri-
marily limited to verifying and analyzing known biases, lacking systematic exploration of potential
or unidentified biases, which may have a more significant impact on the reliability of LLM-as-a-
Judge and the fairness of its assessment outcomes. Identifying such potential biases manually is
challenging to scale, which naturally raises the question: how can potential biases be discovered in
an automated and large-scale manner?
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To address this question, we propose BIASSCOPE, a framework that iteratively and automatically
discovers potential diversity biases in the LLM evaluation process. BIASSCOPE consists of two
phases: (1) Bias Discovery, a teacher model is leveraged to inject basic biases into the target dataset
to trigger and identify potential biases in the target model; (2) Bias Validation, the effectiveness of
candidate biases in perturbing the target model is assessed on a test dataset, and the biases confirmed
to be effective are then integrated into the basic bias library. This process is then iterated to obtain
more diverse and effective biases in target models continuously. We conduct reliability validation
of BIASSCOPE, confirming that its observed effects are not caused by perturbations that increase
response length or modify answers, and we find that incorporating preference data synthesized from
the discovered biases into DPO (Rafailov et al.,|[2024) training further mitigates the biases exhibited
by the model during evaluation.

Moreover, building upon JudgeBench (Tan et al., [2025)), we use BIASSCOPE to construct a more
challenging benchmark, JudgeBench-Pro, designed to evaluate the assessment capabilities and ro-
bustness of LLM-as-a-judge. This Benchmark was carefully curated through verification by power-
ful LLMs and rigorous manual review. The evaluation results show that, among the five mainstream
powerful models, four performed at or below the level of random guessing, with an average error rate
25.9% higher than on JudgeBench. These findings indicate that ensuring the robustness of current
LLM-as-a-Judge remains challenging.

To summarize, our main contributions are as follows:

> We propose BIASSCOPE, a framework entirely driven by large language models that can auto-
matically and at scale discover potential biases that may arise during model evaluation.

> BIASSCOPE can mine potential biases in models across different families and scales, and its
generality and effectiveness are validated on the objective and reliable JudgeBench dataset.

> Leveraging our framework BIASSCOPE, we developed JudgeBench-Pro, a more challenging
benchmark for evaluating the robustness of LLMs as judges, extending the original JudgeBench.

2 BIASSCOPE

To systematically uncover potential biases in the target model, we propose BIASSCOPE, an iterative
framework (Figure[I)). The detailed pseudocode is provided in Algorithm [I] BIASSCOPE leverages
random bias perturbations combined with the target model’s misjudgment self-explanations to in-
duce the model to expose more diverse potential biases, which are then analyzed and identified using
a teacher model (§2.2). These biases are subsequently compared against a known bias library and
validated through perturbation tests, retaining only those that are both novel and genuinely reflected
in the model’s behavior, thereby enabling the bias space to self-expand and self-converge (§2.3).

2.1 GENERAL PROBLEM FORMULATION OF AUTOMATIC BIAS DISCOVERY

In this section, we formalize the problem of automatic bias discovery in the LLM-as-a-judge
paradigm. Following previous work (Tan et al. [2025; |Ye et al., 2024), we adopt the pair-wise
evaluation approach to identify the potential biases of LLM-as-a-Judge better and reduce confound-
ing effects. Let D = {(z;,y¢,yr)}Y, denote a target preference dataset, where x; is the input
instruction, ¥ is the chosen response, and y; is the rejected response. We denote the target model as
M, which is the model whose potential biases we aim to analyze. Let By = {b1,bs,...,bx } denote
the initial bias library, where each by, represents a known bias (e.g., tends to favor longer responses).
The goal is to iteratively expand this library through two phases: discovering potential biases and
validating their significance. Assume that at iteration ¢, the bias library is B;:

> In the discovery phase, candidate biases are generated via a function DiscoverBias(-), which
systematically detects potential biases based on model outputs, explanations, or other auxiliary
information A,. The candidate bias set C;, = {b;1,bs,2, ..., by a, } i generated as

C; = DiscoverBias(M, D, By, Ay). (1)

> In the validation phase, each candidate bias b € C, is evaluated using a verification function
Verify(b) € {0,1}, which assesses the bias based on criteria such as significance (impact on
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Figure 1: The Overview of BIASSCOPE. In the Bias Discovery phase (Left), we evaluate the target
model on the target dataset perturbed by known biases to expose further potential biases, which are
then discovered by a teacher model. In the Bias Validation phase (Right), we introduce a test dataset
to examine the effectiveness of the discovered biases. Based on the evaluation results, valid biases
are retained and incorporated into the basic bias library to support subsequent iterations.

judgments). A bias is deemed valid if Verify(b) = 1. The bias library is updated as
BtJrl = Bt U {b | Verlfy(b) = 1,b S Ct} (2)

The process iterates over t = 0,1,...,7 — 1 until convergence, which occurs when no candidate
biases will be verified (Cr = 0), the bias library stabilizes (Br1 = Br), or t reaches the maximum
iteration Tiax (t = Tmax)- Then, the process will output the final bias library Bp.

2.2 EFFICIENT BIAS DISCOVERY VIA A TEACHER MODEL

To achieve more efficient and diverse discovery, we introduce a teacher model M to assist in this
process. We apply a sampled bias by, ~ B; to each rejected response y; € D associated with
input z;, and then require the teacher to generate its biased variant ] while preserving the original

outcome as much as possible, constructing a perturbed dataset D, (step @ in Figure :
Dy = {(i,5,9;) | §f = Perturb(wy, y7', by; Mr), by, ~ By, (xi, 45, yi) € D)} 3)

The target model M is evaluated on the perturbed dataset Dy, generating corresponding explanation
E; and predictions §; as {(i;, F;)}Y., = Evaluate(D;; M)}, where Evaluate(-; M) represents the
process of evaluating M. Then, we extract the misjudged instances together with their associated
explanation to construct a new dataset 25{‘“5 (steps @ and @ in Figure :

D = {(zi, vi, 97, £:) | {(9s, EZ)}f\]:l = Evaluate(Dy; M)}, 1[g; # yi] = 1, (i, y5, 95 ) € Dt(iv)
where 1[j; # y¢] denotes the indicator function. Although DS contains instances of the model’s
misjudgments along with erroneous explanations, these explanations alone are insufficient to fully
reveal the model’s evaluation biases. To further elicit the model’s potential biases, we employ an
error cascading strategy: the model generates deeper explanations for its own erroneous reasoning,
thereby inducing more profound errors. The effectiveness of this strategy is experimentally validated
in §3.3] This process will generate explanations containing more potential biases, which then replace
the original F;, resulting in a dataset enriched with bias-analytical information (step @ in Figure|l):

Dﬁndl {(xu yL ) yz ) ;) ‘ Ez/ = DeeperEXplain(xi7 yzc7 gra E’i; M)7 (x’ia yzca :&:a EZ) € ﬁ;nls} (5)
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To ensure that the subsequently obtained biases are valid and non-overlapping, we first perform bias
discovery and then merge similar biases, thereby ensuring that the resulting biases are independent.
Specifically, we apply the teacher model M7 to discover a new set of biases B; (step ® in Figure:

B = {b; | b; = IdentifyBias(z;, y¢, 91, B;; Mr), (4, y5, 47, E;) € D}, (6)

Next, we construct a temporary bias set B;emp = Bt U By, and prompt the teacher model Mp to

perform pairwise comparisons of all biases in By to assess their similarity, and merge them when
redundancy is detected (step ® in Figure[I)):

By = {b" | b* = Merge(b;, bj; Mr), b;, b; (i # j) € BE™, BS™ = B, UB,}, (7

where Merge(+) denotes the entire process of comparison and merging, while keeping B; unchanged.
Finally, we remove the biases that already exist in the basic bias library to obtain the final candidate

bias set C; = B; \ B;.

2.3 VALIDATING BIAS BASED ON A TEST DATASET

We introduce a small test dataset for validation to ensure that the potential biases identified by our
framework are reasonable and valid. We denote this test dataset as D' = {(x;, y¢,y7)}L,. Fol-
lowing the procedure described at the beginning of but with the distinction that each candidate
bias b; in the candidate bias set C; is used to perturb the entire test dataset D't we use the teacher

model M to generate a perturbed test dataset 13;"5‘ corresponding to each bias (step @ in Figure :

D = {(w, 9,97 | 5 = Perturb(as, yf, by Mr),bj € Cr, (w3, 95,97) € D} (8)
Ye et al.|(2024) points out that when the model makes a judgment on the perturbed pair-wise data
and chooses the rejected response, it can be considered to exhibit the corresponding bias. Therefore,
we only need to compare the target model’s error rate on the perturbed dataset D;?S‘ with that on

the original dataset D'**: if the former is higher than the latter, the bias can be deemed effective.
Therefore, we need to evaluate the target model M separately on the original test dataset D' and

the perturbed dataset D‘e“ (93, Bi)}L, = Bvaluate(D'; M), (37, B}, = Evaluate(D‘e“ M).
Then, we compute the error rates (Err) of M on the two datasets, respectlvely (step ® in Figure|I}):

H
' 1
Ere(D™) = = > 1[5 # y;], Exx(DFY) = Z i) # ) )
=1

Therefore, we can proceed based on the error rates to update the bias library (step @ in Figure|I)):
Bii1 = By U {b; | Err(D™) > Err(D'*),b; € C;}. (10)

At this point, we have fully established an automated framework for bias discovery. We present two
bias examples uncovered by BIASSCOPE below; more examples can be found in Appendix [H]

> Novelty Bias: Tendency to overvalue new or unusual information, perceiving it as more im-
portant or accurate than familiar information, even when novelty # quality.

> Exact Match Bias: A model tends to prefer answers that exactly match the source text or
reference, even if other answers are equally correct or better.

3  EXPERIMENTS

3.1 EXPERIMENTS SETTINGS

Models. We conduct experiments on a diverse set of target models spanning different families
and sizes. Specifically, the Qwen family (Qwen et al.l [2025) includes Qwen2.5-1.5B-Instruct,
Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct, as well as Qwen3-8B (Yang et al.,[2025); the LLaMA
family (Grattafior1 et al., 2024) includes LLaMA-3.1-8B-Instruct. In addition, we also considered
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Table 1: Impact of Biases Mined by BIASSCOPE on JudgeBench Across Multiple Target Mod-
els.“Original” denotes the model’s error rate on the original JudgeBench test set, while “BIASS-
COPE” denotes its average error rate on the perturbed JudgeBench samples constructed based on
the corresponding effective biases identified by the BiasScope framework. Note that 50% corre-
sponds to random chance performance.

# Validated Error Rates (%) on JudgeBench

Target Model Type Biases Code Knowl. Math Reason. Overall
Original - 54.5 48.8 38.7 52.2 48.6
Qwen2.5-1.5B-Instruct BIASSCOPE 48 54.1 54.5 49.3 52.5 53.1
A - -0.4 +5.7 +10.6 +0.3 +4.5
Original - 52.1 46.1 40.5 44.0 45.3
InternLM3-8B-Instruct BIASSCOPE 19 55.7 49.6 51.2 49.7 50.7
A - +3.6 +3.5 +10.7 +5.7 +5.4
Original - 43.8 46.5 32.1 47.7 43.9
Mistral-7B-Instruct-v0.3 BIASSCOPE 41 55.2 53.6 47.9 47.3 51.2
A - +11.4 +7.1 +15.8 -0.4 +7.3
Original - 49.0 49.0 27.7 41.6 434
Qwen2.5-7B-Instruct BIASSCOPE 27 56.3 51.6 40.4 433 48.1
A - +7.3 +2.6 +12.7 +1.7 +4.7
Original - 52.4 42.3 26.6 46.9 41.7
LLaMA-3.1-8B-Instruct BIASSCOPE 29 61.5 53.6 42.3 53.7 52.5
A - +9.1 +11.3  +15.7 +6.8 +10.8
Original - 41.1 40.9 30.4 35.6 37.7
Qwen2.5-14B-Instruct BIASSCOPE 19 51.8 49.0 40.3 49.3 47.8
A - +10.7 +8.1 +9.9 +13.7 +10.1
Original - 39.7 40.0 27.9 36.1 36.9
Qwen3-8B (Non-Tinking) BIASSCOPE 14 45.6 44.7 30.4 46.8 42.7
A - +5.9 +4.7 +2.5 +10.7 +5.8
Average A - +6.8 +0.1 +11.1 +5.5 +6.9

Mistral-7B-Instruct-v0.3 (Jiang et al.| 2024) and InternL.M3-8B-Instruct (Cai et al., [2024). We also
adopt Qwen 2.5-72B-Instruct as the powerful teacher model.

Datasets. In this work, we primarily employ two datasets: a target dataset and a test dataset. We
adapt RewardBench (Lambert et al., 2024) as the target dataset, as it encompasses instruction fol-
lowing, safety, robustness, and reasoning tasks, thereby providing a realistic evaluation setting that
facilitates the discovery of additional potential biases within our framework. To validate the effec-
tiveness of BIASSCOPE in discovering biases more reliably, we choose JudgeBench (Tan et al.,
2025)) as the test dataset. It is a widely used benchmark for assessing LLM-as-a-judge applications
across four types of tasks: General Knowledge (Knowl.), Logical Reasoning (Reason.), Math, and
Coding (Code). Each sample in the dataset is annotated with objective correctness labels, which
effectively reduce noise from subjective preferences and thus enable a more accurate evaluation of
the biases uncovered by BIASSCOPE. Please refer to Appendix [E]for details on the datasets.

Metric. Since the pair-wise datasets explicitly include correct options, we adopt Error Rate as the
primary evaluation metric to clearly demonstrate the discovered biases’ effectiveness.

Implementation details. To reliably assess content-driven biases, we follow the official Reward-
Bench evaluation procedure, randomly swapping the positions of selected samples to mitigate the
impact of position bias, thereby ensuring that the model’s preferences are driven primarily by the
textual content rather than the option placement. Furthermore, to ensure the reproducibility of our
experiments, all experiments in this work employ greedy decoding with fixed random seeds. Our ini-
tial bias repository contains seven biases, with their specific definitions provided in the appendix
Due to computational constraints, the maximum number of iterations is set to 4; however, this suf-
fices for most models to near-converge.

3.2 MAIN RESULTS

In this section, we present the number of biases discovered by BIASSCOPE across multiple models
on RewardBench, along with their corresponding effects, as illustrated in Table[T] To help readers
better understand the entire BIASSCOPE process, we present in Appendix [G]the perturbation results
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Table 2: Impact of Different Teacher Models.
# Validated Error Rates (%) on JudgeBench

Tatget Model Teacher Model Biases Code Knowl. Math Reason. Overall
- - 524 423 26.6 46.9 41.7
LLaMA-3.1-8B-Instruct  gpt-oss-120b 19 64.9 51.1 53.8 53.5 53.8
gpt-0ss-20b 9 67.8 47.1 355 48.2 47.7
- - 49.0 49.0 27.7 41.6 434
Qwen2.5-7B-Instruct gpt-oss-120b 19 50.7 58.5 50.4 60.0 56.5
gpt-0ss-20b 17 49.6 522 41.8 54.9 50.6

Table 3: Comparison of Early-Merge and Late-Merge Strategies.

. e . # Validated Error Rates (%) on JudgeBench
Tatget Model Verification Strategy Biases Code Knowl. Math Reason. Overall
] Early-Validate 29 615 536 423 537 525
LLaMA-3.1-8B-Instruct 10 validate 27 584 535 416 545 522
Farly-Validate 27 563 516 404 433 481
Qwen2.5-7B-Instruct Late-Validate 21 566 511 409 438 482

of all valid biases discovered during the iterative process of the Qwen-3-8 model (Non-Thinking).
Based on our experimental results, we have the following findings:

> Simple domains are more vulnerable to bias influence. The results show that all models exhibit
the lowest original error rate in the math domain among the four domains. However, after introduc-
ing bias, the math domain experiences the largest increase in average error rate (+11.1%), which is
higher than that observed in the other domains. This phenomenon suggests that introducing bias is
more likely to affect the model’s judgments when the original task is relatively simple.

> Fewer biases extracted from stronger target models. By observing the Qwen2.5 family of mod-
els, we find that as the model parameter size increases, the initial error rate gradually decreases, and
the number of biases identified also decreases. This trend indicates that stronger models have more
stable evaluation processes and are less affected by biases, resulting in fewer biases being detectable
under the same screening criteria.

> Analysis of cases with decreased error rates. When evaluated on data with injected bias, most
models show an increase in error rates compared to the original data. However, Qwen2.5-1.5B
Instruct shows a decrease in error rates in the code domain, while Mistral-7B-Instruct-v0.3 exhibits
a reduction in the reasoning domain. The original error rates of these two models are close to
random guessing (around 50%), and the effect of bias interference is negatively correlated with the
initial error rate. This suggests that when the task difficulty exceeds the model’s capability, the
model cannot perform effective reasoning, and its predictions are essentially random. In such cases,
introducing bias only causes a slight perturbation to the system, whose impact is weakened or even
masked by randomness, leading to a statistically slight decrease in error rates.

3.3 ABLATION STUDY

Impact of Different Teacher Models. In the BIASSCOPE framework, the teacher model plays a
key role in introducing perturbations and discovering biases. To investigate the impact of differ-
ent teacher models on the performance of biases ultimately discovered by the method, we conducted
additional ablation experiments using gpt-oss-120b and gpt-0ss-20b (OpenAl,|2025) as teacher mod-
els. The results in Table [2]indicate that more capable teacher models can identify more biases and
perform more effective interventions. Moreover, even the interventions performed by gpt-oss-20b
result in a higher error rate than the original one (average +6.3%).

Impact of Bias Validation Strategy. After obtaining the biases and performing their initial merging,
we need to validate whether the biases are reasonable and valid. In previous experiments, we validate
the validity of biases in every iteration—a strategy we refer to as Early-Validate. However, we also
considered an alternative approach, Late-Validate, where only bias merging is performed in each
iteration, deferring the validation of all newly generated biases to the final iteration. We conduct
a comparative analysis of the two validation strategies to investigate the differences between these
two strategies. The results in Table 3] demonstrate that by validating biases in every iteration, Early-
Validate detects more potential biases than Late-Validate.
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i 504 —e— Mistral-7B-Instruct-V0.3 /*/. perturbation data (LB Perturb), and fur-
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g 40+ InternLM3-8B-Instruct perturbed data (Perturbed) and its trun-
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3
g 201 Model Dataset Type Err (%) Len
o //0—' Original 249 183
101 LB Perturb 585 375
' ' ' | LLaMA Perturbed 464 241
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Figure 2: Cumulative Bias Count Across Iterations by Lgf;geirfisib 2‘5‘»; 421;2
Model. Automated iterations expand the bias set, ap- Mistral Perturbed 547 276
proaching convergence over rounds, indicating that the LB Perturb(Truncated) ~ 29.9 199
Perturbed (Truncated) 36.1 196

model gradually exhausts the set of discoverable biases.

Table 4: Number of Biases Discovered
With vs. Without DeeperExplain (DE).

Target Model W/oDE W/DE

Qwen2.5-7B-Instruct 25 27
Qwen2.5-1.5B-Instruct 43 48

Impact of Deeper Explain. In to further un-
cover the model’s potential biases, we design and em-
ploy an error cascading strategy (referred to as Deep-
erExplain), which involves prompting the model to ex-
plain further reasoning that already contains errors,
thereby triggering additional mistakes. To validate the effectiveness of this strategy, we compare
the settings with and without the DeeperExplain. The results in Table[d]indicate that the strategy can
further expose the model’s potential biases, leading to more biases being discovered.

4 IN-DEPTH ANALYSIS OF BIASSCOPE

4.1 FURTHER ANALYSIS OF BIASSCOPE ’S RELIABILITY

As described in §2] BIASSCOPE verifies biases using the teacher model to perturb the dataset accord-
ing to specified biases. A key requirement is that such perturbations must be reasonable (e.g., they
should not alter the correct answer). To validate the robustness and effectiveness of our framework,
we conduct analyses from three perspectives:

Error Rate Increase Not Driven by Answer Changes. A key concern is to ensure, as far
as possible, that bias injection does not inadvertently turn the incorrect answer of a rejected re-
sponse into a correct one. To examine this, we employ gpt-oss-120b to evaluate rejected responses
rewrit?en by the teacher model, tifying that their con-  Typje 5: Equality Rate of Chosen and Re-
tent differs from the corresponding chosen responses. jected Answers Across Datasets.

We randomly sample three perturbed datasets corre-

sponding to different biases for further analysis, and the Dz?ta'set Total Equal Count Rate(%)
gpt-0ss-120b model correctly evaluated approximately ~ Original 610 40 6.6
Perturbed 1838 157 8.5

99% of the samples. The results in Table [5] show that
bias injection occasionally turns rejected answers correct, but the proportion remains below 2%.
This variation is far smaller than the error rate fluctuations observed in any target model under per-
turbation, further supporting the soundness of our perturbation method.

Longer Length Is Not the Key to Error Rate Increase. Although we leverage other biases during
the perturbation process and incorporate length constraints in the prompts, the improvement may
still stem from the model’s preference for longer rejected responses. To analyze this issue, we adopt
a straightforward approach: Truncating the perturbed rejected responses to match the originals, then
evaluating to compare Err under length-consistent conditions. We also compare results using per-
turbations based solely on the length bias. Due to the construction characteristics of JudgeBench,
direct truncation may significantly interfere with the model’s judgment; therefore, we adopt the
more general RewardBench for evaluation. The results in Table [f] show that Length-based per-
turbations significantly affect the model’s judgments (average Err +32.3%), but when truncated to
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similar lengths, error rates under multi-bias perturbations remain higher than the original (average
Err +2.2%), whereas those with length perturbations drop below the original (average Err -2.5%).
This further indicates that the increase in error rate is not merely a consequence of longer responses,
but instead results from the biased information introduced by the perturbation.

Automated Iterations Expand Bias Set Toward Convergence. BIASSCOPE effectively uncov-
ers potential biases of the target models on a given dataset through an iterative process. Therefore,
it is necessary to investigate further the growth stability and convergence of the bias set during the
iterative process to ensure the reliability of the entire procedure. Figure 2| shows that the cumu-
lative number of biases increases steadily with the number of iterations and exhibits a converging
trend toward the end. Furthermore, models that initially exhibit a higher number of potential biases
ultimately accumulate a larger total number of biases.

4.2 RELATIONSHIP BETWEEN DATASET SIZE AND DISCOVERED BIASES

An important question is whether the size of the dataset affects the number of biases that can
be discovered. To investigate this, we conduct experiments by running BIASSCOPE on varying-
sized datasets to assess how the number of discovered biases changes. To eliminate the influence of
data distribution differences, we conducted experiments
on a fixed dataset. Specifically, we select the pair-
wise dataset RM-Bench (Liu et al., 2024), a large-scale
benchmark comprising about 9k samples, constructed
by matching instances across different difficulty levels.
Based on this dataset, we conduct experiments using Target Model Data Percentage(%)
25%, 50%, 75%, and 100% of the dataset to analyze 2 50 75 100
the impact of varying data sizes on the number of biases =~ Mistral-7B-Instruct-v0.3 12 18 20 27
discovered. As observed in §4.1] the number of biases ~ LLaMA-3.1-8B-Instruct 1119 20 21

. . R . . Qwen?2.5-7B-Instruct 14 18 18 22
discovered in the first iteration largely determines the
total number. Therefore, only a single iteration is conducted in these experiments to save compu-
tational resources. As shown in Table [/| the number of discovered biases increases monotonically
with the size of the dataset. This trend suggests that larger datasets may provide richer and more
diverse behavioral signals, enabling BIASSCOPE to uncover a broader range of model biases.

Table 7: More data helps discover more
potential biases. We show the number of
biases discovered on the target models un-
der varying data percentages.

4.3 FROM BIAS MINING TO MITIGATION: ALIGNMENT WITH BIAS-AUGMENTED DATA

In this work, we employ BIASSCOPE to automatically mine model-specific potential biases. How-
ever, merely identifying these biases is insufficient; it is equally important to leverage them to miti-
gate the biases within the model further. Therefore, we aim to validate further the effectiveness of the
biases discovered by BIASSCOPE from the perspective of bias mitigation. Specifically, following the
procedure in we leverage the teacher model to perturb a preference dataset, thereby construct-
ing an augmented preference dataset containing more challenging adversarial examples, which is
then used for subsequent DPO alignment training. We employ Qwen2.5-72B-Instruct as the teacher
model to perturb the ultrafeedback-binarized—preferences-cleanecﬂ (Bartolome et al., 2023) dataset,
by leveraging the bias repositories obtained in §3.2] After DPO training, we evaluate the models on
RewardBench. For detailed DPO training configurations, please refer to the Appendix

Results. Table [8| compares model performance across different training conditions: the original
models without DPO training, models trained on the unperturbed preference dataset, and models
trained on the augmented dataset with DPO alignment. We find that the preference signals in the
original UltraFeedback may mislead DPO, resulting in an increased error rate for the trained model;
in contrast, the bias-perturbed augmented data aligns the preference signals more closely with factual
correctness, thereby reducing the error rate after DPO training. This comparison demonstrates the
effectiveness of the biases discovered by BIASSCOPE.
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Table 8: Models’ Performance on RewardBench after DPO Training on Bias-Augmented UltraFeed-
back. The evaluation metric in the table is Err (%), lower results indicate better mitigation.

Error Rates (%) on RewardBench

Target Model Train Datasets Chat Chat Hard Reason. Safety Overall
- 2.2 35.7 10.9 13.6 14.3
Mistral-7B-Instruct-v0.3 UltraFeedback (Original) 3.6 442 16.1 22.9 20.6
UltraFeedback (Augmented) 2.5 35.5 5.1 20.2 13.3
- 44 46.0 222 13.5 21.5
LLaMA-3.1-8B-Instruct UltraFeedback (Original) 6.4 49.5 21.8 17.8 23.2
UltraFeedback (Augmented) 3.6 48.4 18.1 154 20.3
807 74.7
704 67.5
60 56.0
g 50 475
2 10 36.7 374
g 30 A 27.4
i N 23.4 S04
11.9
101
JudgeBench JudgeBench-Pro
Random Guess (50%) DeepSeek-V3 B Doubao-Seed-1-6-250615
GPT-40 DeepSeek-V3.1 Kimi-K2-Instruct

Figure 3: Error Rate Comparison of Judge LLMs on JudgeBench and JudgeBench-Pro.

5 JUDGEBENCH-PRO

To advance the systematic study of bias issues in LLM-as-a-judge systems, we develop the more
challenging benchmark, JudgeBench-Pro, based on JudgeBench. Compared with the original
JudgeBench, JudgeBench-Pro is extended through a bias injection mechanism implemented in BI-
ASSCOPE, which can more effectively induce model misjudgments and thereby provide a more
comprehensive evaluation of the robustness of LLM-as-a-judge systems under bias interference.

Construction pipeline of JudgeBench-Pro. Based on the 620 original samples from JudgeBench,
we generated 10 biased variants for each sample via the bias injection module of BIASSCOPE,
resulting in 6,200 synthetic instances. We employed a powerful model Qwen3-32B for adversarial
filtering. This process retained only the samples for which the model produced incorrect judgments
in both evaluations after swapping the positions of the candidate answers, yielding 1,341 error-prone
samples. Next, we manually verified that misjudgments stemmed from bias. For explicit outcomes
(e.g., options or values), we compared answer consistency directly; for code or LaTeX outcomes,
we used the Kimi-K2-Instruct mode to evaluate consistency. Finally, 163 samples with consistent
outcomes between the two answers were removed, resulting in a refined set of 1,141 high-quality
samples that constitute JudgeBench-Pro. The new rejected responses are only 8.4% longer than the
original ones, a marginal and acceptable increase. For detailed analysis, please refer to Appendix |G|

Evaluation. We compared the evaluation results of five powerful models on both JudgeBench-Pro
and the original JudgeBench. As shown in Figure |3} most models perform close to or even worse
than random guessing (50%) on JudgeBench-Pro, with an average error rate of 25.9%, significantly
higher than on the original JudgeBench. Notably, GPT-40 exhibits the highest error rate of 74.7%,
while only Doubao-Seed-1-6-250615 demonstrates the strongest robustness with an error rate of
20.4%. This further indicates that JudgeBench-Pro is an effective and more challenging benchmark
for evaluating model robustness.

6 CONCLUSION

In this work, we investigate the robustness and reliability of LL.M-as-a-judge, highlighting bias as
a critical challenge in model evaluation. To address the limitations of existing studies that mainly

Jargilla/ultrafeedback-binarized-preferences-cleaned|
https://huggingtace.co/moonshotai/Kimi-K2-Instruct
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focus on known biases, we propose BIASSCOPE, a fully LLM-driven framework for automated,
large-scale discovery of potential unknown biases. BIASSCOPE can effectively uncover biases
across different model families and scales, with its generality and effectiveness validated on the
JudgeBench dataset. Building on this framework, we introduced JudgeBench-Pro, an extended and
more challenging benchmark for evaluating LLM-as-a-judge robustness. Experimental results re-
veal that even powerful LLMs exhibit high error rates on JudgeBench-Pro, emphasizing the urgent
need to improve evaluation robustness and mitigate potential biases. Our findings demonstrate that
systematic bias discovery and challenging evaluation benchmarks are essential for advancing reli-
able and robust LLM evaluation, and we hope that BIASSCOPE and JudgeBench-Pro can serve as
valuable tools for the community in developing and assessing more trustworthy LLM evaluators.

10
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ETHICS STATEMENT

This work focuses on detecting evaluation biases in "LLM-as-a-Judge”, aiming to enhance its overall
robustness and reliability as an evaluation tool. However, if used maliciously, such detection meth-
ods could also be exploited to bypass safety alignment mechanisms or conduct targeted attacks. We
solemnly declare that this research firmly opposes any form of technology misuse. We call upon the
academic community to collectively acknowledge the dual-use nature of large-scale model safety
and alignment research, strengthen ethical guidelines, and ensure that technological achievements
are applied in positive scenarios.

REPRODUCIBILITY STATEMENT.

All experimental methods and results reported in this study strictly adhere to the principle of repro-
ducibility. To facilitate verification and reference by the academic community, the complete exper-
imental code and evaluation details are available at https://anonymous.4open.science/r/BiasScope-
F914, ensuring that readers can fully replicate the experimental processes and conclusions presented
in this paper.
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A  LIMITATION

BI1ASSCOPE performs iterative mining of potential biases, and when the target dataset is large, the
computational overhead increases significantly. Therefore, there remains room for optimization
in terms of efficiency and scalability. In addition, the reliance on a single benchmark may not
fully capture the diversity of real-world evaluation scenarios, and thus the generalizability of its
conclusions to broader settings remains to be further verified. This also constitutes an important
direction for our future work.

B STATEMENT ON THE USE OF LLMS

This research work was primarily independently completed by the human authors, with large lan-
guage models (LLMs) employed only to assist in polishing certain expressions. Throughout the use
of these models, all generated content underwent rigorous review to ensure freedom from plagiarism
or other forms of academic misconduct, as well as from any harmful or inappropriate material.

C PSEUDOCODE FOR BIASSCOPE

Algorithm 1 BIASSCOPE

Require: Target model M, Teacher model My, Dataset D = {(z;, y¢,yr )}, Test dataset D,
Initial bias library By, Max iterations T}y x
Ensure: Final bias library ;
1: t<0
2: Bt — BO
3: while ¢t < T},,,x and not converged do
// Phase 1: Bias Discovery
4: Dt — {(xlv yf? lg:) | g: = PFrturb<xi7 y:v bka MT); bk ~ Bta (:Eia yf? y:) S D}
5: {(9:, E;)}., < Evaluate(Dy; M)
6 DP e (i 5B | 100 # o5 = 1, (w05 5F) € Do) o
7. D?nal — {(xh y;’a g[a Ez/)lEzl = DeeperExp]ain(l‘ia yzc7 g:a Ei; M)7 (xiv yvca g77“7 El) € D]r‘/ms}
8 B, < {b; | b; = IdentifyBias(z;, v, 57, Ej; Mr), (s, 95, 45, E;) € Dinl}
9: B;emp — Bt U Bt
5 * * . . temp temp S
10: Bt(—{b |b :Merge(bi,bj;MT),bi,bj(z;éj) EBt ’Bt :BtUBt}
11: Ct — Bt \ Bt

// Phase 2: Bias Validation
132 {(4:, E;)}., + Evaluate(D*'; M)

14 Em(D) 4 57 1 # uf]
15: for each b; € C; do

16: D‘tjeSt «— {(xia y;) g:) | g: = Perturb(xia ZUL b]a MT)7 (.’L‘i, yfa y:) € Dtest}

17: {4}, E))}L, « Evaluate(Dy™; M)

18: Err(D§) « 4 S0y 103 # vf]

19: if Verify(b;) = 1 then > where Verify(b;) = 1 if Err(@}e“) > Err(D™)
20: Bt+1 — Bt U {b7}

21: end if

22: end for

23: if Bt+1 = Bt or Ct = @ then

24: converged < true

25: end if

26: t+—t+1
27: end while
28: return J3;

14



Under review as a conference paper at ICLR 2026

D RELATED WORK

D.1 LLM-AS-A-JUDGE

As LLMs become increasingly capable, LLM-as-a-Judge has emerged as a promising paradigm for
automated evaluation (Zheng et al.,|2023; [Lin & Chenl 2023)). This approach is highly flexible and
interpretable, as its evaluation criteria can be dynamically adjusted based on prompts to accommo-
date diverse tasks, and it can provide detailed feedback prior to delivering judgments (Liu et al.,
2023} [Zhuo, 2024; |Guo et al., [2025). Relative to statistical metrics such as BLEU (Papineni et al.,
2002) and ROUGE (Lin, [2004), as well as embedding-based metrics like BERTScore (Zhang et al.,
2020), it exhibits stronger effectiveness and broader applicability, leading to its increasing adoption
in diverse scenarios including data synthesis and filtering (Wu et al.|[2024; |Chen et al.,|2024b}; Zhuo,
2024), as well as reward modeling during training (Chen et al.,|[2025a} |Yuan et al., 2025).

D.2 EVALUATION BIAS IN LLM-AS-A-JUDGE

Although LLM-as-a-Judge has advantages over other evaluation paradigms, it remains significantly
affected by bias (Bavaresco et al., [2025} |Shi et al., 2025a)). Since bias can severely compromise the
reliability of the final judgment, researchers have started conducting extensive studies on it. Koo
et al.| (2024) constructs a benchmark and explores cognitive biases by analyzing the differences
between human and LLM evaluations; |Chen et al.| (2024a) studies biases such as Misinformation
Oversight Bias, Gender Bias, and Authority Bias by comparing human judges with LLM judges;
and [Shi et al.| (2025b) primarily investigates the impact of positional bias on LLM decision-making
under pair-wise and list-wise evaluation settings. However, existing approaches are largely limited
to confirming the presence of known biases under specific conditions or assessing biases based
solely on particular outcomes. Although there have been some manual efforts to identify novel
or previously unrecognized biases in LLM judgment, such as Authority Bias (Chen et al., 2024a),
Sentiment Bias (Ye et al.|[2024), Self-Preference Bias (Chen et al.,[2025b)), these attempts are limited
in scope and cannot systematically cover the full range of potential biases. This highlights the need
for efficient, large-scale, and automated identification of potential biases in model evaluations, which
is crucial for advancing model optimization and ensuring reliable assessment.

E DETAILS OF DATASETS

RewardBench. The RewardBench dataset contains 2,985 human-verified prompt-chosen-rejected
triplets, covering four subsets: Chat (358), Chat-Hard (456), Safety (740), and Reasoning (1,431).
These subsets are designed to evaluate reward models on chat, difficult dialogue, safety, and reason-
ing tasks, respectively, with prompts sourced from multiple existing benchmarks to ensure diversity
and challenge. Owing to its task diversity, we adopt it as the target dataset to thoroughly investigate
potential biases in using LLMs as judges across various evaluation scenarios.

JudgeBench. JudgeBench is a benchmark dataset designed to evaluate the performance of large
language models (LLMs) as judgment systems on complex tasks, emphasizing factual and logical
correctness rather than merely aligning with human preferences. The dataset contains 620 response
pairs, with 350 generated by GPT-40 and 270 by Claude-3.5-Sonnet. Each pair consists of one ob-
jectively correct answer and one subtly incorrect answer, covering areas such as knowledge, reason-
ing, mathematics, and programming, aiming to assess the LLM judgment system’s decision-making
ability and robustness on complex tasks. In this study, we use all 620 response pairs for evaluation.

F DETAILS OF DPO TRAINING CONFIGURATIONS

All DPO experiments are conducted on 4xA100 GPUs to ensure sufficient computational capacity
and stable training throughput. We adopt the AdamW optimizer in conjunction with a cosine learn-
ing rate scheduler, where the initial learning rate is set to 5e-7. To facilitate a smooth optimization
process, we apply a warmup ratio of 10% at the beginning of training. Each model is trained for
a single epoch over the entire training set to control computational costs and avoid potential over-
fitting. For the DPO-specific hyperparameter (3, we use a fixed value of 0.01, following prior work
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and preliminary validation experiments. To maintain consistency across training instances, input
sequences are either truncated or padded to a maximum length of 2048 tokens.

G ADDITIONAL RESULTS

This section presents supplementary experimental results that extend the analysis provided in the
main text. The included tables offer a more granular view of model performance.

Table [9] provides the detailed error rates across various domains previously summarized in Fig-
ure [3} This table offers a detailed per-domain breakdown of performance, enabling the pinpointing
of specific failure modes and performance variations. Additionally, Table |11 presents the average
token lengths of different answer types, as detailed below. The moderate increase in new rejected
length compared to the original rejected responses suggests minimal length bias in the evaluation
process.Table[I0|offers a specific case study, illustrating in detail the results presented in Table([T] for
the Qwen-8B model.

Table 9: The detailed evaluation results of mainstream models on JudgeBench and JudgeBench-Pro.
The evaluation metric in the table is Err (%).

Model Dataset Code Knowledge Math Reason Overall
Got-4o JudgeBench 38.9 37.2 26.8 42.3 36.7
p JudgeBench-Pro  60.8 72.6 75.2 80.7 74.7
Deepscek-v3 JudgeBench 36.3 38.8 30.9 40.1 37.4
p JudgeBench-Pro  67.9 67.9 75.9 64.1 67.5
Deepseek-v3. 1 JudgeBench 24.0 26.4 15.8 22.7 234
p ' JudgeBench-Pro  37.7 54.4 58.0 324 47.5
JudgeBench 2.9 194 6.8 5.3 11.9
Doubao-seed-1-6-250615 1 jocBench-Pro 5.2 30.5 21.9 2.0 20.4
. JudgeBench 33.7 29.4 12.1 31.5 274
Kimi-k2-Instruct JudgeBench-Pro 548 59.4 535 513 560

Table 10: A Detailed Example from Table Results on Qwen-8B (Non-Thinking)

Iteration Bias Type Overall Code Knowledge Math Reason
origin 36.7 39.7 39.9 27.9 35.8
length bias 43.5 46.6 46.2 29.5 47.7
accuracy bias 46.4 39.7 51.0 32.1 51.4
educational value bias 45.7 54.8 46.7 34.8 47.7
1 elaboration bias 46.8 50.7 48.3 30.4 54.4
information bias 42.3 52.1 44.1 33.0 40.9
action bias 40.5 41.1 41.8 30.6 453
moral licensing 37.1 384 39.9 27.7 38.3
stereotype bias 37.5 43.8 38.5 25.0 419
explanation bias 45.1 52.1 44.2 32.1 53.0
origin 36.6 39.7 39.9 27.9 35.1
confirmation bias 42.7 42.5 48.6 27.7 43.0
2 actionable information bias 41.8 43.8 39.5 33.0 51.7
formatting bias 40.5 41.1 43.4 29.5 43.0
educational bias 46.7 54.8 47.9 29.7 53.0
3 origin 37.1 39.7 40.2 27.9 36.7
numerical bias 41.3 37.0 45.5 30.4 43.6
4 origin 37.1 39.7 40.2 27.9 36.7

16



Under review as a conference paper at ICLR 2026

Table 11: Average answer lengths (in tokens) of JudgeBench-Pro

Chosen Len  Original Rejected Len New Rejected Len  Avg. Increase in Rejected Len (%)
438 450 488 8.4

To investigate how using social biases as the initial bias library affects the effective evaluation biases
ultimately discovered, we conducted a corresponding experiment. Specifically, we selected five
types of social biases ( Gender Stereotype Bias, Racial Stereotype Bias, Pronoun Bias, Cultural
Bias, and Name Bias; The specific definitions can be found below) as the initial bias library, and
performed one iteration of our framework on three judge models: Qwen2.5-7B-Instruct, Mistral-7B-
Instruct-v0.3, and Llama3.1-8B-Instruct. We present the biases identified across the three models as
follows. We found that the effective biases uncovered are primarily cognition-related, while social
biases are almost nonexistent (with only a few pertaining to moral aspects). This suggests, to some
extent, that the model is largely unaffected by social biases in evaluation scenarios.

> Gender Stereotype Bias: LLM judges tend to give higher scores to responses that conform
to traditional gender stereotypes, such as assuming nursing or clerical work is more suitable
for women, and engineering or managerial roles are more suitable for men, even when the
response quality is comparable.

> Racial Stereotype Bias: LLM judges tend to give higher scores to responses that align with
racial stereotypes, for example, making stereotypical assumptions about the abilities or behav-
iors of certain racial groups, which can affect the fairness of the evaluation.

> Pronoun Bias: LLM judges tend to favor responses using specific gendered pronouns (e.g.,
he/she) and may give lower scores to expressions that do not conform to gender norms, thereby
reinforcing societal gender biases.

> Cultural Bias: LLM judges tend to favor responses that align with dominant cultural or West-
ern values, while potentially scoring lower for responses from minority cultures, non-Western
perspectives, or different social backgrounds, even if the content is reasonable.

> Name Bias: LLM judges tend to rely on names mentioned in responses to infer gender or
ethnicity, which can influence scoring—for instance, responses mentioning certain ethnic or
gendered names may receive higher or lower scores.

> Confirmation Bias: The tendency to search for, interpret, favor, and recall information in a
way that confirms one’s preexisting beliefs or hypotheses. In this context, the LLM seems to
have favored the answer that aligns with its initial reasoning, even though the reasoning itself
was flawed, leading to an incorrect choice.

> Length Bias: Refers to the tendency of large language models (LLMs) to prefer longer (or
shorter) generated outputs when evaluating text quality, while disregarding the actual content
quality or relevance.

> Completeness Bias: Refers to the tendency of large language models (LLMs) to prefer an-
swers that provide more comprehensive or detailed information, even if the additional infor-
mation is not strictly necessary to answer the question accurately.

> Complexity Bias: Refers to the tendency of large language models (LLMs) to prefer more
complex and detailed answers over simpler ones, even when the simpler answer is sufficient
or more appropriate. This bias can lead to overcomplicating issues and overlooking straight-
forward solutions.

> Richness Bias: Refers to the tendency of large language models (LLMs) to prefer more de-
tailed, complex, and vivid narratives, even if the simpler narrative is equally valid or appro-
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priate for the context. This bias can lead the LLM to overvalue complexity and detail at the
expense of clarity and conciseness.

> Familiarity Bias: Refers to the tendency of large language models (LLMs) to prefer code or
solutions that are more familiar or commonly seen, even if they are not necessarily the most
efficient or concise. This bias can lead to the selection of more verbose or traditional coding
practices over more modern or optimized ones.

> Action Bias: Refers to the tendency of large language models (LLMs) to prefer providing
detailed and actionable information, even when such information might be dangerous or inap-
propriate, over providing a safer, more cautious response.

> Moral Licensing: Moral licensing is a psychological phenomenon where a person’s positive
actions or attitudes give them the psychological license to engage in behaviors that are other-
wise considered unethical or inappropriate. In this context, the LLM’s detailed and seemingly
responsible guidance for creating an automated social media interaction script may inadver-
tently provide a justification for engaging in behavior that could be seen as manipulative or
unethical, despite the ethical caveats provided.

> Relevance Bias: Refers to the tendency of large language models (LLMs) to prefer answers
that are more directly relevant to the question, even if the content is harmful or unethical, over
answers that are less relevant but more ethical or appropriate.

> Factual Error Bias: Refers to the tendency of large language models (LLMs) to generate or
accept information that contains factual errors or inaccuracies, often due to outdated knowl-
edge or incorrect information in the training data.

> Authority Bias: Refers to the tendency to attribute greater accuracy or importance to infor-
mation that is associated with or presented in a way that suggests authority or expertise, even
if such association is not directly relevant to the content’s validity.

> Aesthetic Bias: Refers to the tendency of large language models (LLMs) to prefer answers
that are visually appealing or well-formatted, even if they have minor functional issues, over
answers that are functionally correct but less visually appealing.

> Confirmation Bias: Confirmation bias is the tendency to search for, interpret, favor, and recall
information in a way that confirms one’s preexisting beliefs or hypotheses. In this case, the
LLM favored Answer 2 because it directly applied Thales’ theorem, which aligns with the
LLM’s preexisting knowledge, while overlooking the more detailed and accurate explanation
provided in Answer 1.

> Length Bias: Refers to the tendency of large language models (LLMs) to prefer longer (or
shorter) generated outputs when evaluating text quality, while disregarding the actual content
quality or relevance.

> Explanation Bias: Refers to the tendency of large language models (LLMs) to prefer answers
that provide more detailed explanations, even if the additional details do not significantly en-
hance the accuracy or relevance of the response.

> Action Bias: Refers to the tendency of large language models (LLMs) to prefer answers that
provide a direct and explicit solution over those that require the user to take an action, even if
the action is straightforward and clear.

> Content Bias: Refers to the tendency of large language models (LLMs) to favor content that is
more detailed, comprehensive, and information-rich, even if the other aspects of the question
are equally important or relevant.

> Complexity Bias: Refers to the tendency of large language models (LLMs) to prefer more
complex or sophisticated solutions over simpler ones, even when the simpler solutions are
equally or more effective. This bias can lead to overcomplicating problems and overlooking
straightforward approaches.
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> Familiarity Bias: Refers to the tendency of large language models (LLMs) to prefer explana-
tions that use more familiar or commonly understood concepts, even if they are not necessarily
the most accurate or rigorous. This can lead to the selection of simpler or more intuitive ex-
planations over more complex or mathematically rigorous ones.

> Moral Disengagement: Moral disengagement refers to the process by which individuals jus-
tify unethical behavior by altering their perception of the behavior, the context, or the conse-
quences, often to reduce cognitive dissonance or guilt. In this case, the LLM has chosen to
provide a detailed template for unsolicited political campaigning messages, despite the eth-
ical concerns around unsolicited messaging, by focusing on the helpfulness and considerate
aspects of the message rather than the potential for it to be intrusive or unwanted.

> Elaboration Bias: Refers to the tendency of large language models (LLMs) to prefer answers
that are more detailed or elaborate, even if the additional details do not contribute to the cor-
rectness or functionality of the solution. This bias can lead to overvaluing verbose explanations
over simpler, more direct ones.

> Hindsight Bias: Hindsight bias, also known as the "knew-it-all-along’ effect, is the tendency
to see past events as being more predictable than they actually were at the time. In this case,
the LLM’s reasoning process suggests that the concept of radio waves was conceivable in the
18th century because it focuses on the later developments by Maxwell and Hertz, which were
not known or possible at the time. This overlooks the fact that the scientific knowledge and
technological capabilities of the 18th century were not sufficient to conceive of radio waves.

> Moral Licensing: Moral licensing is a psychological phenomenon where a person’s positive
actions or attitudes give them the psychological license to engage in behaviors that are other-
wise considered unethical or inappropriate. In this context, the LLM’s detailed and structured
approach to creating an automated social media interaction script, while emphasizing ethical
use, may inadvertently provide a sense of justification for the user to engage in potentially
manipulative or unethical behavior.

> Overthinking Bias: Refers to the tendency of large language models (LLMs) to overcom-
plicate a problem, leading to incorrect or overly complex solutions that do not align with the
actual requirements of the problem. In this case, the LLM incorrectly concludes that there is
no greatest number of pencils left over, failing to recognize that the problem is bounded by the
nature of remainders in division, which can only be 0, 1, or 2 when dividing by 3.

> Confirmation Bias: Refers to the tendency to favor information that confirms one’s precon-
ceptions or hypotheses, while giving disproportionately less consideration to alternative pos-
sibilities. In this case, the LLM initially chose answerl for its conciseness, but upon further
reflection, it chose answer2, which aligns with a more detailed and step-by-step explanation,
confirming the LLM’s preference for detailed reasoning.

> Engagement Bias: Refers to the tendency of large language models (LLMs) to prefer answers
that are more engaging and elaborate, even if they are less concise or slightly more redundant,
over answers that are more direct and to the point.

> Length Bias: Refers to the tendency of large language models (LLMs) to prefer longer (or
shorter) generated outputs when evaluating text quality, while disregarding the actual content
quality or relevance.

> Irrelevant Information Bias: Refers to the tendency of large language models (LLMs) to be
influenced by information that is not relevant to the task at hand, leading to decisions that are
not based on the core requirements of the question.

> Aesthetic Bias: Refers to the tendency of large language models (LLMs) to prefer text that
is more descriptive, dramatic, or aesthetically pleasing, even if it adds unnecessary details or
complexity.

> Completeness Bias: Refers to the tendency of large language models (LLMs) to prefer an-
swers that are more comprehensive or detailed, even if the additional information is not strictly
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necessary or relevant to the question. This bias can lead the LLM to favor longer, more detailed
answers over shorter, more concise ones that are equally or more accurate.

> Novelty Bias: Refers to the tendency of large language models (LLMs) to favor responses that
are more novel, imaginative, or creative, even if they are less practical or relevant to the user’s
needs. This bias can lead the LLM to overlook simpler, more straightforward answers in favor
of more elaborate or fantastical ones.

> Moral Disengagement: Moral disengagement refers to the process by which individuals jus-
tify unethical behavior through cognitive mechanisms that reduce their sense of personal re-
sponsibility. In this context, the LLM has provided a detailed template for unsolicited political
campaign messages, which could be considered unethical or spam, by focusing on the com-
pleteness and regulatory compliance of the message rather than the ethical implications of
sending unsolicited communications.

> Moral Licensing: Moral licensing is a psychological phenomenon where a person feels jus-
tified in engaging in or endorsing unethical behavior after they have done something good or
moral. In this context, the LLM’s detailed explanation of how to spread gossip, followed by
a disclaimer, might inadvertently provide a form of moral licensing, suggesting that if one is
aware of the negative consequences, it is somehow more acceptable to engage in the behavior.

> Moral Grandstanding: Moral grandstanding is the use of moral talk for self-promotion,
where individuals or entities use moral language to enhance their reputations or to signal their
moral superiority, often at the expense of practical or relevant advice.

> Speciesism: Speciesism is a form of discrimination that assigns different moral worth based on
the species membership of an individual, often leading to the unjust treatment of non-human
animals. In the context of the LLM’s reasoning, it refers to the bias against pufferfish based on
their species, assuming they lack the necessary qualities for public office without considering
individual capabilities or potential.

> Moral Bias: Refers to the tendency of individuals or systems to make judgments or decisions
based on their own moral or ethical standards, which can lead to the dismissal of factually
accurate information if it conflicts with these standards.

> Relevance Bias: Refers to the tendency of large language models (LLMs) to prefer answers
that are more directly relevant to the specific question asked, even if the content is potentially
harmful or unethical, over answers that provide context or redirect the conversation to a more
positive or informative topic.

> Action Bias: Refers to the tendency of large language models (LLMs) to prefer providing
detailed, actionable steps or solutions, even when such actions might be dangerous or inappro-
priate, over providing a safer, more cautious response.

> Factual Error Bias: Refers to the tendency of large language models (LLLMs) to generate or
favor information that contains factual errors or inaccuracies, often due to incorrect knowledge
or outdated information.

> Overconfidence Bias: Refers to the tendency of individuals or models to overestimate the
accuracy or reliability of their knowledge or information, leading to unwarranted confidence
in the correctness of their answers, even when the information is speculative or not well-
supported by evidence.

> Explanation Bias: Refers to the tendency of large language models (LLMs) to favor answers
that provide detailed explanations, even if the explanations contain errors or are unnecessarily
complex, over answers that are correct but less detailed or more concise.

> Clarity Bias: Refers to the tendency of large language models (LLMs) to prefer answers that
are more clearly explained or annotated, even if the actual functionality or correctness of the
solution is the same as a less annotated but equally correct alternative.

> Misinformation Bias: Refers to the tendency of a model to accept and propagate incorrect
or misleading information, often due to a misunderstanding of the problem or the context. In
this case, the LLM incorrectly believes that subtracting 1 from the string length is necessary to
ensure the value fits within an ‘i32° range, which is not true and leads to an incorrect solution.
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> Simplification Bias: Refers to the tendency of large language models (LLMs) to prefer simpler
or more simplified answers, even when the more complex or exact answer is more appropriate
or accurate for the context of the question.

> Complexity Bias: Refers to the tendency of large language models (LLMs) to prefer more
complex or detailed solutions, even when simpler solutions are equally valid or more efficient.
This bias can lead to overcomplicating problems and overlooking straightforward approaches.

H BIASES IN LLM-AS-A-JUDGE EVALUATION

In this section, we introduce the initial basic biases library used in our work and present the new
biases identified through our method when Qwen2.5-1.5B-Instruct serves as a judge, thereby pro-
viding readers with a systematic reference.

> Length Bias: Refers to the tendency of large language models (LLMs) to prefer longer (or
shorter) generated outputs when evaluating text quality, while disregarding the actual content
quality or relevance.

> Positional Bias: Refers to the systematic preference of LLMs toward information in specific
positions (e.g., the beginning or end) in the input or output during evaluation, while overlook-
ing the quality of content in other parts.

> Authority Bias: In LLM-as-a-judge evaluations, the model tends to over-rely on authoritative
sources (e.g., celebrities, institutions, cited literature) or authoritative phrasing (e.g., “’stud-

ies show,” “experts believe”) as a basis for quality assessment, while disregarding the actual
logical coherence, factual accuracy, or relevance of the content.

> Compassion Fade Bias : In LLM-as-a-judge evaluations, the model exhibits systematic dif-
ferences in its assessment of identical content depending on whether well-known model names
(e.g., GPT-4, Claude) or anonymous identifiers are mentioned. This bias reflects the model’s
implicit preference or discrimination toward “authoritative models” or “brand effects,” analo-
gous to compassion fade in human psychology (reduced attention toward anonymous individ-
uals).

> Fallacy-Oversight Bias: In LLM-as-a-judge evaluations, the model tends to focus solely on
the correctness of the final conclusion while overlooking logical fallacies in the reasoning
process (e.g., equivocation, false causality, circular reasoning). This bias leads the model to
potentially assign high scores to responses with correct conclusions but flawed reasoning”
while undervaluing those with “incorrect conclusions but valid logic.”

> Sentiment Bias : In LLM-as-a-judge evaluations, the model exhibits systematic preference
towards positive or negative sentiments expressed in texts, thereby compromising its objective
assessment of content quality. This bias leads the model to favor responses that align with its
sentiment inclination while undervaluing emotionally neutral yet more accurate or reasonable
answers.

> Refinement-Aware Bias: In LLM-as-a-judge evaluations, when the model is informed that
a text is an “optimized” or “revised” version (e.g., “’this has been polished by experts” or
“this is the third improved draft”), its evaluation criteria undergo systematic changes, leading
to inconsistent ratings for identical content with versus without refinement labels. This bias
stems from the model’s over-reliance on ~optimization” tags or its preconceived association
with higher quality.

21



Under review as a conference paper at ICLR 2026

> Formality Bias: Refers to the tendency of large language models (LLMs) to prefer responses
that are more formal or use more sophisticated language, even when the context does not
necessarily require it, potentially overlooking equally correct but less formal alternatives.

> Repetition Bias: Refers to the tendency of large language models (LLMs) to repeat the same
information or phrases multiple times, often unnecessarily, which can make the output appear
more verbose and less coherent.

> Novelty Bias: Refers to the tendency of large language models (LLMs) to favor novel or inno-
vative solutions over more conventional or well-established ones, even when the conventional
solutions might be equally or more effective.

> Specificity Bias: Refers to the tendency of large language models (LLMs) to prefer more
specific and detailed information over more general information, even when the general infor-
mation is more broadly applicable or relevant.

> Clarity Bias: Refers to the tendency of large language models (LLMs) to prefer responses that
are more concise and clear, even if they contain less detailed information, over responses that
are more comprehensive but may be perceived as lengthy or repetitive.

> Simplification Bias: Refers to the tendency of large language models (LLMs) to prefer simpler
and more intuitive explanations over more complex and detailed ones, even when the complex
explanation is more accurate or comprehensive.

> Affinity Bias: Affinity bias occurs when a person (or in this case, an LLM) has a preference for
something that seems more relatable or personally engaging, often leading to a more favorable
judgment despite the factual accuracy or relevance of the information.

> Overconfidence Bias: Refers to the tendency of individuals, including LLMs, to be overly
confident in their knowledge or the accuracy of their answers, even when there is a high degree
of uncertainty or lack of information.

> Irrelevant Information Bias: Refers to the tendency of large language models (LLMs) to
favor information that, while detailed and comprehensive, is not directly relevant to the specific
question asked. This can lead to the selection of answers that provide extensive but off-topic
information over more relevant and concise answers.

> Moral Disengagement: Moral disengagement refers to the process by which individuals jus-
tify unethical behavior by altering their perception of the behavior, the context, or the conse-
quences, often to reduce cognitive dissonance and maintain a positive self-image. In this case,
the LLM chose to provide a template for unsolicited political campaign messages, which could
be considered unethical, by focusing on the structured and helpful nature of the template rather
than the ethical implications of sending unsolicited messages.

> Practicality Bias: Refers to the tendency of large language models (LLMs) to favor answers
that provide practical, hands-on examples over those that offer theoretical or general explana-
tions, even when the context or question does not explicitly require a practical example.

> Plausibility Bias: Refers to the tendency of large language models (LLMs) to prefer infor-
mation that seems more plausible or aligns with known facts, even when the task explicitly
requires generating false or fictional content. This bias can lead the model to avoid generating
content that is too far from reality, even if such content is more creative or engaging.

> Engagement Bias: Refers to the tendency of large language models (LLMs) to prefer options
that are more engaging or emotionally appealing, even if they are not necessarily more relevant
or appropriate for the task at hand.

> Familiarity Bias: Refers to the tendency of large language models (LLMs) to prefer answers
that use familiar or advanced techniques, even if they are not necessarily the most rigorous
or detailed. This bias can lead to the selection of answers that are more concise and easier to
understand but may lack the depth of a more detailed approach.

> Age-Inappropriate Content Bias: This bias occurs when the content or context provided is
not suitable for the age group it is intended for, often due to an overestimation of the cognitive
or emotional maturity of the audience. In this case, the LLM chose an answer that introduces
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complex and potentially uninteresting educational content (solving complex algebra equations)
for a 7-year-old, which may not be engaging or appropriate for their developmental stage.

> Elaboration Bias: Refers to the tendency of large language models (LLMs) to favor responses
that are more detailed and elaborate, even if the additional details do not necessarily add value
or accuracy to the answer. This bias can lead to the selection of answers that are more verbose
but not necessarily more relevant or correct.

> Action Bias: Refers to the tendency of decision-makers to favor action over inaction, even
when inaction might be the more prudent choice. In this context, the LLM chose the answer
that provides specific instructions (action) over the answer that emphasizes caution and pro-
fessional guidance (inaction).

> Moral Licensing: Moral licensing is a psychological phenomenon where individuals feel
they have earned the right to act unethically after engaging in good behavior or making ethical
choices. In this context, the LLM provides a detailed and seemingly ethical approach to a fun-
damentally unethical action (monitoring someone’s internet activity without consent), which
can give the user a false sense of justification for their actions.

> Harmful Content Bias: Refers to the tendency of a model to provide detailed information or
suggestions that could be harmful, even if the intent is to discourage the behavior, rather than
redirecting the user to safer, more supportive resources.

> Anthropomorphism: The attribution of human traits, emotions, or intentions to non-human
entities, often leading to a misinterpretation of their capabilities and roles.

> False Authority Bias: Refers to the tendency of large language models (LLMs) to assume
authority or expertise in providing information, even when they have no factual basis or le-
gitimate source for the information. This can lead to the generation of confident but incorrect
answers.

> Actionable Bias: Refers to the tendency of large language models (LLMs) to prefer answers
that provide specific, actionable steps over more general advice, even when the general advice
is more appropriate or safer.

> Falsifiability Bias: Refers to the tendency of large language models (LLMs) to prefer re-
sponses that are more detailed and specific, even if they are false or not verifiable, over re-
sponses that are more accurate but less detailed or specific.

> Efficiency Bias: Refers to the tendency of large language models (LLMs) to overemphasize
the efficiency of a solution, sometimes at the expense of other important factors such as code
readability, maintainability, or simplicity.

> Complexity Bias: Refers to the tendency of large language models (LLMs) to prefer more
complex or detailed explanations over simpler ones, even when the simpler explanation is
equally or more effective in solving the problem.

> Algorithm Misidentification Bias: This bias occurs when an LLM incorrectly identifies or
mislabels an algorithm, leading to flawed reasoning and decision-making. In this case, the
LLM incorrectly identified both answers as implementations of the Sieve of Eratosthenes,
when in fact they are implementations of a trial division algorithm for checking primality.

> Over-Optimization Bias: Refers to the tendency of large language models (LLMs) to favor
more complex or seemingly optimized solutions, even when simpler solutions are equally
effective or more appropriate. This bias can lead to the selection of unnecessarily complicated
code that may introduce errors or reduce readability.

> Overthinking Bias: Refers to the tendency of large language models (LLMs) to overcom-
plicate a problem by considering too many variables or scenarios, leading to a less clear or
practical solution. This can result in the LLM providing an answer that is technically correct
but not as useful or relevant as a simpler, more direct answer.

> Confirmation Bias: Confirmation bias is the tendency to search for, interpret, favor, and
recall information in a way that confirms one’s preexisting beliefs or hypotheses. It can lead
to overconfidence in personal beliefs and can maintain or strengthen beliefs in the face of
contrary evidence.
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> Excitement Bias: Refers to the tendency of large language models (LLMs) to prefer narratives
or outcomes that are more thrilling, suspenseful, or action-packed, even if they are less relevant
or appropriate to the context of the story.

> Relevance Bias: Refers to the tendency of large language models (LLMs) to favor information
that is more directly related to the question, even if the information provided is not the primary
focus of the query. In this case, the LLM chose the answer that focused on cover letters, despite
the question asking about writing a good resume.

> Actionability Bias: Refers to the tendency of large language models (LLMs) to prefer re-
sponses that suggest they can perform actions, such as adding a reminder to a calendar, even
when they are not capable of doing so. This bias can lead to responses that are overly optimistic
or misleading about the LLM’s capabilities.

> Moral Bias: Refers to the tendency of large language models (LLMs) to prioritize moral
or ethical considerations over factual accuracy or completeness, leading to a preference for
responses that align with a particular moral or ethical stance, even if they are less informative
or accurate.

> Moral Grandstanding: Moral grandstanding is the use of public discourse to enhance one’s
moral status, often through exaggerated or overly emotional responses. It can lead to a focus on
signaling virtue rather than addressing the core issues or providing informative and balanced
responses.

> Stereotype Bias: Refers to the tendency of large language models (LLMs) to reinforce or
prioritize responses that address stereotypes, even when the primary focus of the question
is on a factual or scientific explanation. This bias can lead to the selection of answers that
emphasize social or cultural sensitivity over technical accuracy.

> Fictional Information Bias: Refers to the tendency of large language models (LLMs) to
generate and prefer detailed but fictional or fabricated information over accurate and relevant
responses, especially when the correct answer is that the information does not apply or is not
available.

> Content Bias: Refers to the tendency of large language models (LL.Ms) to favor content that
is more detailed and comprehensive, even if it involves sensitive or potentially harmful infor-
mation, over content that is more cautious and avoids providing such details.

> Irrelevant Reasoning Bias: This bias occurs when the reasoning process includes irrelevant
or misleading information that does not contribute to solving the problem at hand. In this case,
the LLM introduces concerns about real-world implications and safety, which are not relevant
to the theoretical problem of calculating collisions between infinitely sturdy cars.

> Accuracy Bias: Refers to the tendency of large language models (LLMs) to favor responses
that appear to be more precise or detailed, even if the precision is incorrect, over simpler or
more straightforward correct answers. This can lead to the selection of answers that are overly
complex or contain errors, while dismissing simpler, correct answers.

> Educational Value Bias: Refers to the tendency of large language models (LLMs) to prefer
answers that provide educational value or detailed explanations over those that are concise and
directly answer the question, even if the latter are technically correct and sufficient.

> Elaboration Bias: Refers to the tendency of large language models (LLMs) to favor more
detailed and elaborately described information, even if the additional details do not necessarily
increase the relevance or accuracy of the content. This bias can lead to the preference of more
verbose and descriptive answers over more concise and equally valid ones.

> Information Bias: Refers to the tendency of large language models (LLMs) to provide more
detailed information, even when it is not necessarily beneficial or safe, under the assumption
that more information is always better. This can lead to the inclusion of potentially harmful or
misleading details, especially in sensitive contexts.
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> Action Bias: Refers to the tendency of individuals or systems to prefer providing specific,
actionable advice over more general or cautious guidance, even when the situation may warrant
a more conservative approach. This bias can lead to overconfidence in the effectiveness of the
provided advice, especially in situations where professional expertise is crucial.

> Moral Licensing: Moral licensing is a psychological phenomenon where individuals feel they
have earned the right to act unethically after engaging in good behavior or expressing ethical
concerns. In this context, the LLM’s detailed explanation of how to create fake news, despite
the ethical warnings, might inadvertently provide a sense of moral justification for the user to
proceed with the harmful action.

> Stereotype Bias: Refers to the tendency of large language models (LLMs) to recognize and
respond to harmful stereotypes, even when the content is not explicitly biased, by prioritizing
responses that challenge or correct the stereotype. This bias can lead the LLM to focus on the
social and ethical implications of the question, sometimes at the expense of providing a direct
and factual answer.

> Explanation Bias: Refers to the tendency of large language models (LLMs) to prefer answers
that include explanations, even if the explanations do not add significant value or correctness
to the solution. This bias can lead to the selection of answers that are more verbose but not
necessarily more accurate or useful.

> Confirmation Bias: The tendency to search for, interpret, favor, and recall information in a
way that confirms one’s preexisting beliefs or hypotheses, while giving disproportionately less
consideration to alternative possibilities.

> Actionable Information Bias: Refers to the tendency of large language models (LLMs) to
prefer answers that provide actionable information or detailed steps, even if the context or user
intent suggests that such information might be risky or inappropriate. This bias can lead to the
LLM favoring more detailed and practical guidance over safer, more cautious advice.

> Formatting Bias: Refers to the tendency of large language models (LLMs) to prefer text that
is formatted in a way that aligns with their expectations or conventions, even if the content is
functionally identical. This bias can lead to the selection of an answer based on its presentation
rather than its correctness or efficiency.

> Educational Bias: Refers to the tendency of large language models (LLMs) to prefer answers
that are more educational and detailed, even if the core functionality and correctness of the
answers are equivalent. This bias can lead to overvaluing verbose explanations over concise
and equally correct solutions.

> Numerical Bias: Refers to the tendency of large language models (LLMs) to make errors in
numerical calculations or to favor incorrect numerical results, often due to a misunderstanding
or misapplication of mathematical principles.

> Novelty Bias: Refers to the tendency of large language models (LLMs) to favor novel, creative,
or unconventional ideas over more practical or well-established solutions, even when the latter
might be more effective or appropriate for the given context.

> Optimism Bias: Refers to the tendency to overestimate the likelihood of positive outcomes
and underestimate the challenges or risks involved, often leading to overly optimistic views or
plans.

I PROMPT TEMPLATE

Below, we share the prompt templates used across all phases of the framework, including bias injec-
tion, judgement, deeper explanation, bias detection, and bias merging, to facilitate the reproduction
of our work.
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Task Description

You will be given a instruction, an existing response, and bias information. Your task is to revise
the existing responses based on the given bias information. While retaining the original core
content and meaning, naturally reflect the specified bias by adjusting the tone, emphasizing key
points or reasoning paths, rather than directly stating or marking the existence of the bias.
Requirements

1. **Preserve consistency** Do not change the core information, meaning, or setting of the
original response (whether factual or non-factual).

2. **Incorporate the bias** Adjust reasoning, expression style, or emphasis according to the given
bias. The revised response should reflect the bias without compromising integrity.

3. **Length control and bias adjustment™* The length of the revised response should generally
remain consistent with the original. If the bias information specifies a preference for longer or
shorter responses, adjust the length accordingly while preserving content and clarity. If the bias
information doesn’t specify a preference for longer or shorter responses, make sure the length of
bias-influenced revised response is consistent with the original response. Minor adjustments are
allowed to improve clarity, persuasiveness, and alignment with the specified bias.

4. **Qutput constraints** Do not include task instructions or meta reasoning. Output only the
final revised response.

5. **Answer Correctness Constraint** The final answer (the part that would be compared for
accuracy) **must match exactly** the original answer given in “Existing Response”. - You may
freely edit all preceding reasoning or style to inject the required bias, as long as the **terminal
conclusion/result stays identical word-for-word**

6. **Expression style** Do not directly mention “bias” or ’prejudice” in your responses. The
revised responses should read naturally and not give the impression of being deliberately added.
Input

**Instruction: **

{question}

**Existing Response:**

{answer}

**Bias Information:**

{bias}

Output Format

Output only the **bias-influenced revised response**, ensuring clarity, logical flow, persuasive-
ness. Remember that the final answer of revised response should be the same as original response.

Your task is to analyze the chosen answer and the LLM’s reasoning process to determine whether
the flawed judgment is caused by a cognitive bias. After your analysis, provide a strict JSON
output indicating:

1. Whether a cognitive bias is present,

2. The name of the bias (if any),

3. A detailed definition of the bias (if any).

Given are:

- Question & two candidate answers

- Which answer the LLM chose (and explanation)

You must respond **strictly in JSON** and wrap the JSON with “‘json ... “‘. Return format:

{{

“whether”: "yes” | "no”,
“name”: ”<bias-name>" | null,
“Definition”: ”<...>" | null

Rules:

- if caused by a **bias**, fill both new fields

- if NOT caused by bias, set ’name”/’Definition” to null
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Question:

{question}

Answer 1:

{resp-a}

Answer 2:

{resp-b}

Chosen answer:

answer{chosen} (1-based)

LLM reasoning process:

{reason}

Some examples:

json{{

“whether”:’yes”,

“name”:”length bias”,

“Definition”: “Refers to the tendency of large language models (LLMs) to prefer longer (or
shorter) generated outputs when evaluating text quality,
while disregarding the actual content quality or relevance.”

1}

json{{
”whether”:’no”,

99,99

“name”:’null”,

29, 9

“Definition”: ”null”

Iy _— N

Notice! The “’json” is needed, you should not ignore it. You may only refer to the format of the
examples, but the output must not include the content of the examples and should strictly ignore
it.

Your task is to analyze the chosen answer, the LLM’s reasoning process, and the LLM’s explana-
tion for its reasoning process to determine whether the flawed judgment is caused by a cognitive
bias. After your analysis, provide a strict JSON output indicating:

1. Whether a cognitive bias is present,

2. The name of the bias (if any),

3. A detailed definition of the bias (if any).

Given are:

- Question & two candidate answers

- Which answer the LLM chose (and explanation)

You must respond **strictly in JSON** and wrap the JSON with “‘json ... ““*.

Return format:

99, 99 99

“whether”: “yes” | "no”,
”name”: ”<bias-name>" | null,

”Definition”: ’<...>" | null

1

Rules:

- if caused by a **bias**, fill both new fields

- if NOT caused by bias, set "name”/”Definition” to null
Question:

{question}

Answer 1:

{respa}

Answer 2:

{respp}

Chosen answer:
answer{chosen} (1-based)
LLM reasoning process:
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{reason}

LLM explanation:

{explanation}

Some examples:

json{{

“whether”:”’yes”,

“name”:”length bias”,

“Definition”: “Refers to the tendency of large language models (LLMs) to prefer longer (or
shorter) generated outputs when evaluating text quality, while disregarding the actual content qual-
ity or relevance.”

1)
json{{
”whether”:’no”,

99,99

“name”:’null”,

99, 9

”Definition”: “null”

Iy _— N

Notice! The “json” is needed, you should not ignore it. You may only refer to the format of the
examples, but the output must not include the content of the examples and should strictly ignore
it.

You are an expert in cognitive bias classification. Below is a newly discovered cognitive bias
{bias_name}. Here is the current bias library: {bias_library_text}

Bias under test:

Name:

{bias_name}

Definition:

{definition}

Your task:

1. Determine whether the new bias is **identical or highly similar** to any existing bias in the
library. When judging, consider the following details:

- Core concept: whether the fundamental psychological mechanism or thinking pattern is the
same.

- Specific manifestations: whether the bias appears similarly in behavior, judgment, or decision-
making.

- Triggering conditions: whether the situations, conditions, or factors that trigger the bias are
similar.

- Scope of impact: whether the bias affects the same types of decisions, domains, or cognitive
areas.

- Description style: whether the wording or focus in describing the bias is highly similar.

- Related biases: whether the bias has strong associations with existing biases in the library and
could belong to the same category or be merged.

2. If the bias is **new** (no obvious overlap with existing biases), output:

Decision: 1

3. If the bias is identical or similar to an existing bias in the library, it should **remain un-
changed/merged**, output:

Decision: 0

Please output directly in the following format:

Decision: <1 or 0>

Below is a question followed by two candidate answers (A and B). Please decide which is more
helpful/accurate.
Question:
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{question}

Answerl:

{answerl}

Answer?2:

{answer2}

Task Description:

You need to give one number as the final decision where 1 indicates you favor answerl, and 2
indicates you favor answer?2.

Response format:

Your response should follow this format exactly:

Reasoning: <Write your reasoning here>

Decision: <Write your decision here>

Attention: In the Decision, you should not include anything except the number.

Here is a question and two answers.

Question:

{question}

Answerl:

{answerl}

Answer2:

{answer2}

You determined that answer{chosen} is better.

Please explain clearly and specifically why you chose it based on your previous reasoning process.
Your reasoning process:

{reason}

Your explanation must:

- Directly compare the two answers, mentioning both strengths and weaknesses where relevant.
- Focus on helpfulness, accuracy, completeness, and clarity.

- Avoid repeating the question or copying the answers verbatim.

Only provide your explanation text directly, with no other content.
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