
The Double-Ellipsoid Geometry of CLIP

Meir Yossef Levi 1 Guy Gilboa 1

Abstract
Contrastive Language-Image Pre-Training (CLIP)
is highly instrumental in machine learning appli-
cations within a large variety of domains. We in-
vestigate the geometry of this embedding, which
is still not well understood, and show that text
and image reside on linearly separable ellipsoid
shells, not centered at the origin. We explain the
benefits of having this structure, allowing to bet-
ter embed instances according to their uncertainty
during contrastive training. Frequent concepts in
the dataset yield more false negatives, inducing
greater uncertainty. A new notion of conformity
is introduced, which measures the average cosine
similarity of an instance to any other instance
within a representative data set. We prove this
measure can be accurately estimated by simply
computing the cosine similarity to the modality
mean vector. Furthermore, we find that CLIP’s
modality gap optimizes the matching of the con-
formity distributions of image and text.

1. Introduction
Multi-modal approaches, particularly Contrastive Language-
Image Pre-Training (CLIP) (Radford et al., 2021), have
revolutionized computer vision tasks, enabling applications
such as high-quality image generation (Ramesh et al., 2022;
Nichol et al., 2021), open-vocabulary classification (He
et al., 2023), segmentation (Liang et al., 2023; Yu et al.,
2024), detection (Wu et al., 2023), captioning (Mokady
et al., 2021; Cho et al., 2022), and semantic editing (Kim
et al., 2022; Kawar et al., 2023). Beyond images, CLIP’s
success extends to 3D (Hegde et al., 2023; Chen et al., 2023;
Zhang et al., 2022), video (Tang et al., 2021; Luo et al.,
2022), and audio domains (Wu et al., 2022; Guzhov et al.,
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Figure 1. Sketch of CLIP general geometry: image and text are
embedded on linearly separable ellipsoid shells, not centered at the
origin. This allows to control uncertainty in contrastive learning,
where as themes become more rare (lower uncertainty) they reside
farther from the mean modality vector.

2022).

Despite these advances, the structure of CLIP’s latent space
remains poorly understood. Existing studies focus on proper-
ties like alignment, uniformity, and the modality gap (Liang
et al., 2022) but overlook the geometry underlying this multi-
modal space. The L2-normalization phase, which is integral
when performing cosine similarity, practically reducing the
data to the unit hypersphere. Since normalization is an
information-reducing process, understanding the primary
embeddings prior to normalization can reveal deeper in-
sights into the latent space geometry.

In this paper, we propose analyzing the pre-normalized
CLIP primary embedding for three key reasons: (1) Enhanc-
ing downstream tasks. While L2-normalization is integral
to the cosine similarity used during training, the primary em-
bedding is directly employed in critical downstream tasks,
including image generation and semantic editing. Analysis
of the latent geometry can enhance the performance of these
tasks. (2) Semantic significance of magnitude. Despite
the cosine similarity is agnostic to the norm, we observe
that magnitude still plays a significant and meaningful role.
Notably, the largest embeddings in MS-COCO correspond
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to unusual or exotic captions (e.g., “I am not sure what this
image is”, see full histogram and examples in Figure 14 in
the Appendix). (3) Deeper understanding of contrastive
learning. CLIP is an exceptional semantic encoder achieved
through a rather generic contrastive loss and huge training
data. Investigating the solutions found by CLIP allows
deeper insights on contrastive learning, possible approaches
to tackle false negatives and may shed light on unresolved
phenomena, such as the modality gap and the narrow cone
effect (Liang et al., 2022).

Our analysis reveals that CLIP’s primary latent space ex-
hibits a double-ellipsoid geometry, with one ellipsoid for
images and another for text. Both are shifted from the ori-
gin (see Fig. 1), in line with the narrow cone effect and
the modality gap (Liang et al., 2022; Fahim et al., 2024;
Schrodi et al., 2024). Using the MS-COCO validation set
(Lin et al., 2014), we show that both modalities exhibit the
thin-shell phenomenon (Klartag, 2023; Klartag & Lehec,
2022), where most of the mass concentrates within a specific
range from the mean.

This geometry affords several advantages. The offset from
the origin allows CLIP to control the sharpness of its re-
sponse in contrastive learning, mitigating false negatives
(Byun et al., 2022; Li et al., 2022; Yang et al., 2022);in-
stances that are conceptually similar but incorrectly treated
as negatives. Frequent concepts with higher uncertainty
are embedded closer to the mean vector, a phenomenon we
term semantic blurring, reducing loss and improving perfor-
mance. Our experiments confirm that frequent concepts are
better aligned to the mean vector of the ellipsoid, achieving
excellent agreement with our hypothesis.

Leveraging this deeper understanding, we introduce a new
definition of concept conformity, quantifying how close a
sample resides with respect to all others. We prove that there
is a proportion between conformity and cosine similarity to
the mean vector (See proof in Supp. C1, and empirically
with Pearson correlation: 0.9998 for MS-COCO). Further-
more, we show that the distribution of conformity differs
between modalities, with CLIP’s ellipsoid alignment offer-
ing a plausible explanation for the modality gap.

Our contributions are as follows:

1. We reveal that CLIP embeddings form separable ellip-
soid shells for each modality, shifted from the origin.

2. We analyze the benefits of this structure, including its
role in controlling sharpness in contrastive learning.

3. We show that frequent concepts benefit most from this
geometry, optimizing the contrastive loss near the el-
lipsoid offsets for MS-COCO.

4. We define concept conformity and demonstrate its

strong correlation with similarity to the mean vector,
offering insights into semantic organization.

5. We highlight the role of conformity in explaining the
modality gap and propose its use in ranking text and
image generators.

6. We introduce vertical SLERP (vSLERP), an interpola-
tion method leveraging the geometry of CLIP’s latent
space.

2. Related Work
Contrastive representation learning is a powerful learning
scheme, where models are trained to associate positive pairs
(e.g., different views of the same image (Chen et al., 2020))
closely in the embedding space while pushing negative pairs
(e.g., different images) apart. This simple yet effective
approach has led to significant advances across a wide range
of applications, i.e. image classification (Chen et al., 2020;
He et al., 2020), natural language processing (Gao et al.,
2021; Kim et al., 2021), 3D analysis (Afham et al., 2022;
Xie et al., 2020) and more.

The latent space induced by contrastive learning has been
widely explored (Arora et al., 2019; Ji et al., 2023; Wang
et al., 2022; Wang & Isola, 2020), often conceptualized as a
normalized hypersphere (Wang & Isola, 2020; Liang et al.,
2022). Alignment and uniformity (Wang & Isola, 2020)
are key properties of the Normalized Temperature-scaled
Cross-Entropy (NT-Xent) loss (Chen et al., 2020). Opti-
mizing alignment and uniformity was shown to be crucial
for preserving rich semantic structures in the latent space,
leading to improvements in downstream performance across
multiple domains (Fahim et al., 2024).

With the rise of cross-modal contrastive models, such as
CLIP (Radford et al., 2021), which align images and text in
a shared embedding space, new challenges in latent space
geometry have emerged. A notable issue is the modality
gap (Liang et al., 2022), where embeddings from different
modalities, such as images and text, are separated in the
shared latent space. Moreover, the narrow cone effect was
observed (Liang et al., 2022; Schrodi et al., 2024), where
features occupy only a limited portion of the angular space.

One of the main challenges in multimodal contrastive learn-
ing is of obtaining high-quality pairs. Web-scale datasets
may include mismatched positive pairs (Chun et al., 2022;
Gadre et al., 2024; Maini et al., 2023; Wang et al., 2023) or
mislabeled negative pairs that are actually positive, referred
to as false negatives (Byun et al., 2022; Li et al., 2022; Yang
et al., 2022). Numerous approaches have emerged to address
this challenge, such as by identifying and introducing hard
negative examples (Byun et al., 2024; Chuang et al., 2020;
Robinson et al., 2020; Kalantidis et al., 2020). Our obser-
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vations are that false negatives appear to play a significant
role in forming the geometry of CLIP’s latent space.

3. Random vectors in high dimensions
3.1. Notations

We investigate CLIP space induced by ViT-B/32 encoders
of n = 512 dimensions, X = Rn. Let Xi ⊂ X be the
image subspace and Xt ⊂ X be the text (captions) subspace.
We will reaffirm that they are different and in fact linearly
separable (Schrodi et al., 2024; Liang et al., 2022). Let
v ∈ X be a vector in this space. We denote by vi ∈ Xi

vectors of images and by vt ∈ Xt vectors of text. The
symbol E stands for the expected value. The respective
modality mean of image and text are mi = Evi∈Xi

[vi] and
mt = Evt∈Xt

[vt]. Let ṽ be the vector after subtraction of
the respective modality mean. That is, for images, ṽi =
vi −mi : vi ∈ Xi and for text ṽt = vt −mt : vt ∈ Xt.

Our statistical analysis and many experimental results are
based on MS-COCO (Lin et al., 2014) validation set, a
common standard image-text dataset.

3.2. High dimensional geometry of random vectors

It is often challenging to obtain good intuition on the prob-
ability manifold and its geometry in high dimensions. We
outline below some fundamental concepts.

3.2.1. THIN SHELL THEORY

There is an intensive research related to the thin shell phe-
nomenon (Kannan et al., 1995; Paouris, 2006; Klartag &
Lehec, 2022; Jambulapati et al., 2022; Klartag, 2023). Defi-
nitions of log concave distributions and isotropic random
vectors appear in the Appendix. Since isotropic random
vectors have a unit second moment for any x(k), k = 1, ..n,
we get that the expected value of the squared Euclidean
norm is

E[∥x∥2] = E[
n∑

k=1

x(k)2] =

n∑
k=1

E[x(k)2] = n. (1)

As shown for example in (Paouris, 2006), E[∥x∥2] ≈
E2[∥x∥], the expected norm of x can be approximated by

E[∥x∥] ≈
√
n. (2)

For isotropic log-concave distributions we have the thin
shell property:
Theorem 3.1 (Thin shell). Let the thin shell parameter be
defined by

σ2
n = sup

x
E(∥x∥ −

√
n)2,

where the supremum is over isotropic, log-concave random
vectors in Rn. Then σn ≤ c(log n)α, where c is a universal
constant.

Recent studies have shown this bound for α = 4 (Klartag &
Lehec, 2022), α = 2.23 (Jambulapati et al., 2022) and most
recently for α = 1

2 (Klartag, 2023). See more details in the
above papers and the references therein. Essentially, this
means the mass of the distribution is concentrated around a
shell of radius

√
n.

Let us farther examine this for the more general anisotropic
case. Let x = (x(1), ..., x(n)) be a vector of n random
variables of different distributions (not iid), each of mean
zero. Let the norm of x, which is a random variable, be
defined by ∥x∥ = µnorm + y, where µnorm := E[∥x∥]
and y is a random variable of zero mean. We examine the
term E[∥x∥2] = tr(C), where tr is the trace and C is the
covariance matrix of x:

E[∥x∥2] = E[(µnorm + y)2]
= E[µ2

norm + 2µnormy + y2] = µ2
norm + var(y).

(3)
Therefore, for µ2

norm ≫ var(y) we can approximate

E[∥x∥] = µnorm ≈
√

E[∥x∥2] =
√

tr(C). (4)

Here the squared expected Euclidean norm and the trace
of the covariance matrix approximately coincide. We can
thus view std(x(k)) as a rescale of the coordinate system
in dimension k, with respect to a unit sphere.

Figure 2. Normalized histograms of certain CLIP features. Image
and text are clearly drawn from different statistics. On the right it
is shown that even two features are sufficient to obtain full linear
separability. The results of a linear SVM classifier are shown (blue
dashed line, with 100% accuracy on MS-COCO).

4. Geometric Analysis
We begin by examining the statistics of image and text in
the CLIP embedding space X . This part is completely data-
driven without any prior assumptions related to the training
process. We focus on the primary CLIP embedding, which
is the output of the encoder before L2 normalization, i.e.
before projection onto the unit hypersphere. This projec-
tion loses important information. It basically “flattens” the
original geometry artificially, in a manner which is hard to
analyze. More details and statistical data are provided in the
Appendix. Let us first examine the known modality gap
phenomenon (Liang et al., 2022) in the primary embedding.
In Fig. 2, normalized histograms are shown for features 93,
134 and 494 of the CLIP latent vector. We get a bimodal
distribution where image and text are clearly not drawn
from the same distribution. For feature 93, for instance,
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Figure 3. Separability of features (left) and 10 most significant
features ℓ for image and text, with high absolute mean, compared
to the feature’s standard deviation.

Figure 4. Statistics of image and text features after mean subtrac-
tion. Top: The first 10 features for image (top) and text (bottom).
Bottom: Histograms of ∥ṽ∥ for images and text, showing a thin-
shell phenomenon with no volume below a threshold, typical for
high dimensions.

the KL-divergence between the distributions is ≈ 301 (a
value above 1 implies a considerable deviation between the
distributions). It was previously shown in (Shi et al., 2023;
Fahim et al., 2024; Schrodi et al., 2024) that image and
text can be separated linearly. We find there are actually 9
features which serve as sort of “tags” for image and text.
More formally, we can define the measure of separability of
a feature ℓ by

Sep(ℓ) =
|mi(ℓ)−mt(ℓ)|√

var(vi(ℓ)) + var(vt(ℓ))
. (5)

A plot of the features sorted by separability is shown in Fig.
3 (left). Fig. 2 (right) shows that the modalities are linearly
separable (with 100% accuracy) using only two such tag
features (93 and 134), based on a linear SVM classifier
(decision boundary shown in blue). We can thus state the
following property (which holds exactly for MS-COCO):

Property 1: Image and text reside on separate sub-
spaces, Xi ∩ Xt ≈ ∅.

In Fig. 4, we show some statistics of the features of ṽi and ṽt
(where the mean is subtracted). To get impression, the first
10 features in each vector are shown for both modalities. The

distribution appears smooth, unimodal, with peak around
zero. The norm ∥ṽ∥, however, is distributed within a small
range (thin shell) such that there is no mass near zero.

Figure 5. Normalized histograms of feature variance (left) show a
long tail, indicating an ellipsoid rather than a hypersphere. Off-
diagonal dominance (Eq. 6) suggests strong feature correlations,
implying a tilted ellipsoid.

We can further check the validity of Eq. 3, we examine
images here. In the case of MS-COCO statistics we have:
µnorm = 7.5873, var(y) = 0.1914, yielding µ2

norm =
57.5671 ≫ var(y), where the approximation

√
E[∥x∥2] =

7.6007 is just with 0.18% relative error. We can therefore
conclude:

Property 2: The mass of each modality is concen-
trated within a thin shell, with zero mass near the mean
of the distribution.

Let us now investigate the geometry of each shell. We
examine the variance of each feature ℓ. In a uniform hy-
persphere embedding we expect to have similar variance
for all dimensions. We observe in Fig. 5 (left part) this is
not the case, with a long tail distribution, where some fea-
tures exhibit considerably larger variance, hence an ellipsoid
structure:

Property 3: The embedding of both text and image
is of an ellipsoid shell.

We now examine inter-correlations between features. Let us
define off-diagonal dominance of a row ℓ in the covariance
matrix C by

ODD(ℓ) =

∑
k ̸=ℓ |Cℓk|
Cℓℓ

. (6)

Diagonally dominant matrices have ODD(ℓ) < 1, ∀ℓ en-
suring a non-singular matrix. We observe (see Fig. 5 two
right plots) that the off diagonals are significant, implying
non-negligible correlation between features, thus:

Property 4: The ellipsoids of both modalities are
tilted.

Finally, we check the location of each ellipsoid, with re-
spect to the origin. We recall mi, mt ∈ Rn are the mean
value vectors of image and text. Let σi, σt ∈ Rn be the
standard deviation vectors of image and text, respectively.
We have ∥mi∥

∥σi∥ = 0.94 and ∥mt∥
∥σt∥ = 1.03. Viewing ∥σ∥ as
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a mean vector magnitude of the ellipsoid shell, the means
are significantly shifted from the origin, compared to the
size of the ellipsoid. This is caused by a few features, with
strong deviation from the origin (compared to the respective
feature’s standard deviation), as shown in Fig. 3 (middle
and right). Thus we can state:

Property 5: The ellipsoids are not centered near the
origin.

5. Loss behavior on a double-ellipsoid
In this section, we validate that a non-origin-centered
double-ellipsoid structure achieves optimality in terms of
the CLIP contrastive learning loss.

For a batch containing M image-text pairs, we denote by

v̄ji =
vj
i

∥vj
i ∥

and v̄jt =
vj
t

∥vj
t∥

the normalized image and text
features of the j-th pair in the batch respectively. The
multi-modal learning loss used in CLIP is the normalized
temperature-scaled cross entropy loss (NT-Xent), a varia-
tion of InfoNCE (Oord et al., 2018) loss:

ℓclip := −1

2
E

j,k∈M

[
log

ev̄
j⊤
t v̄j

i /τ∑
j e

v̄j⊤
t v̄k

i /τ
+ log

ev̄
j⊤
t v̄j

i /τ∑
j e

v̄k⊤
t v̄j

i /τ

]
.

(7)

As observed by (Wang & Isola, 2020), the loss can be de-
composed into two terms: (1) Alignment, which encourages
high cosine similarity for positive pairs, and (2) Uniformity,
encourages low cosine similarity among negative ones.

ℓclip := −

alignment︷ ︸︸ ︷
E

j∈M
[v̄j⊤t v̄ji /τ ] +

uniformity︷ ︸︸ ︷
E

k∈M

1

2
log

M∑
j=1

ev̄
j⊤
t v̄k

i /τ +
1

2
log

M∑
j=1

ev̄
k⊤
t v̄j

i /τ

 .

(8)

To empirically analyze the uniformity and alignment terms
in Eq. 8 alongside the overall loss in Eq. 7, we use the
MS-COCO validation set. Fig. 6 shows the overall loss
(bottom) and its breakdown into uniformity and alignment
losses (top). We treat the entire validation set (5k samples)
as a single batch. The overall loss is further separated into
correctly classified, misclassified, and combined cases; the
union of the correct and misclassified is equivalent to both,
and they are mutually exclusive.

In this experiment, we examine different values of the mean
value of the image embedding. For simplicity, we apply

𝑳
𝒐
𝒔
𝒔

𝜶

𝟑. 𝟔𝟗 𝟑. 𝟑𝟎 𝟑. 𝟐𝟒

𝟑. 𝟕𝟓

𝟒. 𝟕𝟖

𝜶

𝑳
𝒐
𝒔
𝒔

𝑴𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅

𝑩𝒐𝒕𝒉 𝒊𝒎𝒂𝒈𝒆

𝒕𝒆𝒙𝒕

𝜶 = 𝟎

𝜶 = 𝟏

𝜶 = −𝟏

𝒐𝒓𝒊𝒈𝒊𝒏

Figure 6. Loss vs. embedding center position. The parameter
α controls the embedding center (Eq. 9, with α = 0 as the
current non-origin-centered CLIP position). (Top). The unified
loss balances uniformity and alignment optimally for non-origin-
centered positions. (Bottom). The loss increases for misclassified
instances and decreases for well-classified ones, with balanced
accuracy at α ≈ 0.

linear interpolation and extrapolation of the mean relative to
the origin, using a single scalar parameter α. This measure
is conducted on a grid of α values from -1 to 1, with the loss
calculated on image features as follows:

vj
′

i = vji − α ·mi ∀j ∈ M. (9)

The values of vt remain unchanged. Unlike the Embedding
Shift Experiment in (Liang et al., 2022), here, the modalities
are not directly shifted to each other, but to the origin.

The results show that the loss for correctly classified samples
decreases monotonically with the shift toward the origin (i.e.
that for perfect alignment as assumed for example by (Liang
et al., 2022), shifting to the origin would be preferable).
Conversely, the loss for misclassified samples increases.
The overall loss balances alignment and uniformity for both
correctly and misclassified samples, reaching an optimal α
near zero. This aligns with the current CLIP embedding,
though some deviation is expected, as the MS-COCO valida-
tion set is only an approximation of the full training set. For
completeness, the Appendix includes the same experiment
with the text ellipsoid shifted instead of the image, showing
consistent behavior. To conclude:

Property 6: CLIP’s loss is optimized for non-origin-
centered ellipsoids, balancing alignment and unifor-
mity for both correct and misclassified instances.
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Figure 7. Top: Example of segmentation score blur (right), com-
mon in semantic segmentation, as object-membership uncertainty
increases. Bottom: Similarity histograms of normally distributed
samples for the mean vector (blue) and the furthest vector from
the mean (”extreme”, orange). Results are shown for a sphere
centered near the origin (left) and one centered far from the origin
(right). In contrastive learning, blur can be controlled by adjusting
the sphere’s offset. Embedding vectors closer to the center induces
blur, while positioning them farther away sharpens the response.

6. False negatives and conformity
We demonstrate how the embedding geometry discussed
earlier provides advantages in handling false negatives. Ad-
ditionally, we introduce the concept of conformity, which
plays a major role in forming the latent space distribution. A
well-known challenge in contrastive learning is the presence
of false negatives—pairs with similar meanings that are not
dedicated pairs. Such samples should not be embedded
far apart, as they fail to represent true negatives effectively.
This issue arises in both single- and multi-modality settings
and has been addressed by proposing new training proce-
dures or alternative contrastive losses (Byun et al., 2024;
Chuang et al., 2020). In CLIP, training uses a contrastive
loss that does not explicitly address false negatives. How-
ever, we argue that this issue is partially mitigated by the
embedding geometry. In classification and segmentation
tasks, uncertainty typically results in softer predictions that
reflect lower class membership probabilities. For example,
Fig. 7 (top) illustrates a segmentation score where reduced
confidence blurs the sheep’s boundary, a phenomenon we
term semantic blur. For contrastive networks, when false
negatives are present, we expect lower confidence and a
blurred response. On a high-dimensional sphere centered at
the origin, such blurring is challenging, as small perturba-
tions lead to large changes in cosine distance. We show that
shifting the sphere away from the origin can effectively mit-
igate this issue. Concurrently, and closely related, Schrodi
et al. (2024) discuss the relationship between entropy and

መ𝐶: 0.39መ𝐶: 0.39

መ𝐶: 0.43

መ𝐶: 0.82

መ𝐶: 0.83

መ𝐶: 0.82

Figure 8. High and low conformity of MS-COCO. Low-
conformity images often depict unique, distinguishable individu-
als or objects, whereas high-conformity images capture common
scenes that could be found anywhere.

the modality gap.

Blur through a non-origin centered sphere. Fig. 7 (bot-
tom) illustrates the difference between origin-centered and
non-origin-centered spheres through an experiment. We
draw 1000 random vectors vj ∈ R512, where each element
follows an independent Gaussian distribution with unit stan-
dard deviation. In the first experiment (Fig. 7, bottom
left), the sphere is centered at the origin with an empirical
mean m close to zero. The blue histogram shows cos(m, vj)
for j = 1, . . . , 1000. We then identify the furthest vector
from m, vfar = argmin cos(m, vj), and plot the histogram
of cos(vfar, vj) (orange), excluding vfar. In the second ex-
periment (Fig. 7, bottom right), the sphere is centered at
(10, 5, 5, 0, 0, . . . ), modeling three dominant features with
a mean distinctly far from zero. The same trial is repeated.
The results highlight a significant difference: for an origin-
centered sphere, the distributions of cosine similarity for
the mean and the extreme vector are similar. In contrast,
for a non-origin-centered sphere, the mean vector exhibits
much higher average similarity. This allows the network to
embed vectors with uncertainty closer to the mean, enabling
semantic blur—reduced contrast in the response. This anal-
ysis, supporting a non-zero mean, leads to the following
prediction:

Prediction 1: Common themes, which occur more
frequently in the training set, are expected to be em-
bedded in closer proximity to the mean vector.

6.1. Conformity

To validate Prediction 1, we first formalize the term common
themes, by defining a new notion, termed conformity.

Definition 1 (Conformity). Conformity of a vector vj within
a set S measures the expected value of the cosine similarity
to this vector:

C(vj) = E
vk∈S
j ̸=k

[cos(vj , vk)], (10)

where for a given finite set S, the empirical mean is taken.
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Images
Captions

 𝑪

𝑪

A calico cat drinking from a sink faucet.

A vintage yellow refrigerator surrounded by wood 
cabinetry.

A picture of some food on a plate.
A picture of some people by the street.

Figure 9. Conformity. Estimated conformity Ĉ, Eq. 11, against
conformity C, Eq. 13, on MS-COCO (Lin et al., 2014). The corre-
lation is almost perfect. We can thus use the proposed estimated
conformity reliably to quantify how common a sample is. More
exotic captions have lower conformity (all examples are of eight
words).

𝑪𝒊 − 𝑪𝒕

A group of three 
soldiers standing next 
to each other.

A woman wearing a blue t-shirt 
while looking at her cell phone 
and sitting on a bench next to a 
bright pink wall. 

𝑐𝑖:0.36

𝐶𝑡:0.78
𝐶𝑡:0.31

𝑐𝑖:0.72

Figure 10. Conformity Differences. The conformity distributions
of text and image modalities differ, as a common image may be
described by a unique caption, and vice versa.

To provide more intuition, we present examples of high
and low conformity from MS-COCO in Fig. 8, as well as
on ImageNet-a (Hendrycks et al., 2021b) and ImageNet-R
(Hendrycks et al., 2021a) in the Appendix. Following our
prediction above, we propose a surrogate measure of con-
formity (which is much faster to compute). The estimation
uses the following definition.

Definition 2 (Estimated conformity). In contrastive learn-
ing embedding, for a given set of vectors S with mean
m = Ev∈S [v], the estimated conformity of vj ∈ S is:

Ĉ(vj) = a · cos(m, vj) + b, (11)

where a and b are scalars determined by the embedding.

In Appendix C1 we prove this correlation under the thin-
shell assumption, and in Fig. 9, C versus Ĉ are plot-
ted for the entire MS-COCO set, for both image and text
embeddings. A close to perfect correlation is obtained,
with Pearson correlation of 0.9998 for both image and text
where a = 1.411, b = −0.008 for text and a = 1.461,
b = −0.002 for images, validating with close to perfect
alignment with the rigorous mathematic derivation.

𝜶

𝑲
𝑳
𝑫
𝒊𝒗
𝒆
𝒓
𝒈
𝒆
𝒏
𝒄
𝒆

Figure 11. Modality Gap matches conformity distributions. The
parameter α controls the embedding offset from the origin (as
shown in Fig. 6). When α ≈ 0, i.e., the trained setting, image
and text conformity distributions align well, with KLα=0 ≈ 0.14
indicating good distribution matching.

6.2. Modality gap assists in distribution matching

We now aim to provide a reason that can justify the pres-
ence of the well known modality gap (Liang et al., 2022).
Our rationale for that phenomenon is as follows. The same
incentive of having a mean not centered at the origin applies
for both image and text modalities. However, in a single
image-pair instance the uncertainty for each modality may
differ (see Fig. 10). The same arguments as before pro-
mote uncertain instances to be near the mean and certain
ones to be far from it. If both image and text of a pair are
embedded at the same location - we may get contradicting
requirements. Having separate embeddings for text and im-
age allows to control the uncertainty of each instance for
each modality. More generally, we would like to match the
distribution of the conformity of both modalities. In Fig. 11
we show the KL-divergence of the conformity distribution
as a function of α, a parameter controlling the distance of
the mean from the origin, as in Eq. 9, see illustration in Fig.
6. We show that the best distribution match is near α = 0,
i.e., in the current embedding of CLIP.

7. Applications
7.1. Conformity as a measure of expressiveness

We propose using conformity as a metric to assess gener-
ative method diversity. We measure conformity in images
generated from MS-COCO captions by unCLIP (Ramesh
et al., 2022) and Glide (Nichol et al., 2021), as shown in
Fig. 13. Glide-generated images exhibit high conformity,
indicating low detail and diversity, while unCLIP images
are more varied and detailed. Both models, however, lack
the diversity seen in real images. Similarly, we evaluate
captioning methods by measuring conformity in captions
generated by ClipCap (Mokady et al., 2021) and Caption
Reward (Cho et al., 2022). ClipCap produces common cap-
tions, while Caption Reward generates diverse captions that
even surpass human annotations.
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Source Target

Increasing 𝚯

𝜶

P
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N

e
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Figure 12. Vertical SLERP (vSLERP) enables optimization-free, semantic editing. Interpolated images preserve the object with pose
variations and roughly maintain backgrounds, with interpolation magnitude controlled by α.

Caption Reward
a large green and grey 
passenger train driving 
down the track with 
the trees behind it

Captioning

MSCOCO
Example: 

a small train 
traveling down the 
railroad tracks.

ClipCap
Example

Conformity

a train on the line.

Image Synthesisa brown white and black 
dog is laying on a gray 
couch MSCOCO

UnClip

Conformity

Glide

Figure 13. Conformity analysis of captioning and image synthe-
sis. Image Synthesis (top): Glide generates more common images
with less fine detail, while unCLIP creates more detailed images
closer to natural distributions. Captioning (bottom): ClipCap pro-
duces more common captions, while Caption Reward generates
more unique captions, even surpassing human annotations.

7.2. Unguided, training-free semantic generation

The unCLIP framework (Ramesh et al., 2022) introduces an
image interpolation technique using spherical linear inter-
polation (SLERP) to transform a source image into a target
image gradually. While this method produces visually ap-
pealing results, it often fails to preserve the same instance
along interpolation, instead generating random instances.

In Fig. 12, we show images generated by an extension of
SLERP, which we term as vertical SLERP (vSLERP):

vSLERP(vj , vk, θ0, α) = SLERP(vj−αm, vk−αm, θ0)+αm
(12)

For brevity, mi and vi are referred to as m and v. With a
fixed Θ = Θ0, adjusting α allows controlled manipulation
of the same instance. This approach parallels real-image
editing techniques; however, unlike methods relying on text
inversion (Han et al., 2024; Gal et al., 2022; Mokady et al.,
2023) or test-time optimization (Kawar et al., 2023), which
are computationally heavy, vSLERP requires no training or
optimization, thus, highly efficient.

8. Discussion and Conclusion
The paper examines the primary CLIP embedding, prior to
projection onto the unit sphere, revealing that each modality
forms a distinct, shifted ellipsoid with unique centers and
radii. This geometry is the source of the modality gap and
narrow cone phenomena (Liang et al., 2022; Schrodi et al.,
2024; Afham et al., 2022), previously observed on the unit
sphere embedding. We introduced conformity, a measure
of similarity of an instance with an entire representative set.
Our analysis shows that each modality exhibits a unique
conformity distribution, with optimal alignment achieved
when the ellipsoids are shifted from the origin. This pro-
vides a useful tool for assessing the diversity of captioning
and image synthesis methods. Finally, we propose vertical
SLERP (vSLERP), a training-free interpolation technique
for specific object interpolation.

8
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A. Enlraged Visualizations
In Figure 15 and Figure 16, we provide the same visualizations as in the main paper, but enlraged, to enhance visibility.
CLIP of higher dimension. We also show some results for CLIP with ViT-L/14 encoders, n = 768. In Figure 17 we show
the distinct different statistics of image and text, mostly appearing in several pronounced features. Here as well, linear
separation (100% classification accuracy) can be reached with only two features. In Figure 18 we show that the embedding
can also be modeled as two separate thin shell ellipsoids for image and text.

B. Statistical Analysis
We provide here the definitions of log concave distributions and isotropic random vectors, notions which are used in Section
4 of the main paper.

Definition 3 (Log concave distribution). A log concave distribution in Rn has a density p which admits, ∀x, y ∈ Rn, λ ∈
[0, 1],

p(λx+ (1− λ)y) ≥ p(x)λp(y)1−λ.

The above definition is equivalent to stating that the logarithm of the density function is concave log p(λx+ (1− λ)y) ≥
λ log p(x) + (1− λ) log p(y). Many well-known distributions admit this property, such as normal and multivariate normal
distributions, exponential, Laplace, chi, Dirichlet, gamma and more.

Definition 4 (Isotropic random vector). A random vector x ∈ Rn is isotropic if E[x] = 0 and Σ = I , where Σ is the
covariance matrix of x and I is the identity matrix.

There is no image here to provide a caption for.
I am not sure what this image is.

I am unable to see the image above.
There is no image to describe for this question.

That looks like it may be hiding under something.
An individual is taken in this very picture. 

unable to see this image in this particular hit

Figure 14. Norm distribution. While norm magnitudes are disregarded during training due to the normalization inherent in cosine
similarity, they still capture meaningful semantic information.

We give below additional analysis related to applying a linear transformation that turns each ellipsoid into a sphere. This
process is termed sphering or whitening. For lack of space, this part did not get into the main paper. However, we believe
this analysis is of sufficient merit to be presented here.

C. Additional Experiments and Visualizations
C.1. Close relations between conformity and surrogate-conformity

We show below the validity of our conformity approximation under the thin-shell assumption.

Proposition 1. Let S = {v1, . . . , vN} be a set of N vectors in RF exhibiting the thin-shell phenomenon, i.e.,

∥vi − v̄∥ ≈ R for all i,
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where v̄ = 1
N

∑N
j=1 v

j is the sample mean and we use the Euclidean norm ∥vi∥2 =
∑

k(v
i
k)

2. Then, for any vj ∈ S, the
following approximation holds:

Evj∈S [cos(v
i, vj)] ≈ A · cos(vi, v̄), (13)

where A ≈
√

µ2
norm+R2

µnorm
, µnorm = ∥v̄∥ and the symbol ≈ represents the shell approximation (which becomes more accurate

as the width of the shell decreases) and approximate orthogonality between a random vector and the mean vector.

Proof. We start by expanding the left-hand side:

Evj∈S [cos(v
i, vj)] =

1

N

N∑
j=1

vi · vj

∥vi∥ · ∥vj∥
.

Writing explicitly the inner-product we have:

1

N · ∥vi∥

N∑
j=1

1

∥vj∥

F∑
k=1

vikv
j
k.

Now, consider the right-hand side of Equation (13):

cos(vi, v̄) =
vi · v̄

∥vi∥ · ∥v̄∥
=

1

∥vi∥ · µnorm

F∑
k=1

vik

 1

N

N∑
j=1

vjk

 =
1

N · ∥vi∥ · µnorm

N∑
j=1

F∑
k=1

vikv
j
k.

Observe that the only difference between the two expressions lies in the difference between µnorm and ∥vj∥. We show below
that under the thin-shell assumption ∥vj∥ ≈

√
R2 + µ2

norm.

Let us define by zj the difference vector between a vector vj and the mean vector v̄, that is zj = vj − v̄. Then,

∥vj∥2 = ∥zj + v̄∥2 = ∥zj∥2 + 2zj · v̄ + ∥v̄∥2.

In high dimensions, the inner product zj · v̄ is small due to approximate orthogonality, so:

∥vj∥2 ≈ ∥zj∥2 + µ2
norm ≈ R2 + µ2

norm.

Taking square roots:
∥vj∥ ≈

√
R2 + µ2

norm.

Thus, the scalar factor A in Equation (13) is given by:

A =
µnorm

∥vj∥
≈ µnorm√

R2 + µ2
norm

.

Empirically we know for Vit-B/32 that µnorm = 7.587 and R ≈ 7.59, thus the mathematical derivation state that
A−1 =

√
7.592+7.5872

7.587 = 1.414 For images and A−1 =
√
5.592+5.752

5.75 = 1.4, very close to the empirical observations (note
that the correlation is reversed in the main paper).

C.2. Conformity

High- and Low-Conformity Images. We provide additional visualizations of high- and low-conformity images across
various datasets. Figure 19 illustrates examples of sketches from ImageNet-R, while Figure 20 showcases examples from
ImageNet-A. Both datasets contain out-of-distribution examples: ImageNet-A emphasizes natural adversarial images, while
ImageNet-R features renditions of objects, such as origami or sketches.

From these visualizations, we observe that high-conformity images tend to contain less information. Sketches are simpler,
and natural images often feature large uniform backgrounds or repetitive structures. In contrast, low-conformity images
frequently include substantial text, while natural images exhibit collages of objects with unique or diverse colors.
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Figure 15. Enlarged plots from Section 4.
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Figure 16. Enlarged plots from Section 4.
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Figure 17. Enlarged plots for CLIP embedding of n = 768. There are dominant features with clearly different distribution between
image and text. Both modalities can be separated (with perfect accuracy) by a linear SVM classifier based on only 2 features. With respect
to separability (bottom), there are 20 features with value above 1.
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Figure 18. CLIP n = 768, thin shell phenomenon. We can observe similar geometry (as in the case of n = 512) of two tilted ellipsoids,
one for each modality, not centered at the origin.
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C.3. Reaffirming loss and conformity matching experiments

We revisit the loss experiment presented in Fig. 6 of the main paper and the conformity matching experiment shown in Fig.
11. To further validate our findings, we conduct these experiments under two alternative settings.

First, we shift the text ellipsoid instead of the image ellipsoid, applying the following transformation:

vj
′

t = vjt − α ·mt ∀j ∈ M, (14)

where the values of vi remain unchanged. The results of this experiment are presented in Figure 21.

In the second setting, we align both the image and text ellipsoids at the origin by applying the following transformations:

vj
′

t = vjt − α ·mt, vj
′

i = vji − α ·mi ∀j ∈ M. (15)

Here, for α = 0, the ellipsoids remain in their optimal positions after training, while for α = 1, both ellipsoids are shifted to
the origin as in Figure 22.

Both experiments reaffirm that the current positioning of the ellipsoids yields optimal results in terms of loss and conformity
matching. These findings further support our claims across different alignment scenarios.

C.4. vSLERP

Here, we provide additional examples of vSLERP, shown in Figure 23 and Figure 24. As discussed in the main paper, the
standard SLERP process typically generates interpolated images representing different objects or individuals. In contrast,
our proposed vSLERP method produces diverse variations of the same object.

መ𝐶: 0.89

መ𝐶: 0.88

መ𝐶: 0.88

መ𝐶: 0.39

መ𝐶: 0.42

መ𝐶: 0.46

Figure 19. High and low conformity of sketches from ImageNet-R. Images with high conformity tend to be simpler and cleaner, while
low-conformity images often feature complex details covered by large portions of text descriptions.

18



The Double-Ellipsoid Geometry of CLIP

መ𝐶: 0.39

መ𝐶: 0.40

መ𝐶: 0.34

መ𝐶: 0.32

መ𝐶: 0.39

መ𝐶: 0.82

መ𝐶: 0.82

መ𝐶: 0.83

መ𝐶: 0.81
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Figure 20. Conformity on ImageNet-a. It is possible that high conformity images are with more unique colors, perhaps contains people
or text, whereas low conformity images tends to contain low amount of information.
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Figure 21. Shifting text ellipsoid only. Conformity distribution matching and loss experiments when shifting text ellipsoid only as in
Equation (14)
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Figure 22. Shifting both ellipsoids. Conformity distribution matching and loss experiments when shifting both text and image ellipsoids
as in Equation (15).
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Figure 23. vSLERP lamp to vase.
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Figure 24. vSLERP Kevin Durant to Lebron James.
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