Under review as a conference paper at ICLR 2026

UNLOCKING THE POWER OF CO-OCCURRENCE IN
CLIP: A DUALPROMPT-DRIVEN METHOD FOR
TRAINING-FREE ZERO-SHOT MULTI-LABEL CLAS-
SIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Contrastive Language-Image Pretraining (CLIP) has exhibited powerful zero-shot
capacity in various single-label image classification tasks. However, when ap-
plying to the multi-label scenarios, CLIP suffers from significant performance
declines due to the lack of explicit exploitation of co-occurrence information. In
pretraining, due to the contrastive property of its used objective, the model fo-
cuses on the prominent object in an image, while overlooking other objects and
their co-occurrence relationships; in inference, it uses a discriminative prompt
containing only a target label name to make predictions, which does not intro-
duce any co-occurrence information. Then, an important question is as follows:
Do we need label co-occurrence in CLIP for achieving effective zero-shot multi-
label learning? In this paper, we propose to rewrite the original prompt into a
correlative form consisting of both the target label and its co-occurring labels.
An interesting finding is that such a simple modification can effectively introduce
co-occurrence information into CLIP and it exhibits both good and bad effects.
On the one hand, it can enhance the recognition capacity of CLIP by exploiting
the correlative pattern activated by the correlative prompt; on the other hand, it
leads to object hallucination in CLIP, where the model predicts objects that do not
actually exist in the image, due to overfitting to co-occurrence. To address this
problem, we proposed to calibrate CLIP predictions by keeping the positive effect
while removing the negative effect caused by suspicious co-occurrence. This can
be achieved by using dual prompts consisting of the discriminative and correlative
prompts, which introduce label co-occurrence while emphasizing the discrimina-
tive pattern of the target object. Experimental results verify that our method can
achieve better performance than the state-of-the-art methods.

1 INTRODUCTION

Vision-Language Models (VLMs) trained on massive cheaply collected data have demonstrated im-
mense potential in many realistic tasks, e.g., object detection (Gu et al.l [2022), semantic segmen-
tation |Lin et al.| (2023), and anomaly detection (Zhou et al., 2024). As a representative model,
CLIP performs pretraining by aligning large-scale image-text using a contrastive objective, showing
strong zero-shot generalization ability in various downstream tasks. To perform zero-shot image
classification, a vanilla strategy is to expand each label name with a set of prompt templates, e.g.,
“A photo of a {label}”, showing impressive zero-shot classification performance in many
benchmark datasets Radford et al.[{(2021). Although CLIP has achieved successes in the single-label
zero-shot classification tasks, it often suffers from unfavorable performance when applied to more
realistic multi-label scenarios, where an image is often associated with multiple labels.

There are two major challenges in achieving effective zero-shot multi-label classification. As pointed
by (Lin et al., [2024)), the first challenge is that CLIP tends to capture the global features of an entire
image dominated by the most prominent object, while neglecting the local features of others. This
limits its ability to recognize multiple objects simultaneously, often leading to the precise recognition
of only the most prominent object while overlooking others. To address this, TagCLIP (Lin et al.,
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Figure 1: The co-occurrence probabilities of CLIP predictions and true labels. Without explicitly
exploiting label correlations, CLIP is hard to precisely model the co-occurrence among labels.

2024])) adopted the Vision Transformer (ViT) (Dosovitskiy et al.l 2021) as the backbone of CLIP to
explore the local features of patches, which are usually useful for identifying inconspicuous objects.
However, one limitation of this method lies in its heavy reliance on ViT to obtain local features
of patches for performing classification, which reduces its universality and prevents it from being
applied to other backbones, e.g., ResNet (He et al.|[2016).

The other challenge is that CLIP does not explicitly leverage label correlations, i.e., co-occurrence
relationships, during both pretraining and inference, which has been proven to be indispensable for
multi-label classification |Chen et al.|(2019); Lanchantin et al.| (2021)). In pretraining, the contrastive
objective used in CLIP leads its image encoder to focus on the prominent object in an image (Lin
et al 2024), while neglecting others and their co-occurrence patterns; in inference, using a dis-
criminative prompt such as “A photo of a {label}” does not introduce any co-occurrence
information. To verify this, we perform zero-shot multi-label classification on benchmark dataset,
MS-COCO [Lin et al.| (2014), and show the co-occurrence probabilities of vanilla CLIP predictions
and true labels in Figure [I] Considering that it is too large to display the entire matrix in the main
text, we select two subsets of frequently co-occurring objects and show their co-occurrence proba-
bilities. From the figure, there is a significant gap between the estimated co-occurrence probabilities
and the true ones, which means that vanilla CLIP cannot precisely model co-occurrence relation-
ships. This indicates that it cannot effectively reduce the complexity of the output space by captur-
ing prior information of label relationships, which often leads to missing labels and consequently
degrades model performance. An important question has emerged: Do we need label co-occurrence
in CLIP to achieve effective zero-shot multi-label classification?

In this paper, unlike the previous work that focuses on enhancing image feature representation, we
propose to rewrite the original discriminative prompt and obtain a correlative prompt for each target
label by including its co-occurring labels. An interesting finding is that such a simple modification
effectively introduces co-occurrence information, prompting the model to capture co-occurrence
patterns, which enhances its ability to recognize multiple objects. Unfortunately, we find that CLIP
tends to overfit to the co-occurrence relationships introduced by the correlative prompts. This leads
the model to suffer from an object hallucination issue, where it makes predictions even when the
target object does not exist in the image while its co-occurring objects do. To address this problem,
inspired by the recent study (Xie et al.,|2024), we build a causal inference framework by modeling
the co-occurrence as a mediator. This enables us to calibrate the CLIP predictions by removing
the biased prediction caused by mediated effect from the prompt of co-occurring labels to target
prediction. In practical implementation, our derivation shows that this can be achieved simply by
combining the outputs of the discriminative prompt and the correlative prompt. Comprehensive
experimental results verify that our method can achieve better performance than the state-of-the-art
methods.

2 RELATED WORKS

Multi-label image classification aims to train a multi-label classifier that can predict all relevant la-
bels for unseen images. The pioneering work (Wang et al., |2016) combined Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) and developed CNN-RNN framework
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to characterize the label correlations as well as the image-label relevance. To address the issue that
dataset-level statistical correlations may not hold for every individual image, Structured Seman-
tic Transfer (SST) (Chen et al., 2022) introduced the Intra-image Semantic Transfer (IST) mod-
ule, which learns an image-specific co-occurrence matrix and leverages this information to recover
unknown labels. To overcome the challenge that incomplete annotations make it difficult to esti-
mate label co-occurrence, SCPNet (Ding et al.l [2023) computed text features by feeding category
names into the CLIP text encoder, and uses their pairwise similarities as a surrogate for the label
co-occurrence. [Zhang et al.| (2024)) developed a large model to achieve the goal of recognizing any
object. |Yue et al.[(2024) treated the task of object recognition as the task of next token prediction.

Prompt tuning (Zhou et al.| 2022)) learns continuous vectors as task-specific prompts based on a
small number of training examples. The idea has been applied to multi-label image classification
and achieved impressive performance (Sun et al., 2022; |[Hu et al., [2023)). Given that images may
be costly to collect while texts are cheap to generate, |Guo et al.| (2023)) proposed Texts as Images
in prompt tuning (Tal) to adapt CLIP to multi-label image classification based on only the textual
modality.

3 PRELIMINARIES

In our setting, the task is to perform multi-label image classification, also known as object recogni-
tion|Yue et al.|(2024) or image tagging|Zhang et al.|(2024)), using CLIP without training. Specifically,
we are given a dataset {x;}}_; consisting of n test instances. Each instance is associated with an
unknown label vector y; C Y, where )V = {0,1}7 is the label space with g possible class labels.
Here, y;r = 1 indicates that the k-th label is relevant while y;, = 0 indicates that it is not. Our
task is to develop an inference strategy that enables CLIP to accurately predict all relevant labels for
each test instance. We begin with a brief introduction of CLIP. We use [g] to denote the integer set

{1,...,q}.

CLIP consists of an image encoder Enc;(-) and a text encoder Encr(+). To perform zero-shot classi-
fication, a conventional method is to construct a prompt P, using a template like “A photo of a
{label}”, where labely is the name of the k-th label. By using these two encoders, the image
and text features can be obtain as

fi = Enci(x;), tx =Encr(Py),Vk € [q].

Then, by computing the cosine similarity between the image features f; and the text features ¢; and
applying the softmax activation function, we obtain the predicted probabilities as

p(yk _ 1|$Z,Pk) o eXp(<fiatk>) ,Vk c [q]7

- Yo exp((fi t)

where (-, -) denotes the cosine similarity.

The original paper of CLIP has shown that prompt engineering and ensembling can enhance the
performance of its zero-shot classification (Radford et al.| 2021). For example, the original sin-
gle prompt can be expanded into a set of prompts by including prompts such as “A satellite
photo of a {label}”and “A photo of a big {label}”.

4 Do WE NEED CO-OCCURRENCE IN CLIP?

As discussed before, a potential limitation of CLIP is that it does not explicitly exploit co-occurrence
information during either the pretraining phase or the inference phase. Co-occurrence information
has long been proven to significantly enhance multi-label classification performance (Chen et al.,
2019). Consequently, an important question arises: Do we need co-occurrence in CLIP for zero-
shot multi-label classification? To answer this question, we perform experiments on MS-COCO by
incorporating co-occurrence information during the inference phase.

Specifically, for each label y;, with the name 1abely, we assume that there is a set of co-occurring
labels Ci, = {label; }Tz’”l where my, is the number of co-occurring labels for the label y;. We
will discuss how to obtain the co-occurring label set in the latter section. Then we rewrite the
prompt as “A photo of a {labeli}often includes a {label;},..,a {label,, }”.
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Figure 2: Empirical Validations on the advantages and disadvantages of CoP. (a) shows top 10
performance improvements and top 10 performance declines after using CoP. (b) shows the co-
occurrence probabilities of CLIP predictions using CoP. (c) reports the number of false positives
that contains co-occurring objects predicted by DiP and CoP.

(b) DiP

Figure 3: The causal graphs of DiP and CoP. P? and P¢ are the discriminative and correlative
prompts. F¢ and F¢ are the discriminative and correlative features. Y is the prediction of the target
label.

This allows us to introduce co-occurrence information into CLIP inference through prompts. We
refer to this prompt as the Correlative Prompt (CoP), while referring to the original prompt as the
Discriminative Prompt (DiP). Figure[2(a)|illustrates the performance improvements/declines of CoP
over DiP, sorted by the performance changes in terms of commonly used Average Precision (AP). As
shown in the figure, some labels experienced significant performance improvements, while others
saw substantial declines. Due to the page limit, we only show the top-10 labels with the highest
performance improvements and the top-10 with the greatest performance declines. The complete
results can be found in Appendix [B] To disclose the reason why the improvements are achieved on
these labels, we report the number of true positive instances that contain the target label and its co-
occurring labels, measuring how large co-occurrence helps the model to identify the target object.
The metric measures the positive impact of co-occurrence on the CLIP predictions. Obviously,
CoP makes far more correct predictions than DiP on most of these labels. This indicates that co-
occurrence is useful for enhancing CLIP’s ability to recognize multiple objects.

In Figure 2(a)] we also present top-10 labels with the greatest performance declines achieved by
CoP. To provide an explanation for this phenomenon, for each target label, Figure illustrates
the number of false positive instances that contain its co-occurring labels, measuring how many
incorrect predictions are caused by the model’s overfitting to co-occurrence. It is obvious to see
that CoP makes far more incorrect predictions caused by the overfitting issue than DiP in almost all
labels. While CoP benefits from co-occurrence information, it still carries the risk of overfitting to
1t.

A Causal Perspective To provide a theoretical explanation of these phenomena, as shown in Fig-
ure [3(a)} we construct a causal inference framework to show how CoP leverages co-occurrence
information. The framework includes three kinds of variables: the correlative prompt P¢ consisting
of the target label L! and its co-occurring labels L€, the discriminative activated features F'¢ and
the correlative activated features F'“, and the model prediction Y for the target label. We use — to
represent the causal link between any two variables, which indicates their casual effects. For the
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Figure 4: The framework of DualPrompt. It consists of two types of prompts. The correlative prompt
is used to maintain the good causal effect of co-occurrence by exploring correlative patterns, while
the discriminative prompt is used to remove the bad causal effect by enhancing the discriminative
responses.

sake of comparison, Figure shows the causal graph of DiP, where P represents the discrimina-
tive prompt only containing the target label L. On the one hand, compared to DiP, which can only
make predictions by activating the discriminative features through the single path L! — F¢ — Y,
CoP can still make predictions by activating the correlative features through an additional path
(LY, L¢) — F°¢ — Y, especially when the former does not work. This improves CLIP’s ability
to recognize inconspicuous objects by leveraging co-occurrence information, which is verified by
the results in Figure 2(b)] On the other hand, we consider a case where the target object does not
exist in an image but its co-occurring objects do. The discriminative features would not be activated
by the target label L; in the correlative prompt, i.e., the path L' — F¢ — Y is disconnected, due
to the fact that there is no target object; while the correlative features would be activated by the
co-occurring labels L€ in the correlative prompt, i.e., the path L¢ — F° — Y is connected, due
to the fact that there exist co-occurring objects. This enables the model to give a high probability
of the target object that does not even exist, which can be supported by the results in Figure
The above discussions tell us that co-occurrence has not only a positive side: it enhances the CLIP’s
ability to identify the target objects, but also a negative side: it makes CLIP suffer from the overfit-
ting issue and cause object hallucination (Biten et al.| 2022)). The important question now becomes:
Can we keep the positive side while mitigating the negative side of co-occurrence in CLIP?

5 UNLOCKING THE POWER OF CO-OCCURRENCE

For CoP, the predicted probability can be written as p(y, = 1|z;, P¢) or p(yx = 1|x,, LE, LY),
where P is the correlative prompt consisting of the target label L and its co-occurring labels L§
for the k-th class. However, when there are only co-occurring objects in an image and no target
object, CLIP still activates the correlative features by the co-occurring labels in the prompt through
the path L — F° — Y and gives a high probability of the target object. This indicates that
CLIP suffers from overfitting to the co-occurrence, leading to object hallucination. To address this
problem, we propose to calibrate the CoP prediction via the total direct effect (TDE) (Pearl, 2001),
with the goal of removing the biased part of the prediction. For a given image x, we define the TDE
prediction with respect to the k-th class as

Te() = p(yr = 1|z, Li, L}) — p(yr = 1|, L§). (1)

The first term represents the positive causal effect, where CLIP makes a prediction based on the
target label prompt L* and its co-occurring label prompt L¢; the second term represents the negative
effect, where CLIP makes a prediction based on only the co-occurring label prompt. The minus sign
indicates that we keep the positive effect while discarding the negative effect.

However, in our experiments, we find Eq. (I) hardly works. This may be because CLIP often over-
estimates the probability p(y, = 1|, Lf,), especially when some labels preferred by CLIP appear
in L. This leads the final predictions to underestimation, resulting in performance declines. To ad-
dress this problem, we derive an equivalent form of Eq. (I)), which transforms it from a subtraction
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Table 1: The comparative results between the proposed method and the state-of-the-art methods on
MS-COCO dataset. The best performance is highlighted in bold. Coo. Est. represents co-occurrence
probabilities estimation.

| Backbone | Resolution | Training Data Usage | mAP | FI

DualCoOp ResNet-101 | 224 x 224 | 1% Data for Training | 56.3 | 55.1
TaICLIP ResNet-101 | 224 x 224 | 1% Data for Training | 56.6 | 55.7
TalCLIP ResNet-101 | 224 x 224 COCO Captions 65.1 -

CLIP ResNet-101 | 224 x 224 None 62.9 | 59.8
DualPrompt ResNet-101 | 224 x 224 None 65.5 | 61.7
DualPrompt ResNet-101 | 224 x 224 | 1% Data for Coo. Est. | 67.1 | 63.0
DualCoOp ViT-B/16 224 x 224 | 1% Data for training | 55.1 | 54.4
TaICLIP ViT-B/16 | 224 x 224 | 1% Data for training | 63.6 | 55.9
CLIP ViT-B/16 | 224 x 224 None 64.9 | 61.5
DualPrompt ViT-B/16 224 x 224 None 67.7 | 63.6
DualPrompt ViT-B/16 224 x 224 | 1% Data for Coo. Est. | 69.4 | 65.0
TagCLIP | ViT-B/16 | Original | None | 68.7 | 65.2
DualPrompt + TagCLIP | ViT-B/16 Original None 69.2 | 654
DualPrompt + TagCLIP | ViT-B/16 Original 1% Data for Coo. Est. | 70.0 | 66.1

form into an addition form as E]
Ti(@) = p(yx = 1|z, P) + ply = 1|, PY). )

The second term represents the direct causal effect, where CLIP makes a prediction based on the
discriminative prompt P? containing only the target label L?. The plus sign indicates that we en-
hance the direct effect. An intuitive explanation of this transformation is that mitigating the indirect
effect is equivalent to strengthening the direct effect. We refer to this method as DualPrompt.

Figure[|provides an illustration of our proposed DualPrompt method. Unlike the vanilla method, the
bottom branch, which uses the discriminative prompt, our DualPrompt method uses dual prompts,
a discriminative prompt and a correlative prompt, to achieve effective zero-shot multi-label classifi-
cation.

How to Obtain Co-Occurrence? Considering that co-occurrence has both universality, meaning
that it is a natural law used to describe the physical world, and specificity, meaning that it may
vary across different datasets, we employ two methods to obtain co-occurrence information in ex-
periments. Firstly, we ask ChatGPT-40 to generate up to [ labels that frequently appear with target
objects in the same images. We find that the co-occurring labels generated by ChatGPT are not
completely correct. A large [ often means that more labels without co-occurrence relationships are
introduced, which can mislead the model and result in performance declines. To avoid this problem,
we set [ to be as small as 2 in our experiments. The other method is to annotate a tiny amount of train-
ing data and only use it for estimating the co-occurrence probabilities. The most co-occurring labels
for each target label can be found according to the co-occurrence probabilities. Our empirical stud-
ies in Section@ show that a very small number of examples, e.g., 1% training data in the MS-COCO
dataset, are needed to obtain an acceptable co-occurrence probability, which are often insufficient to
fine-tune CLIP by existing methods (Sun et al.,|2022) to achieve favorable performance.

6 EXPERIMENTS

We first compare our proposed method with the state-of-the-art methods; then, we perform ablation
studies to examine the contribution of each component.

The detailed derivation can be found in Appendix
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Table 2: The comparative results between the proposed method and the state-of-the-art methods on
VG-256 dataset. The best performance is highlighted in bold. Coo. Est. represents co-occurrence
probabilities estimation.

| Backbone | Resolution | Training Data Usage | mAP | FI

DualCoOp ResNet-101 | 224 x 224 | 2% Data for Training | 30.4 | 33.5
TaICLIP ResNet-101 | 224 x 224 | 2% Data for Training | 32.0 | 34.9
CLIP ResNet-101 | 224 x 224 None 29.2 | 322
DualPrompt ResNet-101 | 224 x 224 None 33.5 | 36.1
DualPrompt ResNet-101 | 224 x 224 | 2% Data for Coo. Est. | 35.2 | 37.6
TagCLIP | ViT-B/16 | Original | None | 39.6 | 41.9
DualPrompt + TagCLIP | ViT-B/16 Original None 40.2 | 42.4
DualPrompt + TagCLIP | ViT-B/16 Original | 2% Data for Coo. Est. | 40.7 | 42.7

6.1 EXPERIMENTAL SETTINGS

Dataset To evaluate the performance of the proposed method, we perform experiments on two
benchmark datasets, including MS-COCO 2014 E] (MS-COCO for short) (Lin et al., |2014) and Vi-
sual GenomeE](Kn'shna et al., 2017). MS-COCO contains 82,081 training images and 40,137 val-
idation images for 80 classes, with an average of 2.9 labels per image. Visual Genome is a dataset
that contains 108,249 images from 80,138 categories. By performing preprocessing as done in the
previous work (Xie et al.,[2024), we obtain a dataset named VG-256 that contains 106,702 images
and 256 classes. We randomly split the entire dataset into a 70% training set with 74,691 images
and a 30% validation set with 32,011 images. We directly evaluate our method and other methods
on the validation set. The commonly used mean Average Precision (mAP) and per-class F1 (F1)
are used as the evaluation metrics. To ensure a fair comparison, we set the random seed to 1 for all
experiments.

Implementation For CLIP, we use ResNet-101 (He et al.,|2016) and ViT-B/16 (Dosovitskiy et al.,
2021)) as the backbones. For TagCLIP, we use the original resolution of images as done in its original
paper; for other methods, we use a resolution of 224 x 224. Following the previous work (Lin et al.|
2024), we use the 80 prompts used in CLIP (Radford et al.| [2021)). For prompt fine-tuning methods,
when only 1% of the training data is available, the batch size is set to 16; when 2%-5% of the training
data is available, the batch size is set to 32. The other parameters use the reference values provided
in the original papers. All experiments were run on single NVIDIA A100 GPUs.

6.2 COMPARISON WITH STATE-OF-THE-ART METHODS

To validate the effectiveness of the proposed method, we compare it with two types of CLIP-based
methods: i) two training-based methods, DualCoOp (Sun et al., 2022}, which performs prompt
tuning based on a subset of downstream training data, and Tal (Guo et al., |2023)), which trains on a
subset of data or curated caption data in the downstream task; ii) two training-free methods, CLIP
(Radford et al.,|2021)) and TagCLIP (Lin et al., 2024).

TableT]and Table 2] report the results of the proposed method and other methods on MS-COCO and
VG-256, respectively. From the table, we can see that: i) DualPrompt outperforms both training-
based and training-free methods with a significant margin. ii) By combining DualPrompt and Tag-
CLIP, we achieve the state-of-the-art performance on both two datasets. iii) For the two methods
of obtaining co-occurrence labels, it is evident that co-occurrence estimation with a tiny number of
data is better than ChatGPT. The co-occurrence provided by ChatGPT is universally existing regu-
larity, while co-occurrence estimation is based on the prior of the downstream dataset. These results
convincingly verify that the proposed method can achieve the state-of-the-art performance.

Zhttps://cocodataset.org
Shttps://homes.cs.washington.edu/~ranjay/visualgenome/index.html
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Figure 6: The performance curve with the increase of training data usage. For DualPrompt, training
data is only used for estimating co-occurrence probabilities; while for DualCoOp, training data is
used for model training.

6.3 ABLATION STUDIES

We provide empirical validations on how DualPrompt keeps the positive impact while removing the
negative impact of co-occurrence. Figure[3]illustrates a stepwise evaluation on MS-COCO in terms
of AP. From the figure, we can see that CoP achieves better performance than DiP on some classes,
while performing worse on others. Overall, the performance of CoP is inferior to that of DiP. This
is because CLIP overfits to the co-occurring labels given in the prompt, making many false positive
predictions, which leads to a decline in model performance. To address this problem, our proposed
method calibrates the predicted probabilities via TED measurement by removing the biased parts.
DualPrompt achieves performance improvements in almost all classes, providing convincing evi-
dence that it can maintain the positive effect while removing the negative effect.

6.4 STUDY ON TRAINING DATA USAGE

In our method, we need to obtain the co-occurring labels for each target label. A solution is to
estimate the co-occurrence probabilities based on a very small subset of training data and obtain
co-occurrence according to probabilities. In this subsection, we show that such a small number of
training data is insufficient for model training. Figure [§] illustrates the performance curves of our
method and prompt tuning methods, DualCoOp and Tal. It is noteworthy that our method only uses
the training data for estimating co-occurrence probabilities, while DualCoOp and Tal use them for
fine-tuning the model. From the figure, it can be observed that with a very small number of train-
ing (1%), there is a significant performance gap between our method and prompt tuning methods.
With the increase of training data, the gap gradually narrows, and eventually, Tal outperforms our
method. This indicates that our method requires such a small number of training data to estimate
co-occurrence probabilities that they are not even sufficient for fine-tuning the model.



Under review as a conference paper at ICLR 2026

L° 020 007 0.02 0.02 0.02 0.04 @0&6'0‘30 0.12 003 0.06 0.06 0.11 & 030 0.12 0.04 0.05 0.05 0.09 KOOQ@MOAM 0.11 0.16 0.14 026
R -0.06 023 003 003 005 006  $0-0.13 0.37 0.11 0.11 0.12 0.16  -0.14 041 0.11 0.11 0.13 0.16 c‘\\;Qro.szo.zo 021 021 031
006 0.14 029 0.3 009 0.1 (F-0.12 022 036 021 0.16 0.18  (F¥-0.12 027 047 025 0.18 021 ($¥-027 o.SZMO,so 033 040
$°.0.04 004 003 013 002 0.04 010 0.17 0.18 0.31 0.10 0.14 $¥.0.09 014 0.16 032 0.09 012 & 032 046 0.41 BRI 027 038

S N S S
004 008 0.04 003 020 0.13 %Qo°°—o.09 0.18 0.12 0.11 032 023 0,07 0.17 0.11 0.09 0.34 023 %Qo°°—0.34 053 0.32 0.32 M

005 0.08 0.04 003 0.10 027 ‘004‘\—0.11 019 0.12 0.12 0.18 0.43 010 0.19 0.13 012 0.19 045 ‘004‘\—0.31 039 0.19 023 0.30

& D 8 R (g
‘oo'é DSV, & F OO

. ' D ; . ‘ . ' D
FES S e

(a) DiP (b) CoP (c) DualPrompt (d) True

& ‘o‘\ O« \t~
S S

Figure 7: The co-occurrence probabilities of different predictions and true labels.

5th 10th 15th 20th 5th 10th 15th

Figure 8: The text-image retrieval results of DiP (the first row), CoP (the second row) and Dual-
Prompt (the last row) with respect to cup (on the left side) and sink (on the right side). To show the
representativeness of different methods, we present the images ranked 1st, 5th, 10th, 15th, and 20th
based on text-image similarities.

6.5 STUDY ON CO-OCCURRENCE ESTIMATION

In this subsection, we demonstrate the ability of different methods to capture co-occurrence rela-
tionships. Figure[7]illustrates the co-occurrence probabilities estimated by different methods in the
kitchenware scenario consisting of six classes: bottle, cup, fork, knife, spoon, bowl. We can see that
CoP performs better than DiP on some classes, while performing worse on others. This means that
although CoP benefits from the advantage of correlative prompts, it still suffers from the overfitting
to co-occurrence. Suspicious co-occurrence hinders further performance improvement. To address
this problem, DualPrompt aims to remove the negative impact caused by suspicious co-occurrence
and achieve better co-occurrence estimation than both DiP and CoP.

6.6 TEXT-IMAGE RETRIEVAL RESULTS

To explore the mechanism behind DualPrompt, as shown in Figure [8] we visualize some images
according to text-image similarity scores. Three rows represent the text-image retrieval results of
DiP, CoP and DualPrompt. For each method, we illustrate the images ranked 1st, 5th, 10th, 15th,
and 20th according to similarity scores. From the figure, we can see that the retrieved images from
different methods exhibit significant differences. DiP tends to retrieve the images dominated by the
target object. It sometimes make a mistake due to the ambiguous object, e.g., incorrectly identify a
vase as a cup in the 15-th image. While CoP tends to retrieve images that depict scenes characterized
by the target object and its co-occurring objects, such as a dining table full of plates or a fully
equipped bathroom. This indicates that CoP identifies the target object by exploiting co-occurrence
information. But it often suffers from the overfitting issue and make incorrect predictions based on
only the co-occurring objects, e.g., there is no cup but only its co-occurring objects like bowl and
bottle in the 15-th image. The images retrieved by DualPrompt seem to be a combination of the first
two methods. DualPrompt enhances the text-image matching ability by leveraging the advantages
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Figure 9: Object hallucination cases obtained by DualPrompt. The hallucinated category names are
shown below each image.

of the first two methods, which aims to identify the target object based on discriminative features
and correlative patterns.

6.7 FAILURE CASE ANALYSIS

In this subsection, we present a failure case analysis of DualPrompt in addressing the overfitting
issue caused by label co-occurrence. Figure [9] shows cases where DualPrompt produces object
hallucinations on two groups of classes with high co-occurrence frequencies. The co-occurrence
probabilities of these two category groups can be found in Figure [I(b)] and Figure [I(d)] From the
figure, we can observe that the hallucinations produced by DualPrompt often occur when the image
contains one or more salient objects that strongly co-occur with the target object. For example, the
microwave in the first image, the oven in the second image, and the knife in the fifth image. How-
ever, we must emphasize that such cases are rare in DualPrompt. In most situations, DualPrompt
effectively alleviates the overfitting issue caused by label co-occurrence.

7 CONCLUSION

The paper studies on zero-shot multi-label classification using CLIP without training. We find that
compared to the single-label scenarios, CLIP often obtain unfavorable performance in the multi-
label scenarios due to the fact that it does not explicitly exploit co-occurrence in both pretraining and
inference. To address this problem, we propose the DualPrompt method to use the discriminative
prompt and correlative prompt simultaneously. The former contains the only target label, which
aims to capture discriminative features, while the latter contains the target label and its co-occurring
labels, which introduces co-occurrence information. Moreover, we construct a causal inference
framework to provide a theoretical explanation for our method. Extensive experimental results verify
the effectiveness of the proposed method.
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A DERIVATION OF EQ. (2))

Considering that a correlative prompt P¢ consisting of the target label L! and its co-occurring labels
Le, let {L*, L&} and {L}, L¢} represent two mutually exclusive events, where L§ (L{) represents
we remove the co-occurring labels (target label) from the correlative prompt. By omitting the class
index k for notational simplicity, we have

T(x)
=p(y =1z, L', L°) — p(y = 1|, L¢, L§)
ply =1,2,L° L)

p(y = 1|z, L, L°) —

p(e, Le, L)
c p(y: 1,£B,LC7Lt) _p(y: 17w7L(c)7Lt)
=p(y = 1|z, L, L°) — -
p(x, Le, L)
ply = 1z, L, LY)p(z, L, L*) — p(y = 1|z, L§, L")p(=, L§, L)
=p(y = 1|x, L, L) —
p(y |€I}, 9 ) p(m,LC,Lg)
. p(vaCaLt) p(m,Lg,Lt)

)p(y = 1|z, L', L°) + p(y = 1|z, L§, L")

= 1 _
( p(x, Le, L)
x p(y = 1@, P°) + Ap(y = 1|z, P?),

p(x, Le, LY)
3)

p(e,L§,L")
p(x,L°,Lg)—p(e,L°,LY)
find that our method achieves favorable performance by simply setting A to 1.

where \ =

can be regarded as a trade-off parameter. In our experiments, we

B COMPLETE RESULTS OF FIGURE [2(A)|
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Figure 10: The performance changes of CoP against DiP in terms of AP over all cases. The perfor-
mance of nearly half of the labels improved, while the performance of the other half decreased.

Figure [TT] illustrates the performance changes of CoP against DiP in terms of AP over all classes.
From the figure, we can see that nearly half of the labels experience performance improvements,
while the other half suffer from performance declines. These results verify that co-occurrence has
both good and bad effects.

C EXPERIMENTAL RESULTS ON OBJECTS365

To verify that the proposed method has a broad range of applicability, we have added experimental
results on a more challenging dataset, Objects365 [*((Shao et al.,[2019), which contains 365 classes.
This dataset has an average of 6.17 labels per image, which is more than twice that of the COCO
dataset (2.93). Table [3]reports the experimental results of our method and the comparison baselines
on Objects365. For our method DualPrompt, we use 1% of the training data to estimate label

*nttps://www.objects365.org/overview.html
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Table 3: The comparative results between the proposed method and the state-of-the-art methods on
Objects365 dataset. The best performance is highlighted in bold. Coo. Est. represents co-occurrence
probabilities estimation.

| Backbone | Resolution | Training Data Usage | mAP | FI

CLIP ResNet-101 | 224 x 224 None 30.0 | 26.8
DualPrompt ResNet-101 | 224 x 224 | 1% Data for Coo. Est. | 34.5 | 30.0
TagCLIP ViT-B/16 | 224 x 224 None 36.7 | 304
DualPrompt + TagCLIP | ViT-B/16 | 224 x 224 | 1% Data for Coo. Est. | 37.9 | 31.9

co-occurrence. As shown in the table, DualPrompt significantly outperforms the baseline CLIP,
achieving a 4.5% improvement in mAP. After incorporating TagCLIP, the proposed method still
yields a 1.2% gain in mAP. These experimental results demonstrate the effectiveness of DualPrompt
in challenging scenarios.
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Figure 11: The comparison results of DualPrompt using ChatGPT-generated co-occurrence relation-
ships versus dataset-estimated co-occurrence relationships.
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