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Abstract

Generating novel molecules is challenging, with most representations of molecules leading to gener-
ative models producing many invalid molecules. Spanning Tree-based Graph Generation (STGG)
(Ahn et al., 2021) is a promising approach to ensure the generation of valid molecules, outperforming
state-of-the-art generative models for unconditional generation. In practice, it is desirable to generate
molecules conditional on one or multiple target properties rather than unconditionally. Thus, we ex-
tend STGG to multi-property conditional generation. Our approach, STGG+ , incorporates a modern
Transformer architecture, random masking of properties during training (enabling conditioning on
any subset of properties and classifier-free guidance), an auxiliary property-prediction loss (allowing
the model to self-criticize molecules and select the best ones), and other improvements. We show that
STGG+ achieves state-of-the-art performance on in-distribution and out-of-distribution conditional
generation, as well as reward maximization.

1 Introduction

Generating novel molecules is challenging, and the choice of molecular representation significantly impacts the
performance of generative models. Recent methods generate molecules in 2D (as graphs) (Jo et al., 2022; Vignac et al.,
2022; Thompson et al., 2022; Jo et al., 2023) or 3D (Hoogeboom et al., 2022; Bao et al., 2022; Xu et al., 2023; Huang
et al., 2024). However, 1D representations, such as SMILES (Weininger, 1988), remain the standard representation in
practical molecule design (Segler et al., 2018; Kwon et al., 2023; M. Bran et al., 2024; Wu et al., 2024).

A key issue with molecule representations is that a single error by the generative model can result in invalid molecules,
which is especially challenging as the molecule size increases. Spanning Tree-based Graph Generation (STGG) (Ahn
et al., 2021) tackle this issues by masking invalid tokens during sampling, preventing the generation of invalid structures
(e.g., atoms without bonds between them, branch end before branch start) and ensuring proper valency. The masking
employed by STGG not only prevents invalid molecules, but also leads to higher-quality and more diverse generated
molecules, outperforming or matching more recent state-of-the-art generative models for unconditional generation
(Jang et al., 2023). However, its application in multi-property conditional settings has not been explored. We address
this setting along with a few additional challenges, as discussed below.
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Any-property-conditioning. In real-world applications, it is desirable to generate molecules conditional on one or
multiple target properties rather than unconditionally Jain et al. (2023). Furthermore, we want to condition on different
subsets of desirable properties without needing to retrain the model for each subset.

Self-criticism. A critical issue in molecule discovery is synthesis time, which can take weeks or months. To avoid
extreme synthesis costs, we need to filter the molecules that we provide to chemists. Some properties can be verified
through simulations, but this is slow, and not all properties can be simulated. Another option is to rely on external
property predictor models, but training, validating, and managing multiple property predictors can be challenging. To
address this issue, we propose giving the model the ability to predict properties and thus self-criticize its own generated
molecules, allowing it to filter out those with undesirable properties. Such self-criticism mechanisms are common in
language models Madaan et al. (2024); however, they are not used in STGG.

Out-of-distribution properties. We often seek to generate novel molecules with out-of-distribution (OOD) properties
to discover new structures. Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) is a technique to improve
conditioning fidelity; we found CFG useful for in-distribution properties, but problematic for some OOD conditioning
values (especially extreme values), resulting in poor generated molecules. Since guidance can be beneficial to some
conditioning values but not others, we propose random guidance with best-of-k self-filtering (described in Section 3.5).

To summarize, we tackle any-property-conditional molecule generation in a practical, real-world setup. In doing so, we
make the following contributions:

1. We make multiple improvements compared to STGG (Figure 1; ablation in Section 4.5):

(a) Any-property-conditioning enabling conditioning on multiple target properties and any subset of them without
retraining (Section 3.2);

(b) Improved architecture based on recent advances in Transformers (Section 3.1);
(c) Improved Spanning-Tree with enhanced tokenization and masking to improve validity and generalization

(Section 3.3);
(d) Auxiliary property prediction objective enabling the self-criticism ability and improving conditioning fidelity

(Section 3.6);
(e) Random guidance for extreme value conditioning to improve classifier-free guidance on extreme OOD

conditioning fidelity (Section 3.5).

2. By comprehensive evaluation, we demonstrate excellent performance in terms of:

(a) high quality and diversity for unconditional generation on QM9 and Zinc (Appendix A.7);
(b) high quality and conditioning fidelity for in-distribution (Section 4.1) and OOD (Sections 4.2 and 4.4) condi-

tional generation on the HIV, BACE, and BBBP datasets, as well as the challenging Chromophore DB with
larger and more complex molecules;

(c) high reward and diversity for multi-objective reward maximization on QM9 (Section 4.3).

Our evaluation spans diverse molecule generation scenarios, including realistic (yet underexplored in machine learning)
cases like the Chromophore DB dataset and HOMO-LUMO property optimization. This underscores the significance of
our proposed approach and its exploration.

2 Background and Related Work

2.1 1D vs 2D vs 3D representations

There are many ways of representing molecules in the context of molecular generation. Some of the most popular
methods are (1) autoregressive models on 1D strings (Segler et al., 2018; Ahn et al., 2021; Kwon et al., 2023) and
(2) diffusion (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020) models on 2D graphs. While both approaches have
similar sample complexity, 1D strings offer a more compressed representation, requiring less space and fewer parameters
and, thus, increased potential for scalability. We provide a detailed comparison between different representations in
Appendix A.1.

Furthermore, recent results indicate that 1D strings are as competitive as 2D molecular graph methods for both
unconditional molecule generation (Jang et al., 2023; Fang et al., 2023) and property prediction (Yüksel et al., 2023).
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Both 1D and 2D representations encapsulate the same amount of information, making the choice largely a matter of
preference. We advocate for 1D string representations due to their scalability and effective utilization by Transformer
models, and thus, we focus on this type of representation in our work.

Molecules are inherently 3D objects and can be generated in 3D (Hoogeboom et al., 2022; Bao et al., 2022; Xu et al.,
2023; Huang et al., 2024; Song et al., 2024; Luo et al., 2024; Verma et al., 2022; Mercatali et al., 2024). Generating
3D molecules is challenging and often results in fewer valid molecules. Since 3D conformations can be inferred from
1D or 2D molecular representations using popular chem-informatics tool Sun et al. (2020); Landrum et al. (2024), 1D
strings like SMILES remain the standard representation in molecule design (M. Bran et al., 2024; Wu et al., 2024).

2.2 1D representations

2.2.1 SMILES

The most popular choice of 1D string-based representation is SMILES (Weininger, 1988), an extremely versatile method
capable of representing any molecule. However, when used in generative models, generated SMILES strings often
correspond to invalid molecules. A single incorrectly placed token often leads to an invalid molecule. Graph-based
diffusion methods also face a similar issue (Vignac et al., 2022). Recent methods such as STGG(Ahn et al., 2021) and
SELFIES (Krenn et al., 2022) were developed to tackle this issue by preventing the generation of invalid molecules. For
a detailed comparison of SMILES, SELFIES, and STGG, see Appendix A.2.

2.2.2 SELFIES

SELFIES has been shown to perform worse than SMILES on property-conditional molecule generation (Gao et al., 2022;
Ghugare et al., 2023). Meanwhile, SMILES has been shown to perform worse than STGG on unconditional generation
using the same architecture (Ahn et al., 2021). Furthermore, STGG performs on-par or better than state-of-the-art
unconditional generative models(Ahn et al., 2021; Jang et al., 2023). Therefore, our work focuses exclusively on
extending and improving STGG.

2.2.3 STGG

Spanning Tree-based Graph Generation (STGG) (Ahn et al., 2021) is a type of generative model made to tackle the
problem of invalid generated molecules. It tackle this issue by using a new type of representation, which allows it to
easily mask invalid tokens during sampling, preventing the generation of invalid structures (e.g., atoms without bonds
between them, branch end before branch start) and ensuring proper valency. STGG (Ahn et al., 2021) uses a vocabulary
similar to SMILES but with some key differences: begin “(” and end “)” branch tokens, ring start “[bor]” and i-th
ring end “[eor-i]” tokens. Contrary to SELFIES, STGG was made from the ground up for molecule generation.
STGG leverages a Transformer architecture (Vaswani et al., 2017) to sample the next tokens conditional on the tokens
of the current unfinished molecule. To predict the ring end tokens, STGG uses a similarity-based output layer distinct
from the linear output layer used to predict other tokens. STGG also uses an input embedding to track the number of
open rings. Invalid next tokens are prevented through masking of next tokens that would lead to impossible valencies
(e.g., atoms, ring-start, and branch-start when insufficient valency remains) and structurally invalid tokens (e.g., ring-i
end when fewer than i ring start tokens are present).

In the next section, we show how to improve STGG’s architecture, vocabulary, and masking, adapt STGG for any-
property conditional generation, and improve conditioning fidelity through classifier-free guidance, self-criticism, and
random classifier-free guidance for extreme conditioning.

3 Method

3.1 Architecture

We enhance the architecture used in STGG, which is a regular Transformer architecture (Vaswani et al., 2017), directly
from PyTorch main libraries. The original transformer consists of alternating blocks of Multilayer perceptron (MLP)
and self-attention layers. To improve it, we leverage recent improvements in Large Language Models following GPT-3
(Radford et al., 2019), Mistral (Jiang et al., 2023), and Llama (Touvron et al., 2023). The improvements include:
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1. bias-free architecture (Chowdhery et al., 2023), which consists of removing the bias/intercept from the linear
layers in order to reduce the number of parameters and stabilize training

2. replacing replace Layer Normalization (LayerNorm) (Ba et al., 2016) with Root Mean Square Layer Normal-
ization (RMSNorm) (Zhang & Sennrich, 2019), which consists in replacing z-score normalization of the layers
by a simpler un-centered version (which is equivalent to removing the bias term in the LayerNorm).

3. residual-path weight initialization (Radford et al., 2019), which ensures that the variance of the input is equal
to the variance of the output (instead of having the variance collapse to 0 at the output, leading to vanishing
gradients)

4. rotary embeddings (Su et al., 2024) instead of relative positional embedding to encode token position because
it improves generalization

5. Flash-Attention-2 (Dao et al., 2022; Dao, 2023) which is a fused GPU kernel for a faster and more memory-
efficient GPU implementation of self-attention.

6. SwiGLU (Hendrycks & Gimpel, 2016; Shazeer, 2020), which is an improvement to the original MLP with
special gating and Swish activation function.

7. changes in hyper-parameters following GPT-3 (Radford et al., 2019) (i.e., AdamW (Loshchilov & Hutter,
2017; Kingma & Ba, 2014) β2 = 0.95, cosine annealing schedule (Loshchilov & Hutter, 2016), more attention
heads, no dropout).

These modifications aim to enhance the model’s efficiency, scalability, and overall performance. We also considered
more efficient architectures (Appendix A.5).

3.2 Any-property conditioning

To condition the model on any subset of desired properties without retraining, we need to be able to “turn off“ properties
at inference time. To do this, we include additional masking features that indicate when a conditioning variable is
missing or not: whenever a variable is missing, we reset it to a default value and set the corresponding binary “missing”
feature to 1. For variables that are present, the binary “missing” feature is 0. The binary feature is needed for the model
to be able to distinguish between a variable being turned off for conditioning and the variable being present with that
default value. Otherwise, the model would frequently be conditioned incorrectly: when two properties X and Y are
correlated but only Y is masked, then the model would learn that they are decorrelated due to Y being set to the default
value independently of X. With the mask, the model can learn that the value of the Y variable is irrelevant instead.

For continuous variables, we choose the default value to be 0. We make sure to z-score standardize all continuous
features first, so that the default corresponds to the mean. For categorical variable, we can include the binary masking
feature in the variable itself by adding an extra category that indicates that it is missing (a variable with two categories
[A, B] becomes [A, B, missing]). With one-hot encoding of the categories, this amounts to setting all the original
categories to 0 and the binary mask to 1.

During training, we mask a random subset of t properties, where t is chosen uniformly between 0 and the total number
of properties (Appendix A.3.2). This lets the model see many combinations at train time and thus lets us condition the
model on any subset of desired properties at test time.

Our model takes the standardized continuous features (continuous properties concatenated with their binary missing
indicators) as input and processes them using a 2-layer multilayer perceptron (MLP) with the Swish activation
(Hendrycks & Gimpel, 2016; Ramachandran et al., 2017). Each categorical feature is then processed individually using
an embedding layer. These processed outputs are added directly to the embedding of all tokens (Figure 1).

3.3 Improvements to Spanning-Tree

Starting from STGG as base, we implement several improvements. Firstly, we extend the vocabulary to allow for the
generation of molecular compounds that are composed of multiple unconnected graphs (e.g., salt is represented as
[Na+].[Cl-], where [Na+] and [Cl-] are single-atom molecules connected through an ionic bond). STGG uses a fixed
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Figure 1: Left: STGG architecture, Right: Our STGG+ architecture. The molecule is tokenized and embedded.
Properties embeddings are added. The output produces the property and next-token predictions (masked to prevent
invalid tokens). Novel components compared to STGG are in bold. See Section 3 for explanations on the components.
See Section 4.5 for an ablation showing the importance of each component.

vocabulary and a fixed set of maximum valencies that determines how many valence bonds each atom can form. Instead
of requiring a predefined vocabulary, we automate the process of building a vocabulary based on the atoms found in the
dataset and their maximum valency, again derived from the dataset. This data-centric approach allows us to represent
complex structures, such as hypervalent molecules (molecules with more than 8 valence electrons).

We observe that STGG can occasionally generate incomplete samples by creating too many branches without closing
them within the allowed maximum length, particularly when conditioning on extreme out-of-distribution properties
(above or below 4 standard deviations). To address this, we modify the token masking process to ensure the model
closes its branches when the number of open branches approaches the number of tokens left to reach the maximum
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length. This additional masking step prevents the rare but problematic situation of incompletely-generated samples.
Additionally, for larger molecules, it is possible for the model to produce more rings than the maximum number of
rings (100); we now mask the ring-start token when the maximum number is reached. With these additional masks, we
maintain near perfect validity, even when generating molecules with out-of-distribution properties. We describe the
masking algorithms in details (before and after the changes) in Appendix A.12.

Contrary to STGG, we do not canonicalize molecules and instead use a random ordering of molecule components (a
different random ordering is sampled for each molecule during training). This improves generalization as it can be seen
as data augmentation (see ablations in Section 4.5).

3.4 Classifier-free guidance

To enforce better conditioning of the properties, we use classifier-free guidance (CFG), originally designed for diffusion
models (Ho & Salimans, 2022), which was found to be beneficial for autoregressive language models too (Sanchez
et al., 2023). This technique involves directing the model more toward the conditional model’s direction while pushing
it away from the unconditional model’s direction by an equal amount (this is best visualized in Figure 2; the softmax
sampling equation shows that when w > 1, we push toward the conditional model and away from the unconditional
model).

Figure 2: Generation and self-prediction using STGG+ . Generate K molecules conditional on properties using
classifier-free guidance. The unconditional model predicts the properties of the K molecules; the molecule assumed
closest to the desired properties is returned.

3.5 Random guidance for extreme conditioning

Guidance (Ho & Salimans, 2022) can be problematic for extreme (out-of-distribution) conditioning values, resulting in
poor “generative efficiency” (% of valid, unique, and novel molecules) and conditioning fidelity. However, guidance can
still be beneficial to some extreme conditioning values. To improve generative performance on extreme conditioning
values, we propose to randomly sample a guidance w ∼ U(−0.5, 2) for each sample, ensuring high diversity through
a mix of low and high guidance. Then, using self-criticism, our method selects the best-out-of-k molecule from the
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molecules generated at different guidance levels, indirectly allowing the model to determine by itself which guidance is
best for each sample. This is effectively a way to balance exploration and exploitation (higher guidance means less
diversity and better property-alignment, while lower guidance means more diversity and less property-alignment).

3.6 Self-criticism

To make the model more powerful, we provide the model with the ability to self-criticize its own generated molecules.
The purpose is improve the quality of generated samples by using a jointly-trained property predictor to rank and filter
the generated samples. It works as follows: 1) the model generates k molecules for a given set of properties, 2) it
evaluates the k molecules properties based on its own property-predictor (see the paragraph below), and 3) it returns the
molecule whose properties best match the conditioned properties. This best-out-of-k strategy improves the quality of its
generated molecules.

For the model to be able to predict properties of the molecules, we add a property-prediction loss to the training objective
(Figure 1). During training, the model is tasked with predicting both the next token and the properties of the current
unfinished molecule. During sampling, we generate molecules conditioned on desired properties with classifier-free
guidance (Figure 2). Then, we mask out the properties (making them as fully missing) and reprocess the molecule until
we reach the end-of-sequence (EOS) token. At this point, we extract the predicted property of this molecule.

4 Experiments

We run four sets of experiments. First, we show that our model can generate molecules conditioned on properties from
the test set with high fidelity. Second, we show that our model can efficiently generate (high % of novel, unique, and
valid) molecules with high fidelity on out-of-distribution (OOD) properties. Third, we show that our model can produce
molecules that maximize a reward function, achieving similar or better performance compared to online learning
methods using offline learning. Finally, we show that our model can generate high fidelity molecules conditioned on
out-of-distribution (OOD) properties on a small dataset of larger and more complex molecules.

We experiment with six datasets: (1) QM9 (Ramakrishnan et al., 2014) with around 134k molecules and maximum
SMILES length of 37; (2) Zinc250K (Sterling & Irwin, 2015) with 250k molecules and maximum length of 136; (3)
BBBP (Wu et al., 2018) with 862 molecules and maximum length of 186; (4) BACE (Wu et al., 2018) with 1332
molecules and maximum length of 161; (5) HIV (Wu et al., 2018) with 2372 molecules and maximum length of 193; (6)
Chromophore DB (Joung et al., 2020) with 6810 molecules and maximum length of 511. See Appendix A.3 for details
on these datasets, A.4 for more information on the hyperparameters, A.6 for property prediction performance metrics of
the self-critic. We also perform unconditional generation experiments on QM9 and Zinc250k in Appendix A.7. We
rely on the following software: PyTorch (Paszke et al., 2019), Molecular Sets (MOSES) (Polykovskiy et al., 2020) and
RDKit (Landrum et al., 2024). Unless otherwise specified, we use RDKit to evaluate the properties of the generated
molecules.

We follow the same protocol as Liu et al. (2024). We train our model on HIV, BACE, and BBBP. We use the same
train, valid, and test splits as Liu et al. (2024). Each dataset has an experimental categorical property related to HIV
virus replication inhibition (HIV), blood-brain barrier permeability (BBBP), or human β-secretase 1 inhibition (BACE),
respectively, and two continuous properties: synthetic accessibility (SAS) (Ertl & Schuffenhauer, 2009) and complexity
scores (SCS) (Coley et al., 2018). We evaluate the models using metrics on distribution and fidelity of conditioning
after generating molecules conditional on properties from the test set. The condition control metrics are the Mean
Absolute Error (MAE) of SAS (evaluated by RDKit) and accuracy of the categorical property (evaluated by a Random
Forest (Breiman, 2001) predictor using the Morgan Fingerprint (Morgan, 1965; Gao et al., 2022)). The distribution
metrics are validity, atom coverage in the largest connected graph (how many unique atom types are produced), internal
diversity (average pairwise similarity of generated molecules), fragment-based similarity (Degen et al., 2008), Fréchet
ChemNet Distance (FCD) (Preuer et al., 2018). We consider any atom coverage above the test set coverage to indicate
good coverage. The Property accuracy metric depends on a RandomForest classifier, thus we consider any accuracy
equal or above the test set to indicate good condition control.
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4.1 In-distribution conditional generation

Baselines. Following Liu et al. (2024), we compare our method to strong recent baselines: GraphGA (Jensen, 2019),
MARS (Xie et al., 2021), LSTM on SMILES with Hill Climbing (LSTM-HC) (Hochreiter & Schmidhuber, 1997;
Brown et al., 2019), and powerful graph diffusion models: DiGress (Vignac et al., 2022), GDSS Jo et al. (2022), MOOD
(Lee et al., 2023), and the state-of-the-art Graph DiT (Liu et al., 2024).

Table 1: Conditional generation of 10K molecular compounds on HIV, BBBP, and BACE.

Tasks
Distribution Learning Condition Control

Metric Validity ↑ Coverage∗ ↑ Diversity ↑ Similarity ↑ FCD ↓ MAE ↓ Accuracy ∗ ↑
Model \ Property SAS BACE, BBBP, or HIV

SA
S

&
B

A
C

E

MOOD 1.00 8/8 0.89 0.26 44.24 1.89 0.51
Graph GA 1.00 8/8 0.86 0.98 7.41 0.96 0.47
Graph DiT 0.87 8/8 0.82 0.88 7.05 0.40 0.91

STGG∗∗ 1.00 8/8 0.82 0.98 3.82 0.45 0.95
STGG+(k = 1) 1.00 8/8 0.83 0.98 3.80 0.24 0.91
STGG+(k = 5) 1.00 8/8 0.83 0.98 3.80 0.18 0.93

Test data 1.00 7/8∗ 0.82 1.00 0.00 0.00† 0.82∗

SA
S

&
B

B
B

P

MOOD 0.80 9/10 0.93 0.17 34.25 2.03 0.49
Graph GA 1.00 9/10 0.90 0.95 10.17 1.21 0.30
Graph DiT 0.85 9/10 0.89 0.93 11.85 0.36 0.94

STGG∗∗ 1.00 9/10 0.89 0.92 11.74 0.98 0.75
STGG+(k = 1) 1.00 10/10 0.89 0.94 9.86 0.47 0.87
STGG+(k = 5) 1.00 9/10 0.89 0.94 10.10 0.38 0.90

Test data 1.00 10/10∗ 0.88 1.00 0.00 0.02 0.81∗

SA
S

&
H

IV

MOOD 0.29 29/29 0.93 0.14 32.35 2.31 0.51
Graph GA 1.00 28/29 0.90 0.97 4.44 0.98 0.60
Graph DiT 0.77 28/29 0.90 0.96 6.02 0.31 0.98

STGG∗∗ 1.00 27/29 0.90 0.96 4.56 0.44 0.95
STGG+(k = 1) 1.00 27/29 0.90 0.97 4.08 0.31 0.88
STGG+(k = 5) 1.00 24/29 0.90 0.97 4.32 0.23 0.91

Test data 1.00 21/29∗ 0.90 1.00 0.07 0.02 0.73∗

∗The classifier from Liu et al. (2024) (used in the last column) has limited accuracy on the test set; thus, any Property Acc. above
the test data accuracy is not indicative of better quality. Similarly, atom coverage is not 100% on test data; thus, any coverage
above the test set coverage does not indicate better performance.
∗∗STGG with categorical embedding, missing indicators, random masking, and extra symbol for compounds.
†The dataset properties are rounded to two decimals hence MAE is not exactly zero.

Results. The experiment results are shown in Table 1 (for the full table with more baselines, see Appendix A.8). We
find that STGG+ obtains near-perfect validity, coverage consistently higher than the test set, high diversity, and high
test-set similarity. Notably, we attain the best FCD; in fact, we are the only method that matches the training data’s
performance, indicating that we have reached the performance cap. Regarding condition control, we achieve the best
MAE on BACE and HIV, and the second-best on BBBP (very close to Graph DiT). We also obtain better performance
than base STGG (with random masking and the extra symbol for compounds) on FCD and MAE, which shows that
our improvements lead to lower distance in distribution and better property conditioning. We further observe that
self-criticism (k > 1) improves property fidelity (lower MAE) while sacrificing a bit of diversity (lower coverage).

4.2 Out-of-distribution conditional generation

We follow the same protocol as Kwon et al. (2023). Our model is trained on Zinc250K using exact molecule weight, logP,
and Quantitative Estimate of Druglikeness (QED) (Bickerton et al., 2012) as properties. For evaluation, we generate 2K
candidate molecules and calculate two metrics: 1) generative efficiency, defined as the probability that the following three
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conditions are satisfied at the same time: validity, uniqueness (not a duplicate), and novelty (not in train data)), and 2) the
Minimum Mean Absolute Error (MinMAE) between the generated and conditioned properties (at±4 standard-deviation).
Note that for QED, the high condition value is at an impossible value of 1.2861 (the possible range is 0 to 0.948).
Conditioning on impossible values is not ideal, but we choose to follow the protocol of Kwon et al. (2023) for better
comparability, and it lets us verify whether our model behaves reasonably when conditioning values are difficult or impos-
sible to achieve. We use the same train, valid, and test splits as Jo et al. (2022). Following Shao et al. (2020), we compare
our model to vanilla VAE with k-annealing (BaseVAE) (Kingma & Welling, 2013; Bowman et al., 2015), ControlVAE
(Shao et al., 2020), and various single-decoder (SD) and multi-decoders (MD) methods proposed by Shao et al. (2020).

Table 2: Out-of-distribution (µ ± 4σ) property-conditional generation of 2K molecules on Zinc250K. Generative
efficiency (% of valid, novel, and unique molecules) and Minimum MAE. See Section A.10 for Mean MAE results over
the top-100 molecules.

Generative Efficiency Properties - MinMAE
molWt logP QED molWt logP QED

Condition 84 580 -3.2810 8.1940 0.1778 1.2861∗

MD 0.49 0.42 0.47 9.8e−2 1.7e−1 2.0e−2 3.0e−4 1.5e−3 1.0e−1
MDdif 0.46 0.43 0.47 7.4e−3 4.7e−2 3.0e−4 5.1e−3 2.0e−4 2.6e−2
MDdif,col 0.46 0.54 0.44 1.1e−1 6.2e−2 1.3e−3 5.0e−4 6.0e−4 8.6e−2
STGG∗∗ 0.99 0.99 0.99 5.8e−2 7.5e−2 7.9e−3 1.9e−1 1.5e−2 8.0e−4
STGG+(k = 1) 0.82 0.82 0.54 8.6e−3 9.1e−3 1.0e−4 1.6e−3 1.0e−5 5.1e−1
STGG+(k = 5) 0.88 0.74 0.50 1.1e−3 1.7e−2 1.0e−4 1.6e+0 1.0e−4 5.2e−1
STGG+(w ∼ U(−0.5, 2), k = 1) 0.94 0.92 0.82 2.1e−2 2.4e−2 1.0e−4 7.0e−4 7.0e−6 5.8e−3
STGG+(w ∼ U(−0.5, 2), k = 5) 0.90 0.77 0.79 1.0e−3 6.1e−3 2.0e−7 2.8e−2 1.0e−4 1.2e−3
Train data (closest sample) - - - 5.7e+1 7.3e+1 1.5e−1 2.0e−3 1.8e−2 8.2e−4
∗The value is improper; we condition on 1.2861 but calculate the MAE with respect to the max QED (0.948).
∗∗STGG with missing indicators, and random masking.

Results. We see in Table 2 that base STGG (with random masking) reaches the best generative efficiency (% of valid,
novel, and unique molecules), but performs much worse than STGG+ in terms of property conditioning. Our method
sacrifices a small amount of generative efficiency (when compared to base STGG) in order to obtain much better
property-conditioning; we see that our method generally obtains the smallest MAE. However, while the model performs
optimally when using random guidance, it struggles with high guidance values when generating molecules for the
impossible QED value of 1.2861. Additionally, we observe that the model performs worse with the best-of-5 when
generating molecules with high logP, suggesting that the property predictor of STGG+ makes incorrect predictions for
high out-of-distribution logP values. We also report the average of the top-100 molecules MAE (Top-100 MAE) instead
of the top-1 MAE (MinMAE) for our STGG+ and base STGG (Table 10 in Appendix).

For Top-100 MAE, STGG+ performs much better than STGG in all cases except for high QED, where STGG is slightly
better. Random guidance is helpful for high QED and logP.

4.3 Reward maximization

Jain et al. (2023) use reinforcement learning or GFlowNet (Bengio et al., 2023) to solve a task on the QM9 (Ramakr-
ishnan et al., 2014) dataset. They seek to produce QM9-like molecules that maximize a reward composed of four
properties: HOMO-LUMO gap (Griffith & Orgel, 1957), SAS (Ertl & Schuffenhauer, 2009), QED (Bickerton et al.,
2012), and molecular weight. This reward is maximized when the HOMO-LUMO gap is as large as possible, and SAS,
QED, and weight are 2.5, 1.0, and 105, respectively. We compare to Envelope QL (Yang et al., 2019), MOReinforce
(Lin et al., 2022), MOA2C (Mnih et al., 2016), Multi-objective GFlowNet (MOGFN-PC) (Bengio et al., 2023). The
HOMO-LUMO gap is evaluated with MXMNet (Zhang et al., 2020).

Instead of using the reward, we train a STGG+ model conditioned on the four properties directly. This shows a benefit
of STGG+ our approach, since we do not need to scalarize the multi-objective reward. Since the HOMO-LUMO gap
needs to be maximized there is no appropriate conditioning value. We arbitrarily set it to 0.5, which corresponds to
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approximately five standard deviations (a limitation of our conditioning method, as we cannot maximize a property,
only set a fixed value). The other properties are set to their optimal values: 2.5, 1.0, and 105.

Table 3: Reward maximization on QM9.
Type Data Reward (↑) Diversity (↑)

Envelope QL

Online 1M molecules

0.65 0.15
MOReinforce 0.57 0.47
MOA2C 0.61 0.61
MOGFN-PC 0.76 0.07
STGG∗∗

Offline QM9 (∼115K molecules) 0.73 0.90
STGG+(k = 1) 0.78 0.24

∗∗STGG with missing indicators, and random masking.

Results. Our results are shown in Table 3. Our approach yields the highest average rewards and we obtain higher
diversity than GflowNet, using ∼11.5% of the molecules. This makes our approach significantly more efficient.
However, note that solving this task with online methods is a different setting and can be considered more difficult.

4.4 Hard: Small dataset of large molecules (Chromophore DB)

As a more challenging example, we explore the generation of molecules with out-of-distribution properties on Chro-
mophore DB (Joung et al., 2020), a small dataset of around 6K molecules with an average of 35 atoms per molecule
(compared to 23 atoms for Zinc250K and 9 atoms for QM9). To make the problem more realistic, we only sample
100 molecules (in the real world, chemists would decide which of those 100 molecules to synthesize based on their
expert knowledge). We want to know if one of those 100 molecules has the desired out-of-distribution properties. Given
the small size of the dataset, it can be useful to first pre-train on a large set of small molecules (Zinc250K) and then
fine-tune on the smaller dataset of large molecules (Chromophore DB). We try this strategy (pre-train and fine-tune) in
addition to training only on Chromophore DB.

Table 4: Out-of-distribution (µ±4σ) property-conditional generation of 100 molecules on Chromophore DB. Generative
Efficiency (% of valid, novel, and unique molecules) and Minimum MAE. See Section A.10 for Mean MAE results.

Generative Efficiency Properties - MinMAE
molWt logP QED molWt logP QED

Condition 1538.00 -13.63 28.69 1.24∗ 1538.00 -13.63 28.69 1.24∗

Trained on Chromophore DB (1000 epochs)
STGG+(k = 1) 0.97 0.33 0.98 0.59 9.02 3.30 0.03 0.30
STGG+(k = 100) 0.88 0.25 0.82 0.81 5.24 6.02 8.02 0.25
STGG+(w ∼ U(−0.5, 2), k = 1) 0.91 0.71 0.92 0.75 0.41 8.10 0.12 0.05
STGG+(w ∼ U(−0.5, 2), k = 100) 0.89 0.71 0.94 0.83 0.74 0.89 7.03 0.01
Pre-trained on Zinc250K (50 epochs) and fine-tuned on Chromophore DB (100 epochs)
STGG+(k = 1) 0.99 0.96 0.99 0.98 0.94 0.38 0.41 0.15
STGG+(k = 100) 1.00 0.96 0.93 1.00 2.37 0.35 0.42 0.09
STGG+(w ∼ U(−0.5, 2), k = 1) 1.00 0.95 0.97 1.00 0.47 0.66 0.01 0.02
STGG+(w ∼ U(−0.5, 2), k = 100) 1.00 0.92 0.98 0.99 13.19 0.45 0.18 0.01
Train data (closest sample) - - - - 1.40 9.62 0.17 0.01

†We removed low molWt and QED which are both impossible negative values.
∗The value of 1.24 is improper; we calculate the MAE with respect to the max QED (0.948).

Results. The experiment results are shown in Table 4 (see Table 11 for the top-100 MAE). Pre-training on Zinc250K
generally improves performance (Efficiency and MinMAE). For most properties, random guidance with filtering (k > 1)
leads to the closest properties. However, for high logP, we obtain better property fidelity with no filtering (k = 1),
indicating that the model struggles with property prediction on large out-of-distribution logP values.
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4.5 Ablations and analyses

We provide ablations for the various STGG+ components on OOD properties for Zinc (Table 5). Since we have 6
conditions (2 per property), results can be mixed; thus, we must average over the 6 conditions. Since every condition
has different scaling, to average correctly, we use as metric the relative MAE (the difference divided by absolute value
of the true value; averaged over all samples and over the 6 conditions). We compare Top-100, Top-100, Top-1 Relative
MAEs. We train with 3 different seeds. We show that all the components improve the performance, except randomizing
the node ordering (versus using a fixed node ordering) which has no significant impact. Variance across different seeds
is low.

We provide visualizations of generated molecules in Appendix A.9.1, A.9.2, A.9.3. The visualizations show that STGG+
can generate molecules that satisfy OOD conditions while maintaining validity.

Table 5: Ablation for the out-of-distribution (µ± 4σ) property-conditional generation on Zinc. Average Relative MAE
over the 6 conditions (low/high molWt, logP, QED). The numbers correspond to Mean (Standard-deviation) over 3
seeds.

Top-100 MAE Top-10 MAE Top-1 MAE (MinMAE)
STGG+ (w ∼ U(−0.5, 2), k = 1) 0.0247 (0.0029) 0.0040 (0.0005) 0.0010 (0.0001)

without randomize-order 0.0252 (0.0021) 0.0040 (0.0009) 0.0009 (0.0004)
without MLP (1-layer) 0.0260 (0.0029) 0.0046 (0.0007) 0.0012 (0.0005)
without the property-prediction loss 0.0264 (0.0017) 0.0052 (0.0004) 0.0012 (0.0001)
without improved architecture 0.0348 (0.0009) 0.0074 (0.0003) 0.0014 (0.0003)
different guidance (w ∼ U(0.5, 2)) 0.0974 (0.0081) 0.0567 (0.0169) 0.0332 (0.0186)
without guidance 0.1010 (0.0082) 0.0834 (0.0192) 0.0719 (0.0272)
with fixed guidance (w = 1.5) 0.1085 (0.0022) 0.0930 (0.0123) 0.0867 (0.0192)
without standardized properties 0.1309 (0.0287) 0.0322 (0.0062) 0.0190 (0.0045)
with self-criticism (k = 2) 0.0207 (0.0022) 0.0029 (0.0002) 0.0004 (0.0004)
with self-criticism (k = 5) 0.0203 (0.0039) 0.0023 (0.0007) 0.0006 (0.0004)
with self-criticism (k = 10) 0.0269 (0.0113) 0.0035 (0.0018) 0.0007 (0.0004)

We note that self-criticism marginally improves top-100 MAE (t(4) = 1.90, p = .06) and significantly improve top-1
MAE (t(4) = 2.52, p = .03) and top-10 MAE (t(4) = 3.54, p = .01).

4.6 Limitations

Molecule validity as measured by RDKit is widespread in machine learning, which is why we use it, but it is not a full
picture of chemical validity. A molecule could be unstable or implausible by physical laws not implemented in RDKit;
the field of generating synthesizable molecules still has many open questions. Another limitation is that many properties
(e.g., molecule weight, logP) are not especially interesting from a chemistry perspective. We use them because they
are widespread in the literature due to their ease of use through existing tools. This is why we included datasets with
more complex properties, such as HOMO-LUMO gap and the categorical features for HIV, BBBP, and BACE. These
either require slow simulations or fast machine learning models that may be inaccurate, especially in OOD settings. We
believe that establishing new benchmarks with more complex properties is essential to the progress of the field. The
property predictor of our approach may not be as accurate as property predictors made explicitly for this task, meaning
our method may not always select the best molecules out of k choices, particularly in OOD scenarios (see A.6 for the
analysis); we found this to be the case for large OOD logP conditioning values.

5 Conclusion

In this paper, we demonstrated that with specific techniques, optimization, and architectural improvements, spanning
tree-based graph generation (STGG) can be leveraged to generate high-quality and diverse molecules conditioned on
both in-distribution and out-of-distribution properties. Our method achieves equal or superior performance on validity,
novelty, uniqueness, closeness in distribution, and conditioning fidelity compared to competing approaches. Using
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fewer molecules than required by online methods (RL/GFlowNet), we also obtain high multi-property-reward molecules
in a one-shot manner from a pre-trained model.

Broader Impact

The ability to generate novel molecules with desired properties has the potential to significantly advance research in drug
discovery, materials science, and sustainability. Tools such as ours could accelerate the design of therapeutics, catalysts,
and electronic materials, contributing to improved health outcomes and more efficient technologies. However, as with
many generative models, there is a dual-use risk: the same methods could, in principle, be misused to design toxic,
addictive, or otherwise harmful compounds. While our work is intended solely for beneficial scientific applications, we
acknowledge that unrestricted access to powerful molecular design tools requires careful consideration of security and
ethical safeguards. Future work should explore mechanisms for responsible deployment, including dataset curation,
access control, and collaboration with domain experts and regulatory bodies to ensure that such technologies are used
safely and ethically.
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A Appendix

A.1 1D vs 2D representations

There are many ways to represent molecules in the context of molecular generation. The most popular methods are
autoregressive models on 1D strings and diffusion (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020) models on
2D graphs. We highlight the main distinction between the two representations below in the context.

Let D be the size of the training dataset, n be the number of atoms in a given molecule, d is the embedding size, and b
is the number of bond types.

Diffusion models on 2D graphs:

• G = (X, A) where the vertices X contains the list of atoms (size: [n, d]) and A is the adjacency matrix of the
edges (size: [n, n, b]) for each bond type.

• A is an extremely sparse matrix with many zero elements

• Input space is O(nd + bn2); unless using low-rank projections, the number of parameters must scale propor-
tionally to this amount

• Typically use diffusion models (or related methods) given the large number of steps it would take to generate
X and A autoregressively

• Equivariant Graph Neural Networks (E-GNNs) are generally used to ensure a unique representation for a given
molecule

• Although it has a single representation per molecule, multiple random noises per graph are needed due to
diffusion; thus, sample complexity is O(Dnnoise)

Autoregressive models on 1D strings:

• X (size: [L, d]) is a string containing the molecule where L is proportional to n

• The string starts from a random atom and traverses the 2D molecular graph

• Input space is O(nd); this makes it efficient to process

• Typically use autoregressive models (e.g., Transformers) as it scales well

• We can either 1) fix the ordering in some way to make representation unique, or 2) use random orderings
as data augmentation with a non-unique representation for a given molecule; thus, sample complexity is
O(Dnaugments)

As can be seen, both methods have similar sample complexity, but 1D strings are much more compressed representations,
leading to less space and parameters and, thus, increased potential for scalability. Furthermore, recent results show
that 1D strings are as competitive as 2D molecular graph methods for unconditional molecule generation Jang et al.
(2023); Fang et al. (2023) and property prediction Yüksel et al. (2023). In the end, both representations contain as much
information. Thus, the choice is a matter of preference. 1D strings are easier to scale and can make good use of the
power of Transformers; hence, we focus on this type of representation.

A.2 Spanning Tree compared to other 1D string-based representations

The most popular choice of string-based representation is SMILES (Weininger, 1988). SMILES is extremely versatile,
allowing the representation of any molecule. However, for the purpose of generative models, trying to generate SMILES
strings directly can quickly lead to many invalid molecules. Graph-based diffusion methods encounter the same issue.
Recently, methods have been created to prevent the creation of invalid molecules: Spanning Tree (Ahn et al., 2021) and
SELFIES (Krenn et al., 2022). Below, we describe in detail the differences between all three methods.

SMILES:
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• Massive vocabulary allows the representation of every aspect of molecules

• There are many ways of representing a single molecule

• Begin-branch token "(" to deviate from the main path and close branch token ")"

• Pointer token i to indicate both the beginning and end of rings

SELFIES:

• Restricted SMILES vocabulary

• Prevent invalid molecules through a carefully designed context-free grammar:

– Atoms and bonds are combined into single tokens (with other aspects such as charge and number of
hydrogen atoms) so that we cannot have an atom without a bond and a bond without an atom

– Hard-designed rules for maximum valencies of specific elements (slightly more permissible than octet
rule, but cannot handle every case)

– Keep track of valencies; ignore future tokens in the current branch if there is not enough valency left and
reduce bond order if needed

– There is an open-branch token Branch-i and close-ring token ring-i where i specifies the number of future
tokens in the branch and how many backward steps (in tokens) are needed to reach the ring closure; this
ensures that all branches and tokens are not left opened

Spanning-Tree:

• Restricted SMILES vocabulary

• Begin and end branch tokens, with ring start and i-th ring end tokens

• Similarity-based output layer to determine the probabilities of ring ends and input embedding injection for
how many rings are opened

• Prevent invalid molecules through masking of tokens before softmax:

– Masking of invalid tokens due to impossible valencies (atoms, ring-start, and branch-start when not
enough valency is left) based on the valencies of the training data

– Masking of invalid next tokens (atom after atom, bond after bond, ring-i end when there are less than i
ring start tokens)

– Force branch ending through masking when getting too close to maximum sequence length to prevent
unfinished molecules (new)

As can be seen, SMILES has such a large vocabulary that each molecule can be represented in completely different
ways, and its main problem for generative models is that many token choices lead to invalid molecules (e.g., two bonds,
incorrect valencies, unfinished branches, or rings, etc.).

SELFIES prevents invalid molecules through its smart, context-free grammar. However, work by Gao et al. (2022) and
Ghugare et al. (2023) found that while SELFIES prevent invalid molecules, it makes exploration more difficult and
reduces the performance of generative models (in terms of obtaining high-reward samples, i.e., molecules with desired
properties). A significant challenge for the generative models based on SELFIES is the need to pre-define the number of
tokens contained in a branch (a deviation from the main path in a 1D string) and count backward the number of tokens
required to reach the beginning of the ring (starting from the end). This requires extensive planning and counting by the
generative model.

On the other hand, Spanning-tree use clever masking of incorrect tokens to prevent invalid molecules and doing so does
not require the model to do significant planning-in-advance and counting when selecting the next token (including the
i-th ring end tokens which require no counting due to the similarity-based prediction). Note that Wang et al. (2024) and
Pandey et al. (2024) also use a similar masking to the one devised by Ahn et al. (2021) to improve validity, thus it can
be applied to other representations.
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A.3 Datasets details and canonicalization

QM9 (Ramakrishnan et al., 2014) has 21 atom tokens: CH3, C, O, CH2, CH, NH, N, N-, NH+, OH, NH2, F, NH3+, O-,
NH2+, N+, C-, CH-, NH3, OH2, CH4. The maximum length is 37. The dataset has 133886 molecules with around 10%
of the molecules in the test set and 5% in the validation set.

Zinc250K (Sterling & Irwin, 2015) has 34 atom tokens: CH3, C, CH, N, S, CH2, O, NH, NH+, NH2, NH2+, NH3+,
OH, Cl, O-, N-, F, Br, N+, S-, I, SH, P, NH-, O+, OH+, S+, CH2-, CH-, SH+, PH, PH+, P+, PH2. The maximum length
is 136. The dataset has 250k molecules with around 10% of the molecules in the test set and 5% in the validation set.

BBBP (Wu et al., 2018) has 31 atom tokens: CH, C, F, CH2, N, S, CH3, O, OH, NH2, Cl, NH, OH2, Br, O-, N+, Na,
Cl-, H+, C-, Na+, NH+, NH3+, Br-, P, N-, SH, CH2-, CH-, I, B. The maximum length is 186. The dataset has 862
molecules with around 20% of the molecules in the test set and 20% in the validation set.

BACE (Wu et al., 2018) has 20 atom tokens: F, C, N, CH, NH+, CH2, NH2, O, Cl, S, CH3, NH, OH, NH2+, Br, O-,
NH3+, N+, N-, I. The maximum length is 161. The dataset has 1332 molecules with around 20% of the molecules in
the test set and 20% in the validation set.

HIV (Wu et al., 2018) has 76 atom tokens: CH3, C, O, CH2, N, NH2, CH, N+, NH2+, I, NH, Br, Se, OH, S, O-, Br-,
SH, Cl, I-, S+, Zn-2, OH+, N-, NaH, PH, Ir-3, Cl-, NH3, F, P, BrH, C-, Co-2, Cu-4, As, B-2, Sn, ClH, Rh-4, O+, S-, Pt,
Fe-2, B, U+2, Pd-2, Fe-3, Pt-2, Pt+2, Si, P+, IH2, Fe, SiH, Cl+3, Ge, NH+, Zr, K+, AlH3-, IH, KH, Mn+, Fe-4, Cu-3,
Ni-4, LiH, Co-3, Pd-3, Fe+2, Ga-3, CH2-, U, Mn, Co-4. The maximum length is 193. The dataset has 2372 molecules
with around 20% of the molecules in the test set and 20% in the validation set.

Chromophore DB (Joung et al., 2020) has 46 atom tokens: CH, C, N, CH3, CH2, O, N+, B-, F, S, OH, NH, Cl, NH2, P,
O+, Si, O-, Se, C+, B, Br, I, NH+, NH2+, N-, S+, SiH, C-, Na, Sn, NH3+, S-, Si-, P-, Cl+3, I-, BH3-, P+, BH, CH4,
NH-, SH, Ge, Te, Na+. The maximum length is 511. The dataset has 6810 molecules with around 5% of the molecules
in the test set and 5% in the validation set.

Note that we base the maximum length on the largest SMILES string after being transformed with the Spanning tree
tokenizer.

A.3.1 Canonicalization

Similar to STGG (Ahn et al., 2021), we use explicit Hydrogen atoms (with no implicit Hydrogen atom) in the tokens.
This is an arbitrary choice. After generation, we always transform back to canonical SMILES using RDKit (Landrum
et al., 2024). Note that RDKit may change the number of Hydrogen atoms based on its own rule-set. All our molecule
figures are based on RDKit so they reflect the molecules after SMILES canonicalization by RDKit.

Here is an example below.

Training SMILES: C[C@@]12C=CC(=O)C=C1CC[C@@H]
1[C@@H]3CC[C@](O)(C(=O)COP(=O)([O-])[O-])[C@]3(C)C[C@@H](O)[C@H]12

STGG tokenized: [bos]C-C[bor][bor]-C=C-C(=O)(-C=C(-[eor0])(-C-C-CH[bor]-CH[bor]-C-C-C(-O)(-C(=O)(-C-O-
P(=O)(-O-)(-O-)))(-C(-[eor3])(-C)(-C-CH(-O)(-CH(-[eor1])(-[eor2]))))))[eos]

Canonical SMILES: CC12C=CC(=O)C=C1CCC1C2C(O)
CC2(C)C1CCC2(O)C(=O)COP(=O)([O-])[O-]

A.3.2 Any-property masking

For any-property masking, we show an example below. Assume that there are T = 5 properties. Each time we sample a
training molecule, we choose a random number t of properties to mask uniformly between 0 and T = 5. Assuming that
t = 3, we create the masking vector: [1, 1, 1, 0, 0, 0]. Then, we randomly shuffle the masking vector, leading to: [1, 0,
0, 1, 0, 1]. Then, we mask the properties with a masking value of 1.
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A.4 Hyperparameters

The original STGG (Ahn et al., 2021) used the AdamW optimizer (Loshchilov & Hutter, 2017; Kingma & Ba, 2014)
with β1 = 0.9, β2 = 0.999, no weight decay, a fixed learning rate of 2e-4 and batch-size 128. The Transformer
architecture had 3 layers, dropout 0.1, 8 attention heads, and embedding size 1024. They processed only one property
with a single linear layer.

STGG+ uses the AdamW optimizer with β1 = 0.9, β2 = 0.95, and weight decay 0.1. The Transformer architecture
has 3 layers, no dropout, 16 attention heads, SwiGLU (Hendrycks & Gimpel, 2016; Shazeer, 2020) with expansion
scale of 2, no bias term (Chowdhery et al., 2023), Flash Attention (Dao et al., 2022; Dao, 2023), RMSNorm (Zhang &
Sennrich, 2019), Rotary embeddings (Su et al., 2024), residual-path weight initialization (Radford et al., 2019). When
not using random guidance, we use classifier-free guidance with a guidance parameter w = 1.5, where w = 1 means
no guidance.

For QM9 (Ramakrishnan et al., 2014), we train for 50 epochs with batch size 512, learning rate 1e-3, max length 150.
For Zinc250K (Sterling & Irwin, 2015), we train for 50 epochs with batch size 512, learning rate 1e-3, max length 250.
For HIV, BACE, and BBBP (Wu et al., 2018), we train for 10K epochs (same as done by Liu et al. (2024)), since these
are small datasets, with batch size 128, learning rate 2.5e-4, max length 300.

For Chromophore DB (Joung et al., 2020), we train for 1000 epochs with batch size 128, learning rate 2.5e-4, max
length 600. For the pre-training on Zinc250K and fine-tuning on Chromophore-DB: we pre-train with batch size 512,
learning rate 1e-3, and max length 600 for 50 epochs and fine-tune with batch size 128, learning rate 2.5e-4, and max
length 600 for 100 epochs.

We generally use 1 to 4 A-100 GPUs to train the models. Training takes less than a day. Note that we use a higher max
length than the data max length (generally around 25-50%) to ensure that we can adequately generate molecules with
out-of-distribution properties that could be bigger than usual. Generating 10K molecules takes a few minutes with 1
GPU.

For pretraining and then fine-tune, there are two ways to preprocess the properties: we can either standardize them with
respect to the pre-training or the fine-tuning datasets. Standardizing with respect to the pre-training dataset can lead
to extreme values in the fine-tuning (e.g., 4 standard deviation in Chromophore’s MolWt is 15 standard-deviation in
Zinc250K’s MolWt). Hereby, to reduce the gap between pre-trained and fine-tuned conditioning values, we preprocess
the properties by standardizing with respect to the fine-tune dataset properties during both pre-training and fine-tuning.

A.5 Alternative architectures considered

In this work, we enhance the Transformer architecture used by Ahn et al. (2021) using recent developments in Large
Language Models (LLMs). Although powerful, the Transformer architecture with self-attention (Vaswani et al.,
2017) is quadratic in context length, which means that the time and memory increase significantly when dealing with
long-context length.

In addition to improvements on Transformer, new architectures such as Mamba (Gu & Dao, 2023), Hyena, (Poli et al.,
2023) or RWKV (Peng et al., 2023) have appeared, which are sub-quadratic with respect to context-length, allowing
them to handle long-context length better. We initially considered some of these architectures to improve inference
speed. However, it is hard to synthesize and manufacture molecules of substantial sizes. Thus, the context length is
generally quite limited (e.g., the largest molecule on Chromophore has 511 tokens, while modern LLMs have a context
length of at least 4096). As long as the context length is less or equal to 2048, FlashAttention (Dao et al., 2022) is fast
enough that there is no inference speed benefit for using Mamba (Gu & Dao, 2023).

20



Published in Transactions on Machine Learning Research (12/2025)

A.6 Property prediction

Table 6: Property prediction on the test set using STGG+ or a Random Forest (Breiman, 2001) predictor/classifier
using the Morgan Fingerprint (Morgan, 1965) as done by Gao et al. (2022).

Accuracy Mean squared error (MSE)
Task Method HIV QED MolWt logP SAS SCS Gap
QM9 STGG+ - 0.0010 0.0018 0.0012 - - -
QM9 Random Forest - 0.2665 0.6124 0.2014 - - -
Zinc250K STGG+ - 0.0008 0.0005 0.0005 - - -
Zinc250K Random Forest - 0.4077 0.4209 0.3907 - - -
HIV STGG+ 0.8463 - - - 0.0268 0.0216 -
HIV Random Forest 0.7263 - - - 0.3605 0.4672 -
BACE STGG+ 0.9551 - - - 0.0126 0.0070 -
BACE Random Forest 0.8165 - - - 0.1773 0.3948 -
BBBP STGG+ 0.8743 - - - 0.0354 0.0314 -
BBBP Random Forest 0.8057 - - - 0.3152 0.4740 -
QM9 (Reward) STGG+ - - 0.0009 0.0005 0.0021 - 0.0032
QM9 (Reward) Random Forest - - 0.6122 0.2015 0.2114 - 0.1459

We analyze the property prediction performance of the self-critic on out-of-distribution (OOD) molecules (Figure 3). To
do so, we generated 10,000 molecules using our trained STGG+ conditioned on property values randomly drawn from
the Zinc distribution. We condition on all three properties at the same time (QED, MolWt, logP). We then compute
the ground truth property values for each generated molecule using RDKit as in our other experiments and predict the
property values with the self-critic. We measure the absolute error between the ground truth and predicted property
values and plot how the error changes depending on how far the ground truth is from the distribution mean. The results
show that the error gradually increases with the distribution shift indicating the estimated limits of self-critic’s reliability.
Note that in Table 6 the errors are computed differently: for in-distribution (based on the test set molecules in Zinc
instead of the generated ones), so the errors are much lower in that case.
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Figure 3: Analysis of the property predictor performance in the OOD regime. The values on the y axis are the mean
errors for the corresponding bin on the x axis (e.g. at point 2× std we compute the mean error for all molecules with
ground truth property values between 1× std and 2× std). The error bar shows standard deviation (std) within the bin.
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A.7 Unconditional Generation

Table 7: Molecular graph generation performance on QM9.

Method Valid (%) Unique (%) Novel (%) FCD Scaf. SNN Frag.
(↑) (↑) (↑) (↓) (↑) (↑) (↑)

Domain-agnostic graph generative models

EDP-GNN 47.52 99.25 86.58 2.680 0.3270 0.5265 0.8313
GraphAF 74.43 88.64 86.59 5.625 0.3046 0.4040 0.8319
GraphDF 93.88 98.58 98.54 10.928 0.0978 0.2948 0.4370
GDSS 95.72 98.46 86.27 2.900 0.6983 0.3951 0.9224
DiGress 98.19 96.67 25.58 0.095 0.9353 0.5263 0.0023
DruM 99.69 96.90 24.15 0.108 0.9449 0.5272 0.9867
GraphARM 90.20 - - 1.220 - - -
GEEL 100.0 96.08 22.30 0.089 0.9386 0.5161 0.9891

Molecule-specific generative models

CharRNN 99.57 - - 0.087 0.9313 0.5162 0.9887
CG-VAE 100.0 - - 1.852 0.6628 0.3940 0.9484
MoFlow 91.36 98.65 94.72 4.467 0.1447 0.3152 0.6991
STGG 100.0 96.76 72.73 0.585 0.9416 0.9998 0.9984

Unconditional (masking all properties)

STGG+ 100.0 97.17 74.41 0.089 0.9265 0.5179 0.9877

Conditional (using test properties)

STGG+ (k=1) 100.0 97.63 75.99 0.134 0.8906 0.5004 0.9799
STGG+ (k=5) 100.0 96.86 74.18 0.166 0.9050 0.5039 0.9860
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Table 8: Molecular graph generation performance on Zinc250K.

Method Valid (%) Unique (%) Novel (%) FCD Scaf. SNN Frag.
(↑) (↑) (↑) (↓) (↑) (↑) (↑)
Domain-agnostic graph generative models

EDP-GNN 63.11 99.79 100.00 16.737 0.0000 0.0815 0.0000
GraphAF 68.47 98.64 99.99 16.023 0.0672 0.2422 0.5348
GraphDF 90.61 99.63 100.00 33.546 0.0000 0.1722 0.2049
GDSS 97.01 99.64 100.00 14.656 0.0467 0.2789 0.8138
DiGress 94.99 99.97 99.99 3.482 0.4163 0.3457 0.9679
DruM 98.65 99.97 99.98 2.257 0.5299 0.3650 0.9777
GraphARM 88.23 - - 16.260 - - -
GEEL 99.31 99.97 99.89 0.401 0.5565 0.4473 0.9920

Molecule-specific generative models

CharRNN 96.95 - - 0.474 0.4024 0.3965 0.9988
CG-VAE 100.0 - - 11.335 0.2411 0.2656 0.8118
MoFlow 63.11 99.99 100.00 20.931 0.0133 0.2352 0.7508
STGG 100.0 99.99 99.89 0.278 0.7192 0.4664 0.9932

Unconditional (masking all properties)

STGG+ 100.0 99.99 99.94 0.395 0.5657 0.4316 0.9925

Conditional (using test properties)

STGG+ (k=1) 100.0 100.0 99.98 0.514 0.5302 0.4099 0.9917
STGG+ (k=5) 100.0 100.0 100.0 0.562 0.5491 0.4176 0.9909
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A.8 Full Table of conditional generation on HIV, BBBP, and BACE

Table 9: Full table: Conditional generation of 10K molecular compounds on HIV, BBBP, and BACE.

Tasks Model Distribution Learning Condition Control
Validity ↑ Coverage∗ ↑ Diversity ↑ Similarity ↑ Distance ↓ Synthe. MAE ↓ Property Acc.∗ ↑

Sy
nt

h.
&

B
A

C
E

DiGress 0.351 8/8 0.886 0.694 24.656 2.068 0.506
DiGress v2 0.355 8/8 0.881 0.703 25.327 2.337 0.511
GDSS 0.288 4/8 0.876 0.271 46.754 1.642 0.504
MOOD 0.995 8/8 0.890 0.259 44.239 1.885 0.506
Graph DiT 0.867 8/8 0.824 0.875 7.046 0.400 0.913

Graph GA 1.000 8/8 0.859 0.981 7.410 0.963 0.469
MARS 1.000 8/8 0.834 0.883 6.792 1.012 0.518
LSTM-HC 0.997 8/8 0.815 0.798 17.559 0.921 0.582
JTVAE-BO 1.000 6/8 0.668 0.728 30.470 0.992 0.463

STGG∗∗ 1.000 8/8 0.824 0.979 3.824 0.453 0.949
STGG+ (k = 1) 1.000 8/8 0.829 0.979 3.796 0.238 0.912
STGG+ (k = 5) 1.000 8/8 0.826 0.979 3.802 0.178 0.926

Train data 1.000 8/8 0.819 0.981 3.837 0.003† 0.991
Test data 1.000 7/8∗ 0.824 1.000 0.000 0.002† 0.817∗

Sy
nt

h.
&

B
B

B
P

DiGress 0.696 9/10 0.910 0.681 18.692 2.366 0.654
DiGress v2 0.689 9/10 0.911 0.634 19.450 2.269 0.653
GDSS 0.622 3/10 0.842 0.267 39.944 1.379 0.504
MOOD 0.801 9/10 0.927 0.172 34.251 2.028 0.490
Graph DiT 0.847 9/10 0.886 0.933 11.851 0.355 0.942

Graph GA 1.000 9/10 0.895 0.951 10.166 1.208 0.302
MARS 1.000 8/10 0.864 0.770 10.979 1.225 0.519
LSTM-HC 0.999 8/10 0.888 0.893 16.390 0.997 0.559
JTVAE-BO 1.000 5/10 0.746 0.582 33.575 1.162 0.496

STGG∗∗ 1.000 9/10 0.891 0.916 11.736 0.982 0.754
STGG+ (k = 1) 1.000 10/10 0.888 0.937 9.859 0.466 0.867
STGG+ (k = 5) 1.000 9/10 0.887 0.936 10.101 0.381 0.900

Train data 1.000 8/10 0.883 0.957 9.890 0.017† 0.996
Test data 1.000 10/10∗ 0.880 0.998 0.000 0.018† 0.806∗

Sy
nt

h.
&

H
IV

DiGress 0.438 22/29 0.919 0.856 13.041 1.922 0.534
DiGress v2 0.505 24/29 0.919 0.848 13.400 1.593 0.533
GDSS 0.693 4/29 0.782 0.103 45.342 1.252 0.483
MOOD 0.288 29/29 0.928 0.136 32.352 2.314 0.511
Graph DiT 0.766 28/29 0.897 0.958 6.022 0.309 0.978

Graph GA 1.000 28/29 0.899 0.966 4.442 0.984 0.604
MARS 1.000 26/29 0.876 0.652 7.289 0.969 0.646
LSTM-HC 0.999 13/29 0.909 0.915 7.466 0.948 0.674
JTVAE-BO 1.000 3/29 0.806 0.417 41.977 1.236 0.485

STGG∗∗ 1.000 27/10 0.899 0.961 4.558 0.442 0.950
STGG+ (k = 1) 1.000 27/29 0.896 0.970 4.075 0.314 0.876
STGG+ (k = 5) 1.000 24/29 0.897 0.9700 4.317 0.229 0.905

Train data 1.000 27/29 0.895 0.970 4.019 0.018† 0.999
Test data 1.000 21/29∗ 0.895 0.998 0.074 0.015† 0.726∗

∗The classifier from Liu et al. (2024) (used in the last column) has limited accuracy on the test set; thus, any Property Acc. above
the test data accuracy is not indicative of better quality. Similarly, atom coverage is not 100% on test data; thus, any coverage
above the test set coverage does not indicate better performance.
∗∗STGG with categorical embedding, missing indicators, random masking, and extra symbol for compounds.
†The dataset properties are rounded to two decimals hence MAE is not exactly zero.
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A.9 Min-MAE or Max-Reward molecules
generated by STGG+

A.9.1 Zinc OOD

Figure 4: Conditioning on molWt=580.00

Figure 5: Conditioning on molWt=84.0008

Figure 6: Conditioning on logP=8.1940

Figure 7: Conditioning on logP=-3.2810

Figure 8: Conditioning on QED=1.2861

Figure 9: Conditioning on QED=0.1778 (which means low
drug-likeness and less "chemical beauty" (Bickerton et al.,
2012))
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A.9.2 QM9 Reward Maximization

Figure 10: Best QM9 reward maximization molecules
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A.9.3 Chromophore OOD

Figure 11: Conditioning on molWt=1538.00

Figure 12: Conditioning on logP=28.6915

Figure 13: Conditioning on logP=-13.6292

Figure 14: Conditioning on QED=1.2355
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A.10 OOD Tables with Mean MAE over the top-100 molecules

Table 10: Out-of-distribution (µ± 4σ) property-conditional generation of 2K molecules on Zinc250K.

Properties - top-100 Mean MAE
molWt logP QED

Condition 84 580 -3.2810 8.1940 0.1778 1.2861∗

STGG∗∗ 18.248 5.559 1.204 1.548 0.206 0.022
STGG+(k = 1) 0.790 1.389 0.018 0.900 0.003 0.561
STGG+(k = 5) 1.289 1.503 0.021 3.710 0.003 0.571
STGG+(w ∼ U(−0.5, 2), k = 1) 1.533 2.088 0.040 0.285 0.005 0.060
STGG+(w ∼ U(−0.5, 2), k = 5) 1.285 1.104 0.022 0.803 0.004 0.042

∗The value is improper; we condition on 1.2861 but calculate the MAE with respect to the maximum QED (0.948).
∗∗STGG with missing indicators, and random masking.

Table 11: Out-of-distribution (µ± 4σ) property-conditional generation of 100 molecules on Chromophore DB. We
removed the low molWt and QED which are both impossible negative values.

Properties - Mean MAE
molWt logP QED

Condition 1538.00 -13.63 28.69 1.24∗

Trained on Chromophore DB (1000 epochs)
STGG+(k = 1) 256.6 11.1 5.1 0.6
STGG+(k = 100) 562.3 11.0 16.3 0.5
STGG+(w ∼ U(−0.5, 2), k = 1) 805.6 15.4 11.1 0.5
STGG+(w ∼ U(−0.5, 2), k = 100) 609.5 8.8 14.3 0.2
Pre-trained on Zinc250K (50 epochs) and fine-tuned on Chromophore DB (100 epochs)
STGG+(k = 1) 294.9 8.4 6.1 0.5
STGG+(k = 100) 401.9 5.6 13.1 0.4
STGG+(w ∼ U(−0.5, 2), k = 1) 543.0 14.6 12.7 0.5
STGG+(w ∼ U(−0.5, 2), k = 100) 416.5 6.1 13.0 0.2

∗The value of 1.24 is improper; we calculate the MAE with respect to the maximum QED (0.948).

In Table 11, STGG+ with pre-training and fine-tuning generally performs slightly better than regular training. Random
guidance is helpful for high QED.
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A.11 Algorithms

Algorithm 1 STGG+ Training
Require: Dataset D = {(xi, yi)} where xi is a molecule and yi ∈ RD are its properties
Require: Transformer model fθ

1: while not converged do
2: Sample batch (x1, . . . , xB) and properties (y1, . . . , yB)
3: for each molecule xi in batch do
4: Tokenize xi into sequence (t1, . . . , tL)
5: Mask a random subset of m properties from yi = (yi1, ..., yiD), where m ∼ Uniform(0, D)
6: Compute (h1, . . . , hL), where hj ← fθ(tj |yi, t1, ..., tj−1)
7: Compute the cross-entropy loss LCE
8: Compute the auxiliary property prediction loss Lprop = 1

2∥f
pred
θ (hL)− yi∥2

2
9: Update θ using gradient descent on L = LCE + λLprop

Algorithm 2 STGG+ Sampling with Self-Criticism
Require: Target properties ytarget ∈ RT

Require: Guidance strength w, number of candidates K, max length Lmax
Require: Transformer model fθ

1: Generate K candidate molecules:
2: for k = 1 to K do
3: Initialize the sequence; t1 ← [BOS]
4: Sample guidance scale w ∼ U(0.5, 2) (optional; otherwise w=1 means no guidance)
5: for j = 2 to Lmax do
6: Compute conditional logits zc = fθ(tj |ytarget, t1, ..., tj−1)
7: Compute unconditional logits zu = fθ(tj |∅, t1, ..., tj−1)
8: Apply Classifier-Free Guidance (CFG): z = wzc + (1− w)zu

9: Mask invalid tokens (valency violations, syntax errors, ring overflow, etc.)
10: Sample the next token tj ∼ Softmax(z)
11: if tj ← [EOS] then
12: break
13: Store the molecule sk

14: Self-criticism:
15: for each candidate sk do
16: Process sk through fθ with empty properties to predict ŷk

17: Compute distance dk = ∥ŷk − ytarget∥2
2

18: return sj where j ← arg mink dk {Select the best candidate}
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A.12 Masking

Here we describe the original STGG masking algorithm and the improved STGG+ masking algorithm.

Algorithm 3 STGG Masking algorithm
Require: maximum number of rings ringmax

1: if token is an atom then
2: allowednext = [bonds, branchstart, ringstart]
3: if all branches are closed then
4: allowednext.append([EOS])
5: else
6: allowednext.append([branchend])
7: if token is a bond then
8: allowednext = [atoms]
9: for i← 1 to ringmax do

10: if ringi has not been closed then
11: allowednext.append([ringi

end])
12: if token is a branch start then
13: allowednext = [bonds]
14: if token is a branch end then
15: allowednext = [branchstart]
16: if all branches are closed then
17: allowednext.append([EOS])
18: else
19: allowednext.append([branchend])
20: if token is a ring start then
21: allowednext = [bonds, branchstart, ringstart]
22: if all branches are closed then
23: allowednext.append([EOS])
24: else
25: allowednext.append([branchend])
26: if token is a ring end then
27: allowednext = []
28: if all branches are closed then
29: allowednext.append([EOS])
30: else
31: allowednext.append([branchend])
32: if Beginning Of Sentence (BOS) then
33: allowednext = [atoms]
34: if End Of Sentence (EOS) then
35: allowednext = []
36: Apply the valency mask (remove illegal tokens from allowednext based on the valency of the atoms)
37: Mask every token not included in allowednext before sampling the next token
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Algorithm 4 STGG+ Masking algorithm
Require: maximum number of rings ringmax

Require: maximum length of a sequence MAXLEN

1: if token is an atom then
2: allowednext = [bonds, branchstart]
3: if this is the second double-bond in a row within a branch then
4: allowednext.remove([bonddouble])
5: if we have made less than ringmax rings then
6: allowednext.append([ringstart])
7: if all branches are closed then
8: allowednext.append([EOS])
9: if empty bonds (.) are allowed (for compounds such as [Na+].[Cl−]) then

10: allowednext.append([bondempty])
11: else
12: allowednext.append([branchend])
13: if token is a bond then
14: allowednext = [atoms]
15: for i← 1 to ringmax do
16: if ringi has not been closed then
17: allowednext.append([ringi

end])
18: if token is a branch start then
19: allowednext = [bonds]
20: if this is the second double-bond in a row within a branch then
21: allowednext.remove([bonddouble])
22: if token is a branch end then
23: allowednext = [branchstart]
24: if all branches are closed then
25: allowednext.append([EOS])
26: if empty bonds (.) are allowed then
27: allowednext.append([bondempty])
28: else
29: allowednext.append([branchend])
30: if token is a ring start then
31: allowednext = [bonds, branchstart]
32: if this is the second double-bond in a row within a branch then
33: allowednext.remove([bonddouble])
34: if we have made less than ringmax rings then
35: allowednext.append([ringstart])
36: if all branches are closed then
37: allowednext.append([EOS])
38: if empty bonds (.) are allowed then
39: allowednext.append([bondempty])
40: else
41: allowednext.append([branchend])
42: if token is a ring end then
43: allowednext = []
44: if all branches are closed then
45: allowednext.append([EOS])
46: if empty bonds (.) are allowed then
47: allowednext.append([bondempty])
48: else
49: allowednext.append([branchend])
50: if Beginning Of Sentence (BOS) or Empty bond (.) then
51: allowednext = [atoms]
52: if End Of Sentence (EOS) then
53: allowednext = []
54: When getting too close to MAXLEN , if possible, remove atom, bonds, ring-start, branch-start tokens from allowednext

55: Apply the valency mask (remove illegal tokens from allowednext based on the valency of the atoms)
56: Mask every token not included in allowednext before sampling the next token
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