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Abstract: Learning complex locomotion and manipulation tasks presents signif-
icant challenges, often requiring extensive engineering of, e.g., reward functions
or curricula to provide meaningful feedback to the Reinforcement Learning (RL)
algorithm. This paper proposes an intrinsically motivated RL approach to reduce
task-specific engineering. The desired task is encoded in a single sparse reward,
i.e., areward of “+1” is given if the task is achieved. Intrinsic motivation enables
learning by guiding exploration toward the sparse reward signal. Specifically, we
adapt the idea of Random Network Distillation (RND) to the robotics domain
to learn holistic motion control policies involving simultaneous locomotion and
manipulation. We investigate opening doors as an exemplary task for robotic ap-
plications. A second task involving package manipulation from a table to a bin
highlights the generalization capabilities of the presented approach. Finally, the
resulting RL policies are executed in real-world experiments on a wheeled-legged
robot in biped mode. We experienced no failure in our experiments, which con-
sisted of opening push doors (over 15 times in a row) and manipulating packages

(over 5 times in a row).
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1 Introduction

Recent advancements in Reinforcement Learn-
ing (RL) have propelled legged and wheeled-
legged robots beyond the confines of the lab,
empowering them to fulfill a broad range of
practical applications [1, 2, 3, 4, 5, 6]. Nev-
ertheless, tasks in environments designed for
human interaction remain challenging as they
frequently require coordination between loco-
motion and manipulation. Research often aims
to reduce task complexity by manually dividing
the problem into multiple stages [7]. However,
this approach lacks the exploration of holistic
solutions that consider the interplay between
different stages. Solving these problems end-
to-end with minimal task-specific engineering,
i.e., without including a variety of dense reward
terms that need to be tuned extensively, remains
an open challenge.

*Shared first authorship.

Figure 1: A wheeled-legged robot picking up
a package and opening a door while balanc-
ing on two wheels. Motions can be seen at
https://youtu.be/Qob2k _1dLuw.
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This work proposes an RL approach that solves the task as a whole with little need for task-specific
engineering. We adopt a sparse reward setting, rewarding “+1” when the desired task is achieved.
Although simple in its formulation, the discovery of sparse rewards is in general challenging and
requires strategies for the exploration of the environment. Because the reward only exists in a
small fraction of the state space, random exploration induced by, e.g., epsilon-greedy policies is
not sufficient to pick up the reward signal in reasonable time [8]. In our work, intrinsic motivation
is employed to guide the agent. For the first time, the concept of Random Network Distillation
(RND) [9], which models intrinsic motivation, has been successfully applied and validated in a
real-world robotic task, as shown in Fig. 1. Our main contributions can be summarized as follows:

1. A curiosity-driven sparse reward RL approach for learning end-to-end locomotion and ma-
nipulation tasks without laborious, task-specific engineering (Section 3)

2. The notion of curiosity states as guiding mechanisms, allowing to focus curiosity on non-
directly observable states, while maintaining simple deployment (Section 2.2)

3. An analysis of emerging learning behaviors (Section 4.1)

4. Successful real-world validation of RL policies on a wheeled-legged robot in biped
mode [10], by repeatedly opening a door and manipulating a package (Section 4.2)

1.1 Mechanisms to Guide Exploration

We group existing approaches that employ guided exploration to improve learning performance over
random exploration into three main categories. Expert Demonstrations can be an effective tool to
teach a desired skill [11, 12, 10, 13], but require predominantly hand-crafted demonstrations. Cur-
riculum Learning [14, 15, 16, 17, 18] involves gradually increasing task difficulty during training,
but the generation and efficient scheduling of intermediate tasks are still considered unsolved and
subject to ongoing research [17, 19, 20]. Intrinsic Motivation, more specifically curiosity, denotes
the ability to learn without external rewards for the pure sake of knowledge gain. Integrating this
mechanism into our learning algorithms holds great promise, particularly due to its task-agnostic
nature, which distinguishes it from expert demonstrations or curriculum learning.

Past research has explored three main approaches to modeling intrinsic motivation. In an initial
endeavor to incorporate curiosity into an RL algorithm, [21] introduced a reward based on the Eu-
clidean distance between the prediction of a model learning the environmental forward dynamics and
the observed transition, effectively rewarding surprise. The concept of measuring novelty using
prediction error from a dynamics model raises a significant concern: it tends to favor stochastic tran-
sitions [22], as they are difficult or even impossible to predict accurately. To address this challenge,
[23] adopts a different approach by predicting a state embedding instead of the complete world state.
Another line of work focuses on estimating and rewarding learning progress within specific re-
gions of the state space [24, 25, 26]. However, measuring learning progress in high dimensional
continuous state spaces remains computationally infeasible [23]. Count-based exploration methods
work by rewarding state novelty directly by keeping track of the number of visits for each state and
prioritizing less visited states [27]. To tackle exploration in continuous state spaces, [28] proposes
pseudo-counts, a generalization of count-based exploration methods. Burda et al. [9] propose RND,
a method based on predicting information about the current state to measure state novelty. They
train a prediction model alongside the RL agent in a supervised fashion, improving its accuracy for
visited states during the learning process. The prediction error can then be utilized as an intrinsic
reward signal, where familiar states yield more accurate predictions compared to less visited or un-
visited states. Given our focus on loco-manipulation tasks characterized by continuous state spaces
and potentially complex task dynamics, we consider the third option as the most suitable.

1.2 Loco-Manipulation

In recent years, approaches to solving complex loco-manipulation tasks are dominated by RL,
e.g., [6, 29, 30], with some works fully or partly relying on model predictive control (MPC) [31, 32].



A common design choice to break down the complexity of loco-manipulation is to divide the prob-
lem into a locomotion and a manipulation task and to control them individually [32, 33]. This
introduces new challenges in engineering the communication between both controllers and leads
to sub-optimal behaviors as synergies between different body parts can not be fully exploited [34].
Other works focus on manipulating objects through locomotion, e.g., pushing an object through
walking forward [31, 35, 36]. More dynamic manipulation tasks are investigated by a different body
of work that studies soccer skills [30, 37, 38, 6]. Many of these works combine multiple low-level
skills into a more capable controller, mostly through a hierarchical control framework and a skill li-
brary [30, 38, 35, 37]. This could be a future research direction to combine the controllers proposed
in this work. However, little work exists on how to leverage intrinsic motivation to learn complex
loco-manipulation tasks in a lean task-independent framework.

In this study, the primary task under examination is opening doors. A quadrupedal robot by Boston
Dynamics equipped with an arm has demonstrated impressive performance in the task of opening
doors [39]. However, limited information is available regarding the specific approach employed,
only that it is model-based. Other works divide the door opening task into sub-tasks that can be
solved in sequence [40, 7]. This requires task-specific modeling and tailoring of the control scheme,
which can be identified as a common shortcoming in many of the mentioned works. In the following,
we aim for a more holistic approach.

2 Curiosity Formulation

Structured exploration is a crucial factor for successful learning in sparse reward settings. RND [9]
offers an intuitive and computationally efficient approach to intrinsic motivation, while the curiosity
state proposed in this work focuses exploration.

2.1 Random Network Distillation

The RND module consists of two function approximators. A randomly initialized target network f
encodes states s € S into an unknown embedding f(s). The target stays fixed during the whole
training process. A predictor network f estimates the target’s embedding, given the same input s
as the target. The predictor network is trained alongside the RL agent on the visited states in a
supervised fashion with a Mean Squared Error (MSE) loss. The prediction error, i.e., the difference
between the outputs of both networks serves as the intrinsic reward signal defined by

e = | £(s) = £(3)| M

)
Intuitively, familiar state regions yield small prediction errors as the predictor is already trained on
similar states. Not yet visited state regions lead to large errors and therefore large intrinsic rewards.
As the agent visits an unfamiliar region repeatedly, the prediction error decreases.

2.2 Curiosity State

While [9] applies the RND module directly to the agent’s observations o instead of the state s,
we propose a more flexible formulation where a curiosity state s. = ¢(s) is passed to the RND
module to stay independent of the observations. The mapping ¢ can be freely chosen, as long as
the state s can be implicitly inferred from the environment’s feedback. This way, curiosity can
be focused on the desired quantities, even though they might not be directly observable during
deployment of the motion policy. The thereby introduced flexibility allows to leverage the curiosity
module in simulation while keeping deployment simple, thus showing a practical adaption of the
RND formulation to the robotics domain. While this formulation allows for arbitrary mappings ¢,
it suffices to consider ¢ to select a subset of the full state without further modification. A sketch of
the implemented RND module is shown in Fig. 2.



3 Task-Specific RL Formulation

We illustrate an effective sparse reward formulation on the exemplary task of door opening, detailing
the chosen rewards, observations, and the introduced curiosity state. Subsequently, we adapt the
formulation to the task of package manipulation to demonstrate the straightforward generalization
of the proposed approach to different tasks.

3.1 Rewards

The chosen reward function consists of the
three reward terms 7 = Tingrinsic + Ttask T T'shaping-
The first term 7jpyinsic 1S defined by equation 1
and motivates the agent to explore the rele-
vant part of the state space. In this work, we
use Multi Layer Perceptrons (MLPs) with 1
and 2 hidden layers with 5 neurons and a one-
dimensional output for the target and predictor
network, respectively. The second term rg
is the only task-specific reward. For the task
of door opening, it is defined intuitively by re-
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Figure 2: Random Network Distillation (RND)
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The inclusion of the third term rghaping S€rves as an incentive for the robot to maintain a stand-
ing posture and adopt more refined, less forceful strategies. This emphasis on smoother and less
aggressive policies is crucial for achieving effective sim-to-real deployment within the realm of RL
control [15, 41]. For a comprehensive breakdown of the rewards and their respective weights, please
refer to Appendix A.1.

3.2 Observations

In terms of observations, our approach focuses on minimizing task dependency and avoids the use
of complex exteroceptive information. The only observation that pertains specifically to the door
is the relative position ¢r¢cp of the door handle origin in the robot’s camera frame. We freeze the
initial door handle position and provide it as an additional input ¢rcH,, to the policy to determine
the degree to which the door is open.

We provide a list of standard observations that are not task-specific and have been covered in previ-
ous works [10, 4] in Appendix A.1. We note that the observations are subject to empirical normal-
ization for proper scaling of input variables.

3.3 Curiosity Implementation

An advantage of the proposed curiosity state s, is its independence of the robot’s observations.
Since the RND module is only needed for training, it is possible to include quantities that are easy
to attain in simulation but hard to estimate in reality and thus unfit as observations. To focus the
agent’s curiosity on the door, we include door hinge and handle angles gq,0r as well as their angular
velocities ggoor in the curiosity state. Adding the distance between the robot and the door handle
dcp induces faster interaction with the door. To avoid an intrinsic reward signal for moving too far
away from the door, the distance is clipped according to doyr = min(||rcm||2, 2), and the curiosity
state is defined as s, = [qlmr q(;[m dCH] T



3.4 Generalization to Package Manipulation

We show the task independence and generalization capability of the proposed approach by subjecting
it to a second task requiring different locomotion and manipulation skills. We choose the exemplary
task of package manipulation, i.e. grabbing, moving, and dropping a package, as it involves a freely
moving object, as opposed to the fixed-base articulated door. To encode the task, we define a similar
sparse task reward r, given by

1, ifzr € S
Prask = { ) Z 7 package bm’ (3)

0, otherwise

where 77package is the position of the package in the inertial frame Z and Sy, includes the space
in and above the bin. We include the space above the bin to reduce reward sparsity as the agent
still learns to drop the package. It is however not necessary to include this space for successful
learning. Instead of observing the door handle position, the agent now observes the relative package,
table, and bin positions ¢rcp, ¢ror, and ¢rcp, respectively. As before, relative positions are
observed in the camera frame. The last necessary change concerns the curiosity state. We define
itas s, = [I":.;;ckage dpp dc¢ p] T, where 77package 18 the linear package velocity in the inertial
frame. The distances between package and bin dpp and camera and package d¢ p are again clipped.

4 Experimental Validation and Discussion

To validate our approach, we conduct experiments in simulation and the real world. For implemen-
tation details please refer to the Appendix. All experiments are conducted with the wheeled-legged
quadrupedal robot in Fig.1, a dynamic robot that can perform hybrid motions between walking and
driving. Recently, [10] discovered a bipedal locomotion mode through RL, further increasing the
robot’s versatility. In bipedal mode, the front legs can serve as arms to manipulate objects.

4.1 Simulation Results

Qualitative examples of the door opening and package-grabbing motions can be seen in the supple-
mentary video.? In Fig. 4, we present quantitative results for all three tasks with different reward
settings. In general, we noticed that there is a divide between runs in which the agent learns to

Figure 3: Snapshot sequences (left to right) of the push door and package manipulation experiments.
Opening the door takes 2.5 seconds, grasping and dropping the package 1.5 seconds.

2To enable pull door experiments, we equip the robot with basic hooks attached to the front wheels.
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Figure 4: Number of training runs (out of 10 for each task) in which the agent successfully
learned to accomplish the given task for different reward formulations and different intrinsic re-
ward weights (denoted as cw). Every experiment was conducted for random seeds 1-10.

complete a given task and others where the sparse reward is solely triggered through randomness.
Only in rare cases, the sparse reward is discovered but remains small due to shaping rewards that
hinder skill discovery. We consider training runs with a final success rate greater than 25 % success-
ful to exclude the aforementioned cases. Successful runs show success rates significantly above this
threshold, as can be seen in Appendix A.3, where we also provide a more thorough analysis for the
case of (out-of-distribution) environment disturbances of various magnitudes. The best-performing
policies achieve success rates of 99 %, 92 %, and 99 %, for the push door, pull door, and package
manipulation tasks, respectively. In the following, we discuss the relevant findings of learning with
curiosity.

Training Evaluation: The need for guided exploration becomes clear when training with extrinsic
reward signals only, as reported in Fig. 4. Indeed, the investigated skills are not learned. Instead, the
learning process ends in a local optimum and the agent learns to stand without moving. The added
intrinsic reward signal guides the agent toward states that involve manipulating the door or package.
An exemplary learning process is shown in Fig. 5 for a push door. The learning process for package
manipulation evolves similarly. First, the robot discovers the package and moves it on the table to
increase the intrinsic reward signal. After learning to grab the package with both wheels, the robot
starts to wiggle the package and moves it closer to the bin. Once the sparse task reward is found, the
intrinsic reward decreases as the agent optimizes its behavior to achieve the desired task.

RND Evaluation: Experiments show that the network architecture of the RND module can be kept
minimal. While a predictor of the same size as the target should be able to fully approximate the
target, choosing a larger predictor leads to more consistent intrinsic reward curves over different
training runs. The weight of the intrinsic reward does not require extensive tuning since learning
is successful for a large interval, as can be seen in Fig. 4. Normalizing the reward empirically as
in [9] does not improve training and prevents the reward from converging to values close to zero.
Again, convergence to small values is necessary to model the loss of interest as the agent gets more
familiar with the environment. Normalization scales the reward with its standard deviation and thus
leads to larger rewards at the end of training. In contrast, normalization of the curiosity state is
crucial for a proper decay of the intrinsic reward over the course of training. The curiosity state
includes quantities that can reach high magnitudes like velocities and is therefore subjected to em-
pirical normalization, i.e., it is normalized with a running estimate of its mean and variance. While
normalization improves the convergence properties of the intrinsic reward, it violates the theoret-
ical foundation of state visitation-based curiosity. During training, the same state keeps changing
its normalized representation due to varying normalization parameters. Different states could have
almost identical representations for different points in time and thus also almost identical target em-
beddings. Even though this distorts the measure for state familiarity, curiosity state normalization
does not seem to have a negative influence on exploration and is highly recommended to improve
convergence to a small reward signal.
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Figure 5: Task specific reward r,g and intrinsic reward riyyinsic Over the course of learning to open a
push door. The mean and standard deviation include 4 successful out of 5 training runs for a curiosity
weight of 100 and random seeds 1-5. After learning how to stand (A), the robot starts to play with
the door handle and the intrinsic reward increases (B). Next, the robot opens the door slightly while
still manipulating the door handle (C). The agent then discovers the sparse door opening reward and
starts to optimize toward it (D).

Curiosity State Evaluation: To assess the relevance of the curiosity state notion, we probe the
original RND formulation of [9], that applies the curiosity module to the entirety of the observation
space. We note that skill discovery is not feasible for the investigated tasks due to two reasons.
First, the large state space might cause an unreasonable amount of exploration to properly converge
in reasonable time. Second, parts of the state space that would be crucial to explore might not be
directly observable, e.g., the door handle angle. Using a curiosity state instead of the observation
space allows the use of privileged information which might not be directly observable in the real
world, but is available in simulation.

Emerging Behaviors: A key finding of this paper is the sensitivity of the learning process to
small changes in the training environment. Changing the seed used to initialize networks or set
randomized quantities is enough to alter the resulting policy significantly. RL approaches usually
rely on dense task rewards that heuristically steer the agent toward a feasible trajectory. This might
bias the agent toward suboptimal behavior preventing discovery of the sparse reward. We evaluate a
naive implementation of a dense reward setup of comparable complexity to our method. For simple
tasks like opening push doors, the dense reward setup is able to discover the skill, but for the other,
more complex tasks it is not. In contrast to a dense task reward setting, a sparse task reward setting
does not bias the agent toward any trajectory. Randomness in the exploration can thus lead to the
discovery of different minima and trajectories, especially in contact-rich scenarios. As a result,
different behaviors emerge as shown in Fig. 6 where the robot is holding the door open in a variety
of poses. For the task of package manipulation, differences are more subtle. During task execution,
policies mainly differ in the leg configuration and the stepping pattern of the robot.

4.2 Real-World Results

We demonstrate the effectiveness of the proposed approach by opening a push door over 15 times in
a row without a single failure in a lab environment. Learned policies are able to let the robot stand
and navigate toward the door. The robot reaches for the door handle with its right wheel and attempts
to press it while pushing against the door. As soon as the door is unlocked, the robot swings the door
open and holds it open while standing still, as shown in the top row of Fig. 3. Sim-to-real transfer
benefits from modeling the robot’s Field of View (FOV) in training, explained in Appendix A.2.
Since the real robot lacks the added hooks for pulling doors, we leave pull-door experiments to
future work. For the task of package manipulation (shown in the bottom row of Fig. 3), the robot
robustly grabs the package and drops it into the bin over 5 times in a row. In one instance out of
all tests, the robot lost its grip on the package. However, the robot quickly regrabbed the package
and successfully delivered it. Policies exhibit highly dynamic behavior. If a more gentle motion is
desired, a task reward that does not favor quick task completion would be more appropriate.



4.3 Limitations

Depending on the desired task, the intrinsic mo-
tivation approach might come with some trade-
offs. On one hand, the sparsity of rewards en-
courages the exploration of diverse behaviors
(see Fig. 6), which can lead to new solutions,
often neglected by more dense approaches. On
the other hand, it complicates the process of
enforcing a specific behavior. Although dense
shaping rewards can be added to enforce the
desired behavior, they limit exploration and re- Figure 6: A wheeled-legged robot holding the
duce training robustness. This can be seen in door open in a variety of poses.

Fig. 4, where the investigated skills are not dis-

covered in every training run.

Secondly, since the intrinsic reward signal is not vanishing completely, the agent stays curious about
its environment even after finding the task reward. In our case, this did not cause unwanted behav-
iors. If it does for other applications of RND, the weight of the reward could be scheduled.

Lastly, as the predictor network is trained in a supervised fashion, overfitting to specific regions of
the state space could occur. Although not observed in this work, this might be exploited by the RL
agent in a back-and-forth fashion. Subsequent switching to different state space regions would gain
intrinsic reward repeatedly. Common methods to avoid overfitting such as regularization or dropouts
could be employed in that case.

5 Conclusions and Future Work

We show that intrinsic motivation for exploration proves successful in simulation, yielding motion
policies for complex tasks that involve locomotion and manipulation. Our RL method proves to
generalize over multiple tasks requiring different sets of skills. We note that different behaviors
emerge for small changes in the training environment. This phenomenon is explained by the absence
of dense task rewards that bias the agent toward specific trajectories and is inherent to the sparse
reward setting.

The introduced notion of a curiosity state guides exploration toward the reward in an efficient manner
and allows learning of various tasks with basic task-dependent observations. We note that curiosity
state normalization is crucial for proper reward convergence during the course of training, even
though it distorts the measure of state familiarity.

To validate the proposed method, trained motion policies are executed on a wheeled-legged robot in
biped mode. Experiments show that the robot is able to successfully and robustly open a push door
in a lab environment, over 15 times in a row without failure, as well as manipulate a package through
a grabbing, moving, and dropping motion over 5 times in a row without failure. We conclude that
the investigated approach proves valuable for the robotics control domain as it enables the learning
of highly complex skills with a minimal amount of task-specific engineering.

Future research could involve further investigation into the chosen curiosity formulation, the no-
tion of penalty-based surprise [42] could allow for gentle policies without the need for task-specific
shaping rewards. Other potential continuations include investigating controllers that achieve multi-
ple tasks by combining the control policies proposed in this work.
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Appendix

In the following, we provide implementation details of the simulation and real-world experiments,
as well as further quantitative evaluations of the investigated approach.

A.1 Simulation Setup

We train with NVIDIA’s Isaac Gym [43] and employ Proximal Policy Optimization (PPO) [44]. A
detailed description of the used training pipeline can be found in [15]. A full training run comprises
2000 policy updates to ensure reward convergence for all investigated tasks. It takes one hour to
train a policy on a single NVIDIA RTX 2080 Ti graphics card. Subsequently, we give a detailed
description of the training environment.

Reward Formulation: The definitions and weights of the reward terms used for the door and
the package task are detailed in Table 1. We decided to add two task-related shaping rewards for
the task of package manipulation to improve the behavior for real-world tests. Namely, the agent
receives penalties for generating high package velocities and exerting large contact forces onto the
table. Notice that this choice does not violate the idea of the proposed approach. Firstly, the added
penalties are unrelated to the main task, which is still defined by a single sparse reward. Secondly,
our approach first generates unbiased behaviors and can then be augmented for more pleasing results.
In contrast, other formulations bias the agent as a byproduct of defining the desired task in a dense
fashion. Penalizing table contacts and the package velocity, which is part of the chosen curiosity
state, clearly increases the difficulty of discovering the desired skill. To compensate for this, we
employ a simple reward scaling scheme. The first 1000 training iterations serve as a discovery
phase, as most runs discover the sparse reward in that time. Shaping and standing rewards are active
but scaled by a factor of 0.1. The second half of training acts as a shaping phase where the scaling
factor is gradually increased to 1 over the course of 500 iterations.

Observations: The corresponding observation definitions can be found in Table 2. All observations
are subject to noise to account for uncertainties and sensor noise in reality. For more detail in that
regard, please refer to [15].

Randomization: To improve generalization to different environments, as well as robustness against
mismatches between simulation and reality, masses and friction coefficients are randomized as de-
tailed in Table 3. Additionally, the robot spawns in a randomized pose, i.e., initial position, orienta-
tion, and joint configuration vary. All randomized properties are sampled from a uniform distribution
in the interval of [ — 5, u + §] for every training environment.

Termination Conditions: Episodes terminate after 8 seconds, resetting the environments to their
initial state. An episode terminates early if either the robot is in collision, or if the robot’s center
is too low, i.e., if the robot does not manage to stand and falls. The second condition accelerates
training but is not necessary for successful learning. We also terminate an episode if the package is
not in contact with either the table or the front wheels to prevent the agent from directly throwing the
package. This termination condition is disabled in close proximity to the bin to allow the dropping
of the package into the bin.

Door Model: The considered doors feature standard lever door handles that need to be pressed to
a certain degree to unlock the door. In simulation, the handle needs to be pressed once to keep
the door unlocked for the rest of the episode. Dynamics of the hinge and handle are modeled as
spring-damper systems with a constant torque offset 7.onst. This is achieved by applying the torque

Tdoor = Tconst T dlag(k) * qdoor + dlag(d) . qdonr; (4)

to the door joints. Constants T.ons, K, and d are randomized by sampling from a uniform distribution.
Measurements on the lab door provide reference values for realistic door dynamics. Further details
are provided in Table 3.

Field of View Simulation: To mimic the perception system of the real robot we simulate the FOV
for egocentric vision, as introduced in simulation experiments in [29], resulting in behaviors that
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Table 1: Rewards

Name Formula Weight
Intrinsic Reward
RND prediction error Hf(sc) - f(sc) 100
2
Task Rewards
Door opened 1, if15 < Ghinge < 2.1 1.0
0, otherwise
. 1, if ;
Package delivered M I Tpackage € Sbin 1.0
0, otherwise
Standing Rewards
Height T Zbase 0.5
. . B, A
Upright base W/2_drcc;);(21€w ze;) 0.5
Straight shoulder joints  — || gshoutders || 0.5
Straight knee joints exp(—|| Gknees||*) 0.25
Shaping Rewards
Joint torque —||? 1.5-107°
Joint acceleration —/4l? 2.5-1077
Joint velocity —|ql? 2.5-107*
Action difference —|la — apev|)? 1.0-1072
Table contact force — || Fe. waple || 1.0-107°
Package velocity — |27 package [|* 1.0-1072
Table 2: Observations
Robot-related Observations
BTpase € R? Linear base velocity
BWhase € R3 Angular base velocity
5g €R3 Projected gravity vector
Qlegs € R!2 Joint configuration without wheels
Ohooks € R* Hook directions (for pull doors)
G € RS Joint velocity
Aprey € R0 Previous actions
Door-related Observations
crcn € R3 Relative door handle position
crom,, € R? Relative initial door handle position
Package-related Observations
crcp €ER3 Relative package position
crer € R3 Relative table position
crop € R3 Relative bin position
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Table 3: Randomization Parameters

Uniformly Randomized Property Mean p Range ¢ = Unit

Global friction coefficient 0.75 0.75 -
Robot position (x, y) 0 0.6 m
Initial robot yaw angle 0 1 rad
Initial joint angle deviation 0 1 rad
Added robot mass 0 10 kg
Package mass 1.375 1.0 kg
Door torque offset Teonst [10 0]T [10 O]T Nm
N
Door spring coefficient k [0 5]T [0 5]T —I;l
ra
N
Door damping coefficient d [25 1]T [25 l]T H:is
ra

actively direct the robot’s gaze. A visual marker, further explained in Section A.2, specifies the
position of the door handle. Consequently, the observation ¢rc g is only available if the marker is
detected by a camera. Always passing the door handle observation in the simulation would therefore
not capture the real system behavior. Instead, the observation is set to O if the visual marker leaves
the camera’s FOV. This way, the agent learns to approximately partition the observation space and
reason about when it is necessary to observe the visual marker. The agent can develop behaviors
to mitigate a lost observation and to actively keep the marker in the FOV. An illustration of the
approach is provided in Fig. 7. Note that the second door-related observation ¢r ¢, is not set to 0
because the initial door handle position is static with respect to the inertial frame. The observation
can thus be bootstrapped with the onboard localization of the robot even if the visual marker leaves
the FOV.
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A.2 Real-World Setup

We utilize AprilTags [45] to obtain task-related observations in the real world. The AprilTag system
features a vision-based algorithm that determines the relative position and orientation of detected
tags. Two visual markers attached to the door provide the relative door handle position observation
crcm. If the robot does not detect the tags, the observation is set to O to achieve the same behavior
as in simulation. The initial door handle position observation ¢rcp,, is determined by two markers
attached to the door frame. We make use of the robot’s onboard localization to obtain an observation
even if the tags leave the FOV of the camera. AprilTags also provide relative positions of the
package, bin, and table. We do not make use of the proposed FOV simulation for the package
manipulation task for two reasons. Firstly, it increases the difficulty of learning the desired behavior
because the robot tries to keep the package in the FOV by leaning over the bin and falling. Secondly,
the package is kept in the FOV naturally until the package is dropped, rendering the additional FOV
constraint unnecessary for this task.

Furthermore, we note a few limitations with the current experimental setup. To achieve a 100 %
success rate in the series of real-world experiments, it was vital to get reliable door observations
through the camera system. Especially for fast rotations, the used visual fiducial system suffered
from image blur and low frame rates. Observations might also degrade over longer periods of time
if the fiducials leave the FOV, as the robot then purely relies on its localization. With the remedies
mentioned above, we were able to resolve these issues, but longer horizon tasks might need more
careful considerations.

e %\Wghmgo = H;;(:*“
2

(Wil

|
>

Figure 7: Door setup and FOV simulation. Components of the curiosity state s. are marked in
red, while observations are marked in blue. The green cone represents the camera’s FOV. A visual
marker, attached to the door, is used to calculate the door handle observation ¢rcg. If the vector
from the camera to the visual marker (orange) leaves the FOV cone, the door handle observation is
set to 0.
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A.3 Quantitative Results

A.3.1 Comparison to a Naive Dense Reward Setting

Hi—e—

To highlight the benefits of the curiosity-driven approach, . %
we draw a comparison to a basic dense reward approach 901

that involves comparable engineering effort.> For the
door opening tasks, we define three dense rewards as
guidance toward the sparse task reward. These rewards
are defined as to minimize the distance from the wheel
to the door handle, the door handle angle, and the door

80

70

Success Rate (%)

60 T

I Push Doors

hinge angle. The hinge angle reward is clipped to en- 501 Pull Doors
sure that the robot does not open the door too far since w© 'I P‘”kag“' | |

1 1 1 D Reward: O O O
we consider the task only fulfilled if the door is opened B S i oo

within a specified angular window. We were able to tune

the reward weights to deliver a similar performance to our Figure 8: Success rate mean and stan-
approach for push doors, yielding an average success rate dard deviation of successful training
of 91 % in simulation, as seen in Fig. 8. We could not find runs for different reward formulations,
weights that would result in successfully learning the pull intrinsic reward weights (denoted as
door task. The package manipulation task is augmented cw), and random seeds 1-10.

with three dense rewards as well. These increase with de-

creasing distance between the right wheel and the right side of the package, the distance between
the left wheel and the left side of the package, and the distance between the package and the bin.
Again, we were unable to train a policy that achieves the desired task, as shown in Fig. 4.

A.3.2 Intrinsic Reward Scale Sensitivity

The training process shows a high level of robustness with respect to the scale of the intrinsic reward,
as can be seen in Fig. 4. This can be explained by the reward’s dynamic magnitude. At the beginning
of training, the RND prediction error is large enough to overcome the local minimum imposed by
shaping rewards. During training, the intrinsic reward shrinks and allows for optimization toward
the task and shaping rewards. If the weight is chosen too large, the intrinsic reward might not decay
enough such that the sparse reward, although discovered, might get overlooked in the optimization.

A.3.3 Robustness Against Environment Variation

We investigate success rates in multiple simulation experiments to analyze the robustness of learned
policies against the variation of different environment parameters, including parameter values that
are out-of-distribution of the learning tasks. We report the results in Fig. 9. The success rates
are determined by observing 1000 differently randomized environments for one episode. First, the
robot’s initial position and orientation are randomized over a larger interval than during training.
Second, the door handle height is randomized uniformly. Even though the handle height was not
randomized during training, policies are able to adapt to different heights. Last, the package position
and the bin position are randomized uniformly. Again, neither was randomized during training. The
package position is randomized for a range up to 0.4m, as this covers the entire table surface.
Trained policies exhibit a high level of robustness against the investigated disturbances.

3We also investigated curriculum learning as an alternative. The (naive) task curricula consisted of spawning
the robot in favorable positions (e.g. very near to the door, with one wheel touching the door handle), and then
gradually increasing the task difficulty by increasing the distance to the door. In our experiments, the robot was
not able to successfully discover the desired behavior. We are convinced that the tasks could be solved with
more intricate curricula, but these stand in no perspective with regard to the engineering effort to the proposed
curiosity-driven approach.
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Figure 9: Simulation success rates for different out-of-distribution experiments. In (a), the initial
robot position and yaw angle randomization range used during training is multiplied. In (b), the door
handle height is randomized and in (c), the package and bin positions are randomized uniformly.
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