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ABSTRACT

We introduce Flower, a solver for linear inverse problems. It leverages a pre-
trained flow model to produce reconstructions that are consistent with the observed
measurements. Flower operates through an iterative procedure over three steps:
(i) a flow-consistent destination estimation, where the velocity network predicts a
denoised target; (ii) a refinement step that projects the estimated destination onto
a feasible set defined by the forward operator; and (iii) a time-progression step
that re-projects the refined destination along the flow trajectory. We provide a
theoretical analysis that demonstrates how Flower approximates Bayesian pos-
terior sampling, thereby unifying perspectives from plug-and-play methods and
generative inverse solvers. On the practical side, Flower achieves state-of-the-art
reconstruction quality while using nearly identical hyperparameters across various
linear inverse problems.

1 INTRODUCTION

Inverse problems are central to computational imaging and computer vision (McCann & Unser,
2019; Zeng, 2001). Their goal is to reconstruct an underlying signal x ∈ Rd from its observed
measurements y ∈ RM . Here, we focus on linear inverse problems, such that the acquisition of the
measurements follows the model

y = Hx+ n (1)
for some linear forward operator H : Rd → RM and additive white Gaussian noise n ∼ N (0, σ2

nI).
From a Bayesian perspective, the simplest reconstruction approach is to obtain the maximum-
likelihood estimation

x̂MLE = argmax
x∈Rd

pY|X=x(y) = argmin
x∈Rd

1

2σ2
n

∥Hx− y∥22 . (2)

However, this problem is ill-posed and yields poor-quality solutions. Another approach is to obtain
the maximum a posteriori estimation (MAP)

x̂MAP = argmax
x∈Rd

pX|Y=y(x) = argmin
x∈Rd

(
1

2σ2
n

∥Hx− y∥22 − log pX(x)

)
, (3)

which requires the knowledge of the prior distribution pX of images, a quantity that is generally
unknown. The minimization problem of equation 3 is consistent with the variational perspective
of inverse problems, where the term (− log pX (x)) is replaced by a regularizer R(x) that encodes
some properties of the images. From classic signal processing to the advent of deep learning, the de-
sign of a good regularizer R has been of interest. Classic signal processing relies on the smoothness
or sparsity of images to introduce wavelet- or total-variation-based regularizers (Rudin et al., 1992;
Figueiredo & Nowak, 2003; Beck & Teboulle, 2009). Some methods build upon classical models
and try to learn such criteria in a data-driven manner (Roth & Black, 2009; Goujon et al., 2024;
Ducotterd et al., 2025; Pourya et al., 2025). Plug-and-play (PnP) approaches focus on the implicit
replacement of R by its proximal operator, with a learned neural network that serves as a denoiser
(Venkatakrishnan et al., 2013; Zhang et al., 2022; Hurault et al., 2022b;a). Although MAP estima-
tions tend to have a good reconstruction quality, they do not necessarily provide the minimum-mean-
square estimator x̂MMSE that is best in terms of the peak signal-to-noise ratio (PSNR). To estimate
x̂MMSE, one would have to compute the posterior mean x̂MMSE = E[X|Y = y]. Moreover, for
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perceptual metrics, it is better to generate a sample from pX|Y=y instead of an estimator of the
distribution.

The objective of generative modeling is to sample from a target distribution pX. In practice, this
distribution is unknown, and one typically only has access to a finite collection of its samples.
Numerous approaches have been proposed to address this issue. Among them, diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) and, more recently, flow-matching
methods (Lipman et al., 2023) represent the state of the art in scalable generative modeling for
images.

Flow matching, introduced by Lipman et al. (2023), constructs a continuous-time generative process
by parameterizing the velocity field of an ordinary differential equation (ODE) as a neural network.
It takes inspiration from optimal transport and continuous normalizing flows (Ambrosio et al., 2008;
Hagemann et al., 2022) and transports an initial source distribution pX0

to a target distribution
pX1

≈ pX . The choice of probability paths from pX0
to pX1

are numerous, with Gaussian paths
recovering diffusion as a special case (Albergo & Vanden-Eijnden, 2023). However, flow matching
mostly focuses on straight-line paths, which yields competitive performance and improved sampling
efficiency (Liu et al., 2023; Liu, 2022).

The remarkable success of generative models in image generation motivates their extension to in-
verse problems, where the goal shifts from the sampling of the prior distribution pX1 to the sampling
of the posterior pX1|Y=y. Several inverse solvers based on diffusion models have been introduced
(Chung et al., 2023; 2024; Kawar et al., 2022; Song et al., 2023; Zhu et al., 2023; Zhang et al., 2025;
Mardani et al., 2024). Recent efforts also focus on flow-based solvers (Pokle et al., 2024; Martin
et al., 2025). Existing approaches can be broadly grouped into two categories: (i) methods that ap-
proximate the posterior score (velocity field) with gradient corrections along the generative path; and
(ii) PnP strategies that alternate between generative (diffusion or flow) updates and data-consistency
steps.

In this work, we introduce a novel solver based on flow matching that achieves state-of-the-art results
among flow-based methods for linear inverse problems. Our approach departs from existing methods
by framing the problem through a Bayesian ancestral-sampling perspective, which gives rise to a
simple three-step procedure with a natural plug-and-play interpretation. Our main contributions are
as follows.

1. Flow-matching solver for inverse problems. We introduce Flower, an inverse problem
solver that consists of three steps: (1) a flow-consistent destination estimation, where
the velocity network is used to predict a destination, interpretable as denoising; (2) a
measurement-aware refinement, in which the estimated destination is projected onto the
feasible set defined by the forward operator; and (3) a time progression, where the refined
destination is re-projected along the flow path.

2. Bayesian analysis and relation to PnP. We provide a Bayesian analysis in which we
demonstrate how and under what considerations Flower generates approximate poste-
rior samples from pX1|Y=y. Specifically, we show that Step 1 computes the condi-
tional expectation E[X1|Xt = xt], which we then use for the approximation p̃X1|Xt=xt

of pX1|Xt=xt
. Through this approximation, we show that Step 2 generates a sample

x̃(xt,y) ∼ p̃X1|Xt=xt,Y=y. Step 3 then updates the trajectory given the refined desti-
nation x̃(xt,y) and draws a sample xt+∆t ∼ p̃Xt+∆t|Xt=xt,Y=y, which by induction and
ancestral sampling, produces the final sample x1 ∼ p̃X1|Y=y. These steps rely on three as-
sumptions: the velocity network is optimally trained for unconditional flow matching; the
acquisition of measurements follows the forward model in equation 1; and the source and
target distributions are independent. To the best of our knowledge, this Bayesian construc-
tion is novel within flow-based solvers for inverse problems. Although this construction is
key to the derivation of our solver, the resulting procedure closely mirrors the PnP meth-
ods. Thus, our Bayesian justification establishes a link between the PnP approach and
approximate posterior sampling with generative models for linear inverse problems. We
also discuss a possible extension of Flower to nonlinear inverse problems.

3. Numerical validation. We first examine a controlled setup with Gaussian mixture mod-
els and show that Flower successfully recovers posterior samples. We then evaluate our
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method on standard inverse problem benchmarks for flow matching. We achieve competi-
tive performance, with nearly identical hyperparameters across all tasks.

The remainder of this paper is organized as follows. In Section 2, we review the fundamentals of
flow matching along with the mathematical tools required for the development of our method. We
then introduce Flower in Section 3 and present the associated theoretical analysis. In Section 4, we
discuss related work and highlight their similarities and differences with our approach. We report
our numerical results in Section 5. Finally, we provide a potential nonlinear extension of Flower in
Section 6.

2 BACKGROUND

2.1 FLOW MATCHING

Let pX0
be a source distribution that is easy to sample and let pX1

be a target distribution that we
want to sample from. A time-dependent flow ψt transports pX0

to pX1
via the ODE

dψt(x)

dt
= vt

(
ψt(x)

)
, t ∈ [0, 1], (4)

for some velocity field vt : Rd → Rd. The intermediate variables Xt = ψt(X0) follow a distribu-
tion pXt . The objective of flow matching is to approximate vt with a neural network vθ

t , which will
allow us to sample from pX1 . However, the determination of the flow-matching loss

LFM(θ) = Et∼U [0,1] Ext∼pXt

[∥∥vθ
t (xt)− vt(xt)

∥∥2
2

]
(5)

is challenging, as it requires access to the marginal velocity field vt(xt). To address this, we focus
on the conditional velocity vt(xt | x1) and define the conditional straight-line flow and velocity

xt = ψt(x0 | x1) = (1− t)x0 + tx1, vt(xt | x1) = x1 − x0. (6)
This leads to the practical conditional flow-matching loss

LCFM(θ) = Et∼U [0,1] E(x0,x1)∼π

[∥∥vθ
t

(
(1− t)x0 + tx1, t

)
− (x1 − x0)

∥∥2
2

]
, (7)

where π ∈ Π(pX0
, pX1

) is a coupling over (X0,X1), given by joint distributions on Rd × Rd

with marginals pX0
and pX1

. Lipman et al. (2023) have shown that the minimization of LCFM is
equivalent to the minimization of LFM, since their gradients with respect to θ are equal.

The coupling π determines how (x0,x1) are paired. With the independent (IND) coupling π =
pX0

⊗ pX1
, the training is simple and scalable. However, the resulting interpolated paths can over-

lap, which may slow down convergence. At the other extreme, the optimal transport (OT) cou-
pling π⋆ ∈ argminπ∈Π(pX0

,pX1
) E(x0,x1)∼π

[
∥x1 − x0∥22

]
produces globally aligned pairs such

that straight-line flows approximate displacement interpolation along the Wasserstein-2 geodesic. If
the Monge map T satisfying T#pX0

= pX1
exists and is known, then no training is needed: the

sampling x0 ∼ pX0
and the computation of x1 = T (x0) already generate a sample from pX1

. In
practice, T is unknown and its approximation is infeasible. A practical compromise is mini-batch
OT, which solves an entropically regularized OT problem within each batch to compute an approx-
imate coupling π̂. This improves alignment over independence with moderate computational over-
head. For more details on the mathematical background of OT, such as the definition and uniqueness
of the Monge map, we refer to Peyré (2025).

The choice of the source distribution pX0
is crucial for effective training and sampling. In practice,

pX0
is often chosen as the standard normal distribution N (0, I). With the independent coupling,

this simply yields pXt|X1=x1
= N (tx1, (1− t)2I). However, the computation of pXt|X1=x1

in the
OT case is challenging due to the mini-batch approach, in which it is difficult to determine the batch
a sample x1 came from, as well as its associated OT paths.

2.2 PROXIMAL OPERATOR

The proximal operator of a proper, lower semi-continuous convex function f : Rd → R ∪ {+∞} is
defined as

proxf (x) = argmin
w∈Rd

(
1

2
∥w − x∥22 + f(w)

)
. (8)
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Figure 1: Overview of the three steps in Flower. Starting from an initial sample x0 ∼ pX0
at time

t, the method: Step 1 predicts a flow-consistent destination x̂1(xt); Step 2 refines this destination
using the measurements via a proximal step and associated uncertainty sampling to obtain x̃1(xt,y);
and Step 3 updates the trajectory along time by interpolating x̃1(xt,y) with new noise ϵ ∼ pX0 .
The N -time repetition of these steps yields the final reconstruction x1.

This operator can be interpreted as a generalized projection of x onto a set associated with f , bal-
ancing proximity to x and regularization by f . Proximal operators play a central role in optimiza-
tion algorithms that solve inverse problems and are key components of proximal-gradient methods
(Bubeck, 2015).

3 METHOD

Let vθ
t denote a velocity network trained to generate samples from pX1 through flow matching.

Therefore, starting from x0 ∼ pX0 , we get a sample x1 ∼ pX1 if we perform N iterations of the
update equation

xt+∆t = xt +∆t vθ
t (xt) (9)

with ∆t = 1
N . We aim to use the pre-trained velocity network vθ

t to generate solutions x1 that are
consistent with the flow and the linear forward model y = Hx1+n for n ∼ N (0, σ2

nI), as described
in equation 1. To achieve this goal, we introduce Flower which, given the measurements y, modifies
the unconditional flow path of equation 9 and outputs x1 by iterating N times over three steps. We
first introduce these steps and then theoretically establish how and under what assumptions Flower
approximates a sample x1 of the conditional posterior pX1|Y=y. The three steps are as follows.

1. Flow-consistent destination estimation

x̂1(xt) = xt + (1− t)vθ
t (xt). (10)

2. Measurement-aware destination refinement

x̃1(xt,y) = µt(xt,y) + γκt (11)

for
µt(xt,y) = proxν2

t Fy
(x̂1 (xt)) , κt ∼ N (0,Σt), (12)

where Fy(x) = 1
2σ2

n
∥Hx− y∥22 and proxν2

t Fy
denotes the proximal operator of

ν2t Fy as defined in equation 8. We have that νt = (1−t)√
t2+(1−t)2

and that Σt =(
ν−2
t I+ σ−2

n H⊤H
)−1

. The hyperparameter γ ∈ {0, 1} controls the consideration of the
uncertainty of the destination refinement step.

3. Movement in time

xt+∆t = (1− t−∆t)ϵ+ (t+∆t)x̃1(xt,y), (13)

where ϵ is newly sampled from pX0
at each iteration.

Here, ∆t = 1
N and the scheme is initialized with a sample x0 ∼ pX0

. In Figure 2.2, we present
a visual illustration of these three steps. We also summarize these steps in Algorithm 1 of the
Appendix.

4
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We now interpret Flower through a Bayesian lens. We assume that, at each iteration, the three steps
collectively draw xt+∆t from the transition distribution pXt+∆t|Xt=xt,Y=y. Under this assumption
and with proper initialization, the procedure performs ancestral sampling along the conditional tra-
jectory. By induction, we obtain xt+∆t ∼ pXt+∆t|Y=y. We formalize this in Theorem 1, with
proof in Appendix 8.2.1, which in turn implies that the final sample x1 produced by Flower follows
the desired posterior pX1|Y=y. We then detail how, in practice, the three steps realize a draw from
p̃Xt+∆t|Xt=xt,Y=y, which serves as an approximation of pXt+∆t|Xt=xt,Y=y.
Theorem 1. Let x0 be a sample from pX0|Y=y. If xt is a sample from pXt|Y=y, then the sample
xt+∆t from pXt+∆t|Xt=xt,Y=y follows pXt+∆t|Y=y.
Remark 1. For the inductive argument to hold, Flower must be initialized with a sample from the
conditional distribution pX0|Y=y. When X0 and X1 are assumed to be independent, this reduces to
a sampling from the unconditional prior pX0

, which is often chosen as N (0, I).

Theorem 1 presupposes the existence of an ancestral-sampling scheme to generate samples from
pXt+∆t|Y=y. This scheme requires a sampling from the transition distribution pXt+∆t|Xt=xt,Y=y.
We now describe how to realize this transition in practice. We proceed sequentially and explain the
details of each step of Flower.

First, under the assumption that vθ
t is the optimal velocity network, we show in Proposition 1 that

the predicted x̂1(xt) in Step 1 equals the conditional expectation E[X1 | Xt = xt]. The proof is
provided in Appendix 8.2.2.
Proposition 1. If vθ(xt, t) = v∗

t (x) is a pre-trained velocity vector field that minimizes the condi-
tional flow-matching loss, then

x̂1(xt) = E[X1|Xt = xt] = xt + (1− t)vθ(xt, t). (14)

Since the distribution pX1|Xt=xt
is not directly available, we propose to approximate it with

p̃X1|Xt=xt
= N (x̂1(xt), ν

2
t I), (15)

an isotropic Gaussian distribution centered at x̂1(xt) = E[X1|Xt = xt] with a time-varying covari-
ance. As t→ 1, the distribution pXt approaches the target pX1 . For p̃X1|Xt=xt

to be consistent with
this property, νt should anneal in time. We choose νt = (1− t)/

√
t2 + (1− t)2, which results in

the valid covariance when pX1
is a standard Gaussian distribution. Our approximation is indeed the

ΠGDM approximation proposed by Song et al. (2023) within diffusion solvers and later by Pokle
et al. (2024) for flow matching. However, instead of having a score-based interpretation and using
this approximation to obtain ∇xt

log p̃Y|Xt=xt
, we propose to sample x̃1(xt,y) from the distribu-

tion p̃X1|Xt=xt,Y=y that approximates pX1|Xt=xt,Y=y. To this end, we show in Proposition 2 that
p̃X1|Xt=xt,Y=y is indeed a Gaussian distribution, using the ΠGDM approximation and the forward
model of equation 1. The proof is provided in Appendix 8.2.3.
Proposition 2. Suppose that p̃X1|Xt=xt

= N (x̂1(xt), ν
2
t I) (ΠGDM approximation) and

pY|X1=x1
= N (Hx1, σ

2
nI) (measurement operation). Then, p̃X1|Xt=xt,Y=y = N (µt(xt,y),Σt),

where

µt(xt,y) =
(
ν−2
t I+ σ−2

n H⊤H
)−1 (

ν−2
t x̂1(xt) + σ−2

n H⊤y
)
, (16)

Σt =
(
ν−2
t I+ σ−2

n H⊤H
)−1

. (17)

Proposition 2 allows us to sample from p̃X1|Xt=xt,Y=y as provided in Step 2 of Flower using
the re-parameterization trick in equation 11. However, the µt(xt,y) in Step 2 (see equation 12)
is described using a proximal operator which differs from equation 16. It is easy to verify the
equivalence between the two, through the fact that µt(xt,y) of equation 16 can be written as the
solution to the minimization problem

min
x∈Rd

(
1

2σ2
n

∥Hx− y∥22 +
1

2ν2t
∥x− x̂1(xt)∥22

)
. (18)

This directly results in µt(xt,y) = proxν2
t F

(x̂1 (xt)) for Fy(x) = 1
2σ2

n
∥Hx− y∥22 under the

definition of the proximal operator in equation 8. Moreover, the sampling from the anisotropic

5
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Gaussian N (0,Σt) is not trivial; however, if we sample two independent ϵ1 ∈ Rd and ϵ2 ∈ RM

from standard Gaussian distributions, then we verify in Appendix 8.2.5 that κt = Σt(νt
−1ϵ1 +

σn
−1H⊤ϵ2) follows N (0,Σt).

Step 3 of Flower aims to sample the distribution pXt+∆t|Xt=xt,Y=y, which is also what we required
for our ancestral-sampling procedure to hold. We now show that if we have a sample x̃1(xt,y)
from p̃X1|Xt=xt,Y=y, then we could obtain a sample from the distribution p̃Xt+∆t|Xt=xt,Y=y using
equation 13. We first compute p̃Xt+∆t|Xt=xt,Y=y under the assumption that pX0

is independent of
pX1

in Proposition 3 which we prove in Appendix 8.2.4.
Proposition 3. If from the pre-trained flow matching we have that pX0

= N (0, I), if pX0
is inde-

pendent of pX1
, and if p̃X1|Xt=xt,Y=y(x1) = N (µt(xt,y),Σt), then it holds that

p̃Xt+∆t|Xt=xt,Y=y = N
(
(t+∆t)µt, (t+∆t)2Σt + (1− t−∆t)2I

)
. (19)

From Proposition 8.2.4 and by the means of the re-parametrization trick, it is easy to verify that

xt+∆t = (1− t−∆t)ϵ+ (t+∆t)x̃1(xt,y) (20)

follows p̃Xt+∆t|Xt=xt,Y=y given that x̃ ∼ N (µt(xt,y),Σt), which happens in Step 3 of Flower.

In our Bayesian justification, we assumed that pX0 and pX1 are independent. This assumption ex-
cludes, for example, the mini-batch optimal-transport coupling. Nevertheless, in practice, Flower
can still be applied in such settings and interpreted in a PnP manner. The iterative structure of
Flower closely resembles PnP methods: Step 1 acts as a denoising step, while Step 2 enforces data
consistency. From this viewpoint, Step 3 can be seen as a re-projection onto the flow trajectory, as
discussed in Martin et al. (2025). However, rather than relying solely on this interpretation, we pro-
vide a Bayesian justification of the procedure. This perspective highlights a conceptual link between
PnP methods and posterior sampling. We also address this empirically in our numerical results. For
exact posterior sampling to hold under our approximations, γ should be set to one. Interestingly,
in practice we find that the choice γ = 0 (i.e., ignoring the uncertainty in the destination refine-
ment step) yields a better reconstruction quality. We provide further discussion on this effect with
our numerical results in Section 5. Moreover, our framework remains valid for more general noise
distributions n ∼ N (0,Rn) where Rn is any symmetric positive-definite matrix, as detailed in
Appendix 8.3.

4 RELATED WORKS

An extensive body of work adapts pre-trained diffusion or flow priors to inverse problems by modi-
fying the dynamics to approximate the conditional posterior. We first review diffusion-based solvers,
then flow-based ones. Throughout this section, we highlight how Flower differs from similar meth-
ods. We use the flow-matching notation with source X0 and target X1.

Among diffusion solvers, DPS (Chung et al., 2023) approximates pY|Xt=xt
by pY|X1=x̂1(xt), where

x̂1(xt) is the diffusion-based denoised version of xt, which leads to a gradient correction to the dif-
fusion dynamics. ΠGDM (Song et al., 2023) approximates p̃X1|Xt=xt

= N (x̂1(xt), ν
2
t I) for some

time-annealing νt and replaces the gradient correction of DPS with a pseudoinverse-based update.
Flower adopts the same approximation as ΠGDM, but the subsequent steps differ. DDS (Chung
et al., 2024) shares the same perspective as DPS but replaces the gradient with a proximal step mo-
tivated by a manifold-preserving gradient perspective. DiffPIR (Zhu et al., 2023) arrives at a very
similar structure through half-quadratic splitting, alternating proximal data updates with diffusion
denoising. Both DDS and DiffPIR are structurally close to Flower but, unlike Flower, they lack the
Bayesian justification that interprets the updates as posterior sampling. DAPS (Zhang et al., 2025)
also uses ancestral sampling similar to Flower, but instead of directly computing p̃X1|Xt=xt,Y=y, it
applies Langevin updates for its evaluation, which is more computationally demanding but extends
naturally to nonlinear inverse problems.

In the flow-matching domain, OT-ODE (Pokle et al., 2024) employs a ΠGDM-based approximation,
similar in spirit to that of Flower. However, instead of adopting our ancestral sampling scheme, they,
similar to the approach of ΠGDM, approximate the score of the conditional distribution p̃Y|Xt=xt

in order to construct the new velocity field. Therefore, while our method, Flower, relies on the same
approximation for p̃X1|Xt=xt

, our methods act in different ways. Flow-Priors (Zhang et al., 2024)
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tackle inverse problems by reformulating the MAP objective as a sequence of time-dependent MAP
subproblems with closed-form evaluations by taking advantage of the velocity network. However,
unlike Flower, their approach relies on the computation of Tr∇vθ

t , which is costly. D-Flow (Ben-
Hamu et al., 2024) adopts an implicit regularization strategy, replacing the data-fidelity objective
x 7→ ∥Hx − y∥2 with a latent loss z 7→ ∥H(f(1, z)) − y∥2, where f is the solution of the flow
ODE. The latent loss is non-convex with an implicit regularization effect that prevents convergence
to trivial solutions. The optimization is performed by back-propagation through ODE solutions,
which is more computationally demanding compared to the steps of Flower. PnP-Flow (Martin
et al., 2025) introduces a PnP framework that employs the velocity network as a denoiser. Its update
steps are similar to Flower, but we replace their gradient update with a proximal operation, which
leads to improved reconstruction quality. Moreover, Flower offers a Bayesian justification of the
process while PnP-Flow is purely plug-and-play.

5 NUMERICAL RESULTS

Here, we benchmark Flower against state-of-the-art flow-based inverse solvers across a range of lin-
ear inverse problems. In Appendix 8.4.1, we validate the Bayesian interpretation of Flower through
a toy experiment with Gaussian mixtures, where ground-truth posterior samples are computable.
We also present further numerical results for Fourier sampling and non-isotropic Gaussian noise in
Appendix 8.5.7.

We implement Flower as described in Algorithm 1 of the Appendix. As a practical note, the com-
putation Σtb for any b ∈ Rd requires inversion (ν−2

t I + σ−2
n H⊤H)−1b. Wherever this inversion

is required, we instead solve the corresponding linear system (ν−2
t I+ σ−2

n H⊤H)z = b using con-
jugate gradients (CG) with a maximum of 50 iterations and an ℓ2-residual tolerance of 10−5 and
return z as the solution of the operation. We found the CG implementation sufficiently efficient in
practice due to the positive-definite structure of ν−2

t I+ σ−2
n H⊤H.

5.1 BENCHMARK EXPERIMENTS

The goal of this section is to benchmark our method against other flow-matching-based solvers for
inverse problems. For fair comparisons, we adopt the benchmark introduced by Martin et al. (2025),
which also includes state-of-the-art PnP and diffusion models. We describe the datasets and experi-
mental setup for completeness, present quantitative results in Tables 1 and 2, and provide qualitative
examples in Figure 2. Finally, we discuss the key observations, highlighting the performance of
Flower and its empirical considerations.

We use two datasets for our numerical comparisons. First, we use (128× 128) human-face images
from Yang et al. (2015), denoted by CelebA. Second, we use resized (256 × 256) cat images from
Choi et al. (2020), denoted by AFHQ-Cat. We normalize all images to the range [−1, 1]. We train
on the full training sets of both datasets. We tune the hyperparameters of different methods using a
validation set. For CelebA, we use 32 images from the dataset’s validation split. AFHQ-Cat has no
validation split, so following Martin et al. (2025), we construct one by selecting 32 images from the
test set and removing them from that set. For reporting the metrics, we use 100 test images from each
dataset, a limit imposed by the computational cost of baseline methods (D-Flow and Flow Priors).
For faster methods (including Flower), we also report metrics on larger datasets consisting of 1000
images for CelebA and 400 for AFHQ, which are presented in Appendix 8.5.6. These extended
results show the same performance trends as the 100-image evaluations presented in this section.

We compare Flower against flow-matching solvers OT-ODE (Pokle et al., 2024), D-Flow (Ben-
Hamu et al., 2024), Flow-Priors (Zhang et al., 2024), and PnP-Flow (Martin et al., 2025), as well as
two other baselines: PnP-GS (Hurault et al., 2022b), a state-of-the-art plug-and-play method, and
DiffPIR Zhu et al. (2023), a diffusion-based inverse solver. All models (except DiffPIR) use the same
U-Net backbone (Ronneberger et al., 2015) trained with Mini-Batch OT Flow Matching (Tong et al.,
2024) and a Gaussian latent prior. Pre-trained weights for the flow models and PnP-GS are taken
from Martin et al. (2025), trained with learning rate 10−4: on CelebA for 200 epochs (batch size
128) and on AFHQ-Cat for 400 epochs (batch size 64). For Flower, we additionally train a variant
without latent–target coupling (Flower-IND) using the same hyperparameters, which corresponds to
our theoretical setting. While Flower-IND achieves higher performance (see Appendix 8.5.2), we
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primarily report Flower-OT for consistency with other flow-matching baselines. Training DiffPIR
with this backbone proved ineffective due to limited capacity, so following Martin et al. (2025),
we adopt a pretrained model Choi et al. (2021) from the DeepInv library (Tachella et al., 2023),
originally trained on FFHQ (Karras et al., 2019). This introduces some mismatch but provides the
fairest diffusion-based baseline. Note that we use the latest checkpoints from Martin et al. (2025),
but our averaging strategy differs from theirs. In Martin et al. (2025), results are reported by grouping
four images into one batch and then averaging across 25 such batches. In contrast, we recomputed
the results using 100 independent averages over the images themselves. Consequently, our reported
numbers differ from those in Martin et al. (2025).

We evaluate performance on five restoration tasks: (i) denoising with Gaussian noise with σn = 0.2;
(ii) deblurring with a 61× 61 Gaussian kernel (σb = 1.0 for CelebA, σb = 3.0 for AFHQ-Cat) and
additive noise σn = 0.05; (iii) super-resolution (2× downsampling for CelebA and 4× for AFHQ-
Cat, with σn = 0.05); (iv) random inpainting with 70% of pixels removed (σn = 0.01); and (v) box
inpainting with a centered 40× 40 mask for CelebA and 80× 80 mask for AFHQ-Cat (σn = 0.05).
To report quantitative results, we use peak signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM), and learned perceptual image patch similarity (LPIPS). Note that for PSNR and
SSIM, higher values indicate better performance, while for LPIPS, lower values are better.

To ensure fair comparisons, we adopt the optimal hyperparameters reported in Martin et al. (2025)
for each method, obtained via grid search on the validation set to maximize PSNR. For PnP-Flow,
we report two variants: PnP-Flow1 and PnP-Flow5, which apply one and five evaluations of the
velocity network per denoising step, respectively. For Flower, we follow the same procedure, re-
porting in Tables 1 and 2 either the output of a single evaluation (Flower1-OT) or the average of five
evaluations (Flower5-OT). A key property of Flower is that, apart from the number N of iterations
and the knowledge of the noise level σn, it uses the same hyperparameters across different inverse
problems, unlike other flow models. In particular, aside from N , the only hyperparameter of Flower
is γ, which controls the uncertainty of the destination refinement. Across all setups, γ = 0 yields
higher reconstruction quality. As discussed in Appendix 8.5.3, the choice γ = 1 produces sam-
ples that appear realistic but requires the averaging of multiple runs to achieve competitive PSNR,
whereas γ = 0 attains better quality with fewer averages. This observation is consistent with our toy
experiments, where γ = 0 encouraged sampling from higher-probability regions. For N , we always
match the number of steps used by our main competitor, PnP-Flow. We provide further ablation
studies on the effect of the number of evaluations for the averaging and different time discretiza-
tions within Flower in Appendix 8.5.4 and 8.5.5, respectively. The full hyperparameter details are
reported in Appendix 8.5.8.

Key Observations. On CelebA (Table 1), Flower achieves the best or near-best results across all
tasks, with clear gains in deblurring and box inpainting. The five-step averaging further improves the
results. On AFHQ-Cat (Table 2), Flower remains highly competitive and outperforms baselines in
deblurring, box inpainting, and random inpainting, while PnP-GS is strongest in denoising. In these
tables, bold numbers indicate the best results among single-average results of methods. Underlined
numbers indicate the second best. Blue numbers highlight the overall best across all methods. We
illustrate in Figure 2 representative reconstructions across denoising, deblurring, super-resolution,
and inpainting tasks. Compared to OT-ODE, D-Flow, and Flow-Priors, Flower consistently pro-
duces fewer artifacts, while also avoiding the over-smoothing often observed in PnP-Flow. These
visual trends align with the quantitative results and highlight the robustness of Flower across diverse
degradations. In Figure 3, we illustrate the solution path of Flower for the box inpainting task shown
in Figure 2. As expected, Step 1 produces flow-based denoised images, while Step 2 enforces con-
sistency with the measurements. In this specific box-inpainting setup, Step 2 primarily aligns the
region outside the box with the measurements and preserves the result of Step 1 inside the box.
Step 3 then mixes the refined destination with fresh source noise; as t increases, the noise decreases
and the reconstruction emerges. The injected noise is essential to prevent the velocity network from
getting stuck at the previous iterate and to allow it to predict improved destinations. As shown in
Table 3 of Appendix 8.5.1, Flower has a runtime that is similar to PnP-Flow and OT-ODE, with
only a slight overhead relative to PnP-Flow due to the proximal-projection step replacing a simple
gradient update, while requiring the same minimal memory. In contrast, D-Flow and Flow-Priors
are substantially slower and more memory-intensive.
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Table 1: Results on 100 test images of the dataset CelebA.

Method
Denoising Deblurring Super-resolution Random inpainting Box inpainting

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Degraded 20.00 0.348 0.372 27.83 0.740 0.126 10.26 0.183 0.827 11.95 0.196 1.041 22.27 0.742 0.214
PnP-GS 32.64 0.910 0.035 34.03 0.924 0.041 31.31 0.892 0.064 29.22 0.875 0.070 - - -
DiffPIR 31.20 0.885 0.060 32.77 0.912 0.060 31.52 0.895 0.033 31.74 0.917 0.025 - - -
OT-ODE 30.54 0.859 0.032 33.01 0.921 0.029 31.46 0.907 0.025 28.68 0.871 0.051 29.40 0.920 0.038
D-Flow 26.04 0.607 0.092 31.25 0.854 0.038 30.47 0.843 0.026 33.67 0.943 0.015 30.70 0.899 0.026
Flow-Priors 29.34 0.768 0.134 31.54 0.858 0.056 28.35 0.713 0.102 32.88 0.871 0.019 30.07 0.858 0.048
PnP-Flow1 31.80 0.905 0.044 34.48 0.936 0.040 31.09 0.902 0.045 33.05 0.944 0.018 30.47 0.933 0.037
Flower1-OT (ours) 32.28 0.914 0.034 34.98 0.947 0.026 32.36 0.923 0.034 33.08 0.944 0.018 31.19 0.945 0.022

PnP-Flow5 32.30 0.911 0.056 34.80 0.940 0.047 31.49 0.906 0.056 33.98 0.953 0.022 31.09 0.940 0.043
Flower5-OT (ours) 33.14 0.926 0.038 35.67 0.954 0.032 33.09 0.932 0.040 33.95 0.953 0.020 31.87 0.952 0.023

Table 2: Results on 100 test images of the dataset AFHQ-Cat.

Method
Denoising Deblurring Super-resolution Random inpainting Box inpainting

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Degraded 20.00 0.314 0.509 23.94 0.517 0.444 11.70 0.208 0.873 13.36 0.223 1.081 21.80 0.740 0.198
PnP-GS 32.58 0.894 0.072 27.91 0.753 0.349 24.15 0.632 0.362 29.42 0.836 0.126 - - -
DiffPIR 30.58 0.835 0.189 27.56 0.728 0.342 23.65 0.624 0.402 31.70 0.881 0.062 - - -
OT-ODE 30.03 0.815 0.076 27.06 0.713 0.123 25.91 0.716 0.108 29.40 0.839 0.090 24.62 0.875 0.085
D-Flow 26.13 0.574 0.175 27.82 0.721 0.164 24.64 0.601 0.190 32.20 0.894 0.040 26.26 0.842 0.077
Flow-Priors 29.41 0.763 0.153 26.47 0.700 0.181 23.51 0.570 0.272 32.37 0.906 0.047 26.20 0.818 0.118
PnP-Flow1 31.18 0.863 0.135 27.87 0.760 0.304 26.94 0.763 0.171 33.00 0.918 0.037 26.00 0.897 0.103
Flower1-OT (ours) 31.69 0.879 0.102 28.64 0.775 0.255 26.23 0.741 0.272 32.97 0.918 0.040 26.19 0.915 0.063

PnP-Flow5 31.43 0.864 0.168 28.19 0.766 0.332 27.37 0.774 0.183 33.75 0.929 0.048 26.68 0.901 0.120
Flower5-OT (ours) 32.35 0.891 0.116 28.97 0.784 0.283 26.57 0.075 0.282 33.70 0.927 0.045 26.88 0.922 0.066

6 POTENTIAL EXTENSION TO NONLINEAR INVERSE PROBLEMS

Flower as it is can handle different linear forward operators. To extend it to nonlinear inverse
problems, Proposition 2 needs to be revisited. When the measurement operator H is linear, the
likelihood pY|X1=x1

= N (Hx1, σ
2
nI) is Gaussian, and, combined with the ΠGDM Gaussian prior

p̃X1|Xt=xt
= N (x̂1(xt), ν

2
t I), the approximate posterior remains Gaussian: p̃X1|Xt=xt,Y=y =

N (µt(xt,y),Σt). This yields the closed-form mean µt and covariance Σt in Proposition 2.

If the measurement model is nonlinear, i.e.,

pY|X1=x1
= N (h(x1), σ

2
nI) (21)

for some nonlinear function h : Rd → RM , then it still holds that

p̃X1|Xt=xt,Y=y(x1) ∝ exp
(
− 1

2σ2
n
∥y − h(x1)∥2 − 1

2ν2
t
∥x1 − x̂1(xt)∥2

)
, (22)

which is no longer Gaussian due to the nonlinearity of h. Nevertheless, sampling from this distri-
bution can be done using iterative sampling schemes, since the score (gradient of the log density) is
available in closed form:

∇x1 log p̃X1|Xt=xt,Y=y(x1) = σ−2
n Jh(x1)

⊤(y − h(x1))− ν−2
t

(
x1 − x̂1(xt)

)
, (23)

where Jh denotes the Jacobian of h. This score function could be used to generate samples of
p̃X1|Xt=xt,Y=y via schemes such as Langevin dynamics which provides a valid substitue for Step
2 of Flower, which enables the handling of nonlinear cases without requiring modifications to the
remaining steps.

7 CONCLUSION

We introduced Flower, a method that leverages pre-trained flow-matching models to solve linear
inverse problems through a simple three-step iterative procedure. By combining flow-consistent pre-
dictions, measurement-aware refinement, and time evolution, Flower provides a principled Bayesian
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Figure 2: Visual comparison for flow-matching inverse solvers.

Figure 3: Solution path of Flower for box inpainting.

interpretation while retaining the plug-and-play flexibility of existing approaches. Our analysis es-
tablished the conditions under which the method recovers approximate samples from the conditional
posterior. Our experiments demonstrated both validity on toy data and state-of-the-art performance
across diverse inverse problems.
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Ethics Statement. This work proposes a methodology for solving inverse problems in imaging us-
ing pre-trained generative models. Our method is designed as a general-purpose solver and does not
target specific sensitive domains. Our experiments are conducted exclusively on publicly available
datasets (CelebA and AFHQ-Cat) that are commonly used in the literature. No private or otherwise
sensitive data were collected or used. Our method has potential positive applications in areas such
as medical imaging, but, as with other generative techniques, should be applied responsibly to avoid
misuse in creating misleading content.

Reproducibility Statement. We aim to ensure that our work is fully reproducible. We provide
detailed descriptions of the algorithm (Section 3) and its pseudo-code (Algorithm 1), the theoret-
ical analysis (Appendix 8.2), and the experimental setup (Section 5 and Appendix 8.5), including
datasets, hyperparameters, training procedures, and evaluation metrics. All datasets are publicly
available and cited in the text, and our method relies on standard architectures and benchmarks,
allowing independent verification of our results. Our implementation will be released in a public
repository upon the publication of our paper.

Use of LLMs. The authors of this manuscript acknowledge the use of large language models
(LLM) for grammatical polishing and typographic corrections.
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8 APPENDIX

8.1 FLOWER ALGORITHM

We outline the steps of Flower in Algorithm 1.

Algorithm 1 FLOWER: Flow Matching Solver for Inverse Problems
Require: Measurements y, forward operator H, noise level σn, pretrained velocity vθ

t , steps N ,
uncertainty flag γ ∈ {0, 1}

1: Set ∆t = 1/N ; sample x0 ∼ pX0 ▷ e.g., N (0, Id)
2: for k = 0 to N − 1 do
3: t = k∆t
4: (Step 1) Destination estimate: x̂1(xt) = xt + (1− t)vθ

t (xt)

5: νt =
1−t√

t2+(1−t)2
, Fy(x) =

1
2σ2

n
∥Hx− y∥22

6: (Step 2) Refinement mean: µt = proxν2
t Fy

(
x̂1(xt)

)
7: (Step 2) Optional uncertainty: Σt =

(
ν−2
t Id + σ−2

n H⊤H
)−1

8: sample ϵ1∼N (0, Id), ϵ2∼N (0, IM ), κt = Σt

(
ν−1
t ϵ1 + σ−1

n H⊤ϵ2
)

9: x̃1(xt,y) = µt + γ κt

10: (Step 3) Time progression: sample ϵ ∼ pX0 and set
11: xt+∆t = (1− t−∆t) ϵ+ (t+∆t) x̃1(xt,y)
12: end for
13: return x1

8.2 PROOFS

8.2.1 PROOF OF THEOREM 1

To establish this result, we first recall ancestral sampling. It is a procedure that enables us to draw
samples from a marginal distribution pZK

when the full joint distribution over a sequence of vari-
ables Z = (Z1,Z2, . . . ,ZK) is defined via a chain of conditional densities and when the marginal
distribution of ZK can be written as

pZK
(zK) =

∫
zK−1

· · ·
∫
z1

pZK |ZK−1=zK−1
(zt) · · · pZ2|Z1=z1

(z2) pZ1
(z1) dz1 · · · dzK−1. (24)

Ancestral sampling offers a practical way to generate samples from pZK
without direct evaluation

of this integral. The process samples sequentially from the distributions

z1 ∼ pZ1
, z2 ∼ pZ2|Z1=z1

, . . . , zK ∼ pZK |ZK−1=zK−1
. (25)

By following this sequence, we obtain a valid sample from the marginal zK ∼ pZK
.

Proof of Theorem 1. By using the marginal distributions and the general chain rule for joint proba-
bility, we obtain

pXt+∆t|Y=y(xt+∆t) =

∫
xt

pXt,Xt+∆t|Y=y(xt,xt+∆t) dxt.

=

∫
xt

pXt|Y=y(xt)pXt+∆t|Xt=xt,Y=y(xt+∆t) dxt. (26)

It then suffices to follow the ancestral sampling procedure with K = 2, Z1 = Xt|Y = y, and
Z2 = Xt+∆t|Y = y to complete the proof.

8.2.2 PROOF OF PROPOSITION 1

Proof. Lipman et al. (2023) have shown that the velocity vector field that minimizes the conditional
flow-matching loss is

v∗
t (x) = E[X1 −X0|Xt = xt], (27)
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which then yields

x̂1(xt) = E[X1|Xt = xt] = E[Xt + (1− t)(X1 −X0)|Xt = xt] = xt + (1− t)vθ
t (x). (28)

This is the desired result under the assumption that vθ
t (x) = v∗

t (x).

8.2.3 PROOF OF PROPOSITION 2

Proof. Using Bayes’ rule, we can write

pX1|Xt=xt,Y=y(x1) =
pY|X1=x1,Xt=xt

(y)pX1|Xt=xt
(x1)

pY|Xt=xt
(y)

=
pY|X1=x1

(y)pX1|Xt=xt
(x1)

pY|Xt=xt
(y)

,

(29)
where we used the conditional independence, given X1, of Xt and the measurement Y. We assumed
that pX1|Xt=xt

is approximated with p̃X1|Xt=xt
= N (x̂1(xt), ν

2
t Id), and we have pY|X1=x1

=

N (Hx1, σ
2
nI) by construction. Put together, we obtain the approximate density

p̃X1|Xt=xt,Y=y(x1) =
pY|X1=x1

(y)p̃X1|Xt=xt
(x1)

pY|Xt=xt
(y)

. (30)

Taking the logarithm of equation 30, −2 log
(
p̃X1|Xt=xt,Y=y(x1)

)
is given by

(y −Hx1)
⊤σ−2

n (y −Hx1) + (x1 − x̂1(xt))
⊤ν−2

t (x1 − x̂1(xt)) + C (31)

=− 2x⊤
1

(
ν−2
t x̂1(xt) + σ−2

n H⊤y
)
+ x⊤

1

(
ν−2
t I+ σ−2

n H⊤H
)
x1 + C ′ (32)

=− 2x⊤
1

(
ν−2
t x̂1(xt) + σ−2

n H⊤y
)
+ x⊤

1 Σ
−1
t x1 + C ′, (33)

where C,C ′ are independent of x1 and considered constants and Σt =
(
ν−2
t Id + σ−2

n H⊤H
)−1

,
which is well-defined because ν−2

t Id + σ−2
n H⊤H is positive-definite. Completing the square with

a term independent of x1, we get

−2 log
(
p̃X1|Xt=xt,Y=y(x1)

)
= (x1 − µt)

⊤Σ−1
t (x1 − µt) + C ′′, (34)

where µt = Σt

(
ν−2
t x̂1(xt) + σ−2

n H⊤y
)

andC ′′ is again a constant independent of x1. This yields

p̃X1|Xt=xt,Y=y(x1) = e−C′′/2 exp

(
−1

2
(x1 − µt)

⊤Σ−1
t (x1 − µt)

)
. (35)

As p̃X1|Xt=xt,Y=y is a probability density function, e−C′′/2 corresponds to its normalization factor,
which therefore proves that p̃X1|Xt=xt,Y=y(x1) = N (x1;µt,Σt).

8.2.4 PROOF OF PROPOSITION 3

Proof. By using the marginal distributions, the general chain rule for joint probability, and indepen-
dence, we obtain the expression of pXt+∆t|Xt=xt,Y=y(xt+∆t) as∫

Rd

pX1|Xt=xt,Y=y(x1)pXt+∆t|X1=x1,Xt=xt,Y=y(xt+∆t) dx1 (36)

=

∫
Rd

pX1|Xt=xt,Y=y(x1)pXt+∆t|X1=x1,Xt=xt
(xt+∆t) dx1 (37)

=

∫
Rd

pX1|Xt=xt,Y=y(x1)N
(
xt+∆t; (t+∆t)x1, (1− t−∆t)2Id

)
dx1, (38)

where we used the fact that, conditioned on X1 = x1, Xt+∆t = (1 − t − ∆t)X0 + (t +
∆t)x1 ∼ N

(
(t+∆t)x1, (1− t−∆t)2Id

)
. By inserting the expression of the approximation

p̃X1|Xt=xt,Y=y(x1), the approximate density p̃Xt+∆t|Xt=xt,Y=y(xt+∆t) is given by∫
Rd

N (x1;µt,Σt)N
(
xt+∆t; (t+∆t)x1, (1− t−∆t)

2
Id

)
dx1 (39)

=

∫
Rd

N (x1;µt,Σt)N
(
xt+∆t − (t+∆t)x1;0, (1− t−∆t)

2
Id

)
dx1. (40)
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This integral can be rewritten as a convolution of two Gaussian distributions, which also yields a
Gaussian distribution. Explicitly, we have that∫

Rd

N (x1;µt,Σt)N
(
xt+∆t − (t+∆t)x1;0, (1− t−∆t)

2
Id

)
dx1 (41)

=

∫
Rd

N
(

z

t+∆t
;µt,Σt

)
N

(
xt+∆t − z;0, (1− t−∆t)

2
Id

) dz

(t+∆t)d
(42)

=

∫
Rd

N
(
z; (t+∆t)µt, (t+∆t)2Σt

)
N

(
xt+∆t − z;0, (1− t−∆t)

2
Id

)
dz. (43)

Using the Gaussian convolution identity∫
Rd

N (z;µ1,Σ1)N (x− z;µ2,Σ2) dz = N (x;µ1 + µ2,Σ1 +Σ2), (44)

the result simplifies to

p̃Xt+∆t|Xt=xt,Y=y(xt+∆t) = N
(
xt+∆t; (t+∆t)µt, (t+∆t)2Σt + (1− t−∆t)2Id

)
, (45)

which completes the proof.

8.2.5 SAMPLING FROM THE NON-ISOTROPIC GAUSSIAN

We want to show that
κt = Σt

(
ν−1
t ϵ1 + σ−1

n H⊤ϵ2
)

(46)

has distribution N (0,Σt), where ϵ1 ∼ N (0, Id) and ϵ2 ∼ N (0, IM ) are independent, and

Σt =
(
ν−2
t Id + σ−2

n H⊤H
)−1

. (47)

Observe that κt is a Gaussian random vector because it is a linear transform of the independent
Gaussians ϵ1 and ϵ2. Moreover, since ϵ1 and ϵ2 are zero-mean, we have that E[κt] = 0. Next, we
compute the covariance matrix of κt as

Cov(κt) = Σt Cov
(
ν−1
t ϵ1 + σ−1

n H⊤ϵ2
)
Σt. (48)

By independence of ϵ1 and ϵ2, we obtain that

Cov
(
ν−1
t ϵ1 + σ−1

n H⊤ϵ2
)
= ν−2

t Id + σ−2
n H⊤H, (49)

which implies that
Cov(κt) = Σt

(
ν−2
t Id + σ−2

n H⊤H
)
Σt. (50)

But, by definition, Σt =
(
ν−2
t Id + σ−2

n H⊤H
)−1

, which leads to the desired result, as

Cov(κt) = Σt

(
ν−2
t Id + σ−2

n H⊤H
)
Σt = Σt. (51)

8.3 EXTENSION TO MORE GENERAL NOISE TYPES

Throughout this manuscript, isotropic Gaussian noise n ∼ N (0, σ2
nI) was considered. Our frame-

work remains valid in the more general setting n ∼ N (0,Rn), where Rn is a symmetric positive
definite M ×M covariance matrix, up to the modification of some formulas detailed below.

The results of Proposition 2 become

µt(xt,y) =
(
ν−2
t Id +H⊤R−1

n H
)−1 (

ν−2
t x̂1(xt) +H⊤R−1

n y
)
, (52)

Σt =
(
ν−2
t Id +H⊤R−1

n H
)−1

, (53)

since the measurement operation with general noise type implies that pY|X1=x1
= N (Hx1,Rn).

Next, sampling from N (0,Σt) is achieved with a method similar to the one of Appendix 8.2.5, with
the updated formula

κt = Σt

(
ν−1
t ϵ1 +H⊤R

− 1
2

n ϵ2

)
. (54)
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Figure 4: Temporal evolution of 2D Flower and comparison with true posterior for noise variance
σn = 0.25.

This formula uses the standard definition of the square root of a symmetric positive-definite matrix
A. If A = PDP⊤ is its eigenvalue decomposition, then A

1
2 = PD

1
2P⊤, where D

1
2 is the diagonal

matrix whose entries are the square roots of the nonnegative eigenvalues of A.

As a result, in the measurement-aware destination refinement step of Flower described in Section 3,
equation 12 now computes proxν2

t Fy
with

Fy(x) =
1

2
(y −Hx)⊤R−1

n (y −Hx). (55)

In the same step, the matrix Σt is redefined to be as in equation 53.

In most imaging models, the noise is effectively isotropic. Moreover, if we assume that Rn is
diagonal, the resulting expressions simplify and become straightforward to compute.

8.4 NUMERICAL RESULTS EXTENSION

8.4.1 TOY EXPERIMENT

The goal of this experiment is to validate our proposed sampling perspective in a setting where
samples from the true posterior are available. To this end, we consider a Gaussian mixture model
(GMM) as the target distribution of the data X ∈ R2. The forward measurement model consists of
a single measurement vector h ∈ Rd (i.e., the forward operator is H = h⊤) corrupted by additive
white Gaussian noise n ∼ N (0, σ2

n), which results in y = h⊤x + n. In this setup, the posterior
distribution pX|Y=y is itself a GMM with known parameters, whose analytical expression is given
in equation 57. Geometrically, the noiseless measurement y = h⊤x defines a line in the two-
dimensional plane with normal vector h. Consequently, when sampling from the posterior pX|Y=y,
we expect the samples to concentrate on the portions of this line that intersect regions where the
prior distribution pX has high density.

We trained the unconditional flow-matching vector field using the source pX0
= N (0, I) and target

pX1
= pX, with further details provided below. We ran Flower with N = 1000 iterations, which

corresponds to the step size ∆t = 0.001. The results are shown in Figure 4, where we used h⊤ =
[1.5, 1.5], σn = 0.25, and the observation y = 1, and where we report the solution paths of Flower
with γ ∈ {0, 1} alongside true posterior samples. We observe, that when γ = 1 (the setting required
by our theory), Flower successfully recovers the samples at t = 1, which closely resemble the
true posterior. When γ = 0 (a configuration in which the uncertainty in the destination estimation
step is ignored), Flower fails to capture samples from the tails of the distribution. In Figure 5, we
present another example of Flower posterior sampling with h⊤ = [1.5,−1.5], σn = 0.75, and the
observation y = 1. Once again, we observe that Flower successfully generates samples that closely
match the true posterior for γ = 1. In contrast, for γ = 0, samples from the tails of the true posterior
are missing. In Figures 6 and 7, the solution path is illustrated across the successive steps of Flower
for γ = 0 and γ = 1, respectively, which allows us to visualize the dynamics of each step directly.
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Target Prior. The target distribution of our data X ∈ R2 is a GMM with uniform mixtures given
explicitly by

pX =
1

K

K∑
k=1

N (µk,Σ) (56)

for some K ∈ N, µk ∈ R2, and Σ ∈ S2++. Specifically, we use K = 3 with µ1 =
(−0.25,−0.25),µ2 = (−0.25, 0.25),µ3 = (0.25,−0.25), and covariance matrix Σ = 0.252I2.

Target Posterior. The advantage of this setup is that the posterior distribution pX|Y=y can be
computed exactly using Bayes’ rule. It is given by

pX|Y=y =

K∑
k=1

wkN (µk,post,Σpost) (57)

where, for all k = 1, . . . ,K, wk ≥ 0 are some weights and

µk,post =
(
Σ−1 + σ−2

n hh⊤)−1 (
σ−2
n hy +Σ−1µk

)
, (58)

Σpost =
(
Σ−1 + σ−2

n hh⊤)−1
. (59)

Training Details. The underlying unconditional velocity network is a fully connected network
that takes as input a 2D vector and a scalar time, concatenated into a 3D input. It consists of two
hidden layers of size 256 with SiLU activations, followed by a final linear layer that outputs a 2D
vector. For training, we use a batch size of 2048 with 20000 training steps and a learning rate of
10−3.
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Figure 5: Temporal evolution of 2D Flower and comparison with true posterior for noise variance
σn = 0.75.

Figure 6: The three steps of 2D Flower with temporal evolution for γ = 0.

Figure 7: The three steps of 2D Flower with temporal evolution for γ = 1.
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8.5 BENCHMARK EXPERIMENTS

8.5.1 COMPUTATIONAL EFFICIENCY

We report in Table 3 the computational time and memory usage for several methods. Each entry
corresponds to the average runtime for the deblurring inverse problem, averaged over 10 CelebA
test images of size 128×128. All experiments were conducted on a Tesla V100-SXM2-32GB GPU.

Table 3: Computation times and memory usage for various methods.
Method OT-ODE D-Flow Flow Priors PnP-Flow1 Flower1

Time (s) 6.549 142.18 63.771 3.020 5.622
Memory (GB) 1.183 11.125 3.807 0.216 0.217

8.5.2 EFFECT OF SOURCE-TARGET COUPLING

Our goal in this section is to benchmark the effect of source–target coupling in the training of the
underlying (unconditional) velocity network. To this end, we consider two variants of coupling: one
based on mini-batch optimal transport (OT) coupling and the other on independent (IND) coupling.
For each variant, we report two settings: a single evaluation of Flower; and average over five eval-
uations. This results in four cases, summarized in Table 4, where we provide results for all inverse
problems discussed in the main text, evaluated on 100 test images from the CelebA dataset. For this
table, we fix γ = 0 and N = 100.

Table 4: Effect of source-target coupling of the underlying velocity network of Flower on different
inverse problems on 100 test images of the dataset CelebA.

Method
Denoising Deblurring Super-resolution Random inpainting Box inpainting

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Degraded 20.00 0.348 0.372 27.83 0.740 0.126 10.26 0.183 0.827 11.95 0.196 1.041 22.27 0.742 0.214
Flower1-OT (ours) 32.28 0.914 0.034 34.98 0.947 0.026 32.36 0.923 0.034 33.08 0.944 0.018 31.19 0.945 0.022
Flower5-OT (ours) 33.14 0.926 0.038 35.67 0.954 0.032 33.09 0.932 0.040 33.95 0.953 0.020 31.87 0.952 0.023
Flower1-IND (ours) 32.60 0.918 0.032 35.22 0.950 0.026 32.65 0.927 0.034 33.23 0.947 0.017 31.90 0.950 0.021
Flower5-IND (ours) 33.48 0.930 0.037 35.90 0.957 0.031 33.41 0.935 0.039 34.24 0.955 0.020 32.78 0.958 0.022

We observe that independent coupling improves the results, which is consistent with our theoretical
requirements. Nevertheless, the OT-based variant remains highly competitive, as also illustrated in
the main paper. For visual comparison, in Figure 8, we show an example from the deblurring task
on an image from the CelebA dataset.

8.5.3 EFFECT OF γ

The hyperparameter γ ∈ {0, 1} in Flower controls whether the uncertainty of the refinement step
(Step 2) is taken into account. While γ = 1 is required for a Bayesian interpretation of our method,
in practice we find that γ = 0 yields more favorable image-reconstruction metrics. This observation
is consistent with the toy experiments, where γ = 0 led Flower to generate samples concentrated in
higher-probability regions, while failing to capture the tails of the posterior.

To illustrate this effect, we provide a visual example of the deblurring task on a CelebA image, using
the velocity network trained with mini-batch OT coupling for consistency with the numerical results
reported in this paper. A single reconstruction with γ = 1 achieves a PSNR of only 30.84, compared
to 33.01 for a single reconstruction with γ = 0 (Figure 8). Moreover, with γ = 1, it is necessary to
average over 100 reconstructions to reach a PSNR comparable to that of γ = 0, where we average
only over 5 reconstructions (Figure 8).

To further illustrate this behavior, we show in Figures 6 and 7 the solution paths of the three Flower
steps over time for γ = 0 and γ = 1, respectively. We observe that γ = 1 leads to a noisier refine-
ment step. Consequently, we adopt γ = 0 for all inverse problems, as this provides a more stable
refinement step and consistently yields a better quality of reconstruction despite fewer averages.
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Figure 8: Effect of the source-target coupling for the underlying flow (γ = 0).

Figure 9: Deblurring results with γ = 1, obtained by averaging over 1, 5, 50, 100, and 200 runs of
Flower.

Figure 10: Solution path of Flower for deblurring with γ = 0.

Figure 11: Solution path of Flower for deblurring with γ = 1.
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8.5.4 EFFECT OF THE NUMBER OF EVALUATIONS FOR AVERAGING

In Tables 1 and 2 of the main paper, we reported results for Flower-1 and Flower-5, which correspond
to using a single evaluation and the average over five evaluations of Flower, respectively. Here, we
ablate the effect of this averaging on both the reconstruction metrics and the computational cost.
We focus on the deblurring and random inpainting tasks described in Section 5.1 for the CelebA
dataset. Specifically, we vary the number of Flower averaging NAvg from 1 to 10 and report the
average PSNR, SSIM, LPIPS, and runtime (in seconds) over 100 CelebA images, measured on a
Tesla V100-SXM2-32GB GPU. For the hyperparameters of Flower, we use γ = 0, N = 100.

As shown in Figure 12, PSNR and SSIM improve with a steeper gain for smaller numbers of averag-
ings (up to around five) and tend to saturate afterward. LPIPS also increases with averaging, which is
undesirable since higher LPIPS indicates worse perceptual quality. The runtime scales linearly with
the number of averagings, as expected. Finally, in Figure 13, we present a visual comparison that
confirms these trends: averaged reconstructions (e.g., using 5 or 10 evaluations) appear smoother
than the single-evaluation result, while the difference between averaging over 5 and 10 evaluations
is marginal.

Figure 12: Effect of averaging over different numbers of evaluations of Flower on quantitative
metrics and computational time.

Figure 13: Visual comparison of the effect of averaging over different numbers of evaluations of
Flower.
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8.5.5 EFFECT OF ADAPTIVE TIME STEPS

Our theoretical framework does not tie Flower to a particular time discretization. This raises the
question of whether non-uniform time steps could improve practical performance. To explore this,
we compare the uniform (Euler) time discretization with several alternatives. Specifically, we con-
sider a power-law schedule tk =

(
k
N

)α
, where α = 1 recovers the uniform grid, α > 1 concentrates

steps near the start of the trajectory, and α < 1 allocates more steps near the end. In our experiments,
we use α = 0.5 and α = 2. We further evaluate a cosine schedule tk = 1−cos(πk/N)

2 , which yields
finer resolution at both the beginning and end of the trajectory. For clarity, Figure 14 visualizes
these time grids for N = 100. We vary the total number of steps N ∈ {10, 20, 50, 100} and validate
these schedules on two restoration tasks (deblurring and random inpainting) shown in Figures 15
and 16. For the hyperparameters of Flower, we use γ = 0, and NAvg = 1. Our results indicate
that the α = 0.5 schedule achieves noticeably better reconstruction quality with fewer total steps
N , while α = 2 tends to underperform relative to the uniform case. The cosine schedule sometimes
provides improvements at low step counts. For larger numbers of steps, all schedules converge to
similar performance. Our findings highlight the potential of adaptive time discretizations (with more
resolution toward the end of trajectory) to improve quality–compute trade-offs.

Figure 14: Time tk vs step k for different time discretizations.

8.5.6 INCREASING THE SIZE OF TEST SETS

In the main paper, we evaluated all tasks for each method using 100 CelebA images and 100 AFHQ-
Cat images. We chose a test size of 100 because methods such as Flow Priors and D-Flow require
backpropagation during inference and are therefore slow. In this appendix, we increase the test
set to 1000 images for CelebA and 400 images for AFHQ-Cat in order to further validate Flower
compared to existing (efficient) flow-matching methods. The results, presented in Tables 5 and 6,
show the same trend as in the main paper as Flower achieves competitive reconstruction quality.

Table 5: Results on 1000 test images of the dataset CelebA.

Method
Denoising Deblurring Super-resolution Random inpainting Box inpainting

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Degraded 20.00 0.351 0.368 27.83 0.741 0.123 10.38 0.185 0.828 12.10 0.197 1.038 22.29 0.745 0.211
OT-ODE 30.53 0.857 0.032 33.06 0.920 0.029 31.54 0.905 0.024 28.74 0.870 0.052 29.65 0.921 0.035
PnP-Flow1 31.84 0.904 0.044 34.56 0.935 0.038 31.16 0.901 0.044 33.16 0.944 0.019 30.47 0.935 0.036
Flower1-OT (ours) 32.31 0.913 0.033 35.03 0.946 0.026 32.45 0.922 0.034 33.19 0.944 0.017 31.22 0.946 0.021

Table 6: Results on 400 test images of the dataset AFHQ-Cat.

Method
Denoising Deblurring Super-resolution Random inpainting Box inpainting

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Degraded 20.00 0.315 0.517 24.03 0.516 0.452 11.88 0.217 0.881 13.55 0.231 1.071 21.80 0.741 0.203
OT-ODE 30.01 0.814 0.077 27.06 0.711 0.126 25.92 0.715 0.109 29.38 0.839 0.091 24.77 0.875 0.085
PnP-Flow1 31.17 0.862 0.136 27.94 0.759 0.306 26.96 0.762 0.170 33.01 0.918 0.037 26.46 0.897 0.102
Flower1-OT (ours) 31.66 0.878 0.104 28.63 0.773 0.255 26.24 0.740 0.273 32.98 0.918 0.040 26.68 0.915 0.062
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Figure 15: Deblurring example for uniform versus adaptive solvers.

Figure 16: Random inpainting example for uniform versus adaptive solvers.
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8.5.7 APPLICATION TO FURTHER INVERSE PROBLEMS

We aim to validate the generality of our framework by evaluating it on a wider range of inverse
problems.

Compressed Sensing Fourier Sampling. We choose a forward operator inspired by magnetic res-
onance imaging (MRI) reconstruction: the Fourier transform followed by a binary sampling mask.
We use two masks: (i) a Cartesian mask with a sampling ratio of 0.2188, and (ii) a radial mask with
a sampling ratio of 0.2990. The measurements are corrupted with additive white Gaussian noise of
standard deviation σn = 0.002. For our examples, we use two images from the AFHQ-Cat dataset.
For the hyperparameters of Flower, we use γ = 0, N = 100, and NAvg = 1. Since the images
are RGB, we apply the forward operator channel by channel. We summarize our results in Figure
17. In both cases, we observe that Flower successfully handles this inverse problem and produces
reconstructions that improve on the zero-filled baseline.

Figure 17: Reconstruction results for compressed sensing with Cartesian and radial masks.

Non-Isotropic Gaussian Noise. Here, we aim to verify the theoretical results from Appendix 8.3
for non-isotropic additive Gaussian noise using numerical experiments. For demonstration, we focus
on two tasks: image denoising and random inpainting using the same setup described in Section 5
for the CelebA images, except for the noise dynamics. Here, we add non-isotropic Gaussian noise
to the image by applying Gaussian noise with σn = 3 to the central box of size (64 × 64) of the
(128 × 128) image and σn = 1 outside this box. For the Flower hyperparameters, we use γ = 0,
N = 100, and NAvg = 1. We observe that, consistent with our theory, we are able to recover
good-quality reconstructions given a non-isotropic Gaussian noise.

Figure 18: Visual results for inverse problems with non-isotropic Gaussian noise.
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8.5.8 HYPERPARAMETERS FOR ALL METHODS

In Tables 7 and 8, we report the hyperparameters that we used for all methods. Most of the hyper-
parameters are adapted from Martin et al. (2025).

Table 7: Hyperparameters for all methods on the CelebA dataset.

Method Hyperparameters Denoising Deblurring Super-resolution Random inpainting Box inpainting

DiffPIR ζ (blending) 1.0 1.0 1.0 1.0 N/A
λ (regularization) 1.0 1000.0 100.0 1.0 N/A

PnP-GS γ (learning rate) - 2.0 2.0 1.0 N/A
α (inertia param.) 1.0 0.5 1.0 0.5 N/A
σf (factor for noise input) 1.0 1.8 3.0 1.0 N/A
niter (number of iter.) 1 35 20 23 N/A

OT-ODE t0 (initial time) 0.3 0.4 0.1 0.1 0.1
γ time-dependent time-dependent constant constant time-dependent

Flow-Priors λ (regularization) 100 1,000 10,000 10,000 10,000
η (learning rate) 0.01 0.01 0.1 0.01 0.01

D-Flow λ (regularization) 0.001 0.001 0.001 0.01 0.001
α (blending) 0.1 0.1 0.1 0.1 0.1
niter (number of iter.) 3 7 10 20 9

PnP-Flow1 α (learning-rate factor) 0.8 0.01 0.3 0.01 0.5
N (Number of time steps) 100 100 100 100 100
NAvg (Number of averagings) 1 1 1 1 1

PnP-Flow5 α (learning-rate factor) 0.8 0.01 0.3 0.01 0.5
N (Number of time steps) 100 100 100 100 100
NAvg (Number of averagings) 5 5 5 5 5

Flower1-OT γ (refinement uncertainty) 0 0 0 0 0
N (Number of time steps) 100 100 100 100 100
NAvg (Number of averagings) 1 1 1 1 1

Flower5-OT γ (refinement uncertainty) 0 0 0 0 0
N (Number of time steps) 100 100 100 100 100
NAvg (Number of averagings) 5 5 5 5 5

Table 8: Hyperparameters for all methods on the AFHQ-Cat dataset.

Method Denoising Deblurring Super-resolution Random inpainting Box inpainting

DiffPIR ζ (blending) 1.0 1.0 1.0 1.0 N/A
λ (regularization) 1.0 1000.0 100.0 1.0 N/A

PnP-GS γ (learning rate) - 2.0 2.0 1.0 N/A
α (inertia param.) 1.0 0.3 1.0 0.5 N/A
σf (factor for noise input) 1.0 1.8 5.0 1.0 N/A
niter (number of iter.) 1 60 50 23 N/A

OT-ODE t0 (initial time) 0.3 0.3 0.1 0.1 0.1
γ time-dependent time-dependent constant constant time-dependent

Flow-Priors λ (regularization) 100 1,000 10,000 10,000 10,000
η (learning rate) 0.01 0.01 0.1 0.01 0.01

D-Flow λ (regularization) 0.001 0.01 0.001 0.001 0.01
α (blending) 0.1 0.5 0.1 0.1 0.1
niter (number of iter.) 3 20 20 20 9

PnP-Flow1 α (learning-rate factor) 0.8 0.01 0.01 0.01 0.5
N (Number of time steps) 100 500 500 200 100
NAvg (Number of averagings) 1 1 1 1 1

PnP-Flow5 α (learning-rate factor) 0.8 0.01 0.01 0.01 0.5
N (Number of time steps) 100 500 500 200 100
NAvg (Number of averagings) 5 5 5 5 5

Flower1-OT γ (refinement uncertainty) 0 0 0 0 0
N (Number of time steps) 100 100 500 200 100
NAvg (Number of averagings) 1 1 1 1 1

Flower5-OT γ (refinement uncertainty) 0 0 0 0 0
N (Number of time steps) 100 100 500 200 100
NAvg (Number of averagings) 5 5 5 5 5
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