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Abstract

With the advent of large language models001
(LLMs), there has been growing interest in002
exploring their potential for medical applica-003
tions. This research aims to investigate the004
ability of LLMs, specifically ChatGPT, in the005
context of pharmacovigilance event extraction,006
of which the main goal is to identify and extract007
adverse events or potential therapeutic events008
from textual medical sources. We conduct ex-009
tensive experiments to assess the performance010
of ChatGPT in the pharmacovigilance event ex-011
traction task, employing various prompts and012
demonstration selection strategies. The find-013
ings demonstrate that while ChatGPT demon-014
strates reasonable performance with appropri-015
ate demonstration selection strategies, it still016
falls short compared to fully fine-tuned small017
models. Additionally, we explore the poten-018
tial of leveraging ChatGPT for data augmenta-019
tion. However, our investigation reveals that the020
inclusion of synthesized data into fine-tuning021
may lead to a decrease in performance, possibly022
attributed to noise in the ChatGPT-generated023
labels. To mitigate this, we explore differ-024
ent filtering strategies and find that, with the025
proper approach, more stable performance can026
be achieved, although constant improvement027
remains elusive.028

1 Introduction029

Pharmacovigilance stands as a pivotal discipline in030

healthcare that encompasses a range of processes:031

identifying, evaluating, understanding, and prevent-032

ing adverse effects and other medicine-related is-033

sues (World Health Organization, 2004). Within034

this domain, pharmacovigilance event extraction035

emerges as a crucial practice aimed at extracting036

structured medication-related event data from med-037

ical text sources, serving as valuable inputs for038

automatic drug safety signal detection. With the039

rapid expansion of electronic health records (EHR),040

medical case reports, and other textual resources,041

the need for efficient and accurate pharmacovig-042

ilance event extraction has become increasingly 043

pressing. 044

Studies have been conducted to extract 045

pharmacovigilance-related information from text 046

data. However, previous research mainly focused 047

on simple tasks such as entity extraction (Wun- 048

nava et al., 2017) or binary relation extraction (Gu- 049

rulingappa et al., 2012; El-allaly et al., 2021). Re- 050

cently, Sun et al. (2022) introduced a novel dataset 051

for pharmacovigilance event extraction, which in- 052

cludes hierarchical annotations of adverse events 053

and potential therapeutic events, capturing informa- 054

tion about the subject, treatment, and effect. Addi- 055

tionally, they investigate the performance of vari- 056

ous models, including sequence labelling and QA- 057

based approaches, for this task, providing a foun- 058

dation for further advancements in extracting struc- 059

tured event data for pharmacovigilance research. 060

The rise of large language models (LLMs), es- 061

pecially ChatGPT (OpenAI, 2022), has sparked 062

considerable interest in their potential applications 063

in the medical field (Agrawal et al., 2022; Kung 064

et al., 2023). In this study, our focus is on explor- 065

ing different ways to incorporate ChatGPT into the 066

pharmacovigilance event extraction task. Figure 067

1(a) presents an example of this task. 068

We explore various strategies for prompting and 069

demonstration selection to assess ChatGPT’s per- 070

formance in zero-shot and few-shot scenarios, com- 071

paring it with smaller fine-tuned models. Our find- 072

ings indicate that, with suitable demonstrations, 073

ChatGPT performs reasonably well but still falls 074

short of the performance achieved by fully fine- 075

tuned smaller models, as demonstrated in Figure 076

1(b). Furthermore, we delve into the utilization of 077

ChatGPT for data augmentation, employing it to 078

generate sentences structurally resembling demon- 079

stration samples (see Figure 1(c) for example). 080

However, simply combining these generated sam- 081

ples with the training set leads to an overall perfor- 082

mance decrease, possibly suggesting the sensitivity 083

of data quality for fine-tuning methods. To address 084
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(a) Example with human annotation.

(c) ChatGPT-synthesized case using the example in (a) for demonstration.

(b) Example with the prediction of ChatGPT (BM25).

Figure 1: Snippets from biomedical documents: a comparison of human annotations, ChatGPT predictions, and a
ChatGPT-synthesized case.

this issue, we implement a filtering strategy for the085

augmented data, which leads to a performance im-086

provement, bringing it closer to the levels achieved087

with the original training data but with reduced vari-088

ance. This shows enhanced stability when working089

with ample high-quality data.090

2 Prompt-based Learning with ChatGPT091

2.1 Zero-shot Prompting092

For zero-shot prompting, a manually designed in-093

struction is employed to query ChatGPT for an-094

swers. In this study, we devise four approaches to095

prompt the model: a) Schema: providing instruc-096

tions alongside enumeration of event types and ar-097

gument types; b) Explanation: providing instruc-098

tions with a detailed explanation of the schema;099

c) Code: formulating instructions and output for-100

mat using a combination of text descriptions and101

code snippets; d) Pipeline: querying the model in102

a pipeline manner, which first prompts for the main103

arguments and then follows up with type-related104

questions for each sub-argument. Details of the105

prompts are presented in Appendix F.106

2.2 Few-shot In-context Learning107

For few-shot in-context learning, several demon-108

strations are provided together with the instruction.109

The selection of different demonstration examples110

can yield varying results. We explore different111

strategies for choosing in-context examples based112

on a given test instance, including: a) Random:113

randomly selecting examples from the training set;114

b) SBERT: choosing examples based on the simi-115

larity of their dense representations to the test sen-116

tence. We utilize Sentence-BERT(Reimers and117

Gurevych, 2019) to obtain the sentence representa-118

tions; c) BM25: selecting examples based on the119

similarity of their lexical representations to the test120

sentence. We employ BM25 (Trotman et al., 2014)121

as the ranking function; d) TreeKernel: choosing122

examples based on the structural similarity to the 123

test sentence. We implement the tree kernel by 124

computing the Jaccard similarity of the subpaths 125

within the dependency trees of the sentences. 126

3 ChatGPT as Data Synthesizer 127

We explore the potential of leveraging ChatGPT for 128

data augmentation purposes. To achieve this, we 129

incorporate an example from the training set, along 130

with its annotated events, as input to ChatGPT. We 131

then prompt ChatGPT to generate a sentence that 132

exhibits a similar event structure to the given sen- 133

tence and extract the events from the generated 134

sentence. However, based on our initial study, we 135

observed that ChatGPT tends to miss specific men- 136

tions of drugs or excessively use certain drugs, such 137

as ‘ibuprofen’. We address this issue by restricting 138

the inclusion of drug names and their correspond- 139

ing effects sampled from the training data in gen- 140

erated sentences. Details of the prompt for data 141

synthesizing are shown in Appendix F. 142

Recognizing that directly incorporating gener- 143

ated samples into the training data can lead to per- 144

formance decline, possibly due to issues related to 145

data quality, we have introduced filtering strategies. 146

These include: a) Train Filter: Filtering the train- 147

ing set with sgold < mean(sgold), where sgold is the 148

average token probability given by the fine-tuned 149

model on the ground-truth event label sequence; 150

b) Augment Filter: Filtering augmented data with 151

z(sgold) < 0 or z(sgold) < z(spred) , where spred 152

is the average token probability for predicted event 153

label sequences. z(s) = (s − mean(sv))/std(sv), 154

and sv represents the values of s in the validation 155

set. The rationale behind this filter is to retain cases 156

with annotations that are more certain than the pre- 157

dictions and have an above-average annotation. 158

With these filtering rules, we compare the 159

model’s performance on several data settings, in- 160

cluding: training data (Tr.), training data combined 161
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with augmented data (Tr.+Aug.), filtered training162

data (Tr. Fil.), training data with filtered augmented163

data (Tr.+Aug. Fil.) and filtered training data with164

filtered augmented data (Tr. Fil.+Aug. Fil.).165

4 Experiments166

4.1 Experimental Settings167

Dataset We conducted experiments on the PHEE168

dataset (Sun et al., 2022), an English event ex-169

traction dataset sourced from publicly accessible170

medical reports, encompassing annotations for two171

event categories: adverse events and potential ther-172

apeutic events. The annotations follow a hierar-173

chical structure, with main arguments providing174

information on the subject, treatment, and effect,175

while sub-arguments offer more detailed informa-176

tion pertaining to the main arguments. However,177

during our analysis, we observed that certain argu-178

ment types showed low consistency. To address179

this issue, we performed automatic and manual re-180

visions on the subject.disorder, time_elapsed, and181

duration arguments. For further details, please re-182

fer to Appendix A.183

Baselines We compare ChatGPT’s performance184

with the best-performing Generative QA model185

proposed in (Sun et al., 2022) and two widely186

adopted seq-to-seq models: 1) UIE (Lu et al.,187

2022), a model that is specifically pre-trained on188

structured information extraction data; and 2) Flan-189

T5 (Chung et al., 2022), a model trained on a di-190

verse range of tasks using instructional prompts.191

For more information, see Appendix B.192

Evaluation We follow Sun et al. (2022) to eval-193

uate both exact matching F1 score (EM_F1) and194

token-level matching F1 score (Token_F1) for ar-195

gument extraction. During our preliminary experi-196

ments, we observed that ChatGPT struggled to gen-197

erate reasonable results for trigger extraction. Con-198

sidering that even humans find trigger identification199

challenging, and that it doesn’t significantly con-200

tribute to understanding pharmacovigilance events,201

we did not query ChatGPT for triggers, but we still202

ask ChatGPT to generate the event structure, en-203

abling the differentiation of multiple events. For204

the trigger extraction results obtained from finetun-205

ing models, please check Appendix D.206

We perform 5-fold cross-validation for fine-207

tuning and data augmentation experiments, while208

limiting ChatGPT-based zero-shot and few-shot209

learning to a single split due to cost-related rea-210

sons. For more details about the experimental setup,211

please refer to Appendix C.212

4.2 Results and Discussion 213

Main-arguments Sub-arguments

EM_F1 Token_F1 EM_F1 Token_F1

Schema 30.31 47.41 22.50 26.51
Code 25.94 40.42 25.67 29.70
Explanation 34.80 52.99 36.70 39.33
Pipeline 32.57 49.41 27.79 33.80

Table 1: Argument extraction results for ChatGPT zero-
shot prompting with different prompting strategies.

ChatGPT with Different Prompting Strategies 214

Table 1 presents the argument extraction results 215

for ChatGPT using different zero-shot prompting 216

strategies. Providing only instructions yields un- 217

satisfactory performance, but including a detailed 218

explanation of the event schema leads to notice- 219

able improvement, highlighting the importance of 220

comprehensive guidance. Further human evalua- 221

tion reveals that end-to-end generation tends to 222

miss arguments, whereas the pipeline approach 223

tends to generate numerous false positive cases. 224

It is surprising that the model performs poorly on 225

seemingly simple arguments such as ‘population’, 226

‘route’, and ‘age’. While providing explanations 227

improves the performance of some arguments (e.g., 228

‘route’ and ‘age’), all approaches still struggle with 229

‘population’ extraction. This difficulty may due to 230

the gap between the lexical meaning of the label 231

‘population’ and the semantic meaning of the ar- 232

gument. Additionally, while the pipeline method 233

has advantages in extracting certain argument types 234

(e.g., ‘gender’ and ‘frequency’), the inference time 235

is proportional to the number of argument types, 236

making it approximately 10 times longer than the 237

end-to-end methods. 238

Table 2 displays the few-shot argument ex- 239

traction results for ChatGPT using various in- 240

context selection strategies. Dense representation- 241

based demonstration retrieval with SBERT does 242

not demonstrate superiority in this task, possibly 243

due to limited domain knowledge captured by the 244

pre-trained sentence representation model. Incor- 245

porating structured information improves perfor- 246

mance, while the simplest lexical-based retrieval 247

strategy shows the most noticeable performance 248

gains. Upon examining the samples retrieved by 249

different example selection strategies, we observed 250

that SBERT and TreeKernel tend to retrieve struc- 251

turally similar sentences, while BM25 is more in- 252

clined to retrieve sentences containing matching 253

entities such as drugs (since entities usually serve 254

as keywords in a sentence). This observation sug- 255
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gests that the superior performance of BM25 in256

argument extraction can be attributed to the fact257

that this task is more sensitive to entities. When258

more examples with similar entities are covered,259

ChatGPT learns more effectively from them.260

Main-arguments Sub-arguments

EM_F1 Token_F1 EM_F1 Token_F1

random 58.31 72.74 60.32 63.74
SBERT 56.90 71.65 62.29 64.25
TreeKernel 60.54 73.68 63.36 64.69
BM25 60.39 76.15 67.35 68.67

Table 2: Argument extraction results for ChatGPT few-
shot prompting with different in-context demonstration
selection strategies (results for 5-shot are reported).

Finetuning Models vs. ChatGPT Table 3 il-261

lustrates the argument extraction results for differ-262

ent methods. The findings indicate that there is263

minimal variation among the fine-tuning methods.264

Specifically, the Flan-T5 model, despite not being265

explicitly pre-trained for the information extrac-266

tion task, demonstrates slightly better performance267

than the UIE model. In contrast, ChatGPT without268

demonstrations exhibits poor performance. How-269

ever, when demonstrations are provided, ChatGPT270

shows improved results, although there remains a271

noticeable gap compared to the fine-tuning meth-272

ods. For a detailed breakdown of the results for273

each argument type, refer to Appendix E.274

Main-arguments Sub-arguments

EM_F1 Token_F1 EM_F1 Token_F1

Fully supervised
Generative QA 68.85 81.63 77.33 78.83
UIE(Large) 69.46±.49 81.20±.40 77.12±1.3 78.83±1.4

Flan-T5(Large) 70.78±1.4 82.34±1.5 77.63±.1.6 79.52±1.3

Zero-Shot
ChatGPT(Exp.) 34.80 52.99 36.70 39.33

Few-Shot
ChatGPT(BM25) 60.39 76.15 67.35 68.67

Table 3: Argument extraction results for various meth-
ods. For fine-tuning methods, we report the mean±std

value of 5-fold cross-validation. For ChatGPT(BM25),
we provide the results for 5-shot. We obtain Generative
QA results directly from the original paper.

Data Augmentation with ChatGPT Table 4275

presents the performance of Flan-T5 when augmen-276

tation and various filtering strategies are employed.277

It can be seen that simply extending the training278

data with ChatGPT-synthesized cases could lead to279

an obvious performance drop. In contrast, with the280

filtered training set, although retained only 65% of281

training data, surpasses results obtained from over282

5,000 augmented instances, which may indicate the 283

critical role of data quality in pharmacovigilance 284

event extraction. Furthermore, training with filtered 285

augmented data effectively restores performance to 286

the original level. In particular, training with both 287

filtered training data and filtered augmented data 288

displays only slight deviations from training with 289

the original data, yet it notably reduces variance. 290

The p-values for the variance difference signifi- 291

cance, assessed through the F-test, are 0.29 and 292

0.39 for EM_F1 and Token_F1, respectively. 293

EM_F1 Token_F1 Avg. Cases

Tr. 74.45±1.46 81.30±1.27 2897
Tr.+Aug. 73.07±0.92 79.93±1.51 5446
Tr. Fil. 73.92±.1.28 80.71±1.60 1873
Tr.+Aug. Fil. 74.26±.1.27 80.98±2.06 3702
Tr. Fil.+Aug. Fil. 74.19±1.09 81.05±1.09 2678

Table 4: Argument (including main and sub-arguments)
extraction results for Flan-T5 (Large) with augmentation
and filtering strategies. The Avg. Cases column displays
the average number of training cases over 5 folds.

During our manual examination, we identified a 294

correlation between the model’s predicted proba- 295

bility of generated label sequences (sgold) and the 296

label quality. Those cases with a lower sgold often 297

exhibited lower quality, frequently missing impor- 298

tant arguments. Cases with higher sgold demon- 299

strated higher quality, but occasionally were still 300

not more accurate than the model’s prediction. To 301

address this, we introduced a metric using the z- 302

scores of sgold and spred to compare the quality of 303

annotations and model predictions. We retained 304

cases with better annotation quality compared 305

to predictions. Consequently, we observe that 306

the performance of certain argument types, such 307

as ‘time_elapsed’ and ‘duration’, which sharply 308

decreased following augmentation, evidently re- 309

bounded after training with filtered data. 310

5 Conclusion 311

This paper provides empirical practice in various 312

approaches to leveraging ChatGPT for the pharma- 313

covigilance event extraction task. Overall, Chat- 314

GPT exhibits impressive few-shot learning capabil- 315

ities in pharmacovigilance event extraction. Never- 316

theless, considering the sensitivity of the medical 317

field, fine-tuned models retain a clear edge in the 318

presence of abundant data. Properly filtered syn- 319

thetic data could enhance stability, but the quest for 320

more effective methods to augment and enhance 321

overall performance remains for future exploration. 322
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Limitations323

In our preliminary study, we encountered limita-324

tions in exploring alternative open-source LLMs,325

such as LLaMA 30B (Touvron et al., 2023) and326

Flan-T5 XXL (Chung et al., 2022), for zero-327

shot/few-shot prompting. These models exhib-328

ited significant differences in generation quality329

compared to ChatGPT, and their slow inference330

speeds hindered a comprehensive evaluation. De-331

spite these limitations, we highlight the importance332

of further research to investigate the potential of333

leveraging different open-source LLMs.334

Secondly, our investigation focused solely on un-335

supervised methods for in-context demonstration336

selection. Future research could explore the incor-337

poration of annotations in the selection process,338

which may yield valuable insights and improve339

the performance of ChatGPT in pharmacovigilance340

event extraction.341

Furthermore, it is worth noting that the use of342

ChatGPT-synthesized data may alter the data dis-343

tribution, potentially introducing incorrect knowl-344

edge about adverse events. While the impact of this345

approach on event extraction may be limited be-346

cause the extraction results are constrained by the347

given sentence, caution is needed when applying348

the methods described in the text to other appli-349

cation domains, such as ADE generation, due to350

potential risks.351
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A Data Annotation Revision Details420

In the original dataset, we observed particularly421

low levels of annotation inconsistency for ‘sub-422

ject.disorder’, ‘time_elapsed’, and ‘duration’ ar-423

guments, as illustrated by the examples provided424

in Table A1. To address this, we conducted an425

automatic revision for the ‘subject.disorder’ an-426

notation and hired annotators to manually cor-427

rect the ‘time_elapsed’ and ‘duration’ annota-428

tions. For ‘subject.disorder’ correction, if a ‘treat-429

ment.disorder’ was present in the ‘subject’ argu-430

ment but not annotated as ‘subject.disorder’, we431

added it to the ‘subject.disorder’ annotation. For432

‘time_elapsed’ and ‘duration’ correction, detailed433

guidelines were provided to the annotators to en-434

sure consistent annotations. We employed three435

annotators and informed them about the purpose436

of the data. The annotators are all PhD students437

who volunteered for this task, receiving compensa-438

tion through the university’s payment platform for439

their annotation work. Two of the annotators have a440

background in computer science, and one annotator441

has a medical background. Two of the annotators442

are non-native English speakers, and one is a native443

English speaker. Following the approach used in444

(Sun et al., 2022), we evaluated the consistency445

among the annotators using the EM_F1 score. The446

averaged EM_F1 scores for both ‘time_elapsed’447

and ‘duration’ annotations were 75.3%.448

B Details of Baseline Implementation449

For the implementation of seq-to-seq baselines, we450

formulate pharmacovigilance event extraction as a451

conditional text generation task. Concretely, given452

a sentence x and additional auxiliary information453

a, the model is trained to generate a linearized454

sequence y representing the output event structure.455

For UIE, we refer to the methodology outlined456

in the original paper by utilizing the Structural457

Schema Instructor (SSI) as the auxiliary informa-458

tion a and constructing the target sequence y with459

Structural Extraction Language (SEL). However,460

special tokens used in SSI and SEL in UIE can461

result in a decrease in performance if no external462

pre-training is applied. Thus for Flan-T5, we substi-463

tute the SSI with a concise instruction accompanied464

by a natural language enumeration of the schema.465

Additionally, for the target sequence construction,466

we utilize square brackets as the structural symbol.467

For both UIE and FLan-T5, we use the large468

model which comprises 770M parameters. Train-469

ing an epoch typically takes around 2 minutes, and470

validation, which utilizes beam search, requires 471

approximately 10 minutes with an NVIDIA A100 472

(80G) GPU. The fine-tuning models generally con- 473

verge within 10 epochs. 474

C Details of Experimental Setup 475

C.1 Few-shot Prompting Settings 476

In the context of event extraction, each shot in- 477

cludes one example for each event type. In Sec- 478

tion 4, we report the 5-shot results for in-context 479

demonstration selection strategies, which entails 480

providing a total of 10 examples for each instance. 481

The selection of the number of demonstration cases 482

was based on ChatGPT’s input length capacity. 483

We further evaluate the argument extraction per- 484

formance of several in-context demonstration selec- 485

tion strategies when different numbers of demon- 486

stration examples are selected in Figure A1. No- 487

tably, when the first example is added, all methods 488

experience a significant performance boost. How- 489

ever, as the number of examples increases, the 490

performance gains become more minimal. Five- 491

shot prompting (involving 5 ADE examples and 492

5 PTE examples) has approached the maximum 493

input limit that ChatGPT can handle. Neverthe- 494

less, we reasonably suspect that further increasing 495

the number of examples would not get significant 496

performance improvements. 497
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Figure A1: Token_F1 scores for argument extraction
with different demonstration sizes. The blue line repre-
sents the performance of zero-shot prompting with the
explained schema.

C.2 Hyperparameter Details 498

The order and occurrence of events and arguments 499

in the generated sequence can impact the learn- 500

ing effectiveness of the model. To tackle this, Lu 501

et al. (2022) introduced the ‘Rejection Mechanism’, 502

which generates a null span when a specific type 503

of event or argument is absent in the sentence. In 504

our preliminary experiments, we determined that 505

the noise injection ratio has little impact on the per- 506

formance but the order of the argument generation 507

matters. Therefore, we choose to set the noise in- 508
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Subject.Disorder: We report two patients with acne vulgaris with a fourth type of minocycline-induced cutaneous
pigmentation.
We observed that when a disorder span is included in a ‘subject’ argument and also as ‘treatment.disorder’, annotations in
the original dataset show inconsistency on whether to annotate this span as ‘subject.disorder’.
Time_elapsed & Duration:
In this article, we describe another case of subcutaneous changes following repeated glatiramer acetate injection, presented
as localized panniculitis in the area around the injection sites, in a 46-year-old female patient who was treated with
glatiramer acetate for 18 months.
Annotation inconsistencies arise when a ‘time_elapsed’ argument can also be described as ‘duration’.

Table A1: Inconsistent examples from the PHEE dataset.

jection ratio to 0 and keep the arguments generated509

in order to reduce the fluctuation caused by random510

insertion during model comparison.511

To fine-tune the models, we establish a maxi-512

mum length of 512 tokens for both input and out-513

put. We utilize a total batch size of 32 for the large514

model, and 64 for the base model. The learning515

rates are configured as 3e-4 for the large model and516

5e-4 for the base model, with a warm-up ratio of517

0.06. We train the models for a maximum of 50518

epochs, early stopping if there is no improvement519

for 5 epochs. During the generation process, we520

employ beam search with a beam size of 3.521

We employ the ‘gpt-3.5-turbo-0301’ version of522

ChatGPT for prompting-based event extraction and523

synthesized data generation. The temperature is set524

as 0 for zero-shot and few-shot prompting, and 0.2525

for data generation.526

D Trigger Extraction Results for527

Finetuning Methods528

Table A2 displays the results of trigger extraction529

and event type classification for the fine-tuning530

models. In general, there is little difference in the531

performance of trigger extraction and event type532

classification between different models. Further-533

more, training with filtered training and augmented534

data still exhibits the smallest variance, which is535

consistent with the observation for argument ex-536

traction.537

Trigger Event Type

UIE(Large) 69.92 ±1.72 94.78±.72

Flan-T5(Large) 69.60±1.87 95.04±.97

w/ Tr.+Aug. 68.46±1.83 94.92±.60

w/ Tr. Fil. 69.50±1.61 94.92±.88

w/ Tr.+Aug. Fil. 69.68±1.36 95.00±.79

w/ Tr. Fil.+Aug. Fil. 69.73±1.14 95.13±.48

Table A2: Results for trigger extraction (EM_F1) and
event type classification (F1).

E Argument Extraction Results for Each 538

Argument Type 539

Table A3 provides a detailed overview of argu- 540

ment extraction results for Flan-T5 with two aug- 541

mentation strategies and ChatGPT. In comparison, 542

ChatGPT exhibits a specific vulnerability in accu- 543

rately matching main arguments, likely attributed 544

to their greater length, which poses challenges in 545

precise boundary determination. When it comes 546

to sub-arguments, ChatGPT demonstrates a perfor- 547

mance distribution similar to fine-tuning models 548

but achieves lower overall scores. Notably, for cer- 549

tain argument types of which ChatGPT performs 550

notably worse, such as ‘frequency’ and ‘duration’, 551

these shortcomings also negatively impact the per- 552

formance when training with ChatGPT-generated 553

data. However, after filtering, the performance on 554

these argument types can be improved to the extent 555

that they may even outperform fine-tuning with 556

annotated training data alone. 557

F Prompt Details 558

Table A4 shows the instructions utilized for Chat- 559

GPT’s zero-shot prompting. Through our prelim- 560

inary experiments, we discovered that ChatGPT 561

exhibits better performance when tasked with gen- 562

erating structured output in JSON format rather 563

than textual output. Based on this finding, we ex- 564

plore additional possibilities. For the end-to-end 565

generation approach, we experiment with modify- 566

ing the instructions to a code style or providing a 567

detailed explanation of the schema. In the case of 568

pipeline prompting, we initially prompt ChatGPT 569

to generate the skeleton of the output, encompass- 570

ing multiple events in a competent manner. Subse- 571

quently, in the second stage, we provide the gener- 572

ation from the first stage and ask specific questions 573

for each sub-argument type. 574

Table A5 presents the prompt employed to query 575

ChatGPT for the generation of synthesized in- 576

stances for examples with adverse events. We em- 577

ploy a similar prompt for the data generation of 578
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Flan-T5
Flan-T5

(Tr.+Aug.)
Flan-T5

(Tr. Fil.+Aug. Fil.) ChatGPT

EM_F1 Token_F1 EM_F1 Token_F1 EM_F1 Token_F1 EM_F1 Token_F1
Subject 73.11 82.37 70.93 80.90 72.39 82.15 57.96 75.20
Age 88.12 92.07 87.21 92.55 87.50 92.82 86.62 90.18
Disorder 69.80 77.13 63.81 72.76 69.73 77.45 53.90 61.08
Gender 86.73 86.51 86.03 85.78 87.15 87.00 84.29 85.07
Population 74.83 75.72 72.30 73.94 75.90 76.69 49.30 42.11
Race 93.20 93.35 93.29 91.20 92.02 91.52 87.5 77.78

Treatment 66.35 79.82 66.27 79.00 65.90 79.68 57.67 73.49
Drug 87.03 88.32 85.84 87.45 86.65 87.99 80.78 82.59
Disorder 67.19 73.14 65.24 71.73 66.64 72.57 55.89 62.01
Route 67.76 69.34 63.55 65.55 66.37 70.39 56.66 63.73
Dosage 65.95 76.40 63.58 72.17 62.91 73.16 47.11 61.05
Time elapsed 61.56 71.21 54.11 61.25 62.09 71.98 40.68 51.67
Duration 60.40 64.91 56.12 60.42 61.47 58.77 47.56 56.58
Frequency 51.26 54.37 43.43 46.19 53.25 52.10 36.36 33.09
Combination.Drug 69.77 71.18 66.87 68.93 69.34 70.90 60.79 62.90

Effect 74.33 84.73 74.68 83.94 74.75 84.65 64.60 79.19

Table A3: Argument extraction results for each argument type. To accommodate space limitations, we showcase
results for Flan-T5 with two augmentation strategies and ChatGPT. The Flan-T5 results represent the average score
across 5-fold cross-validation, while the ChatGPT results showcase the performance of the 5-shot BM25 approach.

cases with potential therapeutic events and mul-579

tiple events. Differently, we apply only the drug580

constraint to instances related to potential thera-581

peutic events, as these typically do not involve a582

relevant effect. In addition, we refrain from impos-583

ing such constraints on multi-event instances, as584

doing so may complicate the preservation of event585

structure in synthesized samples.586

G Licenses587

The PHEE dataset employed in this study is sub-588

ject to the MIT License. The UIE model is589

covered by the Creative Commons Attribution-590

NonCommercial-ShareAlike 4.0 International Pub-591

lic License. The Flan-T5 model under the Apache592

License 2.0, and ChatGPT is a commercial service593

for which we adhere to OpenAI’s terms of use. We594

use the dataset and tools within the scope of their595

intended use.596
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Prompting Strategy Example

Schema Extract event information from the following sentence and return events in json
format as this: [{"event_type": event type, "arguments":[{"argument_type":
argument type, "argument_span":argument extraction}]}]. Event type: ad-
verse event, potential therapeutic event. Argument type: subject, age, gender,
race, population, subject_disorder, treatment, drug, dosage, route, duration, fre-
quency, time_elapsed, indication, combination_drug, effect. Sentence: <SEN-
TENCE> Output:

Code Argument = {"argument_type": str, #options: [subject, age, gender,race,
population, subject_disorder, treatment, drug, dosage, route, duration,
frequency, time_elapsed, indication, combination_drug, effect]
"argument_span": str,}
Event ={"event_type": str, #options: [adverse_event, poten-
tial_therapeutic_event]
"arguments": List[Argument],}
events: List[Event] = extract events in the sentence: <SENTENCE>
print(json.dumps(events))

Explanation Extract event information from the following sentence and return events in json
format as this: [{"event_type": event type, "arguments":[{"argument_type":
argument type, "argument_span":argument extraction}]}]. Event type: adverse
event (an event shows the use of a drug or combination of drugs cause a harmful
effect on the human patient), potential therapeutic event (an event shows the
use of a drug or combination of drugs bring a potential beneficial effect on the
human patient). Argument type: subject (overall description of the patients
involved in the event), age (the concrete age or an age range of the subject),
gender (the subject’s gender), race (the subject’s race or nationality), population
(the number of patients receiving the treatment), subject_disorder (the subject’s
disorders), treatment (overall description of the therapy administered to the
patients), drug (the drugs used as therapy in the event), dosage (the amount of
the drug is given), route (the route of the drug administration), duration (how
long the patient has been taking the medicine), frequency (the frequency of
drug use), time_elapsed (the time elapsed after the drug was administered to
the occurrence of the side effect), indication (the target disorder of the medicine
administration), combination_drug (the drugs used in combination), effect (the
side effect in the adverse event or the beneficial effect in the potential therapeutic
event). Sentence: <SENTENCE> Output:

9



Pipeline Stage 1:
Extract adverse events and potential therapeutic events in the sentence, as well
as the information about the subject (the patient), the treatment and the effect
of the treatment involved in the event. Return the output in json format as this:
[{"event_type": event type, "subject": span of subject information, "treatment":
span of treatment information, "effect": span of effect information}]. Event
type: adverse event, potential therapeutic event. Sentence: <SENTENCE>
Output:
Stage 2: Answer the question related to the given sentence and given event
information. The answer should be a span exactly extracted from the sen-
tence. If no answer can be found from the sentence, return N/A. Sentence:
<SENTENCE> Event: Event type: <EVENT_TYPE> Subject: <SUBJECT>
Treatment: <TREATMENT> Effect: <EFFECT>. <QUESTION>
Questions for each sub-argument type:
age: What’s the age of the subject?
gender: What’s the gender of the subject?
race: What’s the race or the nationality of the subject?
population: How many subjects are involved in the event?
subject_disorder: What disorders do the subjects suffer from?
drug: What drugs are administered to the subject?
dosage: What amount of the drug is administered to the subject?
route: What route is the drug given to the subject?
duration: How long have the subject been taking the drug until the event oc-
curred?
frequency: How frequently does the subject take the drug?
time_elapsed: How long has elapsed since the patient started or ended dosing
until the event occurred?
indication: What’s the target disease of the treatment?
combination_drug: What drugs are used in combination in the event

Table A4: Instructions for zero-shot prompting. <SENTENCE> is replaced with the query sentence. In the second
stage of the pipeline prompting, <EVENT_TYPE>, <SUBJECT>, <TREATMENT>, <EFFECT> are replaced
with the generated results from the first stage, and <QUESTION> is replaced with manually crafted questions for
each argument type. To enhance clarity, we substitute the argument type ‘treatment_disorder’ in the dataset with
‘indication’ when querying ChatGPT.
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Sentence: <SENTENCE> The events involved in the sentence are: <OUTPUT> Event type: adverse
event (an event shows the use of a drug or combination of drugs cause a harmful effect on the human
patient), potential therapeutic event (an event shows the use of a drug or combination of drugs bring
a potential beneficial effect on the human patient). Argument type: subject (overall description of
the patients involved in the event), age (the concrete age or an age range of the subject), gender
(the subject’s gender), race (the subject’s race or nationality), population (the number of patients
receiving the treatment), subject_disorder (the subject’s disorders), treatment (overall description
of the therapy administered to the patients), drug (the drugs used as therapy in the event), dosage
(the amount of the drug is given), route (the route of the drug administration), duration (how long
the patient has been taking the medicine), frequency (the frequency of drug use), time_elapsed (the
time elapsed after the drug was administered to the occurrence of the side effect), indication (the
target disorder of the medicine administration), combination_drug (the drugs used in combination),
effect (the side effect in the adverse event or the beneficial effect in the potential therapeutic event).
Generate a sentence with an adverse event which has a similar structure as the given sentence, and
extract the events in the generated sentence. The drug <CONST_DRUG> must appear in the event,
and the effect should be <CONST_EFFECT>. Return in the following json format: {"sentence":the
generated sentence, "output": [{"event_type": event type, "event_trigger": the token indicating the
existence of the event, "arguments":[{"argument_type": argument type, "argument_span":argument
extraction}]}]}. Return the json output only.

Table A5: The prompt used to query ChatGPT for generating synthesized instances for ADE cases, with <SEN-
TENCE> representing an example sentence from the training set, <OUTPUT> representing the annotation of the
example sentence, <CONST_DRUG> and <CONST_EFFECT> representing a pair of sampled drug and effect from
the training set.
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