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Abstract

With the advent of large language models
(LLMs), there has been growing interest in
exploring their potential for medical applica-
tions. This research aims to investigate the
ability of LLMs, specifically ChatGPT, in the
context of pharmacovigilance event extraction,
of which the main goal is to identify and extract
adverse events or potential therapeutic events
from textual medical sources. We conduct ex-
tensive experiments to assess the performance
of ChatGPT in the pharmacovigilance event ex-
traction task, employing various prompts and
demonstration selection strategies. The find-
ings demonstrate that while ChatGPT demon-
strates reasonable performance with appropri-
ate demonstration selection strategies, it still
falls short compared to fully fine-tuned small
models. Additionally, we explore the poten-
tial of leveraging ChatGPT for data augmenta-
tion. However, our investigation reveals that the
inclusion of synthesized data into fine-tuning
may lead to a decrease in performance, possibly
attributed to noise in the ChatGPT-generated
labels. To mitigate this, we explore differ-
ent filtering strategies and find that, with the
proper approach, more stable performance can
be achieved, although constant improvement
remains elusive.

1 Introduction

Pharmacovigilance stands as a pivotal discipline in
healthcare that encompasses a range of processes:
identifying, evaluating, understanding, and prevent-
ing adverse effects and other medicine-related is-
sues (World Health Organization, 2004). Within
this domain, pharmacovigilance event extraction
emerges as a crucial practice aimed at extracting
structured medication-related event data from med-
ical text sources, serving as valuable inputs for
automatic drug safety signal detection. With the
rapid expansion of electronic health records (EHR),
medical case reports, and other textual resources,
the need for efficient and accurate pharmacovig-

ilance event extraction has become increasingly
pressing.

Studies have been conducted to extract
pharmacovigilance-related information from text
data. However, previous research mainly focused
on simple tasks such as entity extraction (Wun-
nava et al., 2017) or binary relation extraction (Gu-
rulingappa et al., 2012; El-allaly et al., 2021). Re-
cently, Sun et al. (2022) introduced a novel dataset
for pharmacovigilance event extraction, which in-
cludes hierarchical annotations of adverse events
and potential therapeutic events, capturing informa-
tion about the subject, treatment, and effect. Addi-
tionally, they investigate the performance of vari-
ous models, including sequence labelling and QA-
based approaches, for this task, providing a foun-
dation for further advancements in extracting struc-
tured event data for pharmacovigilance research.

The rise of large language models (LLMs), es-
pecially ChatGPT (OpenAl, 2022), has sparked
considerable interest in their potential applications
in the medical field (Agrawal et al., 2022; Kung
et al., 2023). In this study, our focus is on explor-
ing different ways to incorporate ChatGPT into the
pharmacovigilance event extraction task. Figure
1(a) presents an example of this task.

We explore various strategies for prompting and
demonstration selection to assess ChatGPT’s per-
formance in zero-shot and few-shot scenarios, com-
paring it with smaller fine-tuned models. Our find-
ings indicate that, with suitable demonstrations,
ChatGPT performs reasonably well but still falls
short of the performance achieved by fully fine-
tuned smaller models, as demonstrated in Figure
1(b). Furthermore, we delve into the utilization of
ChatGPT for data augmentation, employing it to
generate sentences structurally resembling demon-
stration samples (see Figure 1(c) for example).
However, simply combining these generated sam-
ples with the training set leads to an overall perfor-
mance decrease, possibly suggesting the sensitivity
of data quality for fine-tuning methods. To address



BACKGROUND : Ovarian cancer arising from an endometriotic cyst in a postmenopausal woman under tamoxifen therapy is rare .
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(a) Example with human annotation.
BACKGROUND : Ovarian cancer arising from an endometriotic cyst in a postmenopausal woman under tamoxifen therapy is rare .
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(b) Example with the prediction of ChatGPT (BM25).
Osteonecrosis caused by dexamethasone therapy in a young male with asthma is uncommon .
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(c) ChatGPT-synthesized case using the example in (a) for demonstration.

Figure 1: Snippets from biomedical documents: a comparison of human annotations, ChatGPT predictions, and a

ChatGPT-synthesized case.

this issue, we implement a filtering strategy for the
augmented data, which leads to a performance im-
provement, bringing it closer to the levels achieved
with the original training data but with reduced vari-
ance. This shows enhanced stability when working
with ample high-quality data.

2 Prompt-based Learning with ChatGPT
2.1 Zero-shot Prompting

For zero-shot prompting, a manually designed in-
struction is employed to query ChatGPT for an-
swers. In this study, we devise four approaches to
prompt the model: a) Schema: providing instruc-
tions alongside enumeration of event types and ar-
gument types; b) Explanation: providing instruc-
tions with a detailed explanation of the schema;
¢) Code: formulating instructions and output for-
mat using a combination of text descriptions and
code snippets; d) Pipeline: querying the model in
a pipeline manner, which first prompts for the main
arguments and then follows up with type-related
questions for each sub-argument. Details of the
prompts are presented in Appendix F.

2.2 Few-shot In-context Learning

For few-shot in-context learning, several demon-
strations are provided together with the instruction.
The selection of different demonstration examples
can yield varying results. We explore different
strategies for choosing in-context examples based
on a given test instance, including: a) Random:
randomly selecting examples from the training set;
b) SBERT: choosing examples based on the simi-
larity of their dense representations to the test sen-
tence. We utilize Sentence-BERT(Reimers and
Gurevych, 2019) to obtain the sentence representa-
tions; ¢) BM25: selecting examples based on the
similarity of their lexical representations to the test
sentence. We employ BM25 (Trotman et al., 2014)
as the ranking function; d) TreeKernel: choosing

examples based on the structural similarity to the
test sentence. We implement the tree kernel by
computing the Jaccard similarity of the subpaths
within the dependency trees of the sentences.

3 ChatGPT as Data Synthesizer

We explore the potential of leveraging ChatGPT for
data augmentation purposes. To achieve this, we
incorporate an example from the training set, along
with its annotated events, as input to ChatGPT. We
then prompt ChatGPT to generate a sentence that
exhibits a similar event structure to the given sen-
tence and extract the events from the generated
sentence. However, based on our initial study, we
observed that ChatGPT tends to miss specific men-
tions of drugs or excessively use certain drugs, such
as ‘ibuprofen’. We address this issue by restricting
the inclusion of drug names and their correspond-
ing effects sampled from the training data in gen-
erated sentences. Details of the prompt for data
synthesizing are shown in Appendix F.
Recognizing that directly incorporating gener-
ated samples into the training data can lead to per-
formance decline, possibly due to issues related to
data quality, we have introduced filtering strategies.
These include: a) Train Filter: Filtering the train-
ing set with 540, < mean(sgq), Where sg014 is the
average token probability given by the fine-tuned
model on the ground-truth event label sequence;
b) Augment Filter: Filtering augmented data with
Z(SQOld) <0Oor Z(Sgold) < Z(Spred) , where $peq
is the average token probability for predicted event
label sequences. z(s) = (s — mean(s"))/std(s"),
and s” represents the values of s in the validation
set. The rationale behind this filter is to retain cases
with annotations that are more certain than the pre-
dictions and have an above-average annotation.
With these filtering rules, we compare the
model’s performance on several data settings, in-
cluding: training data (Tr.), training data combined



with augmented data (Tr.+Aug.), filtered training
data (Tr. Fil.), training data with filtered augmented
data (Tr.+Aug. Fil.) and filtered training data with
filtered augmented data (Tr. Fil.+Aug. Fil.).

4 [Experiments

4.1 Experimental Settings

Dataset We conducted experiments on the PHEE
dataset (Sun et al., 2022), an English event ex-
traction dataset sourced from publicly accessible
medical reports, encompassing annotations for two
event categories: adverse events and potential ther-
apeutic events. The annotations follow a hierar-
chical structure, with main arguments providing
information on the subject, treatment, and effect,
while sub-arguments offer more detailed informa-
tion pertaining to the main arguments. However,
during our analysis, we observed that certain argu-
ment types showed low consistency. To address
this issue, we performed automatic and manual re-
visions on the subject.disorder, time_elapsed, and
duration arguments. For further details, please re-
fer to Appendix A.

Baselines We compare ChatGPT’s performance
with the best-performing Generative QA model
proposed in (Sun et al., 2022) and two widely
adopted seq-to-seq models: 1) UIE (Lu et al.,
2022), a model that is specifically pre-trained on
structured information extraction data; and 2) Flan-
TS (Chung et al., 2022), a model trained on a di-
verse range of tasks using instructional prompts.
For more information, see Appendix B.

Evaluation We follow Sun et al. (2022) to eval-
uate both exact matching F1 score (EM_F1) and
token-level matching F1 score (Token_F1) for ar-
gument extraction. During our preliminary experi-
ments, we observed that ChatGPT struggled to gen-
erate reasonable results for trigger extraction. Con-
sidering that even humans find trigger identification
challenging, and that it doesn’t significantly con-
tribute to understanding pharmacovigilance events,
we did not query ChatGPT for triggers, but we still
ask ChatGPT to generate the event structure, en-
abling the differentiation of multiple events. For
the trigger extraction results obtained from finetun-
ing models, please check Appendix D.

We perform 5-fold cross-validation for fine-
tuning and data augmentation experiments, while
limiting ChatGPT-based zero-shot and few-shot
learning to a single split due to cost-related rea-
sons. For more details about the experimental setup,
please refer to Appendix C.

4.2 Results and Discussion

Main-arguments Sub-arguments

EM_F1 Token_F1 EM_F1 Token_ F1
Schema 30.31 47.41 22.50 26.51
Code 25.94 40.42 25.67 29.70
Explanation 34.80 52.99 36.70 39.33
Pipeline 32.57 49.41 27.79 33.80

Table 1: Argument extraction results for ChatGPT zero-
shot prompting with different prompting strategies.

ChatGPT with Different Prompting Strategies
Table 1 presents the argument extraction results
for ChatGPT using different zero-shot prompting
strategies. Providing only instructions yields un-
satisfactory performance, but including a detailed
explanation of the event schema leads to notice-
able improvement, highlighting the importance of
comprehensive guidance. Further human evalua-
tion reveals that end-to-end generation tends to
miss arguments, whereas the pipeline approach
tends to generate numerous false positive cases.
It is surprising that the model performs poorly on
seemingly simple arguments such as ‘population’,
‘route’, and ‘age’. While providing explanations
improves the performance of some arguments (e.g.,
‘route’ and ‘age’), all approaches still struggle with
‘population’ extraction. This difficulty may due to
the gap between the lexical meaning of the label
‘population’ and the semantic meaning of the ar-
gument. Additionally, while the pipeline method
has advantages in extracting certain argument types
(e.g., ‘gender’ and ‘frequency’), the inference time
is proportional to the number of argument types,
making it approximately 10 times longer than the
end-to-end methods.

Table 2 displays the few-shot argument ex-
traction results for ChatGPT using various in-
context selection strategies. Dense representation-
based demonstration retrieval with SBERT does
not demonstrate superiority in this task, possibly
due to limited domain knowledge captured by the
pre-trained sentence representation model. Incor-
porating structured information improves perfor-
mance, while the simplest lexical-based retrieval
strategy shows the most noticeable performance
gains. Upon examining the samples retrieved by
different example selection strategies, we observed
that SBERT and TreeKernel tend to retrieve struc-
turally similar sentences, while BM25 is more in-
clined to retrieve sentences containing matching
entities such as drugs (since entities usually serve
as keywords in a sentence). This observation sug-



gests that the superior performance of BM25 in
argument extraction can be attributed to the fact
that this task is more sensitive to entities. When
more examples with similar entities are covered,
ChatGPT learns more effectively from them.

Main-arguments Sub-arguments

EM_F1 Token_F1 EM_F1 Token_F1
random 58.31 72.74 60.32 63.74
SBERT 56.90 71.65 62.29 64.25
TreeKernel 60.54 73.68 63.36 64.69
BM25 60.39 76.15 67.35 68.67

Table 2: Argument extraction results for ChatGPT few-
shot prompting with different in-context demonstration
selection strategies (results for 5-shot are reported).

Finetuning Models vs. ChatGPT Table 3 il-
lustrates the argument extraction results for differ-
ent methods. The findings indicate that there is
minimal variation among the fine-tuning methods.
Specifically, the Flan-T5 model, despite not being
explicitly pre-trained for the information extrac-
tion task, demonstrates slightly better performance
than the UIE model. In contrast, ChatGPT without
demonstrations exhibits poor performance. How-
ever, when demonstrations are provided, ChatGPT
shows improved results, although there remains a
noticeable gap compared to the fine-tuning meth-
ods. For a detailed breakdown of the results for
each argument type, refer to Appendix E.

Main-arguments Sub-arguments

EM_F1 Token_F1 EM_F1 Token_F1
Fully supervised
Generative QA 68.85 81.63 77.33 78.83
UIE(Large) 69.46+ 49 81.204409 7712413 78.83+14
Flan-T5 (Large) 70.7811 4 82.34:&1,5 77.631(1 6 79.5211(3
Zero-Shot
ChatGPT(Exp.) 34.80 52.99 36.70 39.33
Few-Shot
ChatGPT(BM25) 60.39 76.15 67.35 68.67

Table 3: Argument extraction results for various meth-
ods. For fine-tuning methods, we report the mean 54
value of 5-fold cross-validation. For ChatGPT(BM?25),
we provide the results for 5-shot. We obtain Generative
QA results directly from the original paper.

Data Augmentation with ChatGPT Table 4
presents the performance of Flan-T5 when augmen-
tation and various filtering strategies are employed.
It can be seen that simply extending the training
data with ChatGPT-synthesized cases could lead to
an obvious performance drop. In contrast, with the
filtered training set, although retained only 65% of
training data, surpasses results obtained from over

5,000 augmented instances, which may indicate the
critical role of data quality in pharmacovigilance
event extraction. Furthermore, training with filtered
augmented data effectively restores performance to
the original level. In particular, training with both
filtered training data and filtered augmented data
displays only slight deviations from training with
the original data, yet it notably reduces variance.
The p-values for the variance difference signifi-
cance, assessed through the F-test, are 0.29 and
0.39 for EM_F1 and Token_F1, respectively.

EM_F1 Token_F1  Avg. Cases
Tr. 74-4511.46 81.3011,27 2897
Tr.+Aug. 73~07i0A92 79~93i1A51 5446
Tr. Fil. 73~92i4128 80~71i1b‘0 1873
Tr.+Aug. Fil. 74.26i41,27 80.98i2,06 3702
Tr. F11+Allg Fil. 74194109 81.0541.09 2678

Table 4: Argument (including main and sub-arguments)
extraction results for Flan-T5 (Large) with augmentation
and filtering strategies. The Avg. Cases column displays
the average number of training cases over 5 folds.

During our manual examination, we identified a
correlation between the model’s predicted proba-
bility of generated label sequences (s44¢) and the
label quality. Those cases with a lower s4,4 often
exhibited lower quality, frequently missing impor-
tant arguments. Cases with higher s,y demon-
strated higher quality, but occasionally were still
not more accurate than the model’s prediction. To
address this, we introduced a metric using the z-
scores of 54014 and ;.4 to compare the quality of
annotations and model predictions. We retained
cases with better annotation quality compared
to predictions. Consequently, we observe that
the performance of certain argument types, such
as ‘time_elapsed’ and ‘duration’, which sharply
decreased following augmentation, evidently re-
bounded after training with filtered data.

5 Conclusion

This paper provides empirical practice in various
approaches to leveraging ChatGPT for the pharma-
covigilance event extraction task. Overall, Chat-
GPT exhibits impressive few-shot learning capabil-
ities in pharmacovigilance event extraction. Never-
theless, considering the sensitivity of the medical
field, fine-tuned models retain a clear edge in the
presence of abundant data. Properly filtered syn-
thetic data could enhance stability, but the quest for
more effective methods to augment and enhance
overall performance remains for future exploration.



Limitations

In our preliminary study, we encountered limita-
tions in exploring alternative open-source LLMs,
such as LLaMA 30B (Touvron et al., 2023) and
Flan-T5 XXL (Chung et al., 2022), for zero-
shot/few-shot prompting. These models exhib-
ited significant differences in generation quality
compared to ChatGPT, and their slow inference
speeds hindered a comprehensive evaluation. De-
spite these limitations, we highlight the importance
of further research to investigate the potential of
leveraging different open-source LLMs.

Secondly, our investigation focused solely on un-
supervised methods for in-context demonstration
selection. Future research could explore the incor-
poration of annotations in the selection process,
which may yield valuable insights and improve
the performance of ChatGPT in pharmacovigilance
event extraction.

Furthermore, it is worth noting that the use of
ChatGPT-synthesized data may alter the data dis-
tribution, potentially introducing incorrect knowl-
edge about adverse events. While the impact of this
approach on event extraction may be limited be-
cause the extraction results are constrained by the
given sentence, caution is needed when applying
the methods described in the text to other appli-
cation domains, such as ADE generation, due to
potential risks.
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A Data Annotation Revision Details

In the original dataset, we observed particularly
low levels of annotation inconsistency for ‘sub-
ject.disorder’, ‘time_elapsed’, and ‘duration’ ar-
guments, as illustrated by the examples provided
in Table Al. To address this, we conducted an
automatic revision for the ‘subject.disorder’ an-
notation and hired annotators to manually cor-
rect the ‘time_elapsed’ and ‘duration’ annota-
tions. For ‘subject.disorder’ correction, if a ‘treat-
ment.disorder’ was present in the ‘subject’ argu-
ment but not annotated as ‘subject.disorder’, we
added it to the ‘subject.disorder’ annotation. For
‘time_elapsed’ and ‘duration’ correction, detailed
guidelines were provided to the annotators to en-
sure consistent annotations. We employed three
annotators and informed them about the purpose
of the data. The annotators are all PhD students
who volunteered for this task, receiving compensa-
tion through the university’s payment platform for
their annotation work. Two of the annotators have a
background in computer science, and one annotator
has a medical background. Two of the annotators
are non-native English speakers, and one is a native
English speaker. Following the approach used in
(Sun et al., 2022), we evaluated the consistency
among the annotators using the EM_F1 score. The
averaged EM_F]1 scores for both ‘time_elapsed’
and ‘duration’ annotations were 75.3%.

B Details of Baseline Implementation

For the implementation of seq-to-seq baselines, we
formulate pharmacovigilance event extraction as a
conditional text generation task. Concretely, given
a sentence x and additional auxiliary information
a, the model is trained to generate a linearized
sequence y representing the output event structure.

For UIE, we refer to the methodology outlined
in the original paper by utilizing the Structural
Schema Instructor (SSI) as the auxiliary informa-
tion a and constructing the target sequence y with
Structural Extraction Language (SEL). However,
special tokens used in SSI and SEL in UIE can
result in a decrease in performance if no external
pre-training is applied. Thus for Flan-T5, we substi-
tute the SSI with a concise instruction accompanied
by a natural language enumeration of the schema.
Additionally, for the target sequence construction,
we utilize square brackets as the structural symbol.

For both UIE and FLan-T5, we use the large
model which comprises 770M parameters. Train-
ing an epoch typically takes around 2 minutes, and

validation, which utilizes beam search, requires
approximately 10 minutes with an NVIDIA A100
(80G) GPU. The fine-tuning models generally con-
verge within 10 epochs.

C Details of Experimental Setup
C.1 Few-shot Prompting Settings

In the context of event extraction, each shot in-
cludes one example for each event type. In Sec-
tion 4, we report the 5-shot results for in-context
demonstration selection strategies, which entails
providing a total of 10 examples for each instance.
The selection of the number of demonstration cases
was based on ChatGPT’s input length capacity.

We further evaluate the argument extraction per-
formance of several in-context demonstration selec-
tion strategies when different numbers of demon-
stration examples are selected in Figure Al. No-
tably, when the first example is added, all methods
experience a significant performance boost. How-
ever, as the number of examples increases, the
performance gains become more minimal. Five-
shot prompting (involving 5 ADE examples and
5 PTE examples) has approached the maximum
input limit that ChatGPT can handle. Neverthe-
less, we reasonably suspect that further increasing
the number of examples would not get significant
performance improvements.

Performance with Different Demonstration Sizes

random SBERT TreeKerne! BM25

Figure Al: Token_F1 scores for argument extraction
with different demonstration sizes. The blue line repre-
sents the performance of zero-shot prompting with the
explained schema.

C.2 Hyperparameter Details

The order and occurrence of events and arguments
in the generated sequence can impact the learn-
ing effectiveness of the model. To tackle this, Lu
et al. (2022) introduced the ‘Rejection Mechanism’,
which generates a null span when a specific type
of event or argument is absent in the sentence. In
our preliminary experiments, we determined that
the noise injection ratio has little impact on the per-
formance but the order of the argument generation
matters. Therefore, we choose to set the noise in-



Subject.Disorder:
pigmentation.

We report two patients with acne vulgaris with a fourth type of minocycline-induced cutaneous

We observed that when a disorder span is included in a ‘subject’ argument and also as ‘treatment.disorder’, annotations in
the original dataset show inconsistency on whether to annotate this span as ‘subject.disorder’.

Time_elapsed & Duration:

In this article, we describe another case of subcutaneous changes following repeated glatiramer acetate injection, presented
as localized panniculitis in the area around the injection sites, in a 46-year-old female patient who was treated with

glatiramer acetate for 18 months.

Annotation inconsistencies arise when a ‘time_elapsed’ argument can also be described as ‘duration’.

Table Al: Inconsistent examples from the PHEE dataset.

jection ratio to O and keep the arguments generated
in order to reduce the fluctuation caused by random
insertion during model comparison.

To fine-tune the models, we establish a maxi-
mum length of 512 tokens for both input and out-
put. We utilize a total batch size of 32 for the large
model, and 64 for the base model. The learning
rates are configured as 3e-4 for the large model and
Se-4 for the base model, with a warm-up ratio of
0.06. We train the models for a maximum of 50
epochs, early stopping if there is no improvement
for 5 epochs. During the generation process, we
employ beam search with a beam size of 3.

We employ the ‘gpt-3.5-turbo-0301" version of
ChatGPT for prompting-based event extraction and
synthesized data generation. The temperature is set
as 0 for zero-shot and few-shot prompting, and 0.2
for data generation.

D Trigger Extraction Results for
Finetuning Methods

Table A2 displays the results of trigger extraction
and event type classification for the fine-tuning
models. In general, there is little difference in the
performance of trigger extraction and event type
classification between different models. Further-
more, training with filtered training and augmented
data still exhibits the smallest variance, which is
consistent with the observation for argument ex-
traction.

Trigger Event Type
UIE(Large) 69.92 +1.72 94.78:|:.72
Flan-T5(Large) 69.604+187 95.0441 97
w/ Tr.+Aug. 68.464+183 94.921 40
w/ Tr. Fil. 69.50:‘:1.61 94-921.88
w/ Tr.+Aug. Fil. 69.68i1.36 95-00i.79
w/ Tr. Fi1.+Aug. Fil. 69.73:‘:1.14 95-13:|:.48

Table A2: Results for trigger extraction (EM_F1) and
event type classification (F1).

E Argument Extraction Results for Each
Argument Type

Table A3 provides a detailed overview of argu-
ment extraction results for Flan-T5 with two aug-
mentation strategies and ChatGPT. In comparison,
ChatGPT exhibits a specific vulnerability in accu-
rately matching main arguments, likely attributed
to their greater length, which poses challenges in
precise boundary determination. When it comes
to sub-arguments, ChatGPT demonstrates a perfor-
mance distribution similar to fine-tuning models
but achieves lower overall scores. Notably, for cer-
tain argument types of which ChatGPT performs
notably worse, such as ‘frequency’ and ‘duration’,
these shortcomings also negatively impact the per-
formance when training with ChatGPT-generated
data. However, after filtering, the performance on
these argument types can be improved to the extent
that they may even outperform fine-tuning with
annotated training data alone.

F Prompt Details

Table A4 shows the instructions utilized for Chat-
GPT’s zero-shot prompting. Through our prelim-
inary experiments, we discovered that ChatGPT
exhibits better performance when tasked with gen-
erating structured output in JSON format rather
than textual output. Based on this finding, we ex-
plore additional possibilities. For the end-to-end
generation approach, we experiment with modify-
ing the instructions to a code style or providing a
detailed explanation of the schema. In the case of
pipeline prompting, we initially prompt ChatGPT
to generate the skeleton of the output, encompass-
ing multiple events in a competent manner. Subse-
quently, in the second stage, we provide the gener-
ation from the first stage and ask specific questions
for each sub-argument type.

Table AS presents the prompt employed to query
ChatGPT for the generation of synthesized in-
stances for examples with adverse events. We em-
ploy a similar prompt for the data generation of



Flan-T5 Flan-T5

Flan-T5 (Tr+Aug.) (Tr. Fil.+Aug. Fil.) ChatGPT
EM_F1 Token FI EM_FI Token FI EM_FI Token FI EM_FI Token FI
Subject 7301 8237 7093 80.90 7239 82.15 57.96 7520
Age 8812 9207 8721  92.55 87.50  92.82 86.62  90.18
Disorder 69.80  77.13 6381 7276 69.73 7745 5390 61.08
Gender 8673  86.51 86.03  85.78 8715  87.00 8429  85.07
Population 7483 7572 7230 73.94 7590  76.69 4930 4211
Race 9320 9335 9329 9120 9202 9152 87.5 7778
Treatment 6635  79.82 6627 79.00 6590  79.63 5767 7349
Drug 87.03  88.32 8584  87.45 86.65  87.99 8078  82.59
Disorder 6719  73.14 6524 7173 66.64 7257 5589 62.01
Route 6776 6934 63.55  65.55 6637 7039 56.66  63.73
Dosage 6595  76.40 63.58  72.17 6291  73.16 4711  61.05
Time elapsed 61.56 7121 5411 61.25 62.09 7198 4068  51.67
Duration 6040  64.91 5612 60.42 6147 5877 4756 56.58
Frequency 5126 5437 4343 46.19 5325  52.10 3636 33.09
Combination.Drug  69.77  71.18 66.87  68.93 6934 70.90 60.79  62.90
Effect 7433 8473 7468 8394 7475 84.65 6460  79.19

Table A3: Argument extraction results for each argument type. To accommodate space limitations, we showcase
results for Flan-TS with two augmentation strategies and ChatGPT. The Flan-T5 results represent the average score
across 5-fold cross-validation, while the ChatGPT results showcase the performance of the 5-shot BM25 approach.

cases with potential therapeutic events and mul-
tiple events. Differently, we apply only the drug
constraint to instances related to potential thera-
peutic events, as these typically do not involve a
relevant effect. In addition, we refrain from impos-
ing such constraints on multi-event instances, as
doing so may complicate the preservation of event
structure in synthesized samples.

G Licenses

The PHEE dataset employed in this study is sub-
ject to the MIT License. The UIE model is
covered by the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International Pub-
lic License. The Flan-T5 model under the Apache
License 2.0, and ChatGPT is a commercial service
for which we adhere to OpenAl’s terms of use. We
use the dataset and tools within the scope of their
intended use.



Prompting Strategy

Example

Schema

Extract event information from the following sentence and return events in json
format as this: [{"event_type": event type, "arguments":[{"argument_type":
argument type, "argument_span":argument extraction}]}]. Event type: ad-
verse event, potential therapeutic event. Argument type: subject, age, gender,
race, population, subject_disorder, treatment, drug, dosage, route, duration, fre-
quency, time_elapsed, indication, combination_drug, effect. Sentence: <SEN-
TENCE> Output:

Code

Argument = {"argument_type": str, #options: [subject, age, gender,race,
population, subject_disorder, treatment, drug, dosage, route, duration,
frequency, time_elapsed, indication, combination_drug, effect]
"argument_span": str,}

Event ={"event_type": str,  #options: [adverse_event, poten-
tial_therapeutic_event]

"arguments": List[Argument], }

events: List[Event] = extract events in the sentence: <SENTENCE>
print(json.dumps(events))

Explanation

Extract event information from the following sentence and return events in json
format as this: [{"event_type": event type, "arguments":[{"argument_type":
argument type, "argument_span":argument extraction}]}]. Event type: adverse
event (an event shows the use of a drug or combination of drugs cause a harmful
effect on the human patient), potential therapeutic event (an event shows the
use of a drug or combination of drugs bring a potential beneficial effect on the
human patient). Argument type: subject (overall description of the patients
involved in the event), age (the concrete age or an age range of the subject),
gender (the subject’s gender), race (the subject’s race or nationality), population
(the number of patients receiving the treatment), subject_disorder (the subject’s
disorders), treatment (overall description of the therapy administered to the
patients), drug (the drugs used as therapy in the event), dosage (the amount of
the drug is given), route (the route of the drug administration), duration (how
long the patient has been taking the medicine), frequency (the frequency of
drug use), time_elapsed (the time elapsed after the drug was administered to
the occurrence of the side effect), indication (the target disorder of the medicine
administration), combination_drug (the drugs used in combination), effect (the
side effect in the adverse event or the beneficial effect in the potential therapeutic
event). Sentence: <SENTENCE> Output:




Pipeline Stage 1:

Extract adverse events and potential therapeutic events in the sentence, as well
as the information about the subject (the patient), the treatment and the effect
of the treatment involved in the event. Return the output in json format as this:
[{"event_type": event type, "subject": span of subject information, "treatment":
span of treatment information, "effect": span of effect information}]. Event
type: adverse event, potential therapeutic event. Sentence: <SENTENCE>
Output:

Stage 2: Answer the question related to the given sentence and given event
information. The answer should be a span exactly extracted from the sen-
tence. If no answer can be found from the sentence, return N/A. Sentence:
<SENTENCE> Event: Event type: <EVENT_TYPE> Subject: <SUBJECT>
Treatment: <TREATMENT> Effect: <EFFECT>. <QUESTION>

Questions for each sub-argument type:

age: What'’s the age of the subject?

gender: What’s the gender of the subject?

race: What’s the race or the nationality of the subject?

population: How many subjects are involved in the event?

subject_disorder: What disorders do the subjects suffer from?

drug: What drugs are administered to the subject?

dosage: What amount of the drug is administered to the subject?

route: What route is the drug given to the subject?

duration: How long have the subject been taking the drug until the event oc-
curred?

frequency: How frequently does the subject take the drug?

time_elapsed: How long has elapsed since the patient started or ended dosing
until the event occurred?

indication: What’s the target disease of the treatment?

combination_drug: What drugs are used in combination in the event

Table A4: Instructions for zero-shot prompting. <SENTENCE> is replaced with the query sentence. In the second
stage of the pipeline prompting, <KEVENT_TYPE>, <SUBJECT>, <TREATMENT>, <EFFECT> are replaced
with the generated results from the first stage, and <QUESTION> is replaced with manually crafted questions for
each argument type. To enhance clarity, we substitute the argument type ‘treatment_disorder’ in the dataset with
‘indication’ when querying ChatGPT.
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Sentence: <SENTENCE> The events involved in the sentence are: <OUTPUT> Event type: adverse
event (an event shows the use of a drug or combination of drugs cause a harmful effect on the human
patient), potential therapeutic event (an event shows the use of a drug or combination of drugs bring
a potential beneficial effect on the human patient). Argument type: subject (overall description of
the patients involved in the event), age (the concrete age or an age range of the subject), gender
(the subject’s gender), race (the subject’s race or nationality), population (the number of patients
receiving the treatment), subject_disorder (the subject’s disorders), treatment (overall description
of the therapy administered to the patients), drug (the drugs used as therapy in the event), dosage
(the amount of the drug is given), route (the route of the drug administration), duration (how long
the patient has been taking the medicine), frequency (the frequency of drug use), time_elapsed (the
time elapsed after the drug was administered to the occurrence of the side effect), indication (the
target disorder of the medicine administration), combination_drug (the drugs used in combination),
effect (the side effect in the adverse event or the beneficial effect in the potential therapeutic event).
Generate a sentence with an adverse event which has a similar structure as the given sentence, and
extract the events in the generated sentence. The drug <CONST_DRUG> must appear in the event,
and the effect should be <CONST_EFFECT>. Return in the following json format: {"sentence":the
generated sentence, "output": [{"event_type": event type, "event_trigger": the token indicating the
existence of the event, "arguments":[{"argument_type": argument type, "argument_span":argument
extraction}]}]}. Return the json output only.

Table AS: The prompt used to query ChatGPT for generating synthesized instances for ADE cases, with <SEN-
TENCE> representing an example sentence from the training set, <OUTPUT> representing the annotation of the
example sentence, <CONST_DRUG> and <CONST_EFFECT> representing a pair of sampled drug and effect from
the training set.
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