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ABSTRACT

Assessing the aesthetic quality of graphic design is central to visual communi-
cation, yet remains underexplored in vision–language models (VLMs). We in-
vestigate whether VLMs can evaluate design aesthetics in ways comparable to
humans. Prior work faces three key limitations: benchmarks restricted to narrow
principles and coarse evaluation protocols, a lack of systematic VLM compar-
isons, and limited training data for model improvement. In this work, we in-
troduce AesEval-Bench, a comprehensive benchmark spanning four dimensions,
twelve indicators, and three fully quantifiable tasks: aesthetic judgment, region
selection, and precise localization. Then, we systematically evaluate proprietary,
open-source, and reasoning-augmented VLMs, revealing clear performance gaps
against the nuanced demands of aesthetic assessment. Moreover, we construct
a training dataset to fine-tune VLMs for this domain, leveraging human-guided
VLM labeling to produce task labels at scale and indicator-grounded reasoning to
tie abstract indicators to concrete design regions. Together, our work establishes
the first systematic framework for aesthetic quality assessment in graphic design.

1 INTRODUCTION

The rapid development of vision-language models (VLMs) (Yang et al., 2025; Li et al., 2024a; Hurst
et al., 2024) has opened new opportunities for understanding and acting upon multimodal informa-
tion. While they have already achieved remarkable progress in traditional vision tasks such as image
captioning (Lin et al., 2024b; Luo et al., 2024; Li et al., 2025b) and visual question answering (An
et al., 2024; Zhang et al., 2024; Lin et al., 2025), VLMs are increasingly expected to contribute to
new applications. Among these, graphic design—which integrates textual and visual elements to
convey information across advertising, branding, and digital media—represents a promising direc-
tion given its broad societal and practical impact. Crucially, the success of graphic design critically
depends on its aesthetic quality, shaped by principles such as balance, contrast, and hierarchy.

In this work, we aim to explore a central question: can VLMs understand and evaluate aesthetic
quality of graphic design in a manner comparable to humans? This question is of significant im-
portance for at least three reasons. First, it can assist human designers by identifying where a design
falls short and explaining why, thereby enabling more effective improvement. Second, for generative
AI systems, it provides the basis for automatic feedback loops that can guide iterative refinement
without extensive human intervention. Third, it suggests an opportunity to extend VLMs beyond
factual recognition toward aesthetic evaluation.

Despite its importance, research along this direction remains limited (see Table 1). First, benchmarks
are inadequate. Those (Zhou et al., 2024; Huang et al., 2024) developed for natural photos often ig-
nore design-specific factors such as typography, while early ones for graphic design typically cover
only a narrow subset of design principles (Lin et al., 2023; 2024a; Jiang & Chen, 2025). Moreover,
existing evaluation protocols are limited. Scoring-based methods fail to indicate where poor aesthet-
ics occur (Haraguchi et al., 2024), while description-based ones provide qualitative feedback that is
difficult to quantify (Jung et al., 2025). Second, comparisons between VLMs are missing. There
has been no systematic evaluation across different VLMs, whether open-source or closed-source, in
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the context of design aesthetics. Third, training datasets are lacking, leaving the question of how to
further improve VLM performance in this domain underexplored.

As a first step toward addressing these limitations, we introduce AesEval-Bench, a new benchmark
for evaluating the aesthetic quality of graphic designs (see Figure 1). Drawing on prior literature (Li
& Chen, 2009; Wangwiwattana & Meeyen, 2024), we identify four critical dimensions—typography,
layout, color, and graphics—that together comprehensively capture design aesthetics. These dimen-
sions reflect the major factors that humans consistently emphasize when assessing visual appeal. To
provide finer granularity, we further define twelve indicators that specify concrete aspects within
each dimension, such as hierarchy and legibility under typography. For each indicators, we then de-
sign three challenging tasks: 1) aesthetic judgment, which asks models to decide whether a design
is aesthetically pleasing (yes/no), providing a straightforward measure of overall perception; 2) re-
gion selection, which requires models to choose from candidate regions where unpleasing elements
appear, testing their ability to pinpoint problematic areas beyond a global judgment; 3) precise local-
ization, which challenges models to predict the exact bounding box (bbox) coordinates of unpleasing
areas, offering the most detailed diagnosis and reflecting a deeper understanding of aesthetics. Un-
like prior benchmarks (), AesEval-Bench not only covers a broad range of aesthetic factors through
its dimensions and indicators, but also defines evaluation tasks that are fully quantifiable via choice
or bbox prediction formats, enabling systematic and reproducible assessment of design aesthetics.

With AesEval-Bench, we systematically evaluate VLMs on their ability to assess the aesthetic qual-
ity of graphic designs (see Table 1). For each design, models perform three tasks across twelve
indicators. We use human annotation as ground truth, and measure performance by accuracy (for
aesthetic judgment and region selection) and bbox IoU (for precise localization). Overall, our results
reveal clear gaps between current state-of-the-art VLMs and the nuanced demands of aesthetic qual-
ity assessment. Specifically, proprietary VLMs (e.g., GPT series (Achiam et al., 2023)) outperform
open-source ones (e.g., Qwen-VL (Wang et al., 2024), Intern-VL (Zhu et al., 2025), LLaVA (Liu
et al., 2023)). Among open-source models, larger variants (32B, 72B) generally achieve better
performance than smaller ones (3B, 7B). Surprisingly, reasoning-augmented VLMs (e.g., GPT-
o1 (Jaech et al., 2024), GPT-o3, Gemini-2.5-Pro (Comanici et al., 2025)) offer no clear advantage
over their non-reasoning counterparts. Together, these findings expose the limitations of existing
VLMs and underscore the need for domain-specific training tailored to aesthetic quality assessment.

Building on these findings, we move beyond evaluation and turn to training VLMs for aesthetic
quality assessment. To this end, we construct a training dataset consisting of three components: the
task (what the model is asked to do), the task label (the expected answer), and the reasoning path
(the explanation leading to the answer) (see Figure 2). We treat the reasoning path as essential,
since generic reasoning has shown little benefit. However, constructing such data poses two key
challenges: producing task labels at scale is costly, and generating reasoning paths that genuinely
improve performance requires new approaches. To address these, we introduce two solutions. First,
human-guided VLM labeling, where a small set of human annotations serve as in-context exam-
ples to instruct powerful VLMs in producing task labels. This approach maintains alignment with
human understanding while reducing manual annotation costs. Second, indicator-grounded reason-
ing, where abstract indicators (e.g., hierarchy or layering) are explicitly tied to concrete regions in
the design. Each reasoning path consists of bounding-box coordinates linked to the indicator and
textual explanations for their relevance, providing fine-grained and interpretable supervision. We
fine-tune VLMs with the task as input and both the reasoning path and the task label as supervision,
and evaluate on AesEval-Bench. The results show consistent performance gains across all tasks and
indicators (e.g., 7.97%, 7.70% and 17.17%), demonstrating that human-guided VLM labeling yields
reliable labels and indicator-grounded reasoning supplies effective supervision.

To sum up, our contributions are as follows:

• We introduce AesEval-Bench, a comprehensive benchmark for assessing aesthetic quality
of graphic designs spanning four dimensions, twelve indicators and three quantifiable tasks.

• We systematically evaluate proprietary, open-source, and reasoning-augmented VLMs, re-
vealing clear performance gaps in aesthetic quality assessment.

• We construct a training dataset to fine-tune VLMs for this domain. Our approach intro-
duces human-guided VLM labeling to produce task labels at scale and indicator-grounded
reasoning to tie abstract indicators to concrete design regions. Experiments on AesEval-
Bench show that this dataset consistently improves performance across all tasks.
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Table 1: A comparison of AesEval-Bench with existing benchmarks for both image aesthetics and
design aesthetics. We highlight key differences in their scale, task formats, source data, covered
design dimensions, and the inclusion of reasoning paths.

Benchmark #Data Task
Format Source Source Type

Dimension
Training Set Reasoning Path Open-source

Font Layout Graphics Color

Image Aesthetics Benchmark

AesBench
(Huang et al., 2024) ∼10k Free-form Photographic

Image Image-only × × ✓ ✓ × × ✓

UNIAA-Bench
(Zhou et al., 2024) ∼6k Free-form Photographic

Image Image-only × ✓ × ✓ × × ✓

FineArtBench
(Jiang & Chen, 2025) - Choice

Free-form
Art Work +

Photographic Image Image-only × × × ✓ × ✓ ×

Design Aesthetics Benchmark

DesignBench
(Lin et al., 2023) - Choice

Free-form Graphic Design Image+Json ✓ ✓ × ✓ × × ✓

DesignProbe
(Lin et al., 2024a) ∼1.6k Choice Graphic Design Image+Json ✓ ✓ × ✓ × × ×
GPT-Eval Bench

(Haraguchi et al., 2024) ∼2k Scoring Graphic Design Image+Json × ✓ × × × × ×
UI-Bench

(Jung et al., 2025) ∼3k Choice
Description UI Design Image-only ✓ ✓ × ✓ × × ×

UICrit
(Jung et al., 2025) ∼3k Free-form

Bbox regression UI Design Image-only ✓ ✓ × ✓ × × ✓

AesEval-Bench (Ours) ∼4.5k Choice
Bbox Regression Graphic Design Image+Json ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 RELATED WORKS

Aesthetic Quality Assessment. Aesthetic quality assessment (Deng et al., 2017) aims to automat-
ically evaluate visual appeal, serving as a computational proxy for human judgment. Within this
area, two major lines of research have emerged (see Table 1). Image aesthetics assessment (Huang
et al., 2024; Zhou et al., 2024; Jiang & Chen, 2025) focuses on photographic images, where quality
is determined by factors such as color harmony, lighting, and subject placement. Design aesthetics
assessment (Lin et al., 2023; 2024a; Haraguchi et al., 2024; Jung et al., 2025) targets graphic designs
such as posters, advertisements, or user interfaces, which depend on design-related factors including
typography, hierarchy, and alignment. Our work falls within design aesthetics assessment.

Despite its importance, design aesthetics assessment remains underexplored. Existing benchmarks
capture only a narrow subset of design dimensions. For instance, (Lin et al., 2024a) omits graphics-
related factors, while (Haraguchi et al., 2024) ignores both fonts and graphics. Furthermore, their
task formulations lack rigor. Some adopt free-form question answering, which is difficult to quan-
tify (Lin et al., 2023), while others provide only holistic scores without identifying problematic
regions, limiting interpretability and actionability (Jung et al., 2025). Our work introduces a bench-
mark that comprehensively covers design-related aesthetic factors across font, layout, graphics and
color, defining well-structured and quantifiable tasks using choice and bbox prediction formats.

Vision-Language Models (VLMs). Vision-Language Models (VLMs) (Wang et al., 2024; Co-
manici et al., 2025; Li et al., 2024a) have achieved remarkable performance on tasks such as image
captioning (Luo et al., 2025; Li et al., 2024b; Zhang et al., 2025b) and visual question answering (An
et al., 2024; Lin et al., 2024b; Luo et al., 2024). Yet, their ability to assess the aesthetic quality of
graphic designs remains largely unexplored. Prior work typically evaluates only one or two VLMs
(e.g., (Haraguchi et al., 2024) studies GPT). We provide a systematic comparison across a broad set
of popular VLMs, including proprietary, open-source, and reasoning-augmented models.

Recently, increasing attention has been devoted to the reasoning capabilities of VLMs (Li et al.,
2025a; Zhang et al., 2025a). For example, (Sarch et al., 2025) employs tree-based search to improve
reasoning chains, (Li et al., 2025a) visualizes reasoning trajectories for transparency, and (Sun et al.,
2024; Shao et al., 2024; Cao et al., 2025; Wu et al., 2025) explores grounded visual reasoning by
jointly generating bounding boxes and textual explanations. In our work, we observe that generic
reasoning in current VLMs provides limited benefit for assessing design aesthetics. To address this,
we construct a training dataset with reasoning paths that explicitly link abstract design indicators
to concrete regions of the design. Unlike grounded visual reasoning, which localizes semantically
salient entities (e.g., a “dog” or “chair”), our regions are indicator-centric, capturing higher-level
concepts such as hierarchy, alignment, and spacing that directly embody design principles.
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Figure 1: Overview of AesEval-Bench. (A) The four dimensions and twelve indicators considered
in the benchmark. Numbers inside the circles indicate how many designs are labeled as flawed for
each indicator. (B) Example designs illustrating the indicators, with regions exhibiting aesthetic
issues highlighted by red boxes. Detailed textual explanations of all indicators are provided in the
Appendix. (C) The three tasks, along with example questions and their expected answers.

3 BENCHMARK CONSTRUCTION

3.1 OVERVIEW

AesEval-Bench formulates design aesthetics assessment as a question–answering task. The input
contains a task description and a design image, optionally accompanied by metadata such as layout,
font, or color information in JSON format. The output is the answer corresponding to the task.

To capture different aspects of design aesthetics assessment, we introduce three task types (Fig-
ure 1(C)): 1) aesthetic judgment asks whether a design is aesthetically pleasing (yes/no), providing
a measure of overall perception. 2) region selection requires choosing from candidate regions where
aesthetic issues appear, testing the ability to localize problematic areas beyond a global judgment. 3)
precise localization requires predicting the exact bounding box coordinates of problematic regions,
offering a fine-grained diagnosis. Each task is accompanied by the explanation of an indicator—the
key factor humans consistently emphasize when evaluating visual appeal (e.g., hierarchy, layering,
contrast). We consider twelve indicators (Figure 1(B)), grouped into four dimensions (Figure 1(A)).

For design images, we sample 1500 designs from the test split of Crello dataset (Yamaguchi, 2021),
which contains professional graphic designs with both the design image and its metadata. The
expected answers differ across tasks. For aesthetic judgment, the answer is yes or no. For region
selection, it is the index of one region among four candidates. For precise localization, it is the
bounding box coordinates of the identified region or None if the design has no aesthetic issues.

Overall, AesEval-Bench comprises 4500 base question–answer pairs (three tasks across 1500 de-
signs), each further instantiated across twelve indicators to enable fine-grained evaluation.

3.2 CURATION PIPELINE

Establishing Dimensions and Indicators. Aesthetic quality in graphic design is inherently mul-
tidimensional. To define a rigorous benchmark, we first conducted a comprehensive literature re-
view of classical and contemporary design principles (McCormack & Lomas, 2020; Lou et al.,
2022; Lu et al., 2020). We then consulted professional designers to refine this taxonomy, ensur-
ing alignment with both theoretical foundations and practical expertise. This process yielded four
core dimensions—layout, font, graphics, and color (Figure 1(A))—each further specified by con-
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Figure 2: (A) Illustration of two key steps in training data construction. Human-guided VLM label-
ing enables scalable determination of whether designs exhibit aesthetic issues. Indicator-grounded
reasoning generates reasoning paths that explicitly link abstract indicators to concrete design regions
(represented as bbox coordinates). (B) Example highlighting the difference between non-reasoning
models, generic reasoning models, and our indicator-grounded reasoning model.

crete indicators consistently emphasized in human aesthetic judgment. In total, we distilled twelve
indicators that together capture the essential factors of design aesthetics (Figure 1(B)).

Constructing Potentially Flawed Designs. As introduced in Section 3.1, the design images in
AesEval-Bench are sourced from the Crello dataset, which contains professional-quality graphic de-
signs. To effectively evaluate design aesthetics, the benchmark must include not only well-designed
but also less appealing examples. We therefore repurpose Crello by introducing controlled perturba-
tions, such as repositioning elements, altering font choices, or adjusting colors. These perturbations
may either degrade the visual quality or leave it largely intact. For example, slightly enlarging a
heading might preserve hierarchy, whereas shifting it left could disrupt balance. Each base design
undergoes one to three random perturbations, generating a spectrum of variations that range from
aesthetically unchanged to noticeably flawed, while still appearing realistic. Since Crello Yam-
aguchi (2021) provides element-level metadata in JSON format along with separate design layers,
these perturbations can be applied directly at the JSON level and rendered into new design images
by recombining the modified metadata with the corresponding layers.

Human-in-the-Loop Aesthetic Review. We engage human annotators to verify whether the per-
turbed designs truly exhibit aesthetic issues. Before annotation, all annotators receive a tutorial
that includes examples of both well-designed and flawed cases, along with detailed explanations of
the underlying reasons. During the review, each annotator is shown a design image together with
a description of the focal indicator and asked to determine whether the design contains the corre-
sponding flaw (yes or no). For each design, we derive the final label by applying majority voting
across multiple annotators to ensure consensus.

Generating Question-Answer Pairs. With metadata in JSON format, records of applied perturba-
tions and human annotations, we can systematically construct answers corresponding to each task.
For aesthetic judgment, the rule is straightforward: if human annotators label a design as good, the
ground-truth answer is no (i.e., no aesthetic issue); otherwise, it is yes. For region selection, if a
design is labeled as good, the four answer choices consist of three randomly sampled bboxes from
the metadata and a None option, with the ground-truth answer being None. If the design is labeled
as flawed, the four choices include the bbox of the perturbed element, two randomly sampled bboxes
from the metadata, and None, with the ground-truth answer set to the bbox of the perturbed element.
For precise localization, if a design is labeled as good, the ground-truth answer is None; otherwise,
it corresponds to the exact bbox of the perturbed element.
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3.3 EVALUATION PROTOCOLS

For aesthetic judgment and region selection, both formulated as choice problems, we adopt accuracy
as the metric, measuring the exact match between model predictions and the ground truth. For
precise localization, the task combines two components: a choice problem (predicting None when
no aesthetic issue exists) and a bounding box regression problem (predicting the exact bbox when
an issue is present). Accordingly, we use accuracy for cases where the ground truth is None, and
intersection over union (IoU)—which quantifies the overlap between the predicted and ground-truth
bboxes—for cases where a bbox is required.

4 TRAINING DATA CONSTRUCTION

Evaluation on popular VLMs reveals clear gap between the capabiliteis of current state-of-the-
arts VLMs and the nuanced requirements of aesthetic quality assessment. Moreover, reasoning-
augmented VLMs show no clear performance gains (see Section 5.1).

To this end, we construct a training dataset, named AesEval-Train, to fine-tune VLMs for this do-
main. First, we adopt the same procedure as benchmark construction to construct potentially flawed
designs (see Section 3.2). Next, since relying solely on human annotation to determine whether
perturbed designs exhibit aesthetic issues is neither scalable nor cost-effective for training at large
scale, we introduce human-guided VLM labeling. Then, we follow the benchmark construction to
generate question–answer pairs (see Section 3.2). Finally, we introduce indicator-grounded rea-
soning to generate domain-specific reasoning paths aimed at improving task performance. In the
following, we describe in detail the two steps that differ from benchmark construction.

Human-Guided VLM Labeling. We leverage a small set of human annotations as demonstrations,
together with the bbox coordinates of perturbed regions, as input to strong VLMs. The model is
instructed to generate a binary label indicating whether the perturbed design exhibits an aesthetic
issue (see Figure 2(A)). By incorporating human annotations, we preserve alignment with human
judgment while substantially reducing manual annotation costs. Moreover, providing the perturba-
tion region as a prior, which is unavailable in real-world scenarios, simplifies the labeling process
and improves reliability. With these two sources of guidance, while the generated labels may not be
perfectly accurate, they yield a training set of sufficient quality to enhance fine-tuning performance.

Indicator-Grounded Reasoning. As illustrated in Figure 2(B), generic reasoning often explains
or analyzes a given indicator and task without grounding the discussion in relevant regions of the
design. To address this limitation, we propose explicitly linking abstract indicators to concrete
regions within the design. Specifically, we include both the bounding box (bbox) coordinates of
relevant regions and textual explanations of their relevance to the indicator in the reasoning path.

To obtain such reasoning paths, we instruct powerful VLMs (e.g., GPT in our experiments) by
providing them with the bbox coordinates of the target regions and the corresponding design layers
(Figure 2(A)). The model is required to output the provided coordinates alongside an explanation
of how the region relates to the indicator, thereby ensuring that the reasoning path consistently
contains the desired information. We further adopt task-specific strategies to determine the regions
of interest. For aesthetic judgment, we directly use the bbox of the perturbed regions. For region
selection, we include both the perturbed and non-perturbed regions to strengthen the model’s ability
to discriminate among candidate regions. For precise localization, we not only highlight the bbox of
perturbed regions but also emphasize their relationship to the overall design, enabling the model to
better localize problematic regions within the global design context.

5 EXPERIMENT

5.1 BENCHMARKING VLMS ON AESEVAL-BENCH

Setups. We conduct a comprehensive evaluation of 10 VLMs spanning diverse model families
and parameter scales. For non-reasoning models, we consider open-source representatives such as
LLaVA (Liu et al., 2023), Qwen2.5-VL (Bai et al., 2025), and Intern-VL3 (Zhu et al., 2025), as well
as closed-source GPT models (Jaech et al., 2024). For reasoning-augmented models, we evaluate
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Table 2: Evaluation on aesthetic judgment task. Overall acc is the average value of all indicators.

Model Overall Acc Layout Color Font Graphics
balance layering whitespace alignment harmony contrast appeal psycholoy legibility hierarchy quality relevance

Non-reasoning Models
LLaVA-7B 0.5343 0.5488 0.5066 0.5135 0.5704 0.6061 0.6161 0.1185 0.0642 0.6815 0.6131 0.6509 0.5572

LLaVA-13B 0.5636 0.5982 0.4539 0.6451 0.6235 0.3887 0.1885 0.2091 0.2327 0.7136 0.7736 0.6862 0.6209
Qwen-VL-3B 0.5643 0.5862 0.5925 0.5925 0.5652 0.5731 0.5157 0.4989 0.6146 0.5720 0.5336 0.5583 0.5409
Qwen-VL-7B 0.6190 0.8314 0.4150 0.7918 0.8255 0.8065 0.9178 0.3651 0.0997 0.9472 0.2742 0.8225 0.3812

Qwen-VL-32B 0.6258 0.6066 0.4993 0.6166 0.6245 0.5613 0.5080 0.4252 0.1166 0.7327 0.6922 0.7012 0.8305
Qwen-VL-72B 0.6524 0.6361 0.6334 0.6540 0.6140 0.6330 0.7213 0.2029 0.1756 0.8348 0.7261 0.7038 0.8243
Intern-VL3-8B 0.6331 0.4043 0.5878 0.7003 0.7177 0.2913 0.2755 0.2508 0.4606 0.8912 0.6377 0.7997 0.8917
Intern-VL3-14B 0.6883 0.6982 0.3402 0.7139 0.7177 0.7282 0.8170 0.4852 0.1488 0.7885 0.7880 0.7949 0.7305

GPT-4o 0.7031 0.7423 0.6624 0.6432 0.4523 0.7964 0.8025 0.8072 0.3127 0.7342 0.7179 0.7692 0.7995
GPT-5 0.7252 0.7962 0.7416 0.6859 0.6094 0.6537 0.7959 0.3584 0.4821 0.7056 0.7003 0.8607 0.8135

Reasoning-augmented Models
GPT-o1 0.6705 0.7225 0.7372 0.5363 0.3239 0.6990 0.5280 0.7268 0.6591 0.6890 0.7107 0.7359 0.7871
GPT-o3 0.7105 0.7225 0.7372 0.6363 0.3739 0.7490 0.6780 0.7768 0.6091 0.7390 0.7107 0.7859 0.7371

Gemini-2.5-Pro 0.6368 0.7403 0.6972 0.5984 0.5137 0.7381 0.6543 0.6824 0.5652 0.5936 0.7045 0.5265 0.6851

Expert Models for Image Aesthetics Assessment
AesExpert-7B 0.4056 0.4863 0.3980 0.3155 0.4474 0.2855 0.3985 0.3091 0.2156 0.2508 0.4911 0.6004 0.4742

UNIAA-LLaVA 0.2900 0.1065 0.0792 0.1143 0.0879 0.1405 0.1988 0.1713 0.1745 0.1565 0.3938 0.1082 0.1551

Table 3: Evaluation on region selection task. Overall acc is the average value of all indicators.

Model Overall Acc Layout Color Font Graphics
balance layering whitespace alignment harmony contrast appeal psycholoy legibility hierarchy quality relevance

Non-reasoning Models
LLaVA-7B 0.5500 0.6077 0.4023 0.5524 0.5925 0.6709 0.5950 0.6166 0.7140 0.6551 0.4107 0.5466 0.4218

LLaVA-13B 0.6065 0.5714 0.5604 0.5503 0.5809 0.6062 0.5057 0.6210 0.6747 0.6021 0.6894 0.6220 0.5636
Qwen-VL-3B 0.3377 0.3264 0.3181 0.3791 0.3207 0.4311 0.3617 0.3181 0.3302 0.3349 0.3838 0.3060 0.2839
Qwen-VL-7B 0.5295 0.4527 0.4769 0.5147 0.4842 0.5221 0.4832 0.4811 0.5783 0.5373 0.5778 0.6157 0.5089

Qwen-VL-32B 0.5911 0.5255 0.3119 0.4334 0.4574 0.5000 0.6787 0.6089 0.5457 0.7555 0.5600 0.6972 0.6855
Qwen-VL-72B 0.6626 0.4822 0.5556 0.4264 0.5065 0.5694 0.6942 0.6212 0.7657 0.7445 0.7651 0.7077 0.7732
Intern-VL3-8B 0.5799 0.5118 0.4824 0.5482 0.5239 0.5403 0.5444 0.5681 0.6218 0.6459 0.6033 0.5907 0.6291
Intern-VL3-14B 0.6378 0.5776 0.5108 0.5849 0.5649 0.6186 0.6901 0.6323 0.6938 0.7148 0.6774 0.6013 0.6722

GPT-4o 0.6745 0.4332 0.4512 0.4625 0.5629 0.7024 0.8209 0.6784 0.7753 0.6251 0.8698 0.6062 0.6483
GPT-5 0.6989 0.6405 0.5850 0.6551 0.6317 0.7150 0.7135 0.7431 0.6768 0.7959 0.7486 0.6874 0.6991

Reasoning-augmented Models
GPT-o1 0.6347 0.6065 0.5492 0.6143 0.5680 0.5924 0.6069 0.6626 0.7480 0.6066 0.6838 0.5682 0.5051
GPT-o3 0.6581 0.6378 0.6158 0.5220 0.3548 0.8167 0.5381 0.7008 0.7876 0.6481 0.7639 0.6496 0.7361

Gemini-2.5-Pro 0.6100 0.6264 0.6435 0.5550 0.2446 0.5504 0.5992 0.6132 0.5504 0.5618 0.5993 0.5150 0.6059

Expert Models for Image Aesthetics Assessment
AesExpert-7b 0.2883 0.2954 0.2280 0.3174 0.2631 0.3426 0.2646 0.3176 0.3176 0.3176 0.2588 0.2765 0.2602

UNIAA-LLaVA 0.2418 0.1510 0.2806 0.1443 0.3966 0.1591 0.1407 0.1651 0.2370 0.2668 0.3687 0.2752 0.1859

GPT-o1, GPT-o3, and Gemini-2.5-Pro (Comanici et al., 2025). In addition, we include expert models
specifically designed for image aesthetic assessment, namely AesExpert (Huang et al., 2024) and
UNIAA-LLAVA (Zhou et al., 2024). All models are evaluated under the same input setting, which
consists of a question (see Figure 1), a design image, and metadata in JSON format.

Results. The performance of VLMs are evaluated following the protocols introduced in Section 3.3.
Specifically, in addition to reporting scores for each individual indicator, we also provide an overall
score computed as the average across all indicators.

Aesthetic Judgment. Table 2 presents the results. First, among non-reasoning models, GPT-5
achieves the highest performance, with an overall accuracy of 0.7252. This suggests that even
the strongest VLMs still struggle with design aesthetics assessment. Second, reasoning-augmented
models do not outperform their non-reasoning counterparts (e.g., GPT-o1 Jaech et al. (2024) and
GPT-o3 vs. GPT-4o Hurst et al. (2024) and GPT-5), indicating that generic reasoning provides
little benefit in this domain. Third, expert models designed for image aesthetics assessment per-
form worse overall, highlighting a substantial gap between design aesthetics and image aesthetics.
Finally, model performance varies across indicators. For instance, the Qwen-VL series tends to
perform better on legibility but worse on psychology compared to other VLMs.

Region Selection. Table 3 reports the results. First, VLM performance on this task is generally worse
than on aesthetic judgment, likely because it requires not only assessing whether a design is pleasing
but also identifying where flaws occur. Second, consistent with aesthetic judgment, GPT-5 achieves
the best performance, while reasoning-augmented models show no clear advantage. Finally, across
model families, larger models (e.g., 32B, 72B) typically outperform smaller ones (e.g., 3B, 7B).

Precise Localization. As described in Section 3.3, this task consists of two components, each eval-
uated separately: a choice problem, where the model predicts None if no aesthetic issue exists
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Table 4: Evaluation on precise localization task for the choice component where the model should
predict None if no aesthetic issues are present. Overall score is the average accuracy of all indicators.

Model Overall Score Layout Color Font Graphics
balance layering whitespace alignment harmony contrast appeal psycholoy legibility hierarchy quality relevance

Non-reasoning Models
LLaVA-13B 0.4455 0.4328 0.5935 0.5504 0.4519 0.3161 0.3528 0.2703 0.2279 0.7106 0.2258 0.5416 0.4378

Qwen-VL-72B 0.5192 0.4821 0.5556 0.4263 0.5064 0.4093 0.5342 0.5212 0.5056 0.4245 0.5051 0.5077 0.5132
GPT-4o 0.5680 0.6378 0.2024 0.5915 0.1640 0.8587 0.6333 0.7161 0.6674 0.4555 0.5125 0.7723 0.5579
GPT-5 0.6090 0.6314 0.6150 0.6918 0.6255 0.6065 0.6178 0.5651 0.5997 0.5472 0.6142 0.6225 0.5812

Reasoning-augmented Models
GPT-o1 0.5295 0.4527 0.4769 0.5147 0.4842 0.5221 0.4832 0.4811 0.5783 0.5373 0.5778 0.6157 0.5089
GPT-o3 0.5800 0.6077 0.4023 0.5524 0.6725 0.7709 0.6750 0.6166 0.7140 0.7551 0.4107 0.5466 0.4218

Gemini-2.5-Pro 0.6047 0.6065 0.5492 0.5143 0.5680 0.5924 0.6069 0.6626 0.7480 0.5066 0.6838 0.4082 0.5051

Expert Models for Image Aesthetics Assessment
AesExpert-7b 0.3377 0.3264 0.3181 0.3791 0.3207 0.4311 0.3617 0.3181 0.3302 0.3349 0.3838 0.3060 0.2839

Table 5: Evaluation on precise localization task for the bbox prediction component where the model
should output coordinates of the aesthetic issues. Overall score is the average IoU of all indicators.

Model Overall Score Layout Color Font Graphics
balance layering whitespace alignment harmony contrast appeal psycholoy legibility hierarchy quality relevance

Non-reasoning Models
LLaVA-13B 0.0559 0.0646 0.0073 0.0295 0.0165 0.1017 0.0785 0.0420 0.0296 0.0181 0.0095 0.1503 0.1153

Qwen-VL-72B 0.0935 0.0268 0.1011 0.1178 0.0907 0.1131 0.1216 0.0030 0.1008 0.1149 0.1094 0.1129 0.0238
GPT-4o 0.1712 0.1737 0.2889 0.1314 0.2467 0.0798 0.1268 0.0579 0.2101 0.2059 0.0501 0.2622 0.1185
GPT-5 0.1993 0.1609 0.1289 0.1820 0.1356 0.1572 0.1268 0.1272 0.3091 0.1488 0.1578 0.2410 0.2081

Reasoning-augmented Models
O1 0.1286 0.0772 0.0632 0.1277 0.1091 0.1584 0.0069 0.1411 0.1101 0.1305 0.1306 0.1777 0.1482
O3 0.1418 0.0510 0.1806 0.0443 0.2966 0.0591 0.0407 0.0651 0.1370 0.1668 0.2687 0.1752 0.0859

Gemini-2.5-Pro 0.0977 0.0567 0.1669 0.1101 0.0759 0.0809 0.0536 0.0539 0.2306 0.1012 0.0952 0.0994 0.1063

Expert Models for Image Aesthetics Assessment
AesExpert-7b 0.0327 0.0458 0.0221 0.0111 0.1102 0.0879 0.0081 0.0067 0.0136 0.0019 0.0366 0.0619 0.0085

(Table 4), and a bbox prediction problem, where the model outputs the exact bbox of the aesthetic
issue (Table 5). We exclude some VLMs (e.g., Intern-VL series and small Qwen-VL models) be-
cause they failed to produce meaningful bbox predictions. For the choice problem, VLMs achieve
reasonable performance, with the best model reaching an overall score of 0.6090. For the bbox
prediction problem, even the best-performing model, GPT-5, scores below 0.20, highlighting the
substantial difficulty of precisely localizing aesthetic issues.

Discussions on Input Components. When benchmarking VLMs, the input consists of three compo-
nents: (1) the question, which includes a detailed explanation of the target indicator; (2) the design
image; and (3) metadata in JSON format, containing layout, color, and font information. We analyze
the contribution of each component to model performance using GPT-4o as a representative exam-
ple. Figure 3 presents the results, where Full Model denotes the setting that uses all three compo-
nents; Without Images removes the design image; Without Explanation omits the detailed indicator
description; and Without Metainfo excludes the metadata. Our findings reveal three key insights.
First, across all tasks, the design image is indispensable—its removal results in the largest perfor-
mance drop. Second, indicator explanations have limited influence for more intuitive indicators
(e.g., balance), but they play a crucial role for subjective indicators (e.g., relevance or psychology),
where clearer definitions are necessary. Finally, metadata has the greatest effect on precise localiza-
tion, where its absence causes a larger decline in performance compared to aesthetic judgment or
region selection. We hypothesize that this is because metadata provides explicit layout information,
which aids bbox prediction in localization tasks.

5.2 FINE-TUNING VLMS WITH AESEVAL-TRAIN

Setups. We construct the training set following the pipeline described in Section 4, resulting in 30k
question–answer pairs. In our experiments, we use Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as a
representative model and adopt full-parameter finetuning on the constructed dataset. The learning
rate is set to 1e-6, with a cosine scheduler and a 3% warmup ratio. For computational efficiency,
training is performed with bfloat16 mixed precision and FlashAttention-2 (Dao et al., 2022). The
vision encoder is kept frozen, while the language model parameters are tuned.
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Figure 3: Results for model variants using different input components.

Table 6: Results and ablation study of fine-tuning VLMs using our constructed training set.

Model Setting Overall Score Layout Color Font Graphics
balance layering whitespace alignment harmony contrast appeal psycholoy legibility hierarchy quality relevance

Aesthetic Judgment (Accuracy)
Qwen-VL-7B (Base) 0.6190 0.8314 0.4150 0.7918 0.8255 0.8065 0.9178 0.3651 0.0997 0.9472 0.2742 0.8225 0.3812

+ AesEval-Train 0.6987 0.7123 0.6789 0.7215 0.6868 0.7031 0.6654 0.7329 0.6577 0.7436 0.6482 0.7096 0.7244
- Reasoning Path 0.6576 0.6511 0.6589 0.6413 0.6687 0.6309 0.6791 0.6207 0.6893 0.6115 0.6985 0.6508 0.6904

- Positive Samples 0.2072 0.2101 0.1999 0.2202 0.1893 0.2058 0.2147 0.1955 0.2246 0.1855 0.2296 0.2004 0.2108

Region Selection (Accuracy)
Qwen-VL-7B (Base) 0.5295 0.4527 0.4769 0.5147 0.4842 0.5221 0.4832 0.4811 0.5783 0.5373 0.5778 0.6157 0.5089

+ AesEval-Train 0.6065 0.5827 0.6108 0.5963 0.6289 0.5714 0.6236 0.6541 0.6412 0.6389 0.6487 0.5899 0.5915
- Reasoning Path 0.5795 0.5732 0.5279 0.5697 0.5322 0.5741 0.5322 0.5341 0.6283 0.5953 0.6318 0.6667 0.5885

- Positive Samples 0.5327 0.5089 0.5411 0.5257 0.5543 0.5013 0.5587 0.5291 0.5709 0.5212 0.5788 0.5146 0.4878

Precise Localization (IoU)
Qwen-VL-7B (Base) 0.0514 0.0067 0.1669 0.0101 0.0259 0.0109 0.0036 0.0039 0.2306 0.0012 0.0452 0.0994 0.0063

+ AesEval-Train 0.2231 0.2518 0.1982 0.3103 0.0857 0.2204 0.2846 0.1552 0.3901 0.0607 0.2313 0.1152 0.2745
- Reasoning Path 0.0782 0.1523 0.0211 0.1987 0.0095 0.0750 0.1204 0.0348 0.0812 0.0159 0.0555 0.0601 0.1139

- Positive Samples 0.0641 0.1452 0.0231 0.0888 0.0079 0.1711 0.0456 0.0613 0.0199 0.0924 0.0337 0.0578 0.0224

Main Results. Table 6 presents the results, where Qwen-VL-7B (Base) denotes the base model with-
out finetuning, and +AesEval-Train refers to the model finetuned on our constructed training set.
First, across all three tasks, finetuning with AesEval-Train yields substantial performance improve-
ments. Moreover, on aesthetic judgment, the finetuned model surpasses even the largest Qwen-VL
variant (72B parameters), and on precise localization, it outperforms GPT-5 despite the latter having
far more parameters. These results demonstrate that our proposed pipeline effectively constructs
training data that significantly enhances model performance.

Ablation Studies. We investigate the impact of different data recipes on model performance. Ta-
ble 6 reports the results, where -Reasoning Path denotes training with plain question–answer pairs
without the proposed indicator-grounded reasoning, and -Positive Samples denotes training only
on flawed designs. We observe that -Reasoning Path still improves performance across all three
tasks, suggesting that incorporating domain-specific knowledge of design aesthetics is beneficial.
However, its performance remains notably lower than that of the full variant with reasoning paths
(+AesEval-Train), underscoring the effectiveness of indicator-grounded reasoning. In addition, -
Positive Samples performs worse than both +AesEval-Train and -Reasoning Path, highlighting the
importance of maintaining label balance in the training set.

6 CONCLUSION

In this work, we introduce AesEval-Bench for design aesthetics assessment, which spans four di-
mensions, twelve indicators and three quantifiable tasks. Based on it, we systematically evaluate
proprietary, open-source and reasoning-augmented VLMs, revealing clear gaps in design aesthet-
ics assessment. Furthermore, we construct a training dataset to fine-tune VLMs for this domain.
Experiments show that this dataset significantly improves model performance across all tasks.

Limitations. First, as Crello serves as the source dataset, the benchmark does not cover all types of
graphic design, such as infographics or mobile UIs. Second, the considered indicators are not fully
disentangled, leaving room for a more refined and systematic taxonomy in future work. Third, highly
subjective aspects of design, such as creativity, are not included. Finally, leveraging reinforcement
learning to further enhance reasoning capabilities is left for future exploration.
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Dimension-Indicators Prompts:

Graphic-Quality: Resolution is a measure of image detail. Appropriate resolution ensures
the best picture quality and readability. Does element have quality issue?
Graphic-Relevance: Relevance refers to the direct connection between a graphic element
and the meaning it conveys. Does element have relevance issue?

Color-Harmony: Color Harmony refers to the overall coordination, pleasure and beauty
of the entire color when there are two or more colors in an image.
Color-Contrast: Color contrast refers to the contrasts, oppositions, and differences existing
among various colors.
Color-Appreal: Color appeal refers to the fact that the selection and combination of colors
can attract the attention of the audience.
Color-Psychology: Color psychology refers to the idea that color can trigger subjective
psychological experiences and influence emotions, feelings, and behaviors.

Layout-Balance: Balance is the distribution of visual weight in design. It can be sym-
metrical (with equal weights on both sides) or asymmetrical (with unequal weights but still
achieving visual balance).
Layout-Layering: Use size, color, contrast, and other visual cues to establish a hierarchical
structure of design elements to guide the audience’s eyes.
Layout-Whitespace: White space refers to the blank area around the elements in a design.
Effective utilization of white space can create balance, visual hierarchy, and clarity.
Layout-Alignment: Alignment refers to the arrangement of design elements relative
to each other or a specific axis or grid. Proper alignment creates a sense of order and
organization, making the design easier to understand and navigate.

Font-Hierarchy: The presentation of the font has a hierarchical structure, so users can scan
the text to obtain key information.
Font-Legibility: Legibility refers to the recognition of individual characters and the rela-
tionships between them when they are arranged side by side.

Table 7: Showcase of descriptions of each indicator.

Task Reasoning Instructions:

Aesthetic Judgment : Given the preview image and the element image and element
bounding box bbox, please reason why the element is not aesthetic in the aspect of criteria.
Your reason should only contain the analysis about criteria.Please think and reasoning.
Once the element is mentioned, you should add its bounding box after the element(only
bounding box).

Region Selection: Given a preview image, an image of an unsightly element and its
bounding box bbox[0], and an image of an attractive element and its bounding box bbox[1],
analyze why the first element is unsightly in terms of criteria based on the relationship
between the elements. Your reasoning should only include an analysis of criteria. Please
think and reason. Once an element is mentioned, you should add its bounding box after the
element (bounding box only).

Precise Localization: Given a preview image, an element image, and the element’s bound-
ing box bbox, analyze why the element is unsightly when viewed from the perspective of
criteria, based on their relationship. Your reasoning should only include analysis of criteria.
Think and reason. Once you mention the element, you should follow it with its bounding
box (only the bounding box).

Table 8: Showcase of task reasoning instructions.
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A STATEMENT OF LLM USAGE

Large language models (LLMs) were consulted for technical guidance during implementation and
debugging; following the collaborative drafting of the manuscript, we further employed LLMs to
refine the prose and enhance the overall exposition.

B PROMPTS AND INSTRUCTIONS

First, Dimension-Indicator Prompts establish a clear set of evaluation criteria. These are organized
into four core dimensions: Graphics, Color, Layout, and Font, each containing specific indicators
like Font-Legibility. As shown in Table 7, every indicator is defined and paired with a guiding
question to standardize the analysis.

Second, Task Reasoning Instructions (Table 8) provide operational guidance for creating the rea-
soning paths. They direct the analysis to focus on an element’s intrinsic flaws, its relationship with
other elements, or its immediate context, while critically mandating the inclusion of the element’s
bounding box (bbox) to ground the reasoning in precise spatial evidence.

C BENCHMARK SHOWCASE

In this section, we provide visual examples to better illustrate the evaluation criteria for the various
aesthetic dimensions within the AesEval-Benchmark. As shown in Table 9, Table 13, Table 16,
Table 14, Table 12, Table 11 and Table 15, each showcase presents a side-by-side comparison of
designs that exemplify positive and negative attributes for a specific criterion. These examples serve
to clarify the standards used for judging aspects such as layout alignment, color harmony, graphic
quality, and font legibility, offering a tangible guide to our benchmark’s methodology.

Benchmark Showcase

▷ Layout-Alignment, Graphic-Quality

Explanation: Clear background, center-aligned text. The background is blurry and the words in the middle
are not aligned.

Table 9: Examples of Layout-Alignment and Graphic-Quality in AesEval-Benchmark.
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Benchmark Showcase

▷ Font-Legbility

Explanation: The yellow font in the lower left corner
is clearly visible.

The yellow text in the lower left corner becomes
blurred and invisible.

Table 10: Examples of Font-Legbility in AesEval-Benchmark.

Benchmark Showcase

▷ Graphic-Relevance

Explanation: The background is a woman wearing a
mask, which is relevant.

The background is a beautiful landscape photo, which
does not fit the theme.

Table 11: Examples of Graphic-Relevance in AesEval-Benchmark.

Benchmark Showcase

▷ Layout-Whitespace, Layout-Layering

Explanation: The text is in the blank space , with no
blank space or overlap.

The text has been moved to the animal’s feet, resulting
in white space below and stacked elements.

Table 12: Examples of Layout-Whitespace and Layout-Layering in AesEval-Benchmark.
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Benchmark Showcase

▷ Layout-Balance

Explanation: The overall layout of the picture is bal-
anced and coordinated.

The background of the picture is moved upwards, and
the balance of the whole picture is broken.

Table 13: Examples of Layout-Balance in AesEval-Benchmark.

Benchmark Showcase

▷ Layout-Hierarchy

Explanation: All the fonts in the picture are consis-
tent, which gives a sense of hierarchy.

The font in the picture is disturbed and looks like it is
not on the same level as the previous font. There is no
sense of hierarchy.

Table 14: Examples of Layout-Hierarchy in AesEval-Benchmark.

Benchmark Showcase

▷ Graphic-Quality, Color-Contrast

Explanation: Clear background, blue and white col-
ors have good contrast.

The background is blurred and the color changes from
white to blue, with no contrast to the background.

Table 15: Examples of Graphic-Quality and Color-Contrast in AesEval-Benchmark.
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Benchmark Showcase

▷ Color-Harmony, Color-Appealing, Color-Psychology

Explanation: The whole picture has harmonious and
beautiful colors.

The middle element turns green, which makes the
whole picture look disharmonious and unappealing.
Green is strange and cause bad psychological effects.

Table 16: Examples of Color-Harmony, Color-Appealing and Color-Psychology in AesEval-
Benchmark.

17


	Introduction
	Related Works
	Benchmark Construction
	Overview
	Curation Pipeline
	Evaluation Protocols

	Training Data Construction
	Experiment
	Benchmarking VLMs on AesEval-Bench
	Fine-tuning VLMs with AesEval-Train

	Conclusion
	Statement of LLM Usage
	Prompts and Instructions
	Benchmark Showcase

