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Abstract 

 
Crowd management is of paramount importance when it 

comes to preventing stampedes and saving lives, especially 
in countries like China and India where the combined 
population is a third of the global population. Millions of 
people convene annually all around the nation to celebrate 
a myriad of events and crowd count estimation is the 
linchpin of the crowd management system that could 
prevent stampedes and save lives. We present a network for 
crowd counting which reports state of the art results on 
crowd counting benchmarks. Our contributions are, first, a 
U-Net inspired model which affords us to report state of the 
art results. Second, we propose an independent decoding 
Reinforcement branch which helps the network converge 
much earlier and also enables the network to estimate 
density maps with high Structural Similarity Index (SSIM). 
Third, we discuss the drawbacks of the contemporary 
architectures and empirically show that even though our 
architecture achieves state of the art results, the merit may 
be due to the encoder-decoder pipeline instead. Finally, we 
report the error analysis which shows that the 
contemporary line of work is at saturation and leaves 
certain prominent problems unsolved.  
 

1. Introduction 

Crowd monitoring has always been integral to running a 
safe event. Historical analysis of the crowd monitoring data 
could be used to understand the crowd and help work out 
how many attendees to expect and plan events accordingly. 
Crowd counting can help with both monitoring and storing 
relevant historical data. In this paper, we not only present 
our attempt at solving the crowd counting problem, but also 
discuss our observations on the flow of contemporary line 
of work. Crowd counting is not a trivial problem and brings 
along various obstacles, like, occlusion, background noise 
and variations in illumination, distribution of people, scale 
and perspective. Solutions have come a long way since 
Lempitsky et al. [1] in tackling some of these issues. 
MCNN [2] attempts to tackle the problem with a multi-
branch architecture to handle scale variation and SANet [3] 
builds on the inception architecture to handle scale and 
build high resolution density maps to estimate accurate 
crowd count. Even though these architectures have 
produced incrementally better results, they have done so by 
focusing on one major obstacle in the crowd counting 

problem, i.e., scale-variance. On the other hand, some have 
tried to tackle the problem by data manipulation, generating 
density maps with adaptive gaussian kernels based on head 
detections [4] and improving crowd counting using inverse 
k-Nearest Neighbor maps [5]. We definitely have come a 
long way since Lempitsky et al. [1], but these independent 
efforts solve only the specific issues they are tackling. 
Considering this, we attempt to solve the crowd counting 
problem by focusing on scale-invariance and 
Reinforcement for background noise reduction, retaining 
structural similarity and improving convergence. 

SANet [3] reported state of the art results in 2018 and the 
output was primarily credited to the inception encoder 
module and high-resolution density map generated. The 
odd thing is that high resolution density map is not a 
documented necessity for accurate crowd counting. 
CSRNet [6] generates a density map that is at an eighth 
resolution compared to the input and its results on the crowd 
counting benchmark are only marginally worse than that of 
SANet. The addition of extra decoding layers in SANet 
alone makes it computationally heavy, ignoring the 
inception encoding module which is heavier. The 
upsampling in SANet is taken care of by the Transpose 
layers which adds checkerboard artifacts into the mix 
making it a soup sandwich. We have attended to this 
problem using Nearest neighbor interpolation as an 
alternative, as suggested in [7]. 

Scale-Aware Attention Network [4] presented an 
interesting multi-branch architecture with a soft attention 
mechanism that learnt a set of gating masks. Inspired by this 
mechanism, we implemented a "Attention" decoding 
branch trained as a classifier in our architecture to reinforce 
the final estimated density map. This branch, named 
"Reinforcement branch", is NOT an attention mechanism, 
rather, it is just a mechanism for the network to converge 
faster. Fig 3. shows the architecture of the Reinforcement 
branch. The Reinforcement branch and the Density map 
estimation (DME) branch are almost identical, except for 
the fact that the Reinforcement branch has an extra 
Conv1_1 layer followed by a Sigmoid layer. This extra 
convolution layer does not have ReLU or Batch 
Normalization. 

The proposed model is inspired by U-Net [8], we build a 
network on the same encoder-decoder pipeline with the 
additional Reinforcement branch. The encoder block of the 
U-Net is replaced by VGG16bn [9]. We empirically found 
that VGG16bn was the best backbone to use among 
VGG16bn, RESNET50[10] and an Inception [11] inspired 
feature extractor. In our experiments, we found that training 
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the network without the Reinforcement branch drastically 
slowed down the convergence. This was the main reason 
the Reinforcement branch was introduced as a binary 
classifier. The reinforcement network, when independently 
trained, converged quicker. but was useless in regards to 
crowd counting, whereas the Density Map Estimation 
(DME) branch was harder to train, but counted well. We 
combined the two with a joint loss, i.e., Binary cross 
entropy (BCE) Loss and Mean squared error (MSE) Loss 
and trained the network in an end to end fashion. 

To summarize, we make the following contributions: (i) 
We propose a modified network architecture that generates 
accurate density maps at half resolution compared to the 
input. (ii) We propose a Reinforcement branch for the 
network to converge quicker. (iii) Reporting results on 
crowd comparison benchmarks and comparing against 
competing approaches. (iv) Extensive ablation studies are 
conducted to show effectiveness of DME and 
Reinforcement branches working together, efficacy of 
VGG16bn as the backbone over ResNet50 and Inception 
modules, and replacing transpose layer with Nearest 
neighbor upsampling. (v) We finally discuss our error 
analysis and show the drawbacks of the current methods. 

2. Related Work 

A large variety of methods have been proposed to tackle 
the crowd counting problem. We can largely be bifurcated 
as conventional approaches and CNN based approaches. 

2.1. Conventional Approaches 

Early research on crowd counting primarily was focused 
on detection based counting [12]. Occlusion is the biggest 
obstacle in such solutions and the best you can do to 
minimize error is to detect smaller parts of the pedestrian 
like a face or head rather than an entire body. Even while 
detecting heads, in a densely crowded scenario, the scale 
variation makes it quite hard for the detection model to 
detect entities throughout the image. Another approach was 
to extract features from an image and map it to the count of 
people. These methods were almost entirely dependent on 
the feature extraction process and were limited to the 
adaptability of the feature extraction algorithm to test 
images. Similar regression based approaches built on this 
work and added features extracted from Fourier transforms 
[14], detections [12] and SIFT [13] to regress the count in 
an image. The main drawback of this line of work was that 
the global count was predicted but it ignored spatial and 
sematic information in the images. The importance of using 
both spatial and semantic information to regress the count 
is discussed in this TED encoder-decoder approach [15]. 

2.2. CNN-based approaches 

CNN-based approaches have shown great potential at 
solving crowd counting credited primarily to their 
representation learning ability and robustness. Wang et al. 
[16] proposed a solution where a modified AlexNet [17] 

`  
Fig. 1: Model output with groundtruth density maps 



 

was used directly for predicting count. Contemporary CNN 
based approaches mainly revolve around density map 
estimation and regressing the crowd count from the density 
map. Zhang et al. [18] proposed a CNN trained to estimate 
the density map and then regress the crowd count. 
Following this pattern, Walach and Wolf [19] attempted to 
better the system by using layered boosting and selective 
sampling. Shang et at.[20] proposed a network to predict 
local and global count from images. Zhang et al. [2] built a 
multi branch network dubbed Multi-column CNN (MCNN) 
to handle scale variations. Even though this work is 
commendable, it is limited to the number of branches in the 
network. Boominathan et al. [22] proposed a density map 
estimator which was a combination of shallow and deep 
networks. Sam et al. [23], inspired by MCNN, proposed 
Switch-CNN, an approach where instead of having one 
network handle input with scale variation, a classifier first 
classifies an image patch to select an appropriate regressor 
for the input scale. Li et al. [6] proposed a encoder decoder 
network, CSRNet, where the backbone was a pretrained 
VGG16[9] network and decoder was built with dilated 
convolution later. Even though the estimated density map 
was of an eighth resolution of the input, CSRNet was able 
to report state of the art results. A similar encoder decoder 
model, Xinkun et al. [3] proposed SANet which used 
inception modules in the encoder to handle scale variation 
and extract features and Transposed convolution layers in 
the decoder to upscale the feature map extracted. This 
method was able to build high resolution density map and 
beat CSRNet, albeit a marginal improvement. 

We observed that the most of the state-of-the-art 
contemporary approaches used the encoder decoder 
pipeline. They primarily focused on a backbone feature 
extractor which was scale invariant. As discussed in section 
1, we empirically found that VGG16bn worked the best for 

us as the feature extractor. As for the decoder, our proposed 
system outputs a density map that is at half the resolution 
of the input image. The resolution of the density map may 
or may not directly affect the results as a high-resolution 
map, like the one generated by SANet, only produces 
marginally better results than the low resolution one 
produced by CSRNet. The extra layer may introduce 
unnecessary complications and delay convergence of the 
network. We also attempt to reinforce the network with a 
Reinforcement decoder branch for faster convergence and 
also to keep a check on local pattern consistency. 

3. W-Net 

This section presents the details on W-Net. We will 
introduce network architecture first and then discuss the 
constituent branches in detail. 

3.1. Architecture 

As shown in Fig 2, our architecture is inspired from U-
Net [8]. U-Net was designed for biomedical image 
segmentation. The architecture consists of a “contracting 
path” to capture context and a symmetric “expanding path” 
that enables precise localization.  This encoder-decoder 
structure was what we built our network on. The W-Net has 
3 branches, first the encoder branch, followed by a split in 
the network which flows parallel to the Density Map 
Estimation (DME) branch and the Reinforcement branch. 
The Encoder branch extracts the multi-scale feature maps 
and the DME branch outputs the density map. The 
Reinforcement branch is used as to construct an auxiliary 
input which helps the network converge faster and keep 
local pattern consistency. 
Encoder Branch: The encoder branch is the feature 

 
Fig. 2: W-Net Model Architecture 



 

extractor in the encoder-decoder pipeline. We chose 
VGG16bn as our backbone after experiments on Shanghai 
Part B dataset with VGG16bn, ResNet50 and Inception 
based feature extractor as the encoder. The results of this 
experiment is discussed in section 6.2. Our results were 
corroborated by the choice of front-end for CSRNet which 
followed ideas proposed in [22,23,30]. We only use the 
feature extractor from VGG16bn and remove the 
classification section (fully connected layers). We carved 
out the first 13 layers from the pretrained VGG16bn from 
torchvision as our backbone. We use feature maps from 
B2_C2, B3_C3, B4_C3 and B5_C3 as shown in Fig. 2 as 
inputs to our decoder branch. Following U-Net, these inputs 
at different abstract levels help represent multi-scale 
features. 
DME and Reinforcement branch: The Decoder branches, 
i.e., DME and Reinforcement branch have a common 
structure which is described in Fig. 3. In this subsection, we 
will discuss the common structure first and then follow it 
up with the explaining the differences. First, the output of 
B5_C3 is upscaled using Nearest neighbor interpolation 
and then concatenated with the output of B4_C3. This 
concatenated input is given to Decoder Block 1 described 
in Fig 3. Decoder block 1 contains a conv1×1×256 and 
conv3×3×256. The output of Decoder Block 1 is upscaled 
and concatenated with the output of B3_C3. The same 
upscaling protocol is repeated before being fed to Decoder 
Block 2 which has a similar structure but is different only 
in terms of channel size which is described in Fig. 3. 
Finally, after another upscaling and concatenation with 
B2_C2, Decoder Block 3 outputs a feature map which is the 
final 32 channel output from the common structure for 
DME and Reinforcement branch. Now for the differences, 
the Reinforcement branch feeds the final output from 
Decoder Block 3 to a conv 1×1×1 followed by Sigmoid 
activation. This generates the Reinforcement map which is 
element-wise multiplied to the final output from Decoder 
Block 3 of the DME branch. This is fed to the last 
conv1×1×1 layer with ReLU activation which generates the 
final density map. 

3.2. Loss Functions 

For the loss function, we use a joint loss which consists 
of Mean Squared Error (MSE) and Binary Cross Entropy 
(BCE) loss. SANet uses SSIM loss to make sure that local 
correlation of the density map is not ignored, but in our 
case, we found that the Reinforcement branch, which is a 
classifier, converges quickly and can be used to influence 
the density map estimation branch. This way, we not only 
help the network converge quicker, but also helps us keep a 
check on the local correlation of the density maps. Table 5 
compares the Structural similarity of the density maps 
estimated with different methodologies and it clearly shows 
how structural integrity is maintained in our method.  

MSE loss: We chose MSE loss because of the insights 
shared by Hang et al. [24] in their study of Loss Functions 
for Image Restoration. One interesting property they shared 
was the fact that L2 provides the maximum likelihood 
estimate in case of independent and identically distributed 
Gaussian noise. SANet points to the fact that most 
contemporary work use Euclidean distance which is based 
on the pixel independence hypothesis and ignores the local 
correlation of the density maps. The reinforcement branch 
in our architecture is used to handle this issue and makes 
MSE loss a viable loss function. 
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where y is the predicted value, t is the target and N is the 
total number of pixels. 
Binary Class entropy: For the reinforcement branch, we 
used BCELoss for training this classifier. Binary cross 
entropy loss is defined as follows: 

 

 
Fig. 3: Decoder Branch Common Architecture 
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where y is the predicted value, t is the target class and N is 
the total number of pixels. 

The network is trained in an end to end fashion with a 
joint loss function L which is defined as: 

 
𝐿 =  (𝛼 × 𝐿ெௌா) + (𝛽 × 𝐿ா) (3) 

where a and b are used to balance the loss values and we 
empirically found that α=1000 and β=10 works optimally 
for training the network. 

4. Training and evaluation details 

In this section we discuss the details of the training and 
evaluation procedures. 
Density map generation: We generate density maps 
following the method described in [3]. We convert the 
ground truth to density maps by, convolving a Normalized 
Gaussian kernel over delta function δ(x-xi) where xi is a 
targeted object. 
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We also use a fixed spread parameter σ of the gaussian 
kernel to generate the density maps. In our experiments, we 
used a kernel of window size (µ)=15 and spread parameter 
(σ)=4. 

We attempted geometry-adaptive kernels as described in 
the work by Zhang et al. [6], where the spread parameter σ 
was a variable dependent on the average distance of K-
Nearest Neighbor. We define σ for each head to be 

 
σ = 𝛽𝑑ప

ഥ  (5) 

where β = 0.3 and ‘i’ is each head annotation. We found 
that the results for our network was considerably poorer 
when compared to using a fixed spread parameter. The 
comparison of the results based on the dataset generation is 
shown in Table 1. 

Reinforcement map generation: For the reinforcement 

maps, we used the same method as density generation but 
used a larger window size and spread parameter. Once the 
blurred map is generated, we use binary thresholding to 
create classification map to train the reinforcement branch. 
In our experiments, we used a threshold (th) = 0.001 and 
the classification map was computed using Equation (4). 

4.1. Training details 

We follow the patch based training similar to SANet, the 
difference is that we used fixed size patches to generate 
training batches. In our experiments, we used 400X400 
image patches cropped at random locations to create 
batches of 14 for training. The only data augmentation we 
used was to randomly flip the image horizontally half the 
time.  

The implementation of W-Net is done in PyTorch [25] 
framework. For the encoder branch in W-Net, we use a 
pretrained VGG16bn model from torchvision. The decoder 
branches are randomly initialized by Gaussian distribution 
with mean zero and standard deviation of 0.01. We use 
Adam optimizer [26] with a learning rate of 1e-4 and weight 
decay of 5e-3. Our attempts with Stochastic gradient 
descent with momentum took much longer to converge and 
hence was dropped. We use batch normalization layers after 

 
Fig. 4: Nine patches for patch-wise evaluation 

 
Fig. 5: Percentage contribution from respective patches. 

Method MAE 

Geometry-adaptive 
kernels 79.3 

Fixed sigma kernel 59.5 
Table 1: Data generation result comparison 



 

every convolution layer except for the output layers, this is 
detailed in Fig. 2 and Fig. 3 

4.2. Evaluation Details 

For the evaluation of our models, we use patch based 
evaluation as described in [3]. We crop the images into 
quarters and generate nine overlapping quarters for an 
image as portrayed in Fig 4. Each quarter has its density 
map predicted and the final output is made of the merged 
output maps. Fig. 5 shows which patch contributes how 
much percentage of the final Density map. The corner 
image patches contribute the most, i.e., since they have two 
edges without overlaps, that patch is the sole contributor to 
those edges. The image patches numbered 2,4,6 and 8 
contribute the second most, as they have one edge without 
overlaps. Finally, image patch 5 contributes the least 
because all of its edges have overlaps. 

As metrics to evaluate our crowd counting models, we 
use Mean Absolute error (MAE) and Root Mean Squared 
Error (RMSE). They are defined as follows: 
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where C is the predicted count while CGT is the ground truth 
count and N is total number of images. 

MAE is used to indicate how accurate the result is and 
RMSE is used to gauge the robustness of the model. 

5. Experiments 

In this section, we present our results on three public 
crowd counting benchmark datasets, namely, 
ShanghaiTech [2], UCF_CC_50 [27] and UCSD [28]. 

5.1. ShanghaiTech dataset 

The ShanghaiTech dataset [2] consists of 1198 images, 
with 330,165 annotated people. This dataset is bifurcated in 
two parts: Part A and Part B. Part A contains 482 images 
with a train split of 300 images and a test split of 182 images 
which is provided by the authors. Part B contains 716 
images, out of which 400 are for training and 316 images 
for testing. Shanghai Part A consists of random images 
crawled from the internet, and Shanghai Part B contains 
images captured from street view. The ground truth maps 
and Reinforcement maps along with the augmented data are 
generated as discussed in section 4. Table 2 shows the 
comparison of the results of our method with contemporary 
state of the art works on Shanghai Part A and Shanghai Part 
B datasets. We report significant improvement over the 

State-of-the-art method SANet. 

5.2. UCF_CC_50 

UCF_CC_50 is a small dataset which consists of 50 
annotated images. There is a large variation in the crowd 
density, from 94 to 4543 people in an image. The limited 
size of the dataset makes this a challenging problem to 
solve. We use 5-fold cross-validation to evaluate our model 
on this dataset as described in [3]. The ground truth maps 
and Reinforcement maps along with the augmented data are 
generated as discussed in section 4. Table 3 shows the 
comparison of the results of our method with contemporary 
state of the art work on UCF_CC_50 dataset. W-Net beats 
SANet, which is the state-of-the-art method, by a 
significant improvement. 

5.3. UCSD 

The UCSD dataset is a much larger dataset which 
consists of 2000 frames from a surveillance video camera. 
The resolution of the frames is quite low and so is the 
density of the people. The number of people averages 
around 25 for a frame. UCSD Provides Region of Interest 

 Part A Part B 

Method MAE MSE MAE MSE 

Zhang et al. [18] 181.80 277.70 32.00 49.80 

MCNN [2] 110.20 173.20 26.40 41.30 

Switch-CNN [23] 90.40 135.00 21.60 33.40 

CP-CNN [29] 73.60 106.40 20.10 30.10 

CSRNet [6] 68.20 115.00 10.60 16.00 

SANet [3] 67.00 104.50 8.40 13.60 

W-Net(ours) 59.50 97.30 6.90 10.30 
Table 2: Results on ShanghaiTech Dataset 

Method MAE MSE 

Idrees et al. [27] 419.5 541.6 

Zhang et al. [18] 467 498.5 

MCNN [2] 377.6 509.1 

Switch-CNN [23] 318.1 439.2 

CP-CNN [29] 295.8 320.9 

CSRNet [6] 266.1 397.5 

SANet [3] 258.4 334.9 

W-Net(ours) 201.9 309.2 
Table 3: Results on UCF_CC_50 Dataset 



 

to mask the background and make the counting task 
simpler. The train test split for this dataset is as described 
in [28], i.e., frames 601 to 1400 are used for training and 
the remaining are used for testing. Although the generation 
of ground truth maps and Reinforcement maps are as 
described in section 4, we have preprocessed the images to 
have a resolution of 400X602. The shorter edge is resized 
to 400 and the longer one to 602 to maintain aspect ratio. 
This lets us use our training pipeline without any 
modification for this dataset as we use 400X400 patches to 
train. Table 4 shows the results and W-net manages to beat 
SANet even in sparse crowds. 

6. Ablation Studies 

6.1. Validation for Reinforcement Branch 

In this subsection, we perform ablation study to analyze 
the efficacy of the Reinforcement branch. The experiments 
are done on Shanghai Part A dataset. We claim that the 
reinforcemnt branch not only speeds up convergence, it also 
keeps a check on the structural similarity of the ground truth 
density maps and the estimated density maps. To measure 
stuctural similarity, we use Structural Similarity Index 

(SSIM) as metric to gauge the structural integrity. As shown 
in Table 5, we can see how the produced density maps have 
a significantly higher SSIM value than the previously 
documented methods. As for the speed, the model 
converged twice as faster with the Reinforcement branch 
than with just the density estimation branch. 

6.2. Validation for VGG as the encoder 

In this subsection, we present our findings on 
experimenting with VGG16bn, ResNet50 and Inception 
based architecture as encoders. Each of these architectures 
handle scale variance in their own ways, and we empirically 
found that VGG16bn produced the best results for this use 
case, both computationally and result-wise. Table 6 shows 
the result of the encoder-decoder pipeline with these 
encoders respectively on Shanghai Part B dataset. 

6.3. Ablation experiments on upsampling layers 

In this subsection, we present our observations of the 
benefits of using nearest neigbor interpolation versus 
transpose convolution layers for upsampling. SANet 
partially credits its state-of-the-art results to the high-
resolution density maps it generates. SANet uses transpose 
convolution layers to upsample its encoded feature maps. 
The problem with transpose convolution layers is that the 
upscaled images it generates present themselves with 
checkerboard artifacts. Referring to [7], Nearest neighbor 
interpolation is an alternative which is not affected by the 
checker board artifact. In our experiments, our 
reimplementation of SANet present with checkerboard 
artifacts and so did W-Net. The models also took much 
longer to converge and when they did, the performance was 

 
Fig. 6: Checkerboard artifacts due to transpose 

convolution layers 

Method MAE MSE 

Zhang et al. [18] 1.6 3.31 

MCNN [2] 1.07 1.35 

Huang et al. [21] 1 1.4 

Switch-CNN [23] 1.62 2.1 

CSRNet [6] 1.16 1.47 

SANet [3] 1.02 1.29 

W-Net(ours) 0.82 1.05 
Table 4: Results on UCSD Dataset 

Method SSIM 

MCNN [2] 0.52 

CP-CNN [29] 0.72 

CSRNet [6] 0.76 

W-Net(ours) 0.93 
Table 5: SSIM Comparison 

 

Method MAE 

VGG16bn 6.998 

ResNet50 8.5 

Inception based 10.2 
Table 6: Comparison of encoders 



 

much worse. Fig. 6 shows the checkerboard artifacts when 
trained with transpose convolution layers and Fig. 1 shows 
that the density map estimated with nearest neighbor 
interpolation is not affected with checkerboard artifact. 

7. Error Analysis 

In this section, we discuss our observations on the results 
of CSRNet and W-Net on Shanghai Part A. We chose 
CSRNet to accompany our model in this analysis because 
out of all the encoder decoder models, CSRNet was the 
most different, architecture wise and result-wise, i.e., 
estimating a density map from the smallest feature map 
extracted. We found that for both models’ small fraction of 
the dataset significantly contributing to its average MAE. 
Table 7. shows that out of the top 14 MAE contributors for 
W-Net, 10 of them were the top MAE contributors for 
CSRNet. Shanghai part A is quite biased in its partitioning. 
Table 8 shows the distribution of the range of number of 
people vs. number of images along with the results for 
range of number of people vs. cumulative MAE 
contributed. The numbers clearly show that the error rates 
shoot up at the biased ranges. As stated in section 1, the 

contemporary line of work may have eeked out an extra 
point to reach the top, but maybe the encoder-decoder 
pipeline is to be credited for this and the specialized models, 
including ours, may just be saturating this encoder-decoder 
method to its potential. The solution may just lie elsewhere.  

8. Conclusion 

In this work, we propose a U-Net inspired encoder-
decoder network, W-Net, for Density map estimation and 
crowd counting. The inclusion of the proposed 
Reinforcement decoding branch helps the network 
converge quicker and also produce density maps with high 
SSIM index. With extensive experiments we report state-
of-the-art results in three crowd counting datasets. 
Followed by our detailed ablation studies, with which we 
explain how and why we decided to build this network. 
Finally, we conclude with the error analysis stating our 
stand on the current solutions for the Crowd Counting 
problem. 
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