
*Equal Contribution. Name ordering determined by a game of Jan-Ken-Pon.

Abstract

Crowd management is of paramount importance when it

comes to preventing stampedes and saving lives, especially
in countries like China and India where the combined
population is a third of the global population. Millions of
people convene annually all around the nation to celebrate
a myriad of events and crowd count estimation is the
linchpin of the crowd management system that could
prevent stampedes and save lives. We present a network for
crowd counting which reports state of the art results on
crowd counting benchmarks. Our contributions are, first, a
U-Net inspired model which affords us to report state of the
art results. Second, we propose an independent decoding
Reinforcement branch which helps the network converge
much earlier and also enables the network to estimate
density maps with high Structural Similarity Index (SSIM).
Third, we discuss the drawbacks of the contemporary
architectures and empirically show that even though our
architecture achieves state of the art results, the merit may
be due to the encoder-decoder pipeline instead. Finally, we
report the error analysis which shows that the
contemporary line of work is at saturation and leaves
certain prominent problems unsolved.

1. Introduction

Crowd monitoring has always been integral to running a
safe event. Historical analysis of the crowd monitoring data
could be used to understand the crowd and help work out
how many attendees to expect and plan events accordingly.
Crowd counting can help with both monitoring and storing
relevant historical data. In this paper, we not only present
our attempt at solving the crowd counting problem, but also
discuss our observations on the flow of contemporary line
of work. Crowd counting is not a trivial problem and brings
along various obstacles, like, occlusion, background noise
and variations in illumination, distribution of people, scale
and perspective. Solutions have come a long way since
Lempitsky et al. [1] in tackling some of these issues.
MCNN [2] attempts to tackle the problem with a multi-
branch architecture to handle scale variation and SANet [3]
builds on the inception architecture to handle scale and
build high resolution density maps to estimate accurate
crowd count. Even though these architectures have
produced incrementally better results, they have done so by
focusing on one major obstacle in the crowd counting

problem, i.e., scale-variance. On the other hand, some have
tried to tackle the problem by data manipulation, generating
density maps with adaptive gaussian kernels based on head
detections [4] and improving crowd counting using inverse
k-Nearest Neighbor maps [5]. We definitely have come a
long way since Lempitsky et al. [1], but these independent
efforts solve only the specific issues they are tackling.
Considering this, we attempt to solve the crowd counting
problem by focusing on scale-invariance and
Reinforcement for background noise reduction, retaining
structural similarity and improving convergence.

SANet [3] reported state of the art results in 2018 and the
output was primarily credited to the inception encoder
module and high-resolution density map generated. The
odd thing is that high resolution density map is not a
documented necessity for accurate crowd counting.
CSRNet [6] generates a density map that is at an eighth
resolution compared to the input and its results on the crowd
counting benchmark are only marginally worse than that of
SANet. The addition of extra decoding layers in SANet
alone makes it computationally heavy, ignoring the
inception encoding module which is heavier. The
upsampling in SANet is taken care of by the Transpose
layers which adds checkerboard artifacts into the mix
making it a soup sandwich. We have attended to this
problem using Nearest neighbor interpolation as an
alternative, as suggested in [7].

Scale-Aware Attention Network [4] presented an
interesting multi-branch architecture with a soft attention
mechanism that learnt a set of gating masks. Inspired by this
mechanism, we implemented a "Attention" decoding
branch trained as a classifier in our architecture to reinforce
the final estimated density map. This branch, named
"Reinforcement branch", is NOT an attention mechanism,
rather, it is just a mechanism for the network to converge
faster. Fig 3. shows the architecture of the Reinforcement
branch. The Reinforcement branch and the Density map
estimation (DME) branch are almost identical, except for
the fact that the Reinforcement branch has an extra
Conv1_1 layer followed by a Sigmoid layer. This extra
convolution layer does not have ReLU or Batch
Normalization.

The proposed model is inspired by U-Net [8], we build a
network on the same encoder-decoder pipeline with the
additional Reinforcement branch. The encoder block of the
U-Net is replaced by VGG16bn [9]. We empirically found
that VGG16bn was the best backbone to use among
VGG16bn, RESNET50[10] and an Inception [11] inspired
feature extractor. In our experiments, we found that training

W-Net: Reinforced U-Net for Density Map Estimation

Kinal Mehta*

C-DAC, Pune
kinalm@cdac.in

Varun Kannadi Valloli*

C-DAC, Pune
varunkv@cdac.in

the network without the Reinforcement branch drastically
slowed down the convergence. This was the main reason
the Reinforcement branch was introduced as a binary
classifier. The reinforcement network, when independently
trained, converged quicker. but was useless in regards to
crowd counting, whereas the Density Map Estimation
(DME) branch was harder to train, but counted well. We
combined the two with a joint loss, i.e., Binary cross
entropy (BCE) Loss and Mean squared error (MSE) Loss
and trained the network in an end to end fashion.

To summarize, we make the following contributions: (i)
We propose a modified network architecture that generates
accurate density maps at half resolution compared to the
input. (ii) We propose a Reinforcement branch for the
network to converge quicker. (iii) Reporting results on
crowd comparison benchmarks and comparing against
competing approaches. (iv) Extensive ablation studies are
conducted to show effectiveness of DME and
Reinforcement branches working together, efficacy of
VGG16bn as the backbone over ResNet50 and Inception
modules, and replacing transpose layer with Nearest
neighbor upsampling. (v) We finally discuss our error
analysis and show the drawbacks of the current methods.

2. Related Work

A large variety of methods have been proposed to tackle
the crowd counting problem. We can largely be bifurcated
as conventional approaches and CNN based approaches.

2.1. Conventional Approaches

Early research on crowd counting primarily was focused
on detection based counting [12]. Occlusion is the biggest
obstacle in such solutions and the best you can do to
minimize error is to detect smaller parts of the pedestrian
like a face or head rather than an entire body. Even while
detecting heads, in a densely crowded scenario, the scale
variation makes it quite hard for the detection model to
detect entities throughout the image. Another approach was
to extract features from an image and map it to the count of
people. These methods were almost entirely dependent on
the feature extraction process and were limited to the
adaptability of the feature extraction algorithm to test
images. Similar regression based approaches built on this
work and added features extracted from Fourier transforms
[14], detections [12] and SIFT [13] to regress the count in
an image. The main drawback of this line of work was that
the global count was predicted but it ignored spatial and
sematic information in the images. The importance of using
both spatial and semantic information to regress the count
is discussed in this TED encoder-decoder approach [15].

2.2. CNN-based approaches

CNN-based approaches have shown great potential at
solving crowd counting credited primarily to their
representation learning ability and robustness. Wang et al.
[16] proposed a solution where a modified AlexNet [17]

`
Fig. 1: Model output with groundtruth density maps

was used directly for predicting count. Contemporary CNN
based approaches mainly revolve around density map
estimation and regressing the crowd count from the density
map. Zhang et al. [18] proposed a CNN trained to estimate
the density map and then regress the crowd count.
Following this pattern, Walach and Wolf [19] attempted to
better the system by using layered boosting and selective
sampling. Shang et at.[20] proposed a network to predict
local and global count from images. Zhang et al. [2] built a
multi branch network dubbed Multi-column CNN (MCNN)
to handle scale variations. Even though this work is
commendable, it is limited to the number of branches in the
network. Boominathan et al. [22] proposed a density map
estimator which was a combination of shallow and deep
networks. Sam et al. [23], inspired by MCNN, proposed
Switch-CNN, an approach where instead of having one
network handle input with scale variation, a classifier first
classifies an image patch to select an appropriate regressor
for the input scale. Li et al. [6] proposed a encoder decoder
network, CSRNet, where the backbone was a pretrained
VGG16[9] network and decoder was built with dilated
convolution later. Even though the estimated density map
was of an eighth resolution of the input, CSRNet was able
to report state of the art results. A similar encoder decoder
model, Xinkun et al. [3] proposed SANet which used
inception modules in the encoder to handle scale variation
and extract features and Transposed convolution layers in
the decoder to upscale the feature map extracted. This
method was able to build high resolution density map and
beat CSRNet, albeit a marginal improvement.

We observed that the most of the state-of-the-art
contemporary approaches used the encoder decoder
pipeline. They primarily focused on a backbone feature
extractor which was scale invariant. As discussed in section
1, we empirically found that VGG16bn worked the best for

us as the feature extractor. As for the decoder, our proposed
system outputs a density map that is at half the resolution
of the input image. The resolution of the density map may
or may not directly affect the results as a high-resolution
map, like the one generated by SANet, only produces
marginally better results than the low resolution one
produced by CSRNet. The extra layer may introduce
unnecessary complications and delay convergence of the
network. We also attempt to reinforce the network with a
Reinforcement decoder branch for faster convergence and
also to keep a check on local pattern consistency.

3. W-Net

This section presents the details on W-Net. We will
introduce network architecture first and then discuss the
constituent branches in detail.

3.1. Architecture

As shown in Fig 2, our architecture is inspired from U-
Net [8]. U-Net was designed for biomedical image
segmentation. The architecture consists of a “contracting
path” to capture context and a symmetric “expanding path”
that enables precise localization. This encoder-decoder
structure was what we built our network on. The W-Net has
3 branches, first the encoder branch, followed by a split in
the network which flows parallel to the Density Map
Estimation (DME) branch and the Reinforcement branch.
The Encoder branch extracts the multi-scale feature maps
and the DME branch outputs the density map. The
Reinforcement branch is used as to construct an auxiliary
input which helps the network converge faster and keep
local pattern consistency.
Encoder Branch: The encoder branch is the feature

Fig. 2: W-Net Model Architecture

extractor in the encoder-decoder pipeline. We chose
VGG16bn as our backbone after experiments on Shanghai
Part B dataset with VGG16bn, ResNet50 and Inception
based feature extractor as the encoder. The results of this
experiment is discussed in section 6.2. Our results were
corroborated by the choice of front-end for CSRNet which
followed ideas proposed in [22,23,30]. We only use the
feature extractor from VGG16bn and remove the
classification section (fully connected layers). We carved
out the first 13 layers from the pretrained VGG16bn from
torchvision as our backbone. We use feature maps from
B2_C2, B3_C3, B4_C3 and B5_C3 as shown in Fig. 2 as
inputs to our decoder branch. Following U-Net, these inputs
at different abstract levels help represent multi-scale
features.
DME and Reinforcement branch: The Decoder branches,
i.e., DME and Reinforcement branch have a common
structure which is described in Fig. 3. In this subsection, we
will discuss the common structure first and then follow it
up with the explaining the differences. First, the output of
B5_C3 is upscaled using Nearest neighbor interpolation
and then concatenated with the output of B4_C3. This
concatenated input is given to Decoder Block 1 described
in Fig 3. Decoder block 1 contains a conv1×1×256 and
conv3×3×256. The output of Decoder Block 1 is upscaled
and concatenated with the output of B3_C3. The same
upscaling protocol is repeated before being fed to Decoder
Block 2 which has a similar structure but is different only
in terms of channel size which is described in Fig. 3.
Finally, after another upscaling and concatenation with
B2_C2, Decoder Block 3 outputs a feature map which is the
final 32 channel output from the common structure for
DME and Reinforcement branch. Now for the differences,
the Reinforcement branch feeds the final output from
Decoder Block 3 to a conv 1×1×1 followed by Sigmoid
activation. This generates the Reinforcement map which is
element-wise multiplied to the final output from Decoder
Block 3 of the DME branch. This is fed to the last
conv1×1×1 layer with ReLU activation which generates the
final density map.

3.2. Loss Functions

For the loss function, we use a joint loss which consists
of Mean Squared Error (MSE) and Binary Cross Entropy
(BCE) loss. SANet uses SSIM loss to make sure that local
correlation of the density map is not ignored, but in our
case, we found that the Reinforcement branch, which is a
classifier, converges quickly and can be used to influence
the density map estimation branch. This way, we not only
help the network converge quicker, but also helps us keep a
check on the local correlation of the density maps. Table 5
compares the Structural similarity of the density maps
estimated with different methodologies and it clearly shows
how structural integrity is maintained in our method.

MSE loss: We chose MSE loss because of the insights
shared by Hang et al. [24] in their study of Loss Functions
for Image Restoration. One interesting property they shared
was the fact that L2 provides the maximum likelihood
estimate in case of independent and identically distributed
Gaussian noise. SANet points to the fact that most
contemporary work use Euclidean distance which is based
on the pixel independence hypothesis and ignores the local
correlation of the density maps. The reinforcement branch
in our architecture is used to handle this issue and makes
MSE loss a viable loss function.

𝑀𝑆𝐸(𝑦, 𝑡) =
1

𝑁
(𝑦 − 𝑡)ଶ

ே

ୀଵ

(1)

where y is the predicted value, t is the target and N is the
total number of pixels.
Binary Class entropy: For the reinforcement branch, we
used BCELoss for training this classifier. Binary cross
entropy loss is defined as follows:

Fig. 3: Decoder Branch Common Architecture

𝐵𝐶𝐸(𝑦, 𝑡) =
1

𝑁
[𝑡 × log(𝑦)

ே

ୀଵ

+ (1 − 𝑡) × log(1 − 𝑦)]

(2)

where y is the predicted value, t is the target class and N is
the total number of pixels.

The network is trained in an end to end fashion with a
joint loss function L which is defined as:

𝐿 = (𝛼 × 𝐿ெௌா) + (𝛽 × 𝐿ா) (3)

where a and b are used to balance the loss values and we
empirically found that α=1000 and β=10 works optimally
for training the network.

4. Training and evaluation details

In this section we discuss the details of the training and
evaluation procedures.
Density map generation: We generate density maps
following the method described in [3]. We convert the
ground truth to density maps by, convolving a Normalized
Gaussian kernel over delta function δ(x-xi) where xi is a
targeted object.

𝐹(𝑥) = 𝛿(𝑥 − 𝑥) × 𝐺ఙ
(𝑥)

ே

ୀଵ

(4)

We also use a fixed spread parameter σ of the gaussian
kernel to generate the density maps. In our experiments, we
used a kernel of window size (µ)=15 and spread parameter
(σ)=4.

We attempted geometry-adaptive kernels as described in
the work by Zhang et al. [6], where the spread parameter σ
was a variable dependent on the average distance of K-
Nearest Neighbor. We define σ for each head to be

σ = 𝛽𝑑ప

ഥ (5)

where β = 0.3 and ‘i’ is each head annotation. We found
that the results for our network was considerably poorer
when compared to using a fixed spread parameter. The
comparison of the results based on the dataset generation is
shown in Table 1.

Reinforcement map generation: For the reinforcement

maps, we used the same method as density generation but
used a larger window size and spread parameter. Once the
blurred map is generated, we use binary thresholding to
create classification map to train the reinforcement branch.
In our experiments, we used a threshold (th) = 0.001 and
the classification map was computed using Equation (4).

4.1. Training details

We follow the patch based training similar to SANet, the
difference is that we used fixed size patches to generate
training batches. In our experiments, we used 400X400
image patches cropped at random locations to create
batches of 14 for training. The only data augmentation we
used was to randomly flip the image horizontally half the
time.

The implementation of W-Net is done in PyTorch [25]
framework. For the encoder branch in W-Net, we use a
pretrained VGG16bn model from torchvision. The decoder
branches are randomly initialized by Gaussian distribution
with mean zero and standard deviation of 0.01. We use
Adam optimizer [26] with a learning rate of 1e-4 and weight
decay of 5e-3. Our attempts with Stochastic gradient
descent with momentum took much longer to converge and
hence was dropped. We use batch normalization layers after

Fig. 4: Nine patches for patch-wise evaluation

Fig. 5: Percentage contribution from respective patches.

Method MAE

Geometry-adaptive
kernels 79.3

Fixed sigma kernel 59.5
Table 1: Data generation result comparison

every convolution layer except for the output layers, this is
detailed in Fig. 2 and Fig. 3

4.2. Evaluation Details

For the evaluation of our models, we use patch based
evaluation as described in [3]. We crop the images into
quarters and generate nine overlapping quarters for an
image as portrayed in Fig 4. Each quarter has its density
map predicted and the final output is made of the merged
output maps. Fig. 5 shows which patch contributes how
much percentage of the final Density map. The corner
image patches contribute the most, i.e., since they have two
edges without overlaps, that patch is the sole contributor to
those edges. The image patches numbered 2,4,6 and 8
contribute the second most, as they have one edge without
overlaps. Finally, image patch 5 contributes the least
because all of its edges have overlaps.

As metrics to evaluate our crowd counting models, we
use Mean Absolute error (MAE) and Root Mean Squared
Error (RMSE). They are defined as follows:

𝑀𝐴𝐸 =
1

𝑁
ห𝐶 − 𝐶

ீ்ห

ே

ୀଵ

(6)

𝑅𝑀𝑆𝐸 = ඩ
1

𝑁
(𝐶 − 𝐶

ீ்)ଶ

ே

ୀଵ

(7)

where C is the predicted count while CGT is the ground truth
count and N is total number of images.

MAE is used to indicate how accurate the result is and
RMSE is used to gauge the robustness of the model.

5. Experiments

In this section, we present our results on three public
crowd counting benchmark datasets, namely,
ShanghaiTech [2], UCF_CC_50 [27] and UCSD [28].

5.1. ShanghaiTech dataset

The ShanghaiTech dataset [2] consists of 1198 images,
with 330,165 annotated people. This dataset is bifurcated in
two parts: Part A and Part B. Part A contains 482 images
with a train split of 300 images and a test split of 182 images
which is provided by the authors. Part B contains 716
images, out of which 400 are for training and 316 images
for testing. Shanghai Part A consists of random images
crawled from the internet, and Shanghai Part B contains
images captured from street view. The ground truth maps
and Reinforcement maps along with the augmented data are
generated as discussed in section 4. Table 2 shows the
comparison of the results of our method with contemporary
state of the art works on Shanghai Part A and Shanghai Part
B datasets. We report significant improvement over the

State-of-the-art method SANet.

5.2. UCF_CC_50

UCF_CC_50 is a small dataset which consists of 50
annotated images. There is a large variation in the crowd
density, from 94 to 4543 people in an image. The limited
size of the dataset makes this a challenging problem to
solve. We use 5-fold cross-validation to evaluate our model
on this dataset as described in [3]. The ground truth maps
and Reinforcement maps along with the augmented data are
generated as discussed in section 4. Table 3 shows the
comparison of the results of our method with contemporary
state of the art work on UCF_CC_50 dataset. W-Net beats
SANet, which is the state-of-the-art method, by a
significant improvement.

5.3. UCSD

The UCSD dataset is a much larger dataset which
consists of 2000 frames from a surveillance video camera.
The resolution of the frames is quite low and so is the
density of the people. The number of people averages
around 25 for a frame. UCSD Provides Region of Interest

 Part A Part B

Method MAE MSE MAE MSE

Zhang et al. [18] 181.80 277.70 32.00 49.80

MCNN [2] 110.20 173.20 26.40 41.30

Switch-CNN [23] 90.40 135.00 21.60 33.40

CP-CNN [29] 73.60 106.40 20.10 30.10

CSRNet [6] 68.20 115.00 10.60 16.00

SANet [3] 67.00 104.50 8.40 13.60

W-Net(ours) 59.50 97.30 6.90 10.30
Table 2: Results on ShanghaiTech Dataset

Method MAE MSE

Idrees et al. [27] 419.5 541.6

Zhang et al. [18] 467 498.5

MCNN [2] 377.6 509.1

Switch-CNN [23] 318.1 439.2

CP-CNN [29] 295.8 320.9

CSRNet [6] 266.1 397.5

SANet [3] 258.4 334.9

W-Net(ours) 201.9 309.2
Table 3: Results on UCF_CC_50 Dataset

to mask the background and make the counting task
simpler. The train test split for this dataset is as described
in [28], i.e., frames 601 to 1400 are used for training and
the remaining are used for testing. Although the generation
of ground truth maps and Reinforcement maps are as
described in section 4, we have preprocessed the images to
have a resolution of 400X602. The shorter edge is resized
to 400 and the longer one to 602 to maintain aspect ratio.
This lets us use our training pipeline without any
modification for this dataset as we use 400X400 patches to
train. Table 4 shows the results and W-net manages to beat
SANet even in sparse crowds.

6. Ablation Studies

6.1. Validation for Reinforcement Branch

In this subsection, we perform ablation study to analyze
the efficacy of the Reinforcement branch. The experiments
are done on Shanghai Part A dataset. We claim that the
reinforcemnt branch not only speeds up convergence, it also
keeps a check on the structural similarity of the ground truth
density maps and the estimated density maps. To measure
stuctural similarity, we use Structural Similarity Index

(SSIM) as metric to gauge the structural integrity. As shown
in Table 5, we can see how the produced density maps have
a significantly higher SSIM value than the previously
documented methods. As for the speed, the model
converged twice as faster with the Reinforcement branch
than with just the density estimation branch.

6.2. Validation for VGG as the encoder

In this subsection, we present our findings on
experimenting with VGG16bn, ResNet50 and Inception
based architecture as encoders. Each of these architectures
handle scale variance in their own ways, and we empirically
found that VGG16bn produced the best results for this use
case, both computationally and result-wise. Table 6 shows
the result of the encoder-decoder pipeline with these
encoders respectively on Shanghai Part B dataset.

6.3. Ablation experiments on upsampling layers

In this subsection, we present our observations of the
benefits of using nearest neigbor interpolation versus
transpose convolution layers for upsampling. SANet
partially credits its state-of-the-art results to the high-
resolution density maps it generates. SANet uses transpose
convolution layers to upsample its encoded feature maps.
The problem with transpose convolution layers is that the
upscaled images it generates present themselves with
checkerboard artifacts. Referring to [7], Nearest neighbor
interpolation is an alternative which is not affected by the
checker board artifact. In our experiments, our
reimplementation of SANet present with checkerboard
artifacts and so did W-Net. The models also took much
longer to converge and when they did, the performance was

Fig. 6: Checkerboard artifacts due to transpose

convolution layers

Method MAE MSE

Zhang et al. [18] 1.6 3.31

MCNN [2] 1.07 1.35

Huang et al. [21] 1 1.4

Switch-CNN [23] 1.62 2.1

CSRNet [6] 1.16 1.47

SANet [3] 1.02 1.29

W-Net(ours) 0.82 1.05
Table 4: Results on UCSD Dataset

Method SSIM

MCNN [2] 0.52

CP-CNN [29] 0.72

CSRNet [6] 0.76

W-Net(ours) 0.93
Table 5: SSIM Comparison

Method MAE

VGG16bn 6.998

ResNet50 8.5

Inception based 10.2
Table 6: Comparison of encoders

much worse. Fig. 6 shows the checkerboard artifacts when
trained with transpose convolution layers and Fig. 1 shows
that the density map estimated with nearest neighbor
interpolation is not affected with checkerboard artifact.

7. Error Analysis

In this section, we discuss our observations on the results
of CSRNet and W-Net on Shanghai Part A. We chose
CSRNet to accompany our model in this analysis because
out of all the encoder decoder models, CSRNet was the
most different, architecture wise and result-wise, i.e.,
estimating a density map from the smallest feature map
extracted. We found that for both models’ small fraction of
the dataset significantly contributing to its average MAE.
Table 7. shows that out of the top 14 MAE contributors for
W-Net, 10 of them were the top MAE contributors for
CSRNet. Shanghai part A is quite biased in its partitioning.
Table 8 shows the distribution of the range of number of
people vs. number of images along with the results for
range of number of people vs. cumulative MAE
contributed. The numbers clearly show that the error rates
shoot up at the biased ranges. As stated in section 1, the

contemporary line of work may have eeked out an extra
point to reach the top, but maybe the encoder-decoder
pipeline is to be credited for this and the specialized models,
including ours, may just be saturating this encoder-decoder
method to its potential. The solution may just lie elsewhere.

8. Conclusion

In this work, we propose a U-Net inspired encoder-
decoder network, W-Net, for Density map estimation and
crowd counting. The inclusion of the proposed
Reinforcement decoding branch helps the network
converge quicker and also produce density maps with high
SSIM index. With extensive experiments we report state-
of-the-art results in three crowd counting datasets.
Followed by our detailed ablation studies, with which we
explain how and why we decided to build this network.
Finally, we conclude with the error analysis stating our
stand on the current solutions for the Crowd Counting
problem.

References

[1] V. Lempitsky and A. Zisserman. Learning to count objects in
images. In Advances in neural information processing
systems, pages 1324–1332, 2010.

[2] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma. Single
image crowd counting via multi-column convolutional neural
network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 589–597, 2016.

[3] X. Cao, Z. Wang, Y. Zhao, and F. Su. Scale aggregation
network for accurate and efficient crowd counting. In
European Conference on Computer Vision, pages 757–773.
Springer,Cham, 2018.

[4] R. R. Varior, B. Shuai, J. Tighe and D. Modolo. Scale-Aware
Attention Network for Crowd Counting arXiv preprint
arXiv:1901.06026v2, 2019

[5] G. Olmschenk, H. Tang and Z. Zhu. Improving Dense Crowd
Counting Convolutional Neural Networks using Inverse k-
Nearest Neighbor Maps and Multiscale Upsampling, arXiv
preprint arXiv:1902.05379v2, 2019

[6] Y. Li, X. Zhang, and D. Chen. Csrnet: Dilated convolutional
neural networks for understanding the highly congested
scenes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1091–1100, 2018

[7] Odena, et al., "Deconvolution and Checkerboard Artifacts",
Distill, 2016. http://doi.org/10.23915/distill.00003

[8] Olaf Ronneberger et al., “U-net: Convolutional networks for
biomedical image segmentation,” in MICCAI, 2015.

[9] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[10] K. He, X. Zhang, S. Ren and J. Sun. Deep Residual Learning
for Image Recognition arXIv preprint
arXiv:1512.03385v1,2015

[11] Szegedy, Christian & Liu, Wei & Jia, Yangqing & Sermanet,
Pierre & Reed, Scott & Anguelov, Dragomir & Erhan,
Dumitru & Vanhoucke, Vincent & Rabinovich, Andrew.
(2015). Going Deeper with Convolutions. In CVPR 2015

File
Name

Our
Model
MAE

CSRNet
MAE

IMG_8 444 533

IMG_165 424 430

IMG_127 380 269

IMG_122 377 313

IMG_90 361 433

IMG_36 285 291

IMG_110 252 202

IMG_63 198 155

IMG_54 161 326

IMG_173 145 196

Table 7: Worst Performing Images

Count range Sum of
Absolute

Errors

Percentage
contribution to

total loss

Total
Images

0-200 840.69 7.73% 40
200-300 1911.94 17.57% 48
300-500 2376.14 21.84% 47
500-1000 2268.72 20.84% 24

>1000 3483.65 32.02% 19
Table 8: Error contribution based on people count

[12] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro
Perona. Pedestrian detection: An evaluation of the state of the
art. IEEE transactions on pattern analysis and machine
intelligence, 34(4):743–761, 2012.

[13] D. G. Lowe Distinctive Image Features from Scale-Invariant
Keypoints, In IJCV 2004

[14] H. Shatkay The Fourier Transform - A Primer, CS-95-37,
1995

[15] X. Jiang, Z. Xiao, B. Zhang, X. Zhen, X. Cao, D. Doermann
and L. Shao: Crowd Counting and Density Estimation by
Trellis Encoder-Decoder Networks arXiv preprint
arXiv:1903.00853v1, 2019

[16] Wang, C., Zhang, H., Yang, L., Liu, S., Cao, X.: Deep people
counting in extremely dense crowds. In: Proceedings of the
23rd ACM international conference on Multimedia, ACM
(2015) 1299–1302

[17] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet
classification with deep convolutional neural networks. In:
Advances in neural information processing systems. (2012)
1097–1105

[18] Zhang, C., Li, H., Wang, X., Yang, X.: Cross-scene crowd
counting via deep convolutional neural networks. In:
Computer Vision and Pattern Recognition (CVPR), 2015
IEEE Conference on, IEEE (2015) 833–841

[19] Walach, E., Wolf, L.: Learning to count with cnn boosting.
In: European Conference on Computer Vision, Springer
(2016) 660–676

[20] Shang, C., Ai, H., Bai, B.: End-to-end crowd counting via
joint learning local and global count. In: Image Processing
(ICIP), 2016 IEEE International Conference on, IEEE (2016)
1215–1219

[21] Huang, S., Li, X., Zhang, Z., Wu, F., Gao, S., Ji, R., Han, J.:
Body structure aware deep crowd counting. IEEE
Transactions on Image Processing 27(3) (2018) 1049–1059

[22] Boominathan, L., Kruthiventi, S.S., Babu, R.V.: Crowdnet:
A deep convolutional network for dense crowd counting. In:
Proceedings of the 2016 ACM on Multimedia Conference,
ACM (2016) 640–644

[23] Sam, D.B., Surya, S., Babu, R.V.: Switching convolutional
neural network for crowd counting. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition. Volume 1. (2017) 6

[24] H. Zhao, O. Gallo, L. Frosio and J. Kautz. Loss Functions for
Image Restoration with Neural Networks

[25] Paszke, A., Chintala, S., Collobert, R., Kavukcuoglu, K.,
Farabet, C., Bengio, S., Melvin, I., Weston, J., Mariethoz, J.:
Pytorch: Tensors and dynamic neural networks in python
with strong gpu acceleration, may 2017

[26] D. P. Kingma and J. L. Ba. ADAM: A METHOD FOR
STOCHASTIC OPTIMIZATION, In ICLR 2015

[27] Haroon Idrees, Imran Saleemi, Cody Seibert, and Mubarak
Shah. Multi-source multi-scale counting in extremely dense
crowd images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2547–
2554, 2013

[28] A. B. Chan, Zhang-Sheng John Liang, and N. Vasconcelos.
Privacy preserving crowd monitoring: Counting people
without people models or tracking. In 2008 IEEE Conference
on Computer Vision and Pattern Recognition, pages 1–7,
June 2008.

[29] Vishwanath A Sindagi and Vishal M Patel. Generating
highquality crowd density maps using contextual pyramid
CNNs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1861–1870, 2017.

