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Abstract
The inadequate mixing of conventional Markov
Chain Monte Carlo (MCMC) methods for multi-
modal distributions presents a significant chal-
lenge in practical applications such as Bayesian in-
ference and molecular dynamics. Addressing this,
we propose Diffusive Gibbs Sampling (DiGS), an
innovative family of sampling methods designed
for effective sampling from distributions charac-
terized by distant and disconnected modes. DiGS
integrates recent developments in diffusion mod-
els, leveraging Gaussian convolution to create an
auxiliary noisy distribution that bridges isolated
modes in the original space and applying Gibbs
sampling to alternately draw samples from both
spaces. A novel Metropolis-within-Gibbs scheme
is proposed to enhance mixing in the denoising
sampling step. DiGS exhibits a better mixing
property for sampling multi-modal distributions
than state-of-the-art methods such as parallel tem-
pering, attaining substantially improved perfor-
mance across various tasks, including mixtures of
Gaussians, Bayesian neural networks and molec-
ular dynamics.

1. Introduction
Generating samples from complex unnormalized probability
distributions is an important problem in machine learning,
statistics and natural sciences. Consider an unnormalized
target distribution of the form

p(x) =
exp(−E(x))

Z
, (1)

where x ∈ Rd is the variable of interest, E : Rd → R
is a lower-bounded differentiable energy function, and
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Z =
∫
exp(−E(x)) dx is the (intractable) normalization

constant. We aim to draw independent samples x ∼ p(x)
from the target distribution and estimate expectations of
functions Ep(x)[h(x)] =

∫
h(x)p(x) dx under the target

distribution p(x).

The gradient of the log density of the target distribution is
known as the score function:

∇x log p(x) = −∇xE(x), (2)

which is independent of Z. The score function can be eval-
uated at any location x since E is assumed to be differen-
tiable. This assumption is commonly satisfied in various
practical applications, such as posteriors in Bayesian in-
ference (Welling & Teh, 2011), score/energy networks in
generative image modelling (Song & Ermon, 2019), and
Boltzmann distributions in statistical mechanics (Noé et al.,
2019). Below, we introduce score-based methods for sam-
pling from unnormalized distributions.

1.1. Score-Based MCMC Methods

Unadjusted Langevin Algorithm (ULA) (Grenander &
Miller, 1994; Roberts & Tweedie, 1996) follows the transi-
tion rule given by a discrete-time Langevin SDE:

xk+1 = xk + η∇x log p(xk) +
√

2ηϵk, (3)

where ϵk ∼ N(0, I). For an infinitesimal step size η, the
Markov chain converges to the target p(x) as k →∞.

Metropolis-adjusted Langevin Algorithm (MALA) (Roberts
& Tweedie, 1996; Roberts & Stramer, 2002) defines a pro-
posal xk+1 using the ULA update rule and additionally cor-
rects the bias according to the transition probability given
by the Metropolis-Hasting (MH) algorithm:

aMALA ≡ min

{
1,

exp(−E(xk+1))q(xk|xk+1)

exp(−E(xk))q(xk+1|xk)

}
, (4)

where the proposal distribution is given by

q(x′|x) = N (x′|x+ η∇x log p(x), 2ηI). (5)

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal
et al., 2011) augments the original variable x with an auxil-
iary momentum variable v, which defines a joint distribution

p(x, v) = p(x)p(v) ∝ e−E(x)−K(v), (6)
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Figure 1. Challenge of multi-modal sampling with score-based
MCMC. The true samples represent a mixture of 9 Gaussians and
each Gaussian has a standard deviation σ = 0.1. The generated
samples are produced by MALA initialized at the origin.

where p(v) = N (v|0,M) corresponds to the kinetic energy
K(v) = 1

2v
TM−1v. The total energy, or Hamiltonian, is

denoted by H(x, v) = E(x) + K(v). HMC generates
samples of x and v by simulating the Hamiltonian equations

dx

dt
=
∂H

∂v
=M−1v,

dv

dt
= −∂H

∂x
= ∇x log p(x). (7)

Accurate numerical simulation of the Hamiltonian equations
can be done by the leapfrog algorithm (Neal et al., 2011),
with discretization bias corrected by the MH algorithm.

Despite the effort to address the challenge of exploring the
whole support of a distribution using Langevin and Hamilto-
nian dynamics, MALA and HMC can still be ineffective for
distributions with disconnected modes in practice since they
often struggle to cross low-density barriers that separate the
modes, leading to prolonged transitions from one mode to
another (Pompe et al., 2020). More generally, score-based
sampling methods utilize local gradient information to pro-
pose subsequent states, which presents challenges in sam-
pling multi-modal distributions when there is insufficient
bridging density to connect different modes. This limited
connectivity impairs the ability of the resulting samples
to accurately represent the entire distribution, a limitation
illustrated in Figure 1.

1.2. Convolution-Based Method

A popular approach to bridging disconnected modes in
multi-modal distributions is Gaussian convolution, which
has been widely used in the recent developments of diffu-
sion models (Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Ho et al., 2020). For a target distribution p(x) and
a Gaussian convolution kernel p(x̃|x) = N (x̃|αx, σ2I), a
convolved distribution p(x̃) can be constructed as follows:

p(x̃) =

∫
p(x̃|x)p(x) dx. (8)

Since p(x̃|x) has the full support of Rd, it can effectively
create non-negligible density paths between disconnected
modes in p(x̃), which makes the modes in p(x̃) exhibit bet-
ter connectivity compared to those in p(x). This cherished

property has made Gaussian convolution a popular remedy
to heal the blindness of score matching (Song & Ermon,
2019; Wenliang & Kanagawa, 2020; Zhang et al., 2022) and
fix KL divergence training for distributions with disjoint or
ill-defined density (Roth et al., 2017; Zhang et al., 2020;
2023b; Brown et al., 2022).

Due to the mode-bridging property of convolution, it is gen-
erally easier for score-based samplers to explore the whole
space of p(x̃) than p(x). If we could obtain numerous sam-
ples x̃ ∼ p(x̃), then it is more likely that these samples
will encapsulate a broader range of modes in p(x̃) which
are close to different high-density areas in p(x). Conse-
quently, these samples of x̃ can then serve as initial points
for sampling from the original target p(x), which facili-
tates score-based samplers in capturing different modes in
p(x). However, the score function of the convolved noisy
distribution p(x̃) has the form

∇x̃ log p(x̃) = ∇x̃ log

∫
exp

(
−E(x)− ∥x̃− αx∥

2

2σ2

)
dx

(9)

which is typically intractable for non-Gaussian targets. This
makes score-based sampling infeasible for p(x̃).

2. Diffusive Gibbs Sampling
We introduce a novel sampling method, Diffusive Gibbs
Sampling (DiGS), which leverages Gaussian convolution
with an innovative Metropolis-within-Gibbs scheme to en-
hance multi-modal sampling, while avoiding the intractabil-
ity of the convolved score function as shown in Equation 9.

2.1. Sampler Construction

Instead of trying to directly produce samples from the
intractable convolved distribution p(x̃), DiGS employs
a Gibbs sampler to sample from the joint distribution
p(x, x̃) = p(x̃|x)p(x). This Gibbs sampling procedure
involves alternately drawing samples from the two con-
ditional distributions p(x̃|x) (the convolution kernel) and
p(x|x̃) (the denoising posterior). In each step, for a given
clean sample x(i−1) from the target p(x), we draw

1. a noisy sample x̃(i−1) ∼ p(x̃|x = x(i−1)),
2. a new clean sample x(i) ∼ p(x|x̃ = x̃(i−1)).

For a Gaussian convolution kernel p(x̃|x) = N (x̃|αx, σ2I),
noisy samples can be easily obtained by corrupting clean
samples with Gaussian noises:

x̃ = αx+ σϵ, ϵ ∼ N(0, I), (10)

where α ∈ [0, 1] is a contraction factor inspired by Diffusion
models (Ho et al., 2020) and σ determines the level of
smoothness in the Gaussian convolution. Intuitively, a small
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(a) p(x). (b) p(x|x̃(i−1)).

Figure 2. Visualization of an MoG target with unequal weights
w = [0.1, 0.1, 0.1, 0.7] for different components. (a) Density
heatmap of the target p(x), a clean sample x(i−1) and a noisy
sample x̃(i−1). (b) Density heatmap of the denoising posterior
p(x|x̃(i−1)) with Gaussian convolution parametersα = 1, σ = 1.

α will compress the distribution and make the modes closer,
and a large σ will encourage the sampler to jump out of
the local modes. The effects of these hyperparameters will
be investigated in Section 2.3, and hyperparameter tuning
strategies will be further discussed in Section 2.4.

Unlike the convolved distribution p(x̃) which has an in-
tractable score as shown in Equation 9, the denoising poste-
rior p(x|x̃) ∝ p(x, x̃) = p(x̃|x)p(x), taking the form

p(x|x̃) ∝ exp

(
−E(x)− ∥αx− x̃∥

2

2σ2

)
, (11)

has a tractable score function (Gao et al., 2020; Huang et al.,
2023):

∇x log p(x|x̃) = −∇xE(x)− α (αx− x̃)
σ2

. (12)

Therefore, common score-based methods like MALA, and
HMC could be directly applied to sample from the denoising
posterior p(x|x̃) in the denoising sampling step. It is worth
noting that, in contrast to directly sampling from the origi-
nal target p(x) ∝ exp(−E(x)) using score-based methods,
incorporating an additional quadratic term as in Equation 11
improves the Log-Sobolev conditions (i.e., makes it more
“Gaussian-like”), which in turn significantly increases the
convergence speed of score-based samplers (Vempala &
Wibisono, 2019); see Huang et al. (2023) for further in-
depth analysis. Below, we show that the DiGS yields a
p(x, x̃)-irreducible and recurrent Markov Chain under cer-
tain regularity conditions.

Theorem 2.1. For an absolutely continuous target dis-
tribution p(x), DiGS with a Gaussian convolution kernel
p(x̃|x) = N (x̃|αx, σ2I) (α > 0, σ > 0) yields a p(x, x̃)-
irreducible and recurrent Markov Chain.

The proof of Theorem 2.1 can be found in Appendix A.
Intuitively, these properties ensure that the chain compre-
hensively explores the state space from any starting point

(irreducibility) and effectively captures the target distribu-
tion by infinitely revisiting every state (recurrence) (Robert
et al., 1999).

In addition to being a valid MCMC sampler, there are some
practical considerations that can impact the performance of
DiGS. We discuss these in the following sections.

2.2. Initialization of the Denoising Sampling Step

Ideally, one might hope to construct an exact Gibbs sam-
pler where the score-based sampler targeting p(x|x̃(i−1))
draws a true sample x(i) at each iteration. Unfortunately,
when the target distribution has very disconnected modes,
the resulting denoising posterior p(x|x̃) may still exhibit
a multi-modal nature. For instance, Figure 2(a) illustrates
the density of an MoG with unbalanced weights. For a
given previous clean sample x(i−1), we generate a noisy
sample x̃(i−1) using a Gaussian convolutional kernel with
α = 1 and σ = 1. The corresponding denoising density
p(x|x̃(i−1)) is depicted in Figure 2(b), which exhibits four
distinct modes with varying weights. In such scenarios, se-
lecting an appropriate initial point, x(i)init, for the subsequent
sampling process x(i) ∼ p(x|x̃ = x̃(i−1)) is crucial for
score-based samplers.

An ideal initial point for sampling from the denoising pos-
terior p(x|x̃(i−1) would be the mean of the denoising dis-
tribution, defined as µ(x̃) ≡

∫
xp(x|x̃) dx. By Tweedie’s

lemma (Efron, 2011; Robbins, 1992), the mean can be ex-
pressed as a function of the noisy score∇x̃ log p(x̃):

µ(x̃(i−1)) =
x̃(i−1) + σ2∇x̃ log p(x̃

(i−1))

α
. (13)

Figure 2(b) demonstrates that the mean function µ(x̃(i−1))
provides an initial point positioned in the middle of the
four modes according to their weights, slightly favoring the
mode with the largest weight. However, a challenge arises
since∇x̃ log p(x̃) is generally intractable (see Equation 9),
making it impractical to compute.

Alternatively, a more straightforward approach is to ini-
tialize the denoising sampler at the previous state x(i−1).
However, this strategy has a drawback: since x(i−1) is typ-
ically close to one of the modes, the score-based sampler
often remains trapped in the vicinity of that mode, thereby
hindering effective exploration of the entire distribution. An-
other heuristic initialization strategy is to use the (scaled)
noisy sample x̃(i−1)/α, where the scaling factor α reflects
the scale relationship between x and x̃ as suggested by the
mean function in Equation 13. This approach exhibits a
uniform preference for a random mode (for instance, the
upper-left mode in Figure 2(b)) and ignores the underlying
weighting between modes, resulting in a bias in represent-
ing the true weights of different modes and consequently
diminishing the overall quality of the samples.
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(a) True. (b) x(i−1). (c) x̃(i−1)/α. (d) MH.

Figure 3. Comparison of different initialization techniques for de-
noising posterior sampling on an unequally weighted MoG target
described in Figure 2(a). In each case, we generate 1,000 samples
using a Gaussian convolution kernel with α = 1, σ = 1.

Table 1. MMD between true samples and samples obtained using
different initialization techniques for denoising posterior sampling
on an unequally weighted MoG target described in Figure 2(a).

Init. x(i−1) x̃(i−1)/α MH
MMD 0.15± 0.01 0.92± 0.04 0.03± 0.01

2.2.1. A METROPOLIS-WITHIN-GIBBS SCHEME

To avoid potential bias, we propose a Metropolis-within-
Gibbs scheme to facilitate mixing across modes by sampling
an initialization position x′init from an additional MCMC
transition kernel for the subsequent finite score-based sam-
pling steps. Specifically, to initialize score-based sampling
from the denoising posterior p(x|x̃(i−1)), we employ a lin-
ear Gaussian proposal x′init ∼ q(x|x̃(i−1)) which is cen-
tered at the (scaled) noisy sample x̃(i−1)/α:

q(x|x̃(i−1)) = N (x|x̃(i−1)/α, (σ/α)2I), (14)

where the mean and the variance are chosen according to
q(x|x̃) ∝ p(x̃|x) inspired by the mean function µ(x̃(i−1)).
Note that this proposal only depends on the noisy sample
x̃(i−1) and is independent of the previous state x(i−1). We
use the MH algorithm to calculate the acceptance rate for
this proposal:

ainit = min

(
1,
p(x′init|x̃(i−1))q(x(i−1)|x̃(i−1))

p(x(i−1)|x̃(i−1))q(x′init|x̃(i−1))

)
, (15)

where the denoising posterior ratio is tractable since

p(x′init|x̃(i−1)))

p(x(i−1)|x̃(i−1))
=

e−E(x′
init)p(x̃(i−1)|x′init)

e−E(x(i−1))p(x̃(i−1)|x(i−1))
. (16)

If the proposal is accepted, we will initialize the denois-
ing sampling process with the updated value x′init, rather
than the previous state x(i−1). Algorithm 1 summarizes the
proposed Diffusion Gibbs Sampling (DiGS) procedure.

To demonstrate the benefits of the additional MCMC kernel
updating the initialization, we run DiGS with three differ-
ent initializations (the previous state x(i−1), a heuristic re-
initialization at x̃(i−1)/α, and our MH transition strategy)

Algorithm 1 Diffusive Gibbs Sampling (DiGS)

1: Input: target energy E(x); Gaussian convolution hy-
perparameters α, σ; score-based denoising sampler S;
the number of denoising sampling steps L; the number
of Gibbs sampling sweeps K; initial clean sample x(0).

2: for i← 1 to K do
3: Draw x̃(i−1) ∼ p(x̃|x(i−1)) using Equation 10.
4: Propose x′init ∼ q(x|x̃(i−1)) as initialization for the

denoising process from the proposal in Equation 14.
5: Accept x(i)init ← x′init with probability ainit in Equa-

tion 15; otherwise set x(i)init ← x(i−1).
6: Draw x(i) ∼ p(x|x̃(i−1)) by running the score-based

sampler S for L steps from the initial point x(i)init

using Equation 12.
7: end for
8: Output: x(K)

on an MoG target with different component weights. Fig-
ure 3 provides a visual comparison of the samples obtained
from these initializations, showing that only the MH transi-
tion scheme captures all modes with the correct weightings.
For evaluation, we employ the Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012) throughout all the experiments.
The results are shown in Table 1, which demonstrates that
the MH strategy outperforms the other two in capturing
all modes and accurately representing the true weightings.
Detailed experimental setup can be found in Appendix D.1.

2.3. Choosing the Gaussian Convolution Kernels

The performance of DiGS can be influenced by the hyper-
parameters α and σ in the Gaussian convolution kernel.
Intuitively, for a given fixed α, a large σ will enhance the
exploration capability of the sampler. However, this also
makes the denoising posterior p(x|x̃) closer to p(x) as illus-
trated in Equation 11, thereby elevating the complexity of
denoising sampling. Similarly, with a fixed σ, reducing α
will bring the modes closer but will also make∇x log p(x|x̃)
close to ∇x log p(x) as shown in Equation 12, making the
denoising sampling challenging. To illustrate the effects of
hyperparameters, we apply DiGS to the MoG problem de-
scribed in Figure 1 with varying values of α, σ and show the
results in Figures 4(a) and 4(b), respectively. This demon-
strates that within a specific range of α and σ values, DiGS
consistently achieves optimal performance indicated by al-
most zero MMD. However, the quality of samples degrades
when hyperparameters deviate beyond certain thresholds.

Although these results suggest that DiGS is robust to a
certain range of hyperparameters, selecting an appropriate
range remains crucial for each specific target distribution.
The optimal range can depend on the support and the shape
of the target density, which is typically unknown in practice.
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(a) Effects of α (fix σ = 1).
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(c) Effects of T in the VP schedule.

Figure 4. Effects of the hyperparameters α, σ in Gaussian convolution kernels and the number T of noise levels in the variance-preserving
(VP) noise scheduling. The y-axis in all three plots is the MMD between true samples and generated samples generated by DiGS with
varying hyperparameters. Experimental setups can be found in Appendices D.2 and D.3.

Next section will introduce a multi-level noise scheduling
to mitigate the need for precise hyperparameter selection.

2.4. Multi-Level Noise Scheduling

Drawing inspiration from the noise scheduling technique
used in diffusion models (Ho et al., 2020; Song & Er-
mon, 2019; Song et al., 2021; Gao et al., 2018), we pro-
pose to use a sequence of Gaussian convolution kernels
with 0 < αT < · · · < α1 < 1 and the corresponding
variance σ2

t = 1 − α2
t in each Gaussian convolution ker-

nel pt(x̃t|x) = N (x̃|αtx, σ
2
t I). This approach is com-

monly known as the variance-preserving (VP) schedule,
where pt(x̃t) =

∫
pt(x̃t|x)p(x) dx and p0(x̃0) ≡ p(x).

As αT → 0, it follows that pT (x̃T |x) → N (x̃T |0, I) and
pT (x̃T ) → N (x̃T |0, I), which are easy to sample from
since they are independent of the characteristics of the tar-
get distribution p(x).

We follow the common sampling procedure in the score-
based diffusion model literature (Song & Ermon, 2019;
2020) and propose the following sampling procedure: for
each t from T to 1, we run DiGS to generate a sample,
which is used as an initial point in the subsequent time step
t−1. For a given number of noise levels T , we apply a
simple linear scheduling scheme to determine the values of
αt. Specifically, given the end points α1 and αT , we have

αt = αT + (α1 − αT )
T − t
T − 1

, σt =
√
1− α2

t . (17)

Despite the similarity in noise scheduling to diffusion mod-
els, the fundamental sampling mechanism in DiGS is dif-
ferent. In diffusion models, the sampling process requires
a progression from time step T to 0 to yield valid samples.
However, DiGS produces a valid sample at any timestep
t in principle. This property allows us to set αT > 0 and
α1 < 1, thereby enhancing the efficiency of DiGS without
the necessity to align with the asymptotic distributions. To
illustrate the effect of the number of noise levels T , we im-
plement the VP schedule with a linear noise scheme. We
set αT = 0.1, α1 = 0.9 and vary T from 2 to 5. We test
this multi-level DiGS on the MoG problem described in Fig-
ure 1. Figure 4(c) shows that an optimal sampler is achieved

Figure 5. Comparison of a multi-modal target distribution p(x),
tempered distribution pβ(x), and convolved distribution p(x̃).

with T > 2 for this problem, circumventing the need for
manually selecting Gaussian convolution hyperparameters.

3. Comparison to Related Methods
In this section, we explore the relationship between DiGS
and related methods, complementing this with empirical
comparisons to highlight their distinct characteristics.

3.1. Tempering-Based Sampling

Tempering-based sampling is a state-of-the-art method
for multi-modal target distributions, which samples from
smoothed versions of the target distribution and exchanges
samples with the original target once in a while. A tempered
target distribution is defined as

pβ(x) ∝ p(x)β ∝ exp(−βE(x)), (18)

where β ≡ 1/τ < 1 is the inverse temperature. As τ →∞,
the tempered target pβ→0(x) converges to a flat distribution,
which encourages transitions among different modes. Tem-
pering is a key building block to develop state-of-the-art
multi-modal sampling methods such as parallel tempering
(PT) (Swendsen & Wang, 1986; Geyer & Thompson, 1995;
Syed et al., 2022; Surjanovic et al., 2022) and annealed
importance sampling (AIS) (Neal, 2001).

Tempering-based sampling makes transitions between dis-
tant modes easier. However, tempering is unable to bridge
disconnected modes even with a large temperature as it does
not alter the support of a distribution, since p(x)β = 0
wherever p(x) = 0. Moreover, Figure 5 shows that the
tempering-based method is inefficient in connecting modes
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(a) True Samples (b) PT (c) DiGS

Figure 6. Comparison between parallel tempering (PT) and DiGS
on a “Mixture of Deltas” problem in 2D with the same budge. PT
consists of 5 temperatures, while DiGS uses one noise level. Each
sampler is initialized at the origin and generates 1,000 samples.
Detailed experimental setup can be found in Appendix D.4.

even when they are not completely disconnected but far
away. Appendix B gives an analytical example, showing the
log-density of a point between two modes could approach
−∞ in the tempered distribution pβ(x), whereas the log-
density of that point in the convolved distribution p(x̃) is
lower bounded, regardless of the shape of the target p(x).

To empirically compare the mode-bridging property of PT
and DiGS, we conduct experiments on an extreme problem,
“Mixture of Deltas”, which is an MoG with extremely small
variance in each Gaussian. Figure 6 shows the compari-
son of the samples from these two samplers with the same
budget: PT is unable to escape the central mode in this
extreme setting even with large temperatures τ , whereas
DiGS manages to recover all 9 modes, demonstrating its
superiority over PT in terms of mode exploration and cov-
erage. To make PT work on this problem, one needs to use
more chains with the DEO scheme (Deng et al., 2023); see
Appendix D.4 for a detailed description.

3.2. Score-Based Diffusion Model

The convolution technique plays a key role in score-based
diffusion models (Song & Ermon, 2019; Song et al., 2021;
Song & Ermon, 2020; Ho et al., 2020; Sohl-Dickstein et al.,
2015; Gao et al., 2020). These models employ a series
of convolutions (indexed by t) to form a distribution se-
quence from p(x̃0) ≡ p(x) to a simple distribution p(x̃T ).
At each time step t, the score function at time∇x̃t

log p(x̃t)
is learned from samples x1, · · · , xN ∼ p(x) using denois-
ing score matching (Vincent, 2011). To sample from p(x),
ULA and Euler discretization are typically applied in re-
verse (t = T → 0), using samples from each time step t as
the initial point at time t−1. This scheme has shown state-
of-the-art generation quality for complex data like images.
However, unlike score-based/diffusion generative models
where∇x̃ log p(x̃) is learned directly from samples, our set-
ting only assumes access to an energy function E(x) with-
out samples, making the noisy marginal score ∇x̃ log p(x̃)
intractable, as shown in Equation 9.

Zhang et al. (2023a) proposes a pseudo-Gibbs sampler
for the joint p(x, x̃) = p(x)p(x̃|x) to obtain clean sam-
ples from score-based diffusion models, where p(x̃|x) =
N (x̃|αx, σ2I) and p(x|x̃) is approximated by a full-
covariance Gaussian. This approach also requires training
data to estimate the score function ∇x̃ log p(x̃), which is
different from our problem setting.

3.3. Proximal Sampler

DiGS also belong to the proximal sampler family (Chen
et al., 2022; Lee et al., 2021), where Gibbs sampling is exe-
cuted between the Gaussian convolution distribution p(x̃|x)
and the denoising posterior p(x|x̃). In the denoising sam-
pling step, proximal samplers find a mode using gradient-
based optimization technique and perform rejection sam-
pling around that mode. We highlight several significant
improvements of DiGS over the proximal samplers. First,
we employ a score-based sampler such as MALA and HMC
in the denoising step instead of rejection sampling around
a single mode as in proximal samplers, which helps the
method scale to higher-dimensional distributions. Second,
we employ an innovative Metropolis-within-Gibbs scheme
to initialize the denoising sampling step, demonstrating its
importance in achieving correct density allocation in multi-
modal situations, as discussed in Section 2.2. Third, we
emphasize the importance of tuning Gaussian convolution
kernel in Section 2.4 and employ a multi-level scheduling to
eliminate the need of choosing Gaussian convolution hyper-
parameters. These improvements make the DiGS applicable
to practical problems with multi-modal target distributions
in high dimensional spaces.

Entropy-MCMC (Li & Zhang, 2023) is designed to sample
from the flat regions within the posterior of the Bayesian
neural network p(θ|D), where D represents the training
dataset. Specifically, the approach begins by defining a
surrogate distribution using Gaussian convolution:

p(θa|D) =
∫
p(θa|θ)p(θ|D) dθ, (19)

where p(θa|θ) ∝ exp
(
− 1

2η∥θa − θ∥
2
2

)
is a Gaussian ker-

nel aimed at smoothing out the sharp regions in the posterior.
Subsequently, SGLD (Welling & Teh, 2011) is applied to
sample within the joint space of (θ, θa), where samples of
both θ and θa are kept. It is crucial to highlight that, while
this method aims to seek flat modes in the target distribution
p(θ|D), similar to the approaches described in Chaudhari
et al. (2019); Staines & Barber (2012), it is not intended and
cannot provide exact samples from the target distribution
p(θ|D) due to its optimization nature. In contrast, DiGS
is designed as a valid MCMC sampler that is specifically
designed to identify all modes (including both sharp and flat
modes) and their corresponding density allocations in the
target distribution, thus pursuing a distinct objective.
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Figure 7. Computational cost comparison between DiGS and
RDMC. The x-axis is the number of energy evaluations (×106) and
the y-axis is the MMD between true and generated samples. We
use DiGS with a single noise level (α = 1, σ = 1) and run Gibbs
sampling for 1-10 sweeps, represented by the 10 blue scatters. The
RDMC is experimented with T ∈ {1, 2, 3, 4}, represented by the
four orange points in the plot. Detailed experimental setup can be
found in Appendix D.5.

3.4. Reverse Diffusion Monte Carlo

To emulate a diffusion model sampling process with access
to the unnormalized density of the target only, Huang et al.
(2023) introduces Reverse Diffusion Monte Carlo (RDMC),
which approximates the score function in the noisy space at
each time t. Specifically, by rewriting the Tweedie’s lemma
in Equation 13, the noisy score can be expressed as

∇xt
log p(xt) = (αµ(xt)− xt) /σ2

t , (20)

where the denoising posterior mean µ(xt) =
∫
xp(x|xt) ≈

1
K

∑K
k=1 x

(t,k)
0 is approximated by the Monte Carlo method,

with samples x
(t,1)
0 , · · · , x(t,K)

0 obtained by running a
score-based sampler such as ULA targeting the posterior
p(x0|xt) ∝ exp(−E(x0)−∥xt−αtx0∥2/2σ2

t ). Therefore,
in RDMC, obtaining a single sample xt ∼ p(xt) via ULA
at each time step t ∈ [1, T ] involves an intermediate step of
generating K posterior samples via another ULA, leading
to a nested MCMC sampling procedure that imposes sub-
stantial computational demands. In contrast, DiGS does not
have such hierarchy since it requires only one MCMC chain
during the denoising sampling step in each Gibbs sweep,
significantly reducing the computational burden. Figure 7
compares the computational costs of these two methods
when applied to MoG target as shown in Figure 1, demon-
strating that DiGS can achieve the same accuracy as RDMC
with 10× fewer energy evaluations. The efficiency of DiGS
is particularly vital in applications such as molecular config-
uration sampling (Section 4.3), where even a single energy
evaluation is costly.

3.5. Auxiliary Variable MCMC

DiGS belongs to the broader auxiliary variable MCMC
family. This family encompasses various notable methods
such as the Swendsen-Wang algorithm (Swendsen & Wang,
1987), slice sampling (Neal, 2003), Hamiltonian Monte

Table 2. Sample quality on MoG-40. MMD is computed between
true samples and samples generated by each sampler. MAE is
computed between the true and estimated expectation values of a
quadratic function under the target and is expressed as the percent-
age of the true expectation value.
Sampler MMD MAE (%) #energy eval.

MALA 1.73± 0.12 93.3± 0.73 1.0× 107

HMC 1.70± 0.09 92.8± 0.34 1.0× 107

PT (1.89± 0.44)× 10−2 7.32± 1.85 1.0× 107

DiGS (4.57± 1.10)× 10−4 0.75± 0.19 1.0× 107

Carlo (HMC) (Duane et al., 1987; Neal et al., 2011), and aux-
iliary variational MCMC (Habib & Barber, 2018; Agakov &
Barber, 2004); see Barber (2012) for a detailed introduction.
Among these, HMC bears the closest resemblance to DiGS.
We delve into the similarities and differences below.

As introduced in Section 1.1, HMC generates samples from
the joint distribution p(x, v) = p(x)p(v) where the v is
the auxiliary variable that represents the momentum. The
momentum is usually distributed as a Gaussian p(v) =
N (v|0, σ2

vI) that is independent of x. However, there are
other variants of HMC where the momentum auxiliary vari-
able v depends on x. For example, in Riemannian Manifold
HMC (Girolami & Calderhead, 2011), the momentum is
distributed as p(v|x) = N (v|0,Σv(x)), where Σv(x) is the
Fisher information matrix that captures the local curvature
of the energy around x. The auxiliary variable in DiGS is the
convolved variable x̃, which is a noisy version of x, given by
p(x̃|x) = N (x̃|αx, σ2I). Notably, when α = 0, it follows
that p(x̃|x) = p(x̃) = N (x̃|0, σ2I), and the joint distribu-
tion p(x, x̃) = p(x)p(x̃) in DiGS is identical to p(x, v) in
the classic HMC formulation. Despite this similarity, DiGS
employs Gibbs sampling which alternately samples from
the two conditionals p(x̃|x) and p(x|x̃), whereas HMC sim-
ulates the Hamiltonian equations as discussed in Section 1.1,
interleaved with samples from p(v).

4. Empirical Evaluation
We evaluate DiGS on three complex multi-modal sampling
tasks across various domains1: a mixture of 40 Gaussians,
Bayesian neural network, and molecular dynamics. For
DiGS, we employ MALA with the Metropolis-within-Gibbs
scheme. We compare DiGS with three baselines: MALA,
HMC and PT. In all experiments, the step sizes of MALA
and HMC are tuned via trial-and-error so that the acceptance
rates are close to 0.574 (Roberts & Rosenthal, 1998) and
0.65 (Neal et al., 2011), respectively. We choose not to
compare with RDMC, since it is computationally intractable
on these complex tasks as demonstrated in Section 3.4.

1The code of our experiments can be found in https://
github.com/Wenlin-Chen/DiGS.
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(a) True Samples (b) MALA (c) HMC (d) PT (e) DiGS

Figure 8. Visualization of 104 samples for MoG-40 generated by each sampler. All samplers are initialized at the origin.

4.1. Mixture of 40 Gaussians

We first consider a synthetic problem from Midgley et al.
(2023), which is a 2D MoG with 40 mixture components.
This is a relatively challenging multi-modal sampling task,
yet it allows for visual examination of the mode-coverage
property for each method. In this experiment, each method
is initialized at the origin and generates 104 samples for eval-
uation. MALA runs 1,000 Langevin steps per sample. HMC
runs 1,000 leapfrog steps per sample. PT consists of 5 chains
with temperatures τ = {1.0, 5.62, 31.62, 177.83, 1000.0},
where each chain is constructed by an HMC sampler with
200 leapfrog steps per sample. DiGS uses T = 1 noise level
with α = 0.1 and σ2 = 1 − α2, 200 Gibbs sweeps, and 5
MALA denoising sampling steps per Gibbs sweep.

Figure 8 shows a visual comparison for 104 samples gener-
ated by each method. We can see that MALA and HMC fail
to explore the modes that are far away from the origin. PT
covers all 40 modes but produces significantly less samples
for the modes on the top-right and bottom-right corners.
DiGS manages to cover all modes with the right amount of
samples in each mode. Table 2 shows the Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012) (computed with
5 kernels with bandwidths {2−2, 2−1, 20, 21, 22}) between
the true samples and samples generated by each sampler
and the Mean Absolute Error (MAE) between the true and
estimated expectations of a quadratic function under the
MoG-40 target. This demonstrates that our method signifi-
cantly outperforms all baselines on this problem.

4.2. Bayesian Neural Networks

The posterior density of the parameters in a Bayesian neu-
ral network (BNN) is known to be complex and multi-
modal (Barber & Bishop, 1998; Hernández-Lobato &
Adams, 2015; Louizos & Welling, 2017; Izmailov et al.,
2018). For a given training dataset Dtrain = {(xi, yi)}Ni=1,
the posterior density can be expressed as p(θ|Dtrain) ∝
p(θ)

∏
i p(yi|xi, θ), where p(θ) is the prior density over

the parameters and p(y|x, θ) is the likelihood given by the
NN fθ(x) for a data point (x, y). We consider a three-
layer neural network with ReLU activation, input-layer size
dx = 20, hidden-layer size dh = 25, and output-layer size

Table 3. Average test predictive NLL for the BNN estimated by
103 samples generated by each sampler.

Sampler NLL #energy evaluations

MAP 0.548± 0.066 5.0× 106

MALA 0.399± 0.014 5.0× 106

HMC 0.315± 0.012 5.0× 106

PT 0.241± 0.005 5.0× 106

DiGS 0.189± 0.002 5.0× 106

dy = 1. This results in d = 550 parameters in total. We use
a Gaussian prior p(θ) = N (θ|0, σ2

pI) with σp = 1/
√
dfan-in

and a Gaussian likelihood p(y|x, θ) = N (y|fθ(x), σ2
n)

with σn = 0.1. We sample the ground-truth parameters
θ∗ ∼ p(θ) from the prior and use θ∗ to generate N = 500
training points and 500 test points for evaluation.

All methods are initialized at the same random sample
from the prior and generate 150 samples from the poste-
rior p(θ|Dtrain) for evaluation. MAP (Maximum a Posteri)
runs 7.5×105 full-batch gradient descent steps. MALA runs
5,000 Langevin steps per sample. HMC runs 5,000 leapfrog
steps per sample. PT consists of 5 chains with temperatures
τ = {1.0, 5.62, 31.62, 177.83, 1000.0}, where each chain
is constructed by an HMC sampler with 1,000 leapfrog steps
per sample. DiGS uses the VP schedule with T = 5 noise
levels, ranging from αT = 0.1 to α1 = 0.9, each with
100 Gibbs sweeps and 10 MALA denoising sampling steps
per Gibbs sweep. Table 3 reports the average predictive
negative log-likelihood (NLL) for each method on the test
data, which shows that DiGS significantly outperforms other
baselines. We speculate that the performance gain comes
from the fact that DiGS captures a broader range of modes.

4.3. Molecular Configuration Sampling

Finally, we consider a real-world problem of sampling equi-
librium molecular configurations from the Boltzmann dis-
tribution of the 22-atom molecule alanine dipeptide in an
implicit solvent at temperature 300K, where the potential
energy E(x) is a function of 3D atomic coordinates ob-
tained by simulating physical laws (Wu et al., 2020; Dibak
et al., 2022; Campbell et al., 2021; Stimper et al., 2022;
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Table 4. KL divergences for the Ramachandran plots and the marginals of the dihedral angles ϕ and ψ in alanine dipeptide.
Sampler p(ϕ) p(ψ) Ramachandran #energy evaluations #samples

MALA 1.9×10−3 5.3×10−4 1.1×10−2 1.0×109 106

HMC 4.0×10−4 3.1×10−4 7.1×10−3 1.0×109 106

DiGS 2.3×10−4 1.2×10−4 4.3×10−3 1.0×109 106

MD PT (Midgley et al., 2023) 2.5×10−4 1.4×10−4 5.3×10−3 2.3×1010 106

Ground-truth (Midgley et al., 2023) – – – 2.3×1011 107

Midgley et al., 2023). This is a very challenging problem
since E(x) is highly multi-modal with many high energy
barriers and is also costly to evaluate. Following the setup
in Midgley et al. (2023), we represent the molecule with
d = 60 roto-translation invariant internal coordinates.

Figure 9. Alanine dipeptide
(Midgley et al., 2023)

Each method is initialized
at the minimum energy con-
figuration as in Midgley
et al. (2023) and generates
106 samples of molecular
configurations for evaluation.
MALA runs 1,000 Langevin
steps per sample. HMC runs
1,000 leapfrog steps per sam-
ple. DiGS uses the VP schedule with T = 2 noise levels
(α2 = 0.1 and α1 = 0.9), each with 100 Gibbs sweeps and
5 MALA denoising sampling steps per Gibbs sweep. Note
that PT is the gold-standard method in molecular dynamics
(MD) simulation, which serves as the ground-truth. The
PT samples are taken from Midgley et al. (2023), which
is generated using 21 chains starting at temperature 300K
and increasing the temperature by 50K for each subsequent
chain, where each chain is constructed by an HMC sampler
with 1,000 leapfrog steps per sample. We follow Midgley
et al. (2023) and treat 107 PT samples as the ground-truth.
In addition, we consider a baseline of 106 PT samples as
a reference. The quality of the sampled configurations is
assessed by the Ramachandran plot (Ramachandran et al.,
1963), which can be used to analyze how the protein folds
locally. A Ramachandran plot is a 2D histogram for joint
distribution of the two dihedral angles ϕ and ψ in the bonds
connecting an amino acid to the protein backbone, as shown
in Figure 9. Table 4 shows the KL divergences for the Ra-
machandran plots p(ϕ, ψ) and the marginals p(ϕ) and p(ψ)
between the ground-truth samples and samples generated
by each sampler. We can see that DiGS significantly outper-
forms MALA and HMC with the same number of energy
evaluations. Moreover, DiGS also outperforms the gold-
standard MD simulation method PT with 23× less energy
evaluations. Figure 10 shows a visual comparison between
the ground-truth Ramachandran plots and the one produced
by DiGS, confirming that DiGS captures all modes with the
correct weightings.

(a) Ground-truth (b) DiGS (106 samples)

Figure 10. Ramachandran plots for alanine dipeptide.

5. Conclusion
Diffusive Gibbs Sampling (DiGS) is an innovative sampler
that combines recent development in diffusion models with a
novel Metropolis-within-Gibbs scheme. DiGS offers signif-
icant improvements in sampling multi-modal distributions,
surpassing traditional methods in both efficiency and accu-
racy. Its applicability across various fields (e.g., Bayesian
inference and molecular dynamics) showcases the poten-
tial of DiGS to facilitate sampling complex distributions in
numerous scientific applications.

5.1. Limitations and Future Work

In our experiments, we observed that the acceptance rate of
the Metropolis-within-Gibbs scheme given by Equation 15
was around 0.15, due to the random walk behavior of the lin-
ear Gaussian proposal as in Equation 14. A potential future
work direction would be to design more efficient proposals
for the Metropolis-within-Gibbs scheme with higher accep-
tance rate, for instance, combining the Gaussian convolution
kernel and the linear Gaussian proposal by marginalizing out
the noisy variable: q(x|x(i−1)) =

∫
q(x|x̃)p(x̃|x(i−1))dx̃

(Titsias & Papaspiliopoulos, 2018). Empirically, it would
be interesting to investigate the the performance of DiGS
with different score-based samplers such as HMC in the
denoising sampling step in future work. Besides, other
multi-modal samplers such as population-based MCMC
could be considered as baselines for comparison in future
work. We also leave the convergence analysis of DiGS in
the general multi-level noise scheduling setting as a future
work; see Appendix C for some preliminary discussions.

9



Diffusive Gibbs Sampling

Acknowledgements
We thank Andi Zhang for useful discussions on RDMC,
Ruqi Zhang for highlighting Entropy-MCMC, an anony-
mous reviewer for discussions on PT, and Arnaud Doucet,
Michael Hutchinson and Sam Power for pointing out proxi-
mal samplers.

MZ and DB acknowledge funding from the Cisco Centre
of Excellence. WC acknowledges funding via a Cambridge
Trust Scholarship (supported by the Cambridge Trust) and a
Cambridge University Engineering Department Studentship
(under grant G105682 NMZR/089 supported by Huawei
R&D UK). JMHL acknowledges support from a Turing AI
Fellowship under grant EP/V023756/1.

Impact Statement
The goal of this paper is to advance the field of machine
learning. There could be many potential positive societal
consequences of this methodological work, too numerous
to specifically highlight here.

References
Agakov, F. V. and Barber, D. An auxiliary variational

method. In Neural Information Processing: 11th In-
ternational Conference, ICONIP 2004, Calcutta, India,
November 22-25, 2004. Proceedings 11, pp. 561–566.
Springer, 2004.

Barber, D. Bayesian reasoning and machine learning. Cam-
bridge University Press, 2012.

Barber, D. and Bishop, C. M. Ensemble learning in Bayesian
neural networks. Nato ASI Series F Computer and Sys-
tems Sciences, 168:215–238, 1998.

Brown, B. C., Caterini, A. L., Ross, B. L., Cresswell, J. C.,
and Loaiza-Ganem, G. The union of manifolds hypoth-
esis and its implications for deep generative modelling.
arXiv preprint arXiv:2207.02862, 2022.

Campbell, A., Chen, W., Stimper, V., Hernandez-Lobato,
J. M., and Zhang, Y. A gradient based strategy for Hamil-
tonian Monte Carlo hyperparameter optimization. In
International Conference on Machine Learning, pp. 1238–
1248. PMLR, 2021.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Bal-
dassi, C., Borgs, C., Chayes, J., Sagun, L., and Zecchina,
R. Entropy-sgd: Biasing gradient descent into wide val-
leys. Journal of Statistical Mechanics: Theory and Ex-
periment, 2019(12):124018, 2019.

Chen, Y., Chewi, S., Salim, A., and Wibisono, A. Improved
analysis for a proximal algorithm for sampling. In Confer-
ence on Learning Theory, pp. 2984–3014. PMLR, 2022.

Deng, W., Zhang, Q., Feng, Q., Liang, F., and Lin, G. Non-
reversible parallel tempering for deep posterior approxi-
mation. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 37, pp. 7332–7339, 2023.

Dibak, M., Klein, L., Krämer, A., and Noé, F. Tempera-
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A. Proof of Theorem 2.1
Proof. A sufficient condition for irreducibility and recurrency of a Markov chain is that the joint distribution p(x, x̃) should
satisfy the positivity condition (Robert et al., 1999; Roberts & Smith, 1994), which requires p(x′, x̃′) > 0 for all x′, x̃′ such
that p(x′) > 0 and p̃(x̃′) > 0, where p̃(x̃′) =

∫
p(x̃′|x)p(x) dx. This requirement is satisfied in the DiGS. This is because

p(x, x̃) = p(x̃|x)p(x), where the Gaussian convolution kernel p(x̃|x) has full support in Rd. Consequently, if p(x′) > 0,
then it follows that p(x̃′) > 0 and p(x′, x̃′) > 0.

B. An Analytical Example of Tempering v.s. Convolution
Although tempering-based sampling can alleviate the issue of multi-modal sampling in certain contexts, they still struggle in
situations where the modes are less connected or completely isolated. Consider a toy example of a mixture of two Gaussians
in 1D, given by p(x) = 1

2N (x|µ, σ2
g) +

1
2N (x| − µ, σ2

g) where both Gaussian components have the same variance σ2
g and

symmetric means positioned at µ,−µ. A point of interest is x = 0, which lies in the low-density region between the two
modes and acts as a barrier point, hindering the state transition from one mode to another. In this example, the tempered
log-density has a closed-form expression up to some constant Cβ :

log pβ(x = 0) = β log p(x = 0) + Cβ

= β

(
− µ2

2σ2
g

− log σg

)
+ Cβ . (21)

For any given inverse temperature β and position µ, as σg → 0, we have log pβ(x = 0)→ −∞ and thus pβ(x = 0)→ 0.
This “Mixture of Deltas” example shows that tempering methods do not effectively overcome the low-density barrier in such
situations. Furthermore, if we consider scenarios where each component of the mixture distribution is entirely disconnected,
the tempered density in these regions remains zero, as tempering does not alter the support of a distribution.

In contrast, we define the convolved distribution p(x̃) =
∫
p(x̃|x)p(x) dx for the same target p(x) with a convolution kernel

p(x̃|x) = N (x̃|x, σ2). For any given µ and σg , without loss of generality, we choose σ ≥ σg/δ with a small constant δ > 0.
This leads to a lower bound:

log p(x̃ = 0) = − µ2

2(σ2
g + σ2)

− 1

2
log(2π(σ2

g + σ2))

≥ − µ2

2σ2
− 1

2
log(2πσ2(1 + δ2)), (22)

illustrating that the convolved log-density at x̃ = 0 is lower-bounded for any σ > 0 as σg → 0, since the lower bound
of log p(x̃ = 0) is independent of σg and remains finite. This approach effectively guarantees the maintenance of a
non-negligible density within the bridges connecting different modes of distribution. Figure 5 presents a one-dimensional
comparison between the tempering and convolution methods. However, in cases where the standard deviation of the Mixture
of Gaussians (MoG) is exceptionally small, the efficacy of tempering diminishes significantly. In such instances, even with a
large temperature T , tempering fails to connect the modes. Conversely, the convolution method continues to effectively
bridge the modes, even with a relatively small σ. This comparison underscores the convolution method’s robustness in
handling scenarios with disconnected modes, a situation that also mirrors challenges often encountered in high-dimensional
cases, whereas the tempering method struggles.

C. Discussions of Convergence Guarantees
In some specific cases, the convergence rate of DiGS may be established. Specifically, the convergence rate of DiGS depends
on both the convergence of the inner denoising sampling step and the convergence of the outer Gibbs sampler. For instance,
when using MALA to sample from the denoising posterior p(x|x̃), the convergence of MALA has been studied under
different conditions such as strong log-concavity and log-Sobolev inequality (Vempala & Wibisono, 2019). Compared to
direct sampling from the target distribution, the L2 regularizer in the log denoising posterior can improve the log-Sobolev
condition:

log p(x|x̃) = −E(x)− ∥αx− x̃∥
2

2σ2
+ const, (23)
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which in turn accelerates the convergence of MALA (Huang et al., 2023). Intuitively, this makes the target distribution
more “Gaussian-like”. The convergence of the outer Gibbs sampler can be analyzed following the approach in Chen et al.
(2022), demonstrating convergence under conditions of strong log-concavity/log-concavity under Wasserstein distance and
log-Sobolev inequality under KL divergence. Therefore, the theoretical convergence guarantee of DiGS with a single noise
level can be obtained by combining the convergence analyses of the inner MALA denoising sampling step and the outer
Gibbs sampler from Vempala & Wibisono (2019); Chen et al. (2022); Huang et al. (2023).

However, in addition to the aforementioned factors, the multi-level noise schedule also plays a part in accelerating the
convergence speed. Furthermore, our empirical investigation revealed that the performance of DiGS for practical problems
such as molecular dynamics could also be affected by the initial condition (e.g., we followed the convention of molecular
dynamics to initialize DiGS at the minimum energy configuration, which turns out to be better than random initialization).
These analyses are out of the scope of this work, and we leave the theoretical study of the general DiGS framework as a
future research direction.

D. Experimental Details
In all experiments, the step sizes of MALA and HMC are tuned via trial-and-error so that the acceptance rates are close to
optimal values 0.574 (Roberts & Rosenthal, 1998) and 0.65 (Neal et al., 2011), respectively.

D.1. Comparison of Initialization Strategies for the Denoising Sampling Step

For the comparison of three initialization strategies for the denoising sampling step in Figure 3 and Table 1 in Section 2.2,
we run DiGS with α = 1, σ = 1 for 200 Gibbs sweeps on an MoG with unbalanced weights. The denoising sampling step
begins with an initialization using the Metropolis-Hastings (MH) algorithm, followed by 50 MALA steps with a step size of
1×10−3. For evaluation, we employ the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) that utilizes 5 kernels
with bandwidths {2−2, 2−1, 20, 21, 22}.

D.2. Comparison of Gaussian Convolution Hyperparameters

For the convolution parameter comparison in Section 2.3, we use DiGS to generate 1,000 samples. For each sample, we
execute 1,000 Gibbs sweeps. The denoising sampling step begins with an initialization using the Metropolis-Hastings
(MH) algorithm, followed by 10 MALA steps. The step size for MALA is set at 1 × 10−3. We set σ = 1.0 and vary α
across {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 5.0} for the experiment shown in Figure 4(a). Similarly,
we set α = 1.0 and vary σ across {0.1, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 10, 15, 20} for the experiment shown in Figure 4(b).
For evaluation, we employ the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) that utilizes 5 kernels with
bandwidths {2−2, 2−1, 20, 21, 22}.

D.3. Multi-Level Noise Scheduling

For the multi-level noise experiment with the VP schedule in Section 2.4, we define αt = αT + (T − t)∆α, where
∆α = (α1 − αT )/(T − 1) and σt =

√
1− α2

t . We set α1 = 0.9 and αT = 0.1, and experiment with T ∈ {2, 3, 4, 5} for
the comparison shown in Figure 4(c). For evaluation, we employ the Maximum Mean Discrepancy (MMD) (Gretton et al.,
2012) that utilizes 5 kernels with bandwidths {2−2, 2−1, 20, 21, 22}.

D.4. Comparison with Parallel Tempering

For comparison with parallel tempering on the “Mixture of Delta” problem in Figure 6 in Section 3.1, each sampler
is initialized at the origin and generates 1,000 samples. DiGS employs a single noise level Gaussian convolution with
parameters α = 1 and σ = 1, complemented by 1,000 Gibbs sweeps per sample. The denoising sampling step in each Gibbs
sweep begins with MH initialization, followed by 5 steps of MALA with a step size of 1×10−3. PT consists of 5 chains
with temperatures τ={1.0, 5.62, 31.62, 177.83, 1000.0}, where each chain is constructed by an HMC sampler with 1,000
leapfrog steps per sample and a step size of 1×10−2.

To make PT work on this problem, one needs to use 20 chains with temperatures τ={1.0, 2.07, 4.28, 8.86, 18.33, 37.93, 78.48,
162.38, 335.98, 695.19, 1432.45, 2976.35, 6158.48, 12742.75, 26366.51, 54555.95, 112883.79, 233572,15, 483293.02,
1000000.0} and the DEO scheme (Deng et al., 2023), where each chain is constructed by an HMC sampler with 500 leapfrog
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steps per sample and a step size of 1×10−2.

D.5. Comparison with RDMC

For the comparison with Reverse Diffusion Monte Carlo (RDMC) in Figure 7 in Section 3.4, we follow the original setting
discussed in Huang et al. (2023) and use ULA for generating samples for the posterior distribution. The score function of
the reverse distribution using K = 5 to construct the score approximation

∇xt
log p(xt) ≈

(
α

K

K∑
k=1

x
(t,k)
0 − xt

)
/σ2

t , (24)

where x(t,k)0 ∼ p(x0|xt) denotes the samples drawn using ULA with LULA = 5 steps and a step size of 1×10−2. These
samples are initialized through importance sampling (IS) with Sis = 100 samples. The discretization step size η is set
to Γ/T , with the scaling factor at = e−(Γ−t·η) and the standard deviation σt =

√
1− α2

t . Following the procedure
in Huang et al. (2023), we further apply ULA for additional LULA steps after RDMC. The parameter Γ is fixed at 0.1
for our experiments, and we explore different values of T ∈ {1, 2, 3, 4}, necessitating TK(LULA + Sis) + LULA energy
evaluations to generate a single sample.

For DiGS, we use DiGS with one noise level Gaussian convolution with parameter α = 1, σ = 1. For sampling from
the denoising distribution, we use the MH initialization followed by the ULA sampling with LULA = 5 steps and a step
size of 1×10−2. This MH+ULA scheme ensures a fair comparison to the IS+ULA scheme used in the RDMC. We vary
Sgibbs ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Gibbs sweeps to generate a sample, which takes Sgibbs(LULA + 2) energy evaluations
in total, where the constant 2 accounts for the two energy evaluations required by MH. For both DiGS and RDMC, a total of
1,000 samples are generated for comparison.

For evaluation, we employ the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) that utilizes 5 kernels with
bandwidths {2−2, 2−1, 20, 21, 22}.

D.6. Mixture of 40 Gaussians

For the MoG-40 experiment in Section 4.1, each method is initialized at the origin and generates 104 samples for evaluation.
MALA runs 1,000 Langevin steps per sample with a step size of 1 × 10−1. HMC runs 1,000 leapfrog steps per sample
with a step size of 1× 10−1. PT consists of 5 chains with temperatures τ = {1.0, 5.62, 31.62, 177.83, 1000.0}, where each
chain is constructed by an HMC sampler with 200 leapfrog steps per sample with a step size of 1× 10−1. DiGS uses T = 1
noise level with α = 0.1 and σ2 = 1− α2, 200 Gibbs sweeps, and 5 MALA denoising sampling steps per Gibbs sweep
with a step size of 1× 10−1.

D.7. Bayesian Neural Networks

For the BNN experiment in Section 4.2, all methods are initialized at the same random sample from the prior and generate
150 samples from the posterior p(θ|Dtrain) for evaluation. MAP runs 7.5× 105 full-batch gradient descent steps with a step
size of 3× 10−2. MALA runs 5,000 Langevin steps per sample with a step size of 1× 10−4. HMC runs 5,000 leapfrog steps
per sample with a step size of 5× 10−4. PT consists of 5 chains with temperatures τ = {1.0, 5.62, 31.62, 177.83, 1000.0},
where each chain is constructed by an HMC sampler with 1,000 leapfrog steps per sample with a step size of 5 × 10−4.
DiGS uses the VP schedule with T = 5 noise levels, ranging from αT = 0.1 to α1 = 0.9, each with 100 Gibbs sweeps and
10 MALA denoising sampling steps per Gibbs sweep with a step size of 1× 10−4.

D.8. Molecular Configuration Sampling

For the molecular configuration sampling experiment in Section 4.3, each method is initialized at the minimum energy
configuration as in Midgley et al. (2023) and generates 106 samples of configurations for evaluation. MALA runs 1,000
Langevin steps per sample with a step size of 1 × 10−4. HMC runs 1,000 leapfrog steps per sample with a step size of
1 × 10−3. DiGS uses the VP schedule with T = 2 noise levels (α2 = 0.1 and α1 = 0.9), each with 100 Gibbs sweeps
and 5 MALA denoising sampling steps per Gibbs sweep with a step size of 1× 10−4. Note that PT is the gold-standard
method in molecular dynamics (MD) simulation, which serves as the ground-truth. The PT samples are taken from Midgley
et al. (2023), which is generated using 21 chains starting at temperature 300K and increasing the temperature by 50K for
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Table 5. Sample quality on a 200-dimensional mixture of Gaussians problem.

Sampler MMD #energy evaluations

MALA 0.123± 0.035 106

HMC 0.104± 0.025 106

PT 0.094± 0.014 106

DiGS 0.027± 0.010 106

each subsequent chain, where each chain is constructed by an HMC sampler with 1,000 leapfrog steps per sample. We
follow Midgley et al. (2023) and treat 107 PT samples as the ground-truth. In addition, we consider a baseline of 106 PT
samples as a reference.

E. Additional Experimental Results
E.1. 200-Dimensional Mixture of Gaussians

We take the MoG target in Figure 2(a) and generalize it to the 200-dimensional space. For each compared sampler, we draw
1,000 samples within a given compute budget of 106 energy evaluations. All samplers are tuned to achieve their optimal
acceptance rate as described in Section 4. Table 5 shows that DiGS significantly outperforms all the other samplers even in
the high-dimensional space.

E.2. Molecular Configuration Sampling

The Ramachandran plots produced by all compared methods for the molecular configuration sampling experiment in
Section 4.3 can be found in Figure 11.
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(a) Dihedral angles ϕ, ψ in alanine dipeptide (b) MD (107 samples, 2.3×1011 energy evaluations)

(c) MALA (106 samples, 1.0×109 energy evaluations) (d) HMC (106 samples, 1.0×109 energy evaluations)

(e) PT (106 samples, 2.3×1010 energy evaluations) (f) DiGS (106 samples, 1.0×109 energy evaluations)

Figure 11. (a) Visualization of the dihedral angles ϕ and ψ in alanine dipeptide (Midgley et al., 2023). (b)-(d) Ramachandran plots for the
dihedral angles ϕ and ψ of alanine dipeptide. MD simulation (PT with 107 samples) serves as ground-truth.
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