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Abstract

We consider the problem of aligning a large language model (LLM) to model the
preferences of a human population. Modeling the beliefs, preferences, and behav-
iors of a specific population can be useful for a variety of different applications,
such as conducting simulated focus groups for new products, conducting virtual
surveys, and testing behavioral interventions, especially for interventions that are
expensive, impractical, or unethical. Existing work has had mixed success using
LLMs to accurately model human behavior in different contexts. We benchmark
and evaluate two well-known fine-tuning approaches and evaluate the resulting
populations on their ability to match the preferences of real human respondents
on a survey of preferences for battery electric vehicles (BEVs). We evaluate our
models against their ability to match population-wide statistics as well as their
ability to match individual responses, and we investigate the role of temperature
in controlling the trade-offs between these two. Additionally, we propose and
evaluate a novel loss term to improve model performance on responses that require
a numeric response.

1 Introduction

In the last decade, large language models (LLMs) have evolved significantly for natural language
processing tasks, code generation, and as conversational UIs (Zhao et al., 2023). Existing work
generally finds that it is possible to elicit strong agreement between LLM responses and human
responses (Dubois et al., 2023). This concordance suggests a possibility to use LLMs as a statistical
proxy to study human beliefs, preferences, and behaviors. This would allow leveraging models that
were trained on large, internet-scale datasets in narrow domains where comparatively small amounts
of data are available. This might be used, for example, for a company to leverage a comparatively
small survey sample to understand customer preferences with respect to possible new products, to
conduct virtual surveys, and to pilot behavioral interventions, such as interventions to drive the
adoption of sustainable technology. The value for intervention research is especially notable in
the case when interventions would be impractical or unethical, such as building large amounts of
infrastructure or restricting access to infrastructure. To enable such applications, it is crucial to
ensure that LLMs exhibit behavior that is a statistically accurate model of real human behaviors.
Existing literature finds conflicting results. For example, Serapio-García et al. (2023) find that it is
possible to prompt LLMs in the PaLM family to exhibit consistent and clearly measurable personality
traits. Conversely, Gui & Toubia (2023) find significant challenges in emulating human behaviors,
specifically in the context of simulated demand for Coca-Cola. These experiments show that in
general, it is difficult to say a priori whether a pre-trained LLM will accurately model a behavior of
interest. In this paper, we consider the problem of aligning the beliefs and preferences of a language
model so that it can serve as a statistical proxy for a real human population. We consider a macro,
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population-wide metric as well as a micro, per-individual metric, and we propose a novel penalty
term in the loss function to improve performance on numerical survey questions.

We emphasize that the ultimate goal of this work is not to produce a survey-answering bot, but
instead to align a language model with the beliefs and preferences of real humans as expressed in a
survey. The ultimate goal is to arrive at interactive models that enable the study of a target population.
Our results indicate that it is easier to model population-wide statistics than individuals, suggesting
that one-on-one interviews may be difficult to replicate. However, our population-wide models may
still be useful in the context of population-wide studies, for example in the context of marketing, or
community-wide simulations, such as those of Park et al. (2023). We leverage an existing survey on
human beliefs and preferences about battery-electric vehicles (BEVs) (Arechiga et al., 2022), which
includes interventions intended to increase the preference for BEVs. We benchmark against two
baseline algorithms trained de novo on the survey data, and find that the fine-tuned LLMs are able to
outperform these baseline algorithms under specific settings.

2 Problem setting

The problem we consider assumes that a small amount of survey data is available from a representative
sample of a target human population. We further assume that demographic information that is
relevant to characterizing the target population is available. Formally, the answer aij ∈ A of
a participant i who has demographics xd

i is generated with a ∼ p(a|xd
i , x

q
j ). xq

j denotes the
questionnaire j. Demographics, such as age, gender, income, etc., are characteristics of each
individual participant. The available demographics as well as their distribution within the target
data should be appropriate to the modeling task at hand. As a specific example of the survey, we
will use the EV-shift dataset (Arechiga et al., 2022). The EV-shift dataset examines the impact of
interventions on the preference for electric vehicles (EVs) when compared to internal combustion
vehicles. This dataset resulted from a study aimed at identifying how effectively different text-based
interventions changed people’s preferences for EVs. Table 5 shows the number of answers and tokens
in this dataset. In the study, subjects began by providing an initial preference for EVs, which was a
numerical rating from 0 to 100 (with higher numbers indicating greater preference for EVs). Subjects
were then shown one of 35 text-based interventions aimed at increasing their preferences for EVs.
After the intervention, subjects provided a post-intervention preference, which was also a numerical
rating from 0 to 100. Each subject also provided demographic information. In total, the dataset
contains demographic information, one initial preference rating for each of the 4,045 subjects, the
interventions seen by each subject (5 for most subjects), and the post-intervention preference ratings
provided by subjects after each intervention.

3 Experiments

We use Llama 2 (Touvron et al., 2023). The model sizes are 7B, 13B, and 70B, using chat models
published on HuggingFace1. We compare the model against three baselines that are not language
models. The first two are supervised learning algorithms, support vector regression (SVR) and
CatBoost (Prokhorenkova et al., 2018). We train these algorithms on the survey, and they learn to
map a vector of demographic information to a predicted preference value. These benchmarks allow
situating the performance of the language models with respect to highly effective supervised learning
models. In many configurations cases, the baseline models outperform the language models. For
our use-case, however, the supervised learning algorithms cannot be used in downstream tasks, such
as follow-up questions that involve conversational responses or user surveys. The third benchmark
model is a model that generates a random answer. These baselines will be conducted to evaluate the
positioning of LLM performance at individual-level and population-level by showing the curve of
possible solutions that can be achieved by non-language methods, directly mapping from demographic
characteristics to survey responses. For SVR and CatBoost, we refer to the resulting curve of
performance values from models trained with multiple hyperparameters as the baseline curves. The
hyperparameters for SVR and CatBoost are shown in Appendix J. We investigate the effects of model
size, model quantization, sampling temperature, and the effect of our proposed penalty term.

1https://huggingface.co/meta-llama
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Model size: We explore the effects of fine-tuning different model sizes. We fine-tune three different
model sizes (7B, 13B, and 70B) with QLoRA. Training details for this experiment are in Appendix E.
The RMSE-KL plots for each model and baseline are shown in Figure 1. We investigate the role of
temperature in greater detail in a later section, but for now we consider the extreme cases when the
temperature is either zero or one. We refer to the case of zero temperature as greeedy sampling and
temperature of one as calibrated sampling. Greedy sampling tends to reduce both KL-divergence
and RMSE, while the use of calibrated sampling significantly reduces the KL-divergence. With
and without fine-tuning, 70B has a smaller KL-divergence than the other sizes, but the difference
is smaller when fine-tuning is used. Although our language models with greedy sampling do not
outperform the supervised learning benchmarks, using a language model is more versatile than a
supervised learning model, since the language model can be queried with natural-language follow-up
questions, or asked to provide natural-language responses in a user interview.

Figure 1: Benchmark results. Line plots indicate the baseline points for each hyper-parameter. The
left two plots show greedy sampling results (t = 0). With greedy sampling, the fine-tuned models all
outperform the pre-trained models. The largest model attains the best KL-divergence, but not the best
RMSE score. None of the models outperform the supervised learning baselines on either RMSE or
KL-divergence. The right two plots show calibrated sampling (t = 1). All models outperform the
baselines on KL-divergence, but not on RMSE. The square boxes overlap because the difference in
fine-tuned model performance is small. Each value of fine-tuned models is described on Table 1.

Table 1: Performance of QLoRA with calibrated sampling (t = 1). Bold values represent the
minimum value between model sizes.

Table 2: Initial preference
Size KL-divergence RMSE

7B 0.063 37.914
13B 0.046 37.976
70B 0.042 37.799

Table 3: Post-intervention preference
Size KL-divergence RMSE

7B 0.026 37.411
13B 0.025 36.970
70B 0.019 37.266

Quantization effects: Next, we show the impact of the choice of fine-tuning method, specifically
comparing LoRA (Hu et al., 2021) and QLoRA (Dettmers et al., 2023), which differ mainly in that
QLoRA introduces parameter quantization. In this experiment, we focus on the 7B parameter model.
The comparison of KL-divergence and RMSE for each question is shown in Table 4. LoRA tended to
produce lower (better) KL-divergence than QLoRA for initial preference questions, but higher (worse)
KL-divergence for post-intervention questions. On the RMSE metric, LoRA performs slightly worse
than QLoRA on the initial preference questions but slightly better on the post-preference questions.
However, these differences are fairly small. When the preferences for each question were compared,
Spearman’s correlation coefficients were 0.9 and 0.81, indicating very high correlations. These results
indicate that the effect of quantization on the responses is small. Since QLoRA provides higher
computational efficiency at fine-tuning time, our experiments corroborate the view that QLoRA is
able to efficiently provide fine-tuning capabilities.

3



Table 4: Comparison between QLoRA and LoRA. (7B, greedy sampling)
KL-divergence RMSE

Method Initial preference Post preference Initial preference Post preference

QLoRA 0.694 0.628 31.308 33.703
LoRA 0.670 0.673 31.641 33.091

Temperature effects: In this section, we show the impact of the decoding temperature on our
performance metrics. We focus on a 7B model fine-tuned with QLoRA. The RMSE-KL plots for
varying the temperature parameter of the stochastic sampling are shown in Figure 2. The results show
that greedy sampling has the lowest RMSE, and increasing temperature (and randomness) tends to
decrease (improve) KL-divergence and increase (worsen) RMSE. From these results, we can see
that the population-wide metric of KL-divergence and the per-individual metric of RMSE trade off
against each other, and that the choice of temperature allows fine-grained control over this trade-off.

Figure 2: Sampling temperature effects.
7B+QLoRA. A temperature of 0.0 corresponds
to greedy sampling, and a temperature of 1.0
corresponds to calibrated sampling. Varying the
temperature allows trading off the population-
wide statistical metric of KL-divergence against
the per-individual RMSE metric.

Figure 3: Numerical penalty term effects.
7B+QLoRA. The coefficient α of the penalty
term is fixed at 0.5. Penalty term allowed to
decrease RMSE, It tends to decrease RMSE the
most when d = 10.

Numerical penalty term: In this section, we show the effect of the penalty term described in
Appendix B.3. The setup for this experiment is detailed in Appendix H. The comparison between
the case without penalty term and the case where the hyperparameter d of the penalty term is varied
is shown in Figure 3. The results show a tendency to decrease both measures when a penalty term
is used compared to the case without a penalty term. In addition, increasing d tends to decrease
RMSE. However, the best value of d is found to be 10. We fixed the value of α = 0.5 for this analysis
because this produced the best performance in our experiments. Note that α = 0.5 provides equal
weighting to the cross-entropy loss and the numerical penalty term.

4 Conclusions and Future Work

We investigated using LLMs to model the beliefs and preferences of a human population. This
can be used to conduct simulated focus groups for new products, conduct virtual surveys, or pilot
interventions that would be unethical or impractical to conduct on real humans. Pre-trained models
provide poor performance, but LLMs can be fine-tuned to provide a better model of the target
population. Larger models perform better, but this advantage shrinks after task-specific fine-tuning.
Degradation due to quantization was minimal, confirming that quantization is effective to reduce
computation costs. Sampling temperature allows trading off the population-wide metric against the
per-individual metric. We introduced a penalty loss term to improve the performance of the model on
questions that require a numerical output, providing the model with additional information at training
time about the relative correctness of different numerical responses. In future work we will study the
extent to which this shift successfully aligns the model to unseen behavioral scenarios.
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A Discussion of Large Language Models and Parameter-Efficient Finetuning
Techniques

Auto-regressive large language models

Autoregressive language models learn to predict the next token in a stream of language tokens.
Formally, given a sequence of tokens y1, y2, . . . , yn, the model learns to predict a probability distri-
bution p(yn+1|y1, y2, . . . yn). An important property of these models is that they can be trained in an
unsupervised way, i.e., no manually produced labels are required. All that is required is a large corpus
of natural text. Many such corpora have been assembled from the internet, for example Gao et al.
(2020) and Computer (2023). A commonly used architecture is the transformer architecture (Vaswani
et al., 2017), and specifically the decoder-only transformer with a causal mask, which prevents the
model from using information from future tokens (Radford et al., 2018).

Fine-tuning large language models

A common approach to use LLMs is to pre-train on a large text corpus, and then fine-tune the resulting
model for a specific downstream task (Radford et al., 2018; Devlin et al., 2018). Downstream tasks
may include sentiment analysis, question answering, text summarization, etc. The fine-tuning
procedure involves updating all of the parameters of the model, and can be computationally expensive
for large model sizes.

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a technique for fine-tuning large language models
that relies on freezing pre-trained model weights and adding low-rank trainable matrices at various
points throughout the model. This procedure dramatically reduces the computational cost of fine-
tuning since only the low-rank adaptation matrices have associated gradients at training time.

Quantized LoRA (QLoRA) (Dettmers et al., 2023) is a variation of LoRA that quantizes the model
weights as 4-bit NormalFloats, a data type that efficiently compresses the model weights while
discarding as little information as possible. QLoRA also introduces a number of memory optimization
techniques, such as double quantization and paged optimizers to manage memory spikes.

B Detailed methodology

Our proposed approach provides virtual survey participants with a prompted, fine-tuned LLM to
generate survey responses that statistically match those of a target population. In this section, we
describe the implementation of the subjects by prompting and the fine-tuning procedure.

B.1 Formalization and implementation

Each virtual participant in the population is implemented by prompting an LLM to behave as a
person with given demographic information. Formally, the virtual participants with a language model
represent the distribution p(y|x), where y ∈ VN is the generated token sequence. This generated
token sequence corresponding to the answer from token sequence x ∈ VM corresponding to the
demographics and survey question. V is the vocabulary of the language model. Additionally, let
F be a function that preprocesses the output sequence y to produce an answer a. This function is
useful when the expected answer to a survey question is a structured output (e.g., a numerical rating,
or a multiple choice answer), but the LLM embeds its answer within a longer explanation. The
complexity of F may become quite high. In our experiments, we adhere to a simple function that
allows some flexibility interpreting the model outputs, without becoming overly complex. We define
F : VN → A as the function that extracts the first (possibly multi-digit) number that appears in the
symbol sequence as a simple implementation.

Figure 4 shows an example of formulating the prompt text from survey data. To set the properties of
the virtual participant, we use the following prompt,
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Figure 4: Convert survey data to prompt text. Left: Initial preference questionnaire. Right: Post-
intervention preference questionnaire.

System prompt� �
I want you to act as the following character. Answer all of the following questions from the
point of view of this character, do not break character. {demographics}� �

{demographics} contains a list of demographic characteristics. For example, a man aged 18–25 is
represented as {age: 18–25, gender: man}. Our implementation allows generating virtual participants
with demographics drawn from any distribution, enabling targeting to different populations of interest,
including demographics that a company believes are likely to be customers for a specific product.
Although prompt engineering techniques are a rich area of inquiry, they are not the focus of our
work, and for this reason we limit our prompts to the minimum amount of information required to
explain the setting to the LLM. Naturally, our techniques can be combined with prompt engineering
techniques to enhance their effectiveness.

Our survey concerns preferences for battery electric vehicles. To check the preferences of a virtual
participant given demographics, we use the following prompt,

Survey prompt� �
{intervention} On a scale from 0 to 100, what is your current preference for battery electric
vehicles (BEVs)? Please reply with just a single number rating and no additional words or
explanations. Score:� �

{intervention} is blank for the initial preference question, and contains intervention text to produce
post-intervention preferences. For example, intervention sentence is "Some BEV manufacturers may
start offering free charging" (interventions are described in Appendix D).

B.2 Fine-tuning large language model with survey data

Next, the pre-trained LLM is fine-tuned to emulate the preferences of the human survey participants.
The LLMs used for fine-tuning are auto-regressive LLMs for text generation. Each text corresponds
to a set of question and answer for a specific subject, and the text contains a system prompt, a
survey prompt, and an answer. Note that a single dataset contains multiple questions, i.e., both initial
preference and post-intervention preference questions. For most of our experiments, we use the
conventional cross-entropy loss function.

B.3 Numeric penalty function

In ??, we seek to enhance model performance by adding a penalty term to the cross-entropy loss
function. This specific penalty term is novel (to the best of our knowledge), and is represented by
Equation 1.

For this penalty term to be well-defined, we require that the vocabulary contain separate tokens for
each of the possible numerical output tokens. Since we are using the Llama 2 family of models, and
these models have separate tokens for the digits 0 through 9, we need to scale the survey data so that
the possible answers are in the single-digit range in order to be able to use this penalty term.

Our numerical penalty term is calculated by weighting the log generation probability of the answer
set containing the subject’s answers by a value wa,â for each answer. This value is equal to 1 when
the generated numerical answer a is exactly equal to the true answer â, zero when a is further
than a hyperparameter value d from â, and a computed intermediate value in between, as shown in
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Equation 2. This hyperparameter controls how much information the penalty term provides to nearby
numerical values.

The goal of this penalty term is to improve the performance of a token generation model over
questions that require a numerical response. The cross-entropy loss term merely provides feedback
about whether a generated numerical token was correct or not. Our penalty term additionally provides
feedback about whether the generated numerical token was close to or distant from the correct answer.

The combined loss function is L(D; θ) = (1 − α)Lcross(D; θ) + αLpenalty(D; θ). D denotes the
data, θ denotes the parameters of the language model, and α ∈ [0, 1] denotes a mixing coefficient
between the two loss terms.

Lpenalty(D; θ) = − 1

|D|
∑

x,ŷ∈D
â=F (ŷ)

∑
a∈A

wa,â∑
a′∈A wa′,â

log p(ŷ|x) (1)

wa,â =

{
1− 1

d |a− â| if |a− â| < d
0 otherwise (2)

Performance Measures

Finally, we measure the agreement between LLMs and humans. We use the test data portion of the
survey data for this measurement. The LLM responses are generated using the same demographics
distribution as the survey data to be measured. The metrics we use to measure similarity between LLM
responses and survey responses are KL-divergence and root mean square error (RMSE). Intuitively,
we can think of the KL-divergence as measuring model agreement with the statistics of the population
as a whole, whereas the RMSE measures model agreement with individual responses.

C Related Work

The possibilities of simulating humans and human behaviors using LLMs (Kaddour et al., 2023), or
role-play (Shanahan et al., 2023; Wu et al., 2023), have been discussed in recent work. By applying
established psychometrics, Serapio-García et al. (2023) demonstrated that LLMs can reliably simulate
personalities and that LLM-generated personality traits can be shaped and controlled to imitate specific
personality profiles. Dillion et al. (2023) showed a strong alignment between GPT-3.5 and humans
in moral judgments, with a correlation of 0.95. In addition, LLM-based generative agents, when
organized as a collective in an interactive sandbox environment, were found to be able to produce
believable behaviors not only on an individual level but also on a social level (Park et al., 2023).

The ability of LLMs to generate human-like personalities, judgments, and behaviors hints at the
opportunity of constructing synthetic human participants in behavioral studies. Several recent works
show initial attempts in this direction. Aher et al. (2023) applied LLMs to simulate human subjects
and found that they can reproduce three out of four economic, psycholinguistic, and social psychology
experiments and replicate findings from prior studies with real human participants. Hämäläinen
et al. (2023) evaluated LLMs’ potential of generating synthetic human-computer interaction research
data in the form of open-ended questionnaire responses and revealed their capability of generating
plausible, human-like self-report data regarding subjective experiences.

However, previous work simply measured concordance between LLMs and participant data, and other
work such as that of Gui & Toubia (2023) find a lack of agreement in domains such as predicting
product pricing. Our work provides a framework to align LLMs to human preferences and explores
various techniques to improve the level of agreement.

D EV-Shift Survey Details

There are some details about the EV-shift survey (Arechiga et al., 2022). Table 5 shows number of
answers and tokens in the dataset. Table 6 shows questionnaires together with the possible choices to
describe demographics. Table 7 shows a list of intervention texts.
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Questionnaire #answer #token [B]

Initial preference 4,045 0.87
Post-intervention preference 20,217 4.79

Table 5: Number of answers and tokens in EV-shift dataset. The number of tokens is the amount of
tokenized prompt texts that is calculated by the tokenizer of Llama 2 (Touvron et al., 2023). Procedure
to convert survey data to prompt described at section B.

E Effects of model size

Figure 5 shows the the learning curve for the QLoRA experiments. After 1 epoch, validation loss is
increasing, indicating overfitting. In addition, the larger the model size, the faster the train loss tends
to decrease.

The success rate for the test data is shown in Figure 6. The success rate of QLoRA is higher than that
of the pre-trained model. Table 8 shows an example of a generated sentences. This result indicates
that the pre-trained model tends to generate non numerical tokens at the beginning of the answer.
These trends indicate a lack of ability to follow the instruction of "Please reply with just a single
number rating and no additional words or explanations" that is prompted on the survey prompt
(Section B.1) in the pre-trained model. Although the success rate could be improved with techniques
such as prompt engineering and in-context learning, they are not the focus of this work.

Figure 5: Learning curve (dash line indicate 1 epoch position.)
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Demographics Options

Living state alabama, alaska, arizona, arkansas, california, colorado, connecticut, delaware,
district of Columbia, florida, georgia, hawaii, idaho, illinois, indiana, iowa,
kansas, kentucky, louisiana, maine, maryland, massachusetts, michigan, min-
nesota, mississippi, missouri, montana, nebraska, nevada, new hampshire, new
jersey, new mexico, new york, north carolina, north dakota, ohio, oklahoma,
oregon, pennsylvania, rhode island, south carolina, south dakota, tennessee,
texas, utah, vermont, virginia, washington, west virginia, wisconsin, wyoming,
I do not reside within the United States.

Living area Urban, Rural, Prefer not to answer
Age 18–25, 26–35, 36–45, 46–55, 56–65, 66 or older, Prefer not to answer
Gender Woman, Man, Transgender, Non-conforming, A gender not listed here, Prefer

not to answer
Race Asian / Pacific Islander, Biracial, Black or African American, Hispanic or Latino,

Middle Eastern or North African, Multiracial, Native American or American
Indian, White, Other, Prefer not to answer

Highest educa-
tion

Less than 8th grade, 8th grade, High School, Some college, no degree, Associate
degree, Bachelor’s degree, Master’s degree, Professional degree, Doctorate
degree, Prefer not to answer

Marital status Married, Widowed, Divorced, Separated, Never married, Other, Prefer not to
answer

Number of
children

0, 1, 2, 3 or more, prefer not to answer

Household I live alone, My spouse, My children, My siblings, My parents, My grandparents,
Other relatives, Friends / Housemates, Prefer not to answer

Employment
status

Employed full time (40 or more hours per week), Employed part time (up to
39 hours per week), Unemployed and currently looking for work, Unemployed
not currently looking for work, Student, Retired, Homemaker, Self-employed,
Unable to work, Prefer not to answer

Income less than $10,000, $10,001 to $40,000, $40,001 to $80,000, $80,001 to $160,000,
More than $160,000, Prefer not to answer

Political Strongly liberal, Somewhat liberal, Somewhat conservative, Strongly conserva-
tive, Other, Prefer not to answer

Religion Protestant, Catholic, Jewish, Buddhism, Hinduism, Islam, Orthodox-christian,
Christian, Native American, Inter-nondenominational, Other (free text answer),
None, Don’t know, Prefer not to answer

Participation
frequency of
religion

Never, Less than once per year, Several times per year, Once per month, 2-3
times per month, Nearly every week, More than once per week, Prefer not to
answer

Table 6: Demographics. For households, multiple options can be selected.

F Quantization effects

Figure 7 shows the answer distribution for QLoRA and LoRA. The results of Figure 7(c) and
Figure 7(f) show that there is a high correlation between the two models, although individual
responses may differ.
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(a) Greedy sampling

(b) Calibrated sampling (t = 1)

Figure 6: Success rates to generate preference numbers

G Temperature effects

The generated preference distributions for different decoding strategies are shown in Figure 8. In the
case of greedy sampling, the model tended to respond to a specific value out of the preference values
from 0 to 100, while in the case of calibrated sampling, the response variation increased.

H Penalty term effects

The learning curve for the case with penalty term is shown in Figure 9. The model is shown for
7B with α = 0.5. In both conditions, the validation loss begins to increase from 1 epoch, as in the
case with only the cross-entropy term shown in Figure 5. The more d was increased, the smaller
the change in loss. This indicates that as d is increased, the weight to non-answer preference tokens
increases, making it harder to decrease the loss compared to the cross-entropy, which evaluates the
entire prompt.
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(a) 7B+QLoRA (b) 7B+LoRA (c) 7B+LoRA vs QLoRA

(d) 7B+QLoRA (e) 7B+LoRA (f) 7B+LoRA vs QLoRA

Figure 7: Individual answer comparison between QLoRA and LoRA. The rows are plotted by
questionnaire, with 7(a) to 7(c) representing initial preference and 7(d) to 7(f) representing post-
intervention preference. The columns are for different comparisons, with the first and second columns
representing comparisons between the survey data and each model, and the third column representing
comparisons between LoRA and QLoRA.

I Amount of data effects

The effect on the test data when the amount of training data is varied is shown in Figure 10. The
training epochs are 30 epochs for 10% and 6 epochs for 50% in order to align with the case of 100%
data volume respectively. The model checkpoints before the increase in validation loss were used
for evaluation. The results show that KL and RMSE improve with higher data volume for some
questionnaires.
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(a) Greedy (b) Calibrated sampling (t = 1) (c) Comparison between greedy and
calibrated sampling (t = 1)

(d) Greedy (e) Calibrated sampling (t = 1) (f) Comparison between greedy and
calibrated sampling (t = 1)

Figure 8: Individual answer comparison between difference decoding strategies. The rows are
plotted by questionnaire, with 8(a) to 8(c) representing initial preference and 8(d) to 8(f) representing
post-intervention preference. The columns are for different comparisons, with the first and second
columns representing comparisons between the survey data and each model, and the third column
representing comparisons between greedy and calibrated sampling (t = 1).

Figure 9: Learning curve of Section ?? experiments (dash line indicate 1 epoch position.)
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Figure 10: Training data amount effects. For the 10% and 50%, data were randomly selected from
the training data. Error bars represent the standard deviation for 3 trials of fine-tuning.

J Baselines

We chose SVR as one of our baselines because it is a commonly used supervised learning method for
regression problems, and CatBoost because it is a powerful gradient-boosting method for categorical
variables. SVR and CatBoost are fitted with the EV-shift dataset for each questionnaire. For SVR,
categorical variables such as demographics and intervention text are converted to dummy variables.
The predicted preference is normalized between 0 to 1 for SVR and CatBoost. Table 9 and Table 10
show the hyperparameter combinations used for the SVR and CatBoost. In addition, the KL-RMSE
plots for each model are shown in Figure 11. Although many of the models are non-dominated, it can
be seen that the pareto fronts are generally consistent for the two models.

15



(a) Baselines for 0-100 preference

(b) Baselines for 0-9 preference

Figure 11: Baseline models
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Index Invervention statement

1 80% of BEV charging happens at home, and most trips do not involve public charging.
2 Many people charge their BEVs at home with no additional equipment required. That

means no trips to the gas station.
3 The number of public charging stations is rapidly increasing due to additional gov-

ernment funding and business initiatives. That means shorter wait times and shorter
charging trips.

4 Analysts predict a decline in gas stations due to increased electric charging. That would
make finding a nearby gas station more difficult.

5 Charging at some public stations can be as fast as 6 minutes to add 100 miles.
6 Charging at some public stations can be as fast as 30 minutes for 250 miles.
7 BEVs maximum range is already approaching 400 miles, with forecasts for a 1000-mile

range in the near future.
8 Various programs offer different incentives (e.g. $7,500 tax credit) for new BEV

purchases.
9 Some BEV manufacturers may start offering free charging.
10 People spend about 30% less on vehicle maintenance of BEVs than on ICEVs.
11 Over its lifetime, a BEV can be $8,000 cheaper to maintain and operate than an ICEV.
12 BEVs can be 4 cents per mile cheaper to maintain and operate than ICEVs.
13 The cost of BEVs is much cheaper than it used to be.
14 BEVs are expected to become cheaper than ICEVs in the near future.
15 BEVs protect owners from the instability of the oil market.
16 Most used BEVs are cheaper than comparable used ICEVs.
17 Fossil fuels are expected to become more expensive over time.
18 You need to replace the tires of a BEV less frequently than the tires of an ICEV.
19 Lithium batteries are now 30 times cheaper than when they were first introduced to the

market.
20 A Level 1 home charger can cost as little as $300 (before labor).
21 BEVs have a smaller carbon footprint than ICEVs.
22 ICEVs are more damaging to public health than BEVs due to carbon emissions.
23 The towing capacity of BEVs already exceeds the towing capacity of comparable

ICEVs.
24 BEVs typically have greater acceleration and better passing abilities.
25 BEVs are much quieter both in city and highway driving.
26 BEVs’ AWD systems provide greater low-speed control when driving off-road.
27 BEVs provide better weight balance which improves handling.
28 There is already availability of different types of BEVs, including sedans, sport cars,

crossovers, trucks and minivans.
29 BEV owners report greater satisfaction than ICEV owners
30 Cheaper BEVs have much better reliability than cheaper ICEVs.
31 The new regulations for BEVs will require from manufacturers a 10-year / 150,000

miles warranty for batteries.
32 Highly reputable car companies are adding BEVs to their model lineups.
33 BEVs have lower center of gravity which increases stability in turns.
34 Greater adoption of BEVs will increase energy independence and can help national

security.
35 New government initiatives regarding BEVs will require battery production in the USA,

which will create jobs and boost the economy.
Table 7: Interventions
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Table 8: Examples of the generated sentence for initial preference. There are three samples for each
model. Pre-trained was generated with a maximum token number of 64. Red strings represent the
range generated for a maximum token number of 8. The results indicate that the pre-trained model
tends to generate responses other than preferences first.

Model Generated sentence

7B As a 52-year-old white man living in an urban area of Minnesota, employed
full-time with a bachelor’s degree and a household income of $120,000, I would
rate my current preference for battery electric vehicles (BEVs) as a

7B As a 36-45 year old white woman living in urban Indiana with a Master’s degree,
I would rate my current preference for battery electric vehicles (BEVs) as a 60.
While I recognize the potential benefits of BEVs, such as reduced emissions
and lower operating

7B As a 26-35 year old white woman living in urban Oregon with a Bachelor’s
degree, I would rate my current preference for battery electric vehicles (BEVs)
as a 90. I strongly support the transition to sustainable and environmentally-
friendly transportation,

70B I’m just an AI, I don’t have personal preferences or beliefs, but I can provide
information and answer questions based on the given character’s profile./n/nAs
a 46-55-year-old white man living in urban California, working full-time and

70B BEV preference score: 43.
70B My current preference for battery electric vehicles (BEVs) is 75.
7B+QLoRA 10
7B+QLoRA 80
7B+QLoRA 80
70B+QLoRA 0
70B+QLoRA 50
70B+QLoRA 10

Table 9: Searched hyperparameters for SVR
Parameter Values

kernel linear, poly, rbf, sigmoid
c 2−5, 2−1, 23, 27

epsilon 2−10, 2−6, 2−2

gamma 2−20, 2−16, 2−12, 2−8, 2−4, 20, 24, 28

Table 10: Searched hyperparameter for Cat-
Boost

Parameter Values

learning rate 10−3, 10−2, 10−1, 1
random strength 1, 20
one hot max size 0, 25
l2 leaf reg 0.03, 0.1, 1, 3, 5, 10
bagging temperature 0, 0.25, 0.5, 0.75, 1
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