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ABSTRACT

Autoregressive models (ARGen) have emerged as a cornerstone for image genera-
tion within multimodal large language models (MLLMs), yet their visual outputs
remain stubbornly underwhelming. Traditional efforts, scaling AR models or re-
engineering architectures, yield diminishing returns at exorbitant cost, straining
infrastructure without resolving core limitations. In this work, we challenge the
status quo, asserting that vision decoders must shoulder greater responsibility for
image synthesis, liberating autoregressive models from undue burden. We present
ARGen-Dexion, a systematic overhaul of the vision decoder that redefines autore-
gressive image generation without modifying pre-trained AR models or visual
encoders. Our approach delivers transformative gains through three innovations:
(1) a scaled, fine-tuned decoder achieving unprecedented reconstruction fidelity,
(2) bi-directional Transformer-based token refiner that infuses global context to
refine the AR model outputs, shattering the constraints of causal inference inherent,
and (3) a resolution-aware training strategy enabling seamless multi-resolution and
multi-aspect-ratio synthesis. Extensive scaling studies unveil deep insights into
decoder design, challenging long-held assumptions. Empirically, ARGen-Dexion
boosts LlamaGen by a striking 9% VQAScore on the GenAI-Benchmark and 4%
GenEval performance. Moreover, it can be applied to various discrete MLLMs.
This work compels a bold rethinking of the interplay between MLLMs and vision
decoders, paving the way for efficient and visually superior multimodal systems.

1 INTRODUCTION

The “next-token-prediction” paradigm has become the de facto standard for large language models
(LLMs) (Touvron et al., 2023a;b; Dubey et al., 2024). In recent years, it is gaining increasing popu-
larity in image generation, driven by the ambition of multimodal large language models (MLLMs).

Leveraging discrete visual tokenizers, autoregressive (AR) models sequentially predict visual tokens
to generate images, mirroring the process of text generation — a paradigm we term ARGen. Despite
its promise, ARGen lags behind state-of-the-art (SOTA) diffusion models (Dai et al., 2023; Polyak
et al., 2024), primarily due to two intrinsic limitations: suboptimal visual tokenization and the
constraints of causal inference (Zhou et al., 2024; Fan et al., 2024; Li et al., 2024b). Discrete
visual tokenizers inherently lose fine-grained information during quantization, capping the fidelity of
reconstructed images. Meanwhile, causal inference enforces a unidirectional flow of information,
overlooking the global coherence for vision. These limitations have sparked a surge of research
to elevate ARGen’s performance. Some strategies tackle these issues by introducing additional
complexity to large language models (LLMs) — incorporating auxiliary training losses (Li et al.,
2024b; Sun et al., 2024c), modifying causal masking (Tian et al., 2024), or adopting novel training
regimes (Yu et al., 2024; Pang et al., 2024). While these solutions yield performance gains, they
often come at the cost of increased engineering complexity, scalability bottlenecks, and potential
trade-offs with MLLMs capabilities. Conversely, more straightforward approaches adhere to the
classic ”next-token-prediction” framework, scaling AR models and training resources (Wang et al.,
2024; Team, 2024) to chase incremental improvements. While these methods are more elastic, the
marginal gains often fail to justify the steep computational costs. These challenges underscore the
need for a new perspective on AR-based image generation — one that harmonizes tokenization
fidelity, bidirectional context modeling, and computational efficiency.
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Figure 1: ARGen-Dexion enhances image generation with pre-trained AR models. The showcased
images are generated using a 0.8B LlamaGen model augmented by ARGen-Dexion, enabling high
quality generation with various resolutions (which is unavailable in vanilla LlamaGen).

In contrast to prior methods, we pose a pivotal question: Can we enhance image generation quality
without introducing additional complexities to AR models? To address this, we shift our focus to
the vision decoder in ARGen — the critical final stage of image synthesis. We have the postulation
that the decoder should extend beyond mere reconstruction to also participate in generation. This
insight suggests that the vision decoder can share the generative responsibility, reducing the burden
on AR models and fostering a more balanced, effective image synthesis pipeline.

To realize this vision, we propose ARGen-Dexion, a next-generation decoder for autoregressive
image generation. First, we investigate the scaling law of the decoder to enhance reconstruction
performance. By jointly training with a pre-trained, frozen vision encoder using reconstruction loss,
we show that the decoder strictly follows scaling laws in relation to model size and training cost,
effectively mitigating the reconstruction limitations of discrete image tokenizers. Next, we introduce
a token refiner within the decoder — a module built with bi-directional Transformer blocks. Trained
with cross-entropy loss, the token refiner substantially reduces accumulated visual token prediction
errors caused by causal inference, further elevating image synthesis quality. Moreover, we incorporate
multi-resolution generation directly within the decoder, eliminating the need to train AR models on
extra images of varying resolutions.

ARGen-Dexion clearly enhances the performance of pretrained ARGen models without additional
overhead. Built upon the pretrained LlamaGen, our approach boosts the performance from 0.59 to 0.68
on GenAI-Bench (Li et al., 2024a), and from 0.32 to 0.36 on GenEval (Ghosh et al., 2024). Notably,
ARGen-Dexion seamlessly integrates with all MLLMs within the ”next-token-prediction” framework
for image generation, including models like Lumina-mGPT (Liu et al., 2024) and EMU3 (Wang et al.,
2024). Our exploration of ARGen-Dexion underscores the immense potential of vision decoders,
unveiling a vast and untapped frontier of possibilities for autoregressive image synthesis.

2 RELATED WORK

2.1 IMAGE GENERATION WITH AUTOREGRESSIVE

Image generation has witnessed rapid advancements recently, primarily driven by the evolution of
Diffusion models (Lipman et al., 2022; Dai et al., 2023; Polyak et al., 2024). Beyond the Diffusion
paradigm, autoregressive models have also emerged as a compelling approach, which typically relies
on a discrete visual tokenizer (e.g., VQGAN (Esser et al., 2021), VQVAE (Van Den Oord et al.,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2017), etc.) to transform images into discrete tokens. An autoregressive model is then employed
to learn these visual tokens using a “next-token-prediction” paradigm, akin to the pipeline of large
language models. Subsequently, a discrete visual decoder reconstructs the generated visual tokens
into an image. We refer to this pipeline as ARGen for brevity. A notable example of ARGen is
LlamaGen (Sun et al., 2024a), which epitomizes simplicity within this framework while delivering
impressive results. By incorporating text embeddings, LlamaGen achieves causal prediction of visual
tokens guided by textual input. Similarly, EMU3 (Wang et al., 2024) and Chameleon (Team, 2024)
adhere to the traditional ARGen pipeline while preserving the text generation capabilities inherent in
autoregressive large language models, thereby paving the way for multimodal large language models.
Additionally, several exploratory efforts have sought to improve generation quality within the ARGen
framework by rethinking its core design, like VAR (Tian et al., 2024) and MAR (Li et al., 2024b).
Further, Fluid (Fan et al., 2024) delves into the impact of visual representation (continuous or discrete)
and token order (causal or random), offering deeper insights into these dimensions. Adhering to the
principle of simplicity, our work avoids altering AR models. Instead, we focus on optimizing the
standalone visual decoder for ARGen.

2.2 TOWARDS MLLMS WITH IMAGE GENERATION

A strong motivation for ARGen is the ambition to equip MLLMs with advanced image generation
capabilities. Without altering the structure of large language models (LLMs), some methods (like
Chameleon (Team, 2024), Lumina-mGPT (Liu et al., 2024), and EMU3 (Wang et al., 2024)) achieve
impressive generation quality. Conversely, some approaches prioritize improved ARGen quality at
the cost of increased complexity in LLM implementation, like EMU (Sun et al., 2024c), EMU2 (Sun
et al., 2024b), and SEED-X (Ge et al., 2024), which require additional regression losses for visual
features during LLM training. Similarly, Transfusion (Zhou et al., 2024) leverages Diffusion loss and
bidirectional interactions by modifying causal masking. Other efforts, such as LlamaFusion (Shi et al.,
2024), MoMa (Lin et al., 2024), and Libra (Xu et al., 2024), explore mixture-of-experts (MOE) or
modality-specific feedforward layers for visual features. Instead of focusing on LLMs and introducing
additional engineering and infrastructure hurdles, we redirect our attention to the visual decoder, the
final stage of image generation in unified MLLMs.

2.3 VISUAL TOKENIZER

Several primary directions have been explored to enhance the visual tokenizer for MLLMs. First,
a widely adopted approach involves training VQGAN architectures with larger and higher-quality
datasets or employing carefully designed hyperparameters to improve representational capabilities,
as demonstrated by LlamaGen (Sun et al., 2024a) and Chameleon (Team, 2024). Second, innovative
designs for visual tokenizers have been proposed. For instance, VAR (Tian et al., 2024) employs
residual designs for improved reconstruction, while MAGVIT-v2 (Yu et al., 2023) introduces lookup-
free quantization (LFQ) to enable learning of a larger vocabulary. Finally, a critical challenge in
MLLMs lies in aligning semantic-level and pixel-level representations for tasks such as understanding
and generation. Exploratory works like VILA-U (Wu et al., 2024b) and TokenFlow (Qu et al., 2024)
offer profound insights into this alignment issue. In contrast to prior efforts that address both encoder
and decoder design, our work focuses on the standalone decoder for better performance.

3 ARGEN-DEXION

3.1 IMAGE GENERATION WITH AUTOREGRESSIVE MODELS

Given an input condition c and the previous visual tokens {x1, x2, · · · , xt−1} AR models predict the
conditional probability distribution of the next image token xt as:

P (xt | c, x1, x2, . . . , xt−1) . (1)

By sequentially generating, an image can be synthesized with a discrete image decoder conditioned
on the input. While simple and effective, two key limitations hinder generation quality. First, Eq. 1
models the probability of the next token, relying on a discrete representation. This necessitates the
use of an image tokenizer with vector quantization, which introduces information loss and constrains
reconstruction quality. Second, the causal masking applied in attention mechanisms significantly
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limits bi-directional interactions, which are crucial for capturing comprehensive image context. These
challenges have been widely recognized, with extensive research addressing these issues (Zhou
et al., 2024; Li et al., 2024b).Notably, Fluid (Fan et al., 2024) offers a detailed analysis of these
limitations. Unlike the aforementioned methods, we address these two issues within the image
decoder, avoiding imposing additional infrastructure and engineering challenges while significantly
reducing computational requirements compared to scaling MLLMs.

3.2 ARGEN-DEXION OVERVIEW

VQGAN
Encoder

LLM

Dexion trainable  layer
frozen  layertextual token

visual  token

“Next-token-prediction” LLMs

Transformer
Blocks

…

Ad-pool

Token
Refiner

Main
Decoder

Trainable Dexion

Decoder 
Stages

Decoder 
Stages

Figure 2: ARGen-Dexion pipeline. Left shows the pipeline
of ARGen, and right shows the design of our Dexion for
ARGen. Please check Sec. 3 for details and training.

Our goal is to design a simple yet
effective image decoder for ARGen
to address the aforementioned limita-
tions. ARGen-Dexion achieves this
simplicity with two components: a
multi-stage main vision decoder capa-
ble of generating images at arbitrary
resolutions and aspect ratios, and a
multi-layer Transformer-based token
refiner that iteratively alters the AR
model generated tokens. Fig. 2 illus-
trates the design. During inference,
ARGen-Dexion first refines the tokens
generated by the AR model using the
token refiner, and the refined tokens
are then decoded by the main decoder
to produce the final image.

In detail, our token refiner comprises
multiple vanilla bi-directional Transformer blocks to refine input tokens, following the operations
in MaskGIT (Chang et al., 2022). In the main decoder, the first stage uses Transformer blocks to
capture global interactions, while the remaining stages leverage ConvNeXt (Liu et al., 2022) blocks
to extract local features. We configure all attention blocks with 8 heads, ConvNeXt blocks with a
kernel size of 7, and an MLP expansion ratio of 4. An adaptive pooling layer is introduced after the
second stage to enable generation at arbitrary resolutions and aspect ratios. ARGen-Dexion features
a standalone codebook separate from the encoder, offering flexibility in dimensionality. This allows
for scaling both the depth and channel dimensions of ARGen-Dexion. While further optimization of
hyper-parameters could enhance performance, it lies beyond the scope of this work.

3.3 TRAIN DEXION

Dexion architecture is both elegant and simple, it employs a two-step training strategy: first, the main
decoder is trained to enhance reconstruction with reconstruction loss. Then we train the refiner with
cross-entropy loss to refine the output tokens generated by the AR model. For illustration, we build
our model using a pretrained LlamaGen AR model and corresponding VQGAN model.

Train for reconstruction To align with the pretrained LlamaGen T2I task, we first resize the input
image x to a resolution of 512× 512, unless otherwise specified, and utilize the pretrained VQGAN
encoder with the provided T2I checkpoint to convert the image into tokens. Using these encoded
tokens, we index the codebook in Dexion to convert them into a feature map, which is then decoded
into pixel space x̂. Following LlamaGen, we optimize the main decoder with:

L = L2(x, x̂) + λpLP(x, x̂) + λGLG(x̂), (2)

where L2(·) indicates L2 reconstruction loss, LP(·) represents LPIPS perceptual loss (Zhang et al.,
2018), and LG(·) is the adversarial loss (Isola et al., 2017). We use λp and λG to balance the losses.

Train for Token-Refiner Another key component of ARGen-Dexion is the Token Refiner, which
addresses the limitations of causal inference in AR models, as discussed in Fluid (Fan et al., 2024).
Rather than complicating the AR model itself, we offload part of the task to the decoder. We allow
AR model to generate imperfect tokens, and augment with bi-directional Transformer blocks for
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globally coherent visual representations. Drawing inspiration from the MaskGIT (Chang et al., 2022)
pipeline, this approach enhances flexibility and efficiency.

3 4 7

2 3 4 5 6 7

P1 P2 P3 P4 P5 P6

Cross-Entropy Loss M
M M M

M M
M M M

M M M

M M M

Bi-directional
Transformer blocks
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…
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Figure 3: Left indicates the training of our MaskGIT-based refiner,
and right shows examples of the iteratively refining.

We begin with image tokens ex-
tracted using the VQGAN en-
coder and randomly replace a
portion of the ground truth to-
kens with [mask] tokens, us-
ing a masking ratio between
[0.001, 0.3) to simulate the re-
finement of partially generated
images rather than generating
them from scratch. The entire
token sequence, including the
masked tokens, is processed by
the refiner, which predicts the original tokens. Training is driven by cross-entropy loss, applied
exclusively to the masked tokens, guiding the refiner to accurately restore the masked or noisy tokens.

During inference, we identify the lowest-confidence tokens from the AR model’s output and replace
them with [mask] tokens, aiming to refine the generation without heavily altering the original
content. The refiner then iteratively predicts these masked tokens, progressively filling in predictions
based on confidence scores. This iterative process continues until all masked tokens are resolved,
with detailed analysis of different inference schedules provided in the experimental section.

3.4 MULTI-RESOLUTION IMAGE GENERATION

Multi-resolution and multi-aspect-ratio image generation, as demonstrated in EMU3 (Wang et al.,
2024) and Lumina-mGPT (Liu et al., 2024), typically involves training MLLMs on image data with
diverse resolutions. However, this approach incurs high training costs and often leads to suboptimal
generation quality. To overcome this, we shift the complexity to the decoder. Instead of training
MLLMs on multiple resolutions, we train MLLMs at a single resolution, and enable the decoder to
generate images at arbitrary (pre-defined) resolutions based on a given resolution hyper-parameter.

We introduce an adaptive-pooling layer after the second stage of the main decoder, fine-tuning it to
handle specific resolutions. Although a more advanced design could potentially improve results, this
is not our primary focus. Our experiments show that this approach effectively generates images with
the desired resolution and aspect ratio, all while avoiding additional complexity for the MLLMs.

4 EXPERIMENTS

4.1 DATASET AND EVALUATION

Training ARGen-Dexion is both data and computationally efficient compared to training or fine-tuning
an AR model for image generation. Unlike traditional AR models, ARGen-Dexion only requires
images, without the need for captions or prompts. Most of our scaling experiments are conducted on
the ImageNet dataset, while fine-tuning utilizes a curated set of high-aesthetic-quality images.

To evaluate reconstruction quality, we report standard metrics such as PSNR, SSIM, and rFID on the
ImageNet validation set. For assessing the token refiner’s performance, we examine the training loss
and generation results on GenAI-Bench (Li et al., 2024a). Additionally, we provide detailed results
on both GenAI-Bench and GenEval (Ghosh et al., 2024) to assess generation quality. The detailed
training setups are presented in supplementary.

4.2 SCALING DECODER FOR RECONSTRUCTION

We begin by conducting experiments on reconstruction to evaluate the performance of the scaled
Dexion main decoder, while excluding the Token Refiner module. Specifically, we explore the scaling
laws from three perspectives: training cost, training data size, and model size. By default, we utilize
the VQGAN encoder to extract tokens and train ARGen-Dexion at a resolution of 256.
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Figure 4: Scaling training costs can consistently improve recon-
struction. ”r” indicates Pearson correlation coefficients.

Training cost Scaling We first
examine the impact of training
cost on reconstruction perfor-
mance. A common practice in
training VQGAN is to introduce
λG after a certain number of itera-
tions, which complicates reliable
analysis. Therefore, to investi-
gate the effect of training cost,
we focus exclusively on the L2
reconstruction loss ℓ2(x, x̂) and
LPIPS perceptual loss LP(x, x̂) throughout the training process. Reconstruction performance is evalu-
ated using PSNR and SSIM. Experimental results in Fig. 4 show that reconstruction performance of
decoder consistently improves with increased training cost, strictly following the scaling law, with
a Pearson correlation coefficient r > 0.99, indicating a strong correlation. That is, higher training
cost results in better and predictably improved reconstruction performance.
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Figure 5: Scaling training data cannot improve reconstruction.

Data size Scaling Next, we in-
vestigate the impact of training
data size on reconstruction per-
formance. We use 10%, 20%,
40%, 60%, 80%, 100% of the Im-
ageNet training set, keeping the
number of training iterations con-
stant across all settings. The ad-
versarial loss LG(·) is introduced
after 20k iterations, and we dis-
able the learning rate scheduler
to eliminate the influence of varying epoch counts. Interestingly, as shown in Fig. 5, even a small
dataset can achieve performance comparable to one that is 10× larger. This suggests that increasing
the training data size does not always translate to better reconstruction quality.

Params (M) FLOPs (G) Dimensions

Dexion-XXS 4.3 16.2 [128, 96, 64, 48, 32]
Dexion-XS 7.6 31.6 [192, 128, 96, 64, 48]
Dexion-S 12.9 61.5 [256, 192, 128, 96, 64]
Dexion-B 23.7 121.7 [384, 256, 192, 128, 96]
Dexion-M 42.6 240.0 [512, 384, 256, 192, 128]
Dexion-L 81.7 477.6 [768, 512, 384, 256, 192]
Dexion-XL 166.5 968.8 [1152, 768, 512, 384, 256]

Table 1: Dexion decoder scales (4M–166M parameters) with a
fixed block configuration of [3, 9, 6, 3, 3] across five stages.
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Figure 6: Scaling model size consistently improves reconstruction
in PSNR and SSIM but saturates with rFID.

Model size Scaling Lastly, we
examine the impact of model size
on reconstruction performance.
We scale the main decoder from
4M to 166M parameters, with de-
tailed configurations provided in
Table 1. All models are trained
on the full ImageNet training set
for 40 epochs.

As shown in Fig. 6, PSNR, SSIM,
and rFID results are plotted
against model size and FLOPs
for single-image inference. The
results reveal that PSNR and
SSIM consistently improve with
increasing model size, with a
Pearson correlation coefficient
r > 0.9. In contrast, rFID
saturates once the decoder size
exceeds after 50M parameters,
suggesting diminishing returns for perceptual quality at larger decoders.

Reconstruction vs. Generation Reconstruction aids generation, but they are distinct tasks. To
assess whether better reconstruction implies better generation, we decode fixed latent tokens using
checkpoints from model scaling experiments and evaluate VQAScore on GenAI-Bench (Li et al.,
2024a). Fig. 7 presents results for ”Basic” and ”Hard” prompts. Meanwhile, we also report the
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Figure 7: Improved reconstruction does not imply superior generation (measured by VQAScore),
but superior aesthetics score.

Method ratio Codebook rFID(↓) PSNR(↑) SSIM(↑)

VQGAN (Esser et al., 2021) 16 16384 4.99 20.00 0.629
MaskGIT (Chang et al., 2022) 16 1024 2.28 - -
LlamaGen (Sun et al., 2024a) 16 16384 2.19 20.79 0.675

LlamaGen-Dexion (42M) 16 16384 2.62 24.16 0.803
LlamaGen-Dexion (166M) 16 16384 2.60 24.29 0.806

Table 2: Comparisons with other discrete tokenizers. We train on ImageNet train set and evaluate on
256×256 50k validation set. For our Dexion, we use LlamaGen pretrained VQGAN T2I encoder.

Aesthetics Score (AS) (Schuhmann et al., 2022) for generated images to evaluate the image aesthetics.
As shown in Fig.7 (top row), our results indicate that better reconstruction quality does not always
lead to improved image generation quality measured by metrics like VQAScore. This reinforces
the distinction between reconstruction and generation, underscoring the need for approaches beyond
simple reconstruction optimization. However, as highlighted in Fig.7 (bottom row), better recon-
struction consistently enhances aesthetics scores, demonstrating its role in refining visual details
and fidelity.

4.3 MAIN DECODER DESIGN CHOICE

As analyzed before, we observe that increased training cost and larger model size consistently
improve reconstruction quality. However, these improvements are not significant. For instance, with
nearly 10× more training cost, PSNR increases marginally from 25.0 to 25.2, and SSIM improves
slightly from 0.828 to 0.831. Similarly, scaling the model size by 4× results in only minor gains in
PSNR and SSIM, with almost no reduction in rFID. Meanwhile, experiments indicate that improved
reconstruction quality does not imply better generation results. Given the computational limitations,
all subsequent experiments will be conducted using the 42M Dexion model. Table 2 provides a
detailed comparison with other image tokenizers under a fair comparison.

For image generation, we further fine-tune our 42M-parameter Dexion model on the ImageNet dataset
to reconstruct images at a resolution of 512×512. We then fine-tune this pretrained model on a curated
dataset of 2 million licensed and synthetic high-aesthetic-quality images. To enhance performance
during fine-tuning, we lower the initial learning rate from 3e-4 to 3e-5.

4.4 SCALING REFINER FOR REFINEMENT

As mentioned earlier, we introduce the Token Refiner to subtly enhance the predicted tokens, refining
the generated output without significantly altering the overall context. Next, we explore the scaling
properties of the Token Refiner in Dexion, evaluating three model sizes — Small, Base, and Large —
ranging from 52M to 225M parameters. To facilitate token refinement, we incorporate an additional
classification head to predict the refined tokens, with detailed configurations provided in Table 3.
Treating the classification task as a form of pretraining, we present the relationship between training
FLOPs and training NLL in Figure 8.

As shown in Fig. 8, the Token Refiner design follows the scaling law with respect to training cost,
demonstrating high Pearson correlation coefficients. Notably, we find that a medium-sized refiner
already delivers robust performance, while scaling to larger models yields diminishing returns. While
more advanced training strategies may improve the performance of larger refiners, exploring this
potential lies beyond the scope of our current work. Based on these findings, we select the Base
version of the Refiner for subsequent experiments. We then investigate key aspects of the inference
process, including masking ratios, scheduling strategies, and the number of inference steps.
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Refiner S M L

Depth 12 12 16
Heads 8 8 8
MLP expand 4 4 4
Width 512 768 1024
Params(M) 52.6 105.9 225.2
FLOPs(G) 60.2 119.3 257.9

Table 3: Configurations of different Refiner
design sizes.
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Figure 8: Scaling Refiner.

Schedule VQAScore

Linear 0.660
Cosine 0.662
Sqrt 0.659
Identity 0.662

Table 6: Different schedulers per-
form similar.
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Figure 9: Inference Scheduler.

Prompt: A fluffy Arctic fox trotting through a snowy landscape. 

Prompt: A peaceful alpine valley with a meandering stream, 
wildflowers scattered across the grass

Figure 10: Token refiner progressively infers masked
tokens for better results. Red blocks represent masked
tokens, yellow blocks indicate unmasked tokens.

4.5 REFINER INFERENCE STUDY

The inference process of the Token Refiner involves several hyper-parameters that may influence
both performance and efficiency, similar to MaskGIT. In this subsection, we delve into these factors,
systematically exploring different configurations to determine the optimal inference settings. For a
fair comparison, we use identical AR model outputs for each study.

Mask Ratio 0.05 0.1 0.15 0.2 0.25 0.3
VQAScore 0.662 0.661 0.663 0.661 0.658 0.655

Table 4: A relatively smaller refiner masking ratio during in-
ference would not impact the overall hard-prompt VQAScore,
but larger masking ratio leads to slightly worse performance.

Inference steps 4 8 12 16 20
VQAScore 0.675 0.674 0.671 0.671 0.673

Table 5: Our refiner is not sensitive to inference steps.

Study Refiner Masking ratio dur-
ing inference We first investigate
the impact of the masking ratio, which
controls the proportion of tokens
masked during inference. For sim-
plicity, we fix the number of infer-
ence steps to 8 and adopt a cosine
masking schedule. Considering the
masking ratio is randomly sampled
from the range [0.001, 0.3) during
training, we evaluate performance at
[0.05, 0.1, 0.15, 0.2, 0.25, 0.3] masking ratios to assess the effect on generation quality. The genera-
tion results are assessed using GenAI-Bench, and the overall VQAScore is reported in Table 4. Our
results show that a relatively small masking ratio is sufficient to achieve a high VQAScore. However,
as the masking ratio increases, we observe a slight decline in performance. Based on these findings,
we set the masking ratio to 0.15 for all subsequent experiments.

Study Refiner Inference Step Next, we investigate the effect of inference steps. We tested a range
of step counts, from 4 to 20, with the results summarized in Table 5. Interestingly, in contrast to
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Model Type # Params GenEval. GenAI-Bench
Basic Advanced

SDv2.1 (Rombach et al., 2022) Diff. 0.9B 0.50 0.78 0.62
SDXL (Podell et al., 2023) Diff. 2.6B 0.55 0.84 0.63
Show-o (Xie et al., 2024) AR.+Diff. 1.3B 0.53 0.70 0.60
SEED-X (Ge et al., 2024) AR.+Diff. 17B 0.49 0.86 0.70
EMU3 (Wang et al., 2024) AR. 8B 0.66 0.78 0.60

LlamaGen (Sun et al., 2024a) AR. 0.8B 0.32 0.74 0.59
LlamaGen-Dexion AR. 0.8B 0.36 (↑ 0.4) 0.74(↑ 0.0) 0.68(↑ 0.9)
Janus-Pro (Chen et al., 2025) AR. 7B 0.80 0.86 0.66
Janus-Pro-Dexion AR. 7B 0.81(↑ 0.1) 0.87(↑ 0.1) 0.74(↑ 0.8)

Table 7: Evaluation results on the GenEval (Ghosh et al., 2024) and GenAI-Bench (Li et al., 2024a).

MaskGIT, the performance of our refiner remains stable across different step settings. This robustness
can be attributed to two factors: (1) the refiner only adjusts a small subset of tokens, and (2) the
generation (MaskGIT) and refinement (ours) objectives are inherently distinct. To optimize both
performance and efficiency, we set the number of inference steps to 4 for following experiments.

Study Refiner Inference schedule As observed in MaskGIT, the choice of de-masking schedule
can impact the final results. To explore this further, we experimented with several scheduling
strategies, as shown in Fig. 9, and evaluated the generation quality, with results summarized in
Table 6. We found that the differences across these schedulers were minimal. This is likely because
our refiner operates similarly to the final steps of MaskGIT, where the influence of the scheduling on
the final results is inherently limited.

Refiner visualization To gain deeper insight into the refinement process of our token refiner, we
visualize the intermediate results in Fig. 10. For clarity, masked tokens are replaced with the token
indexed as 0, allowing us to observe how the refiner progressively enhances the visual coherence and
detail of the generated images through each iteration.

4.6 MULTI-SCALE & MULTI-ASPECT-RATIO DECODING

As discussed in Sec.3.4, we enable multi-scale and multi-aspect ratio generation directly in the
decoder, rather than relying on AR models. In our experiments, we consider eight resolutions:
360× 640, 480× 640, 512× 512, 640× 360, 640× 480, 768× 1024, 1024× 768, and 1024× 1024.
To implement this, we resize and center-crop a fixed-resolution image input to the encoder (e.g.,
512× 512 for LlamaGen) to match the target resolution, and then train the decoder to reconstruct
these resized and cropped images. This approach allows the decoder to generate images in arbitrary
resolutions without introducing distortions, as demonstrated in Fig. 1 and Fig.11 in the supplementary.

4.7 GENERATION BENCHMARK

We also report the generation evaluations on both the GenAI-Bench (Li et al., 2024a) and
GenEval (Ghosh et al., 2024) benchmarks. To enhance text alignment, we apply prompt rewriting
for our Dexion, following prior work in this area. The results in Table 7 show that ARGen-Dexion
improves the overall evaluation performance. Full evaluation results can be found in the appendix.

5 CONCLUSION AND LIMITATION

Causal inference and quantization information loss are often regarded as major limitations in AR-
based image generation. Instead of solely focusing on AR models, we shift our attention to the vision
decoder to effectively address these challenges. In this work, we present ARGen-Dexion, an approach
that effectively and efficiently tackles these issues. By scaling and optimizing the main decoder,
we significantly enhance reconstruction quality, while the introduction of a token refiner improves
global coherence. Additionally, Dexion enables to generate images at multiple resolutions and aspect
ratios, reducing the training cost for AR models to support these capabilities. While we acknowledge
ARGen-Dexion is largely constrained by the quality of predictions from the AR model (as discussed
in the limitation section in the appendix), extensive experiments validate the superior performance.
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A APPENDIX

In the supplementary, we first discuss the limitation of ARGen-Dexion. We then detail our training
recipe in Sec.C, followed by comprehensive evaluation results on GenAI-Bench and GenEval bench-
marks in Sec.D. Finally, we showcase additional visual examples and more detailed token refiner
studies in Sec. E.

Large Language Models Usage We only use extra Large Language Models to aid or polish writing.
All ideas, methods, experiments, analyses, and writing were done independently by the authors.

B LIMITATIONS

As demonstrated, the performance of ARGen-Dexion is largely constrained by the quality of predic-
tions from the AR model. While ARGen-Dexion improves image quality, its impact is limited by its
role as a decoder trained exclusively on image data. Reconstruction and generation are fundamentally
different tasks. A promising future direction would be to incorporate the decoder as an integral
component of generative models, enabling joint training for greater flexibility and improved results.

360×640 480×640 512×512 640×360 640×480

768×1024 1024×768 1024×1024

Prompt: A jar glows with golden light, tiny trees inside shimmer.

Figure 11: Dexion takes the responsibility to generate arbitrary resolution images conditioned on
fixed AR-model outputs. This example shows the resolutions and aspect-ratios that we support. For
illustration, we keep the AR output tokens identical across images.

C TRAINING DETAILS

C.1 TRAINING DEXION DECODER

We trained the decoder using a carefully tuned recipe to ensure stability and optimal performance.
We first pre-train the model with a resolution of 256 × 256. The training setup utilized a learning
rate of 3e − 4 with a global batch size of 128. We applied a weight decay of 0.05 and used the
Adam optimizer with β1 = 0.9 and β2 = 0.95. To prevent exploding gradients, we set the maximum
gradient norm to 1.0. Training was conducted with mixed-precision (fp16) to enhance computational
efficiency.

The training objective combined multiple loss components to balance reconstruction quality and
perceptual fidelity. The reconstruction loss was measured using an L2 loss. Additionally, we
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Model Type
”Basic” prompts . ”Hard” prompts

Attribute Scene Relation Overall Count Differ Compare Logical Overall
Spatial Action Part Negate Universal

SDXL-v2.1 Diff. 0.80 0.79 0.76 0.77 0.80 0.78 0.68 0.70 0.68 0.54 0.64 0.62
SD-XL Diff. 0.84 0.84 0.82 0.83 0.89 0.84 0.71 0.73 0.69 0.50 0.66 0.63
SD-XL Turbo Diff. 0.85 0.85 0.80 0.82 0.89 0.84 0.72 0.74 0.70 0.52 0.65 0.65
DeepFloyd-IF (Saharia et al., 2022) Diff. 0.83 0.85 0.81 0.82 0.89 0.84 0.74 0.74 0.71 0.53 0.68 0.66
Midjourney v6 Diff. 0.88 0.87 0.87 0.87 0.91 0.87 0.78 0.78 0.79 0.50 0.76 0.69
DALL-E 3 (Betker et al., 2023) Diff. 0.91 0.90 0.92 0.89 0.91 0.90 0.82 0.78 0.82 0.48 0.80 0.70
EMU3 (Wang et al., 2024) AR 0.78 0.81 0.77 0.78 0.87 0.78 0.69 0.62 0.70 0.45 0.69 0.60
SEED-X (Ge et al., 2024) AR+Diff. 0.86 0.88 0.85 0.85 0.90 0.86 0.79 0.77 0.77 0.56 0.73 0.70

LlamaGen (Sun et al., 2024a) AR 0.75 0.75 0.74 0.76 0.75 0.74 0.63 0.68 0.69 0.48 0.63 0.59
LlamaGen-Dexion AR 0.75 0.77 0.73 0.76 0.79 0.74 0.68 0.67 0.72 0.67 0.72 0.68
Janus-Pro (Chen et al., 2025) AR 0.87 0.88 0.87 0.87 0.91 0.86 0.77 0.78 0.76 0.42 0.72 0.66
Janus-Pro-Dexion AR 0.87 0.89 0.87 0.89 0.92 0.87 0.79 0.79 0.76 0.57 0.77 0.74

Table 8: VQAScore evaluation of image generation on GenAI-Bench.

Method Type # Params Single Obj. Two Obj. Counting Colors Position Color Attri. Overall ↑
LDM (Rombach et al., 2022) Diff. 1.4B 0.92 0.29 0.23 0.70 0.02 0.05 0.37
SDv1.5 (Rombach et al., 2022) Diff. 0.9B 0.97 0.38 0.35 0.76 0.04 0.06 0.43
PixArt-alpha (Chen et al., 2024) Diff. 0.6B 0.98 0.50 0.44 0.80 0.08 0.07 0.48
SDv2.1 (Rombach et al., 2022) Diff. 0.9B 0.98 0.51 0.44 0.85 0.07 0.17 0.50
DALL-E 2 (Ramesh et al., 2022) Diff. 6.5B 0.94 0.66 0.49 0.77 0.10 0.19 0.52
SDXL (Podell et al., 2023) Diff. 2.6B 0.98 0.74 0.39 0.85 0.15 0.23 0.55
SD3 (Esser et al., 2024) Diff. 2B 0.98 0.74 0.63 0.67 0.34 0.36 0.62
Show-o (Xie et al., 2024) AR.+Diff. 1.3B 0.95 0.52 0.49 0.82 0.11 0.28 0.53
SEED-X (Ge et al., 2024) AR.+Diff. 17B 0.97 0.58 0.26 0.80 0.19 0.14 0.49
Transfusion (Zhou et al., 2024) AR.+Diff. 7.3B - - - - - - 0.63
EMU3 (Wang et al., 2024) AR. 8B - - - - - - 0.66
EMU3-DPO (Wang et al., 2024) AR. 8B - - - - - - 0.64
Janus (Wu et al., 2024a) AR. 1.3B 0.97 0.68 0.30 0.84 0.46 0.42 0.61
Emu3-Gen (Wang et al., 2024) AR. 8B 0.98 0.71 0.34 0.81 0.17 0.21 0.54
Chameleon (Team, 2024) AR. 7B - - - - - - 0.39

LlamaGen (Sun et al., 2024a) AR. 0.8B 0.71 0.34 0.21 0.58 0.07 0.04 0.32
LlamaGen-Dexion AR. 0.8B 0.86 0.33 0.28 0.62 0.07 0.02 0.36
Janus-Pro (Chen et al., 2025) AR 7B 0.98 0.88 0.59 0.92 0.79 0.65 0.80
Janus-Pro-Dexion AR 7B 0.98 0.80 0.60 0.94 0.80 0.68 0.81

Table 9: Evaluation on the GenEval (Ghosh et al., 2024) benchmark.

incorporated an adversarial loss with a PatchGAN discriminator. The perceptual loss weight was set
to 1.0, while the discriminator loss weight was 0.5. The discriminator was introduced after 60,000
steps, and its loss was calculated using the hinge loss formulation.

After the initial training, we fine-tuned the decoder at a resolution of 512× 512 to enhance the output
quality for higher-resolution images. During this stage, we reduced the learning rate to 3e− 5 for
more stable convergence. The global batch size was adjusted to 96 to accommodate GPU memory
constraints while maintaining training efficiency.

To fine-tune the multi-resolution decoder, we slightly increase the initial learning rate to 1e− 4 and
set the global batch size to 32, accounting for the presence of 1024× 1024 images. The decoder is
fine-tuned directly on our synthetic high-aesthetic-quality dataset.

C.2 TRAINING DEXION REFINER

We trained all three variants of the Token Refiner using a consistent training setup to ensure robust
and generalizable performance. The learning rate was set to 3e − 4 with a global batch size of
128. We applied a weight decay of 0.045 and optimized the model using the Adam optimizer with
β1 = 0.9 and β2 = 0.96. To improve generalization, we incorporated label smoothing with a factor
of 0.1. During training, the mask ratio was randomly sampled from the range [0.001, 0.3), enabling
the model to learn across varying levels of token masking. This setup allowed the Token Refiner to
progressively infer masked tokens with high accuracy, leading to refined and coherent outputs across
different masking scenarios.

D GENERATION EVALUATION

In this section, we present detailed evaluation results as a supplement to Table 7. The comprehensive
results for GenAI-Bench are shown in Table 8, while the results for GenEval are provided in Table 9.
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a photo of a broccoli. a photo of a pizza a photo of a teddy bear. a photo of a potted plant 
and a backpack

a photo of a purple 
elephant.

a photo of a black donut. a photo of a white teddy 
bear.

a photo of a bird left of a 
couch.

A row of colorful 
townhouses on a sunny 

street.

In an enchanted forest, 
every tree is joyfully 

dancing

A sleek black stallion 
running through an open 
field under a dark stormy 

sky

A sleek black panther 
stealthily moving through 

thick jungle foliage

A mountain lake at sunset, 
with snow-capped peaks, a 
vibrant pink and purple sky

A tranquil meadow filled 
with wildflowers, under a 
brilliant blue sky dotted 
with fluffy white clouds

A peaceful lakeside cabin 
surrounded by towering 

pines

A painting where the 
mountain is depicted as 

taller than the trees in the 
foreground.

Figure 12: We show more examples generated by ARGen-Dexion (based on LlamaGen). All images
are at a resolution of 512× 512.
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E VISUAL GALLERY

Without Refiner With Refiner

Figure 13: Token Refiner excels at enhancing image details
without significantly altering the original context, effectively
addressing the intricacies that AR models often struggle to
manage.

More Visual Examples To better
comprehensively illustrate the gener-
ation quality of our approach, we pro-
vide a diverse set of additional visual
examples at a resolution of 512× 512
in Fig. 12, each accompanied by the
corresponding prompt used. With the
augmentation of ARGen-Dexion, we
can see the image quality is largely
boosted.

Effectiveness of Token Refiner
Leveraging global coherence, Token
Refiner aims to subtly refine the to-
kens generated by the AR model with-
out altering the overall context. Fig-
ure 13 illustrates the effectiveness
of our proposed Token Refiner in
ARGen-Dexion. Without global co-
herence, ARGen struggles to handle
accumulated errors and fails to predict
fine details accurately. By introducing
our refiner, we observe a noticeable
improvement in the refinement of de-
tails, such as the fox’s eyes and the
shining flowers. Additionally, the re-
finer is capable of subtly adjusting the
global aesthetics, as seen in the gold
lion image. In future work, we aim to design a more carefully tuned refiner to improve global structure
within an image.
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