
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GAIA: A DATA FLYWHEEL SYSTEM FOR TRAINING
GUI TEST-TIME SCALING CRITIC MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

While Large Vision-Language Models (LVLMs) have significantly advanced GUI
agents’ capabilities in parsing textual instructions, interpreting screen content, and
executing tasks, a critical challenge persists: the irreversibility of agent opera-
tions—where a single erroneous action can trigger catastrophic deviations. To
address this, we propose the GUI Action Critic’s Data Flywheel System (GAIA),
a training framework that enables the models to have iterative critic capabilities,
which are used to improve the Test-Time Scaling (TTS) of basic GUI agents’ per-
formance. Specifically, we train an Intuitive Critic Model (ICM) using positive
and negative action examples from a base agent first. This critic evaluates the im-
mediate correctness of the agent’s intended actions, thereby selecting operations
with higher success probability. Then, the initial critic guides agent actions to
collect refined positive/negative samples, initiating the self-improving cycle. The
augmented data then trains a second-round critic with enhanced discernment ca-
pability. We conduct experiments on various datasets and demonstrate that the
proposed ICM can improve the test-time performance of various closed-source
and open-source models, and the performance can be gradually improved as the
data is recycled. The code and dataset will be publicly released.

1 INTRODUCTION

The automation of Graphical User Interface (GUI) interactions represents a critical frontier in de-
veloping intelligent digital assistants (Wang et al., 2024b; Hu et al., 2024; Nguyen et al., 2024).
Recent breakthroughs in Large Vision-Language Models (LVLMs) (Wang et al., 2024a; Bai et al.,
2025), leveraging advanced post-training techniques, have substantially enhanced agents’ capabili-
ties in interpreting natural language commands, perceiving visual elements, and executing multi-step
tasks (Hong et al., 2024; Cheng et al., 2024). Within this rapidly evolving landscape, the develop-
ment of robust GUI agents has largely converged on two primary methodological paradigms. The
first approaches (Wu et al., 2025c; Xu et al., 2024; Qin et al., 2025; Liu et al., 2025a) train models
through Supervised Fine-Tuning (SFT) to directly align their behavior with predefined task ob-
jectives. The second approaches employ Reinforcement Fine-Tuning (RFT) (Lu et al., 2025; Xia
& Luo, 2025; Liu et al., 2025b), which significantly enhances generalization in complex tasks by
adopting a reasoning format.

Despite these advances, the dynamic and continuous nature of real-world GUI tasks means that
agents can still produce ambiguous or incorrect action proposals at any step. A single mis-click
or mis-typed output can be irreversible, derailing the entire workflow and leaving the system
in an unrecoverable state. This high-stakes environment imperatively demands a mechanism for
pre-execution validation.

To avoid irreversible errors in execution and improve the performance of basic GUI agents during
testing, previous studies have designed action verifiers for GUI agents (Wu et al., 2025b; Xiao et al.,
2025; Yang et al., 2025), which are used to determine the correctness of multiple actions rolled out by
GUI agents, and then filter out incorrect candidates. However, these existing implementations suffer
from two primary limitations. First, training a correctness verifier requires defining positive and
negative action samples. Existing work on defining negative samples relies on heuristic algorithms,
such as randomly selecting click locations on the current screenshot (Xiao et al., 2025), which fails to
capture the realistic action distribution and leads to suboptimal judgment performance. Second, the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Rollout

•••

Action Candidates

ICM

ICM-r2 Tap (1744, 925)

(a) The promotion process of the critic model to the GUI Agent during testing.

AC Type

AC GroundingAC Acc

Odyssey Type

Odyssey Grounding Odyssey Acc

0.3
0.4

0.5
0.6

0.7
0.8

0.9

GPT4o
GPT4o+ICM
GPT4o+ICM-r2
Doubao
Douabo+ICM
Doubao+ICM-r2

AC Type

AC GroundingAC Acc

Odyssey Type

Odyssey Grounding Odyssey Acc

0.3
0.4

0.5
0.6

0.7
0.8

0.9

Qwen 2.5 VL
Qwen 2.5 VL+ICM
Qwen 2.5 VL+ICM-r2
UI-TARS
UI-TARS+ICM
UI-TARS+ICM-r2

(b) Comparison of high-level task performance improvements on closed-source and open-source GUI Agents.

Figure 1: Intuitive results. ICM guides agents’ action during testing, as shown in (a), thereby
improving the agent’s accuracy, and is continuously improved by the data flywheel, as shown in (b).

reasoning-based verifiers (Wanyan et al., 2025) implemented in existing work violate the intuitive
properties of binary judgments. For an intuitive correctness judgment problem, biological research
suggests that higher-level judgment pathways are often more adept than performing extensive multi-
step reasoning (Liu & Pleskac, 2011; Poldrack et al., 2005; Doyon & Benali, 2005), which indicates
that excessive reasoning can be less effective (Bilalić et al., 2008; Wan et al., 2011). Furthermore,
reasoning-based judgment outputs more tokens, thereby reducing the efficiency of test-time scaling.

To fully leverage pre-execution evaluation to enhance GUI agent capabilities and execution correct-
ness, we developed a GUI Action Critic’s Data Flywheel System (GAIA). This system comprises
two core phases: the initialization phase (Phase 1) and the iteration phase (Phase 2), yielding the
Intuitive Critic Model (ICM). In Phase 1, we use real GUI agents to act on an existing dataset
to collect positive and negative action data that are random but consistent with the behavior distri-
bution. Using this binary-labeled action dataset, we train ICM to assess action correctness given
environmental context. In Phase 2, as illustrated in Figure 1(a), ICM employs a Best-of-N approach
to select the highest-probability correct actions from agent rollouts. While ICM guidance signif-
icantly improves action accuracy, challenging samples persist and produce errors. These difficult
cases are annotated and fed back into the data flywheel. Through iterative data augmentation, the
flywheel continuously incorporates new action samples, progressively covering challenging scenar-
ios within the action space. Driven by this enriched dataset, we train an enhanced critic—Intuitive
Critic Model on Round Two (ICM-r2)—which achieves higher discriminative accuracy for more
precise behavioral guidance. This establishes a self-evolutionary virtuous cycle between the data
flywheel and critic models, continuously improving GUI agent action accuracy.

Leveraging the proposed system GAIA, ICM achieves SOTA performance in action critique. Nat-
urally, we integrate it into Test-Time Scaling (TTS) (Snell et al., 2025; Chen et al., 2024b; Snell
et al., 2024; Prabhudesai et al., 2023; Wang et al., 2025; Tian et al., 2025) during inference, where
ICM evaluates stochastically generated actions from the TTS process, releasing only executes the
action if it is judged to be correct and has the highest probability of the correct token. Furthermore,
based on GAIA’s comprehensive definition, ICM can evaluate the correctness of actions across the
entire space, rather than being limited to the accuracy of click actions in grounding tasks Yang et al.
(2025); Wu et al. (2025a). To validate the framework’s general applicability, we conduct joint ex-
periments using mainstream GUI Agents (including GPT-4o (Hurst et al., 2024) and UI-TARS (Qin
et al., 2025)) on several GUI Agent benchmarks.

As shown by the comparative results in Figure 1 (b), the guidance from our iteratively evolved critic
models (ICM and ICM-r2) leads to significant performance improvements in basic GUI agents,
including GUI operation task planning and grounding capabilities.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

\

Data Collection with Agent Intuitive Critic Training with Binary Label

•••

Data
Flywheel

Round 1: Basic
Round 2: ICM-Guided

Consistency
Verification

Type Match

Position Accuracy

Text Consistency

Tap Complete Back Home Type Long Press

Output
action

Tap Complete Swipe up Home Type Long Press

<+>

<−>

Round 1

Round 2

Swipe up

Tap

ICM

ICM-r2

Sample with positive action
Sample with negative action

Instruction: Using Waze
Navigation & Live Traffic,
locate a nearby gas station
on the map, and then use
Lyft to call a ride-sharing
service.
Action History: 1. Open
the Waze app by tapping its
icon. 2.Tap on … ••• •••

Instruction: …
Action History: … ••• •••

Figure 2: Data flywheel curation pipeline for GAIA. A sample dataset is constructed using GUI
agent interactions. The positive and negative labels are marked by comparing the ground truth
actions to train an action correctness discrimination model. After the critic model guides the GUI
agent, it further expands the dataset, pushing the data flywheel to cover more action distributions,
thereby promoting the iterative improvement of model performance.

Overall, the main contributions are summarized as follows:

1. We introduce GAIA—a novel Data Flywheel System designed for training GUI action-
critic models. By iteratively curating positive and negative samples from real-world action
data, GAIA continuously boosts model performance and robustness.

2. We propose the ICM for GUI interaction tasks, a critic model trained on data curated by our
data flywheel. The ICM enhances the performance of existing GUI agents by employing a
best-of-N approach to select the most probable correct action with TTS. This initial boost
is then continuously refined as the ICM’s discriminatory accuracy is iteratively improved
by the data flywheel.

3. We comprehensively demonstrate across multiple datasets that ICM trained with our pro-
posed GAIA system significantly enhances the overall performance of both closed-source
and open-source GUI agents.

2 RELATED WORK

2.1 GUI AGENT

The development of autonomous agents powered by LLMs and LVLMs has significantly advanced
interactive functionalities within digital environments. Early GUI systems primarily leveraged
LLMs to interpret structured representations (Hong et al., 2024; Nong et al., 2024; Song et al.,
2024). The development of LVLM simplifies the paradigm, allowing GUI agents to receive raw
visual signals from the screenshots (Hu et al., 2024; Liu et al., 2024; Shen et al., 2024; Tang et al.,
2025; Christianos et al., 2024; Zheng et al., 2025; Gou et al., 2024; Wu et al., 2025c). Recent ef-
forts, such as Aguvis (Xu et al., 2024) and UI-TARS (Qin et al., 2025), have advanced autonomous
GUI navigation by integrating explicit planning, sophisticated reasoning, and GUI-specific pretrain-
ing to handle complex digital environments. Concurrently, the advent of rule-based Reinforcement
Learning (RL) approaches (Jaech et al., 2024; Guo et al., 2025) has further enhanced GUI agent
capabilities. These RFT methods improve reasoning and generalization by enabling models to learn
universal action strategies from high-quality samples (Liu et al., 2025c; Shen et al., 2025; Lu et al.,
2025; Xia & Luo, 2025; Liu et al., 2025b). While fine-tuning and model scaling can enhance GUI
agent capabilities, these methods are often prohibitively resource-intensive. This highlights a clear
need for test-time enhancements that can offer universal performance improvements across various
agent models without costly retraining.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 CRITIC MODEL

To solve the problem of suboptimal single-shot model output (Zhang et al., 2025b; Martino et al.,
2023; Wen et al., 2024; Chen et al., 2024a), research has gradually focused on improving the perfor-
mance of the basic model during testing with the help of the critic model (McAleese et al., 2024; Ji
et al., 2023; Kalyanpur et al., 2024; Zhang et al., 2025a; Xiong et al., 2025). This concept has been
expanded to the GUI domain with notable works like GUI-Genie (Xiao et al., 2025), GUI-Actor (Wu
et al., 2025b), GTA1 (Yang et al., 2025), and GUI-Critic-R1 (Wanyan et al., 2025). However, ex-
isting GUI critics often rely on synthetic data generated by heuristic algorithms, such as randomly
selecting click locations (Wu et al., 2025b), cross-task substitution, or early truncation (Xiao et al.,
2025). This approach fails to accurately simulate the complex behavior of real GUI agents across
the full action space, thereby preventing the critic from learning faithful discrimination criteria. Fur-
thermore, while some approaches use RL to inject reasoning capabilities into the critic (Wanyan
et al., 2025), this often contradicts the very motivation for intuitive judgment (Liu & Pleskac, 2011;
Wan et al., 2011) and introduces delays due to extended output token generation.

3 METHOD

In this section, we detail the design of our data flywheel-driven GAIA system for the GUI agent
shown in Figure 2. We begin in Section 3.1 by introducing the general definition of the GUI agent
task and the crucial role of the critic model. Section 3.2 delves into the design and application of our
data flywheel system within the initial round of the evaluation process. In Section 3.3, we present
the model training in the second round, which builds upon the outcomes from the first iteration and
forms a virtuous cycle.

3.1 PRELIMINARIES

The interaction between a GUI agent and its environment can be formulated as a Markov Decision
Process (MDP), denoted by the tuple ⟨S,A,Z, T ,O⟩. Here, S defines the state space of possible
screen states, while A encompasses the action space, including interaction types like clicking, typ-
ing, and scrolling. The observation space Z captures inputs such as screenshots or structured UI
representations. The state transition probability is given by T : S × A × S → [0, 1], mapping a
state and action to a new state. Similarly, O : S × A → Z describes the likelihood of observing a
particular output given a state and an action. During GUI task execution, at each discrete time step
t, the agent receives an input tuple (zt, u, h), comprising the current screen observation zt ∈ Z , the
global task instruction u, and the accumulated interaction history h. The agent’s decision-making
process for GUI actions is then formalized by a structured policy function F :

F(zt, u, h) → ot = {at, ct}, (1)

where ot represents the agent output at time t, consisting of the action type at (e.g., click, scroll,
and type) and its corresponding parameters ct (e.g., click coordinates, text content for typing). After
at is executed, the environment transitions to a new state zt+1, and this iterative process continues
until the task is successfully completed or a predefined termination condition is met.

The proposed ICM, building upon the same observations and the GUI agent’s current proposed
action ot, outputs a judgment jt regarding the correctness of that action:

J (ot|(zt, u, h)) → {jt, pt}, (2)

where jt is a binary indicator, “correct” for correct actions and “wrong” for incorrect, pt represents
the probability of the judgment, which supports finding the correct action with the highest confi-
dence. By enabling the sampling of multiple candidate actions and prioritizing them based on their
respective correctness probabilities, ICM ensures that a more optimal action for the current state is
selected and executed, significantly enhancing the agent’s actual success rate.

3.2 ACTION DECISION WITH INTUITIVE CRITIC

3.2.1 DATA CURATION

To enable the judgment model to distinguish the correctness of real actions, we meticulously define
both positive and negative samples of GUI agent actions. We begin by having existing GUI agents

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

GUI Agent Action Rollout

Instruction: Watch a lecture on
Smart Cities on YouTube and then
write down the name of the course
in Microsoft Word.
Action history: 1. Click on the
YouTube app icon on the bottom
row to open it. 2. Click on the title
"What is a Smart City?" to start
the lecture. 3. Close the sharing
menu to return to the video screen.

Instruction: First,
listen to a country-style
album on Amazon Music.
Once you've enjoyed the
tunes, share the album's
name with caba62244@
gmail.com via Gmail.
Action history: [None].

Complete Swipe Type Tap LongPress

Wait Open Enter Back Home Request

Basic Agent

Rollout

•••

Action
Space

Tap (1744, 925)

Open (Music)

Tap (1424, 715)

Tap (1281, 731)•••

Tap (1747, 919)

0.83

0.65

0

0

0.78

ICM

Critic-Based Action Filtering

•••
Sample 1

2

•••

Tap (1740, 925)

Open (Music)

Tap (1427, 719)

Tap (1787, 932)•••

Tap (1745, 920)

0.89

0.71

0

0.58

0.64

ICM-r2

Sample 1
2
•••

•••

•••

Round 1

Round 2

Results

Tap (1744, 925)
Sample 1

Round 1
2 •••

* Refer to Table 1 for complete results.

Round 2

Candidates

UI-TARS 1.0 @ GUI-Odyssey UI-TARS 1.5 @ GUI-Odyssey

UI-TARS 1.0 @ GUI-Odyssey UI-TARS 1.5 @ GUI-Odyssey

Tap (1740, 925)

Sample 1 2 •••

* Refer to Table 1 for complete results.

Figure 3: Test-Time scaling pipeline. Through best-of-N rollout, multi-candidate actions of GUI
agents are given, and the correct action with the highest probability is selected after ICM evaluation.

Π = {π1, π2, ..., πi} (Qin et al., 2025) interact with and traverse publicly accessible datasets (Li
et al., 2024; Lu et al., 2024), allowing us to collect authentic, step-level operations across various
GUI scenarios. The datasets used are static and well-defined, meaning that each single-step action
has a ground truth label to indicate the action the agent should take in the corresponding environ-
ment. Minor deviations in action parameters, such as slight offsets in click coordinates and semantic
deviations in input text, are also guaranteed by recognized validation rules Wu et al. (2025c). For
each action executed in a specific state (z, u, h), we then leverage ground truth labels to determine
its correctness. An action is designated positive (with a correctness judge j = “correct”) if it aligns
with the GT.

Conversely, we identify negative samples (with a correctness score j = “wrong”) based on states
where the agent’s action deviates from the GT. This approach ensures that our collected negative
operations are closely aligned with the actual error distribution observed in real GUI environments,
significantly enhancing the quality and realism of our training dataset. To prevent bias during ICM
training, we balance the collected positive and negative samples, ensuring an equal 50% split for
each. This carefully curated dataset, denoted as D = {jk|zk, uk, hk, o

πi

k }Kk=1, forms the foundation
of our data flywheel GAIA.

3.2.2 ICM TRAINING AND GUIDANCE

Based on the dataset D, ICM is trained to intuitively judge the correctness of actions. Specifically,
the input of ICM includes the screen observation zk, the instruction description uk, the action history
hk, and the given agent action oπi

k . We implement ICM using LVLM and use standard cross-entropy
loss to supervise the ICM’s output tokens. For each sample in our dataset D, the model’s output
is a token representing either “correct” or “wrong”. The training process aims to minimize the
discrepancy between the model’s predicted probability and the ground truth label:

LCE = − 1

K

K∑
k=1

[
jk log (Pθc(“correct” | zk, uk, hk, o

πi

k))

+(1− jk) log (1− Pθc(“correct” | zk, uk, hk, o
πi

k))

]
,

(3)

where Pθc(“correct” | zk, uk, hk, o
πi

k) represents the probability assigned by the critic model θc to
the “correct” token.

During test-time, a GUI agent πi generates N candidate actions O = {o1, . . . , oN} through N-
rollout sampling. ICM evaluates these candidates by assigning each action a correctness judge jn
and a potential confidence score represented by the token probability pn. Leveraging the best-of-N
filtering strategy, we select the optimal action o∗ from the subset of correct candidates Ocorrect that

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: GUI planning accuracy on AndroidControl and GUI-Odyssey. † represents the closed-
source UI-TARS 1.5 called through the Doubao API. ∗ represents an agent that reproduces the open-
source model. ↑ and ↓ respectively represent the performance changes relative to the base agents.

Model Method Size
AndroidControl-Low AndroidControl-High GUI-Odyssey

Type GR SR Type GR SR Type GR SR
OS-Atlas-Base ZS 7B 73.0 73.4 50.9 57.4 54.9 29.8 60.4 39.7 27.0
SeeClick SFT 9.6B 93.0 73.4 75.0 82.9 62.9 59.1 71.0 52.4 53.9
Aria-UI SFT 3.9B – 87.7 67.3 – 43.2 10.2 – 86.8 36.5
Aguvis SFT 7B – – 80.5 – – 61.5 – – –
UI-R1 RFT 3B 79.2 82.4 66.4 57.9 55.7 45.4 52.2 34.5 32.5
GUI-R1 RFT 3B 83.7 81.6 64.4 58.0 56.2 46.6 54.8 41.5 41.3
GPT4o – 78.8 8.0 20.4 52.4 3.6 13.2 36.6 11.6 11.4

+ ICM 82.4 ↑ 3.6 9.2 ↑ 1.2 24.8 ↑ 4.4 58.0 ↑ 5.6 5.3 ↑ 1.7 17.0 ↑ 3.8 42.9 ↑ 6.3 10.0 ↓ 1.6 13.4 ↑ 2.0

+ ICM-r2 81.6 ↑ 2.8 8.5 ↑ 0.5 23.8 ↑ 3.4 57.6 ↑ 5.2 6.1 ↑ 2.5 18.8 ↑ 5.6 43.2 ↑ 6.6 11.4 ↓ 0.2 14.5 ↑ 3.1

Doubao† – 97.0 86.4 86.2 82.0 75.0 62.4 67.1 67.3 43.8
+ ICM 97.0 – 86.6 ↑ 0.2 86.4 ↑ 0.2 83.2 ↑ 1.2 75.1 ↑ 0.1 64.4 ↑ 2.0 70.1 ↑ 3.0 68.4 ↑ 1.1 46.9 ↑ 3.1

+ ICM-r2 96.6 ↓ 0.4 86.6 ↑ 0.2 86.0 ↓ 0.2 84.2 ↑ 2.2 75.5 ↑ 0.5 66.0 ↑ 3.6 71.6 ↑ 4.5 68.0 ↑ 0.7 47.9 ↑ 4.1

Qwen 2.5 VL 7B 94.4 85.6 81.8 83.0 70.9 60.6 52.7 77.2 40.2
+ ICM 95.4 ↑ 1.0 86.0 ↑ 0.4 81.2 ↓ 0.6 84.0 ↑ 1.0 75.9 ↑ 5.0 63.4 ↑ 2.8 57.3 ↑ 4.6 77.2 – 43.7 ↑ 3.5

+ ICM-r2 94.6 ↑ 0.2 85.4 ↓ 0.2 81.8 – 84.4 ↑ 1.4 75.9 ↑ 5.0 63.8 ↑ 3.2 58.1 ↑ 5.4 78.3 ↑ 1.1 44.8 ↑ 4.6

UI-TARS 1.0∗ 7B 90.0 85.1 75.4 80.8 68.9 58.2 60.8 71.0 43.3
+ ICM 90.5 ↑ 0.5 87.6 ↑ 2.5 80.4 ↑ 5.0 82.3 ↑ 1.5 79.5 ↑ 10.6 67.5 ↑ 9.3 72.3 ↑ 11.5 76.1 ↑ 5.1 55.3 ↑ 12.0

+ ICM-r2 90.0 – 86.8 ↑ 1.7 80.2 ↑ 4.8 82.7 ↑ 1.9 78.9 ↑ 10.0 67.1 ↑ 8.9 71.4 ↑ 10.6 78.5 ↑ 7.5 56.3 ↑ 13.0

UI-TARS 1.5∗ 7B 86.4 82.4 72.2 80.2 68.1 55.8 71.1 44.6 32.9
+ ICM 90.3 ↑ 3.9 85.0 ↑ 2.6 79.0 ↑ 6.8 84.2 ↑ 4.0 73.3 ↑ 5.2 64.5 ↑ 8.7 78.2 ↑ 7.1 52.9 ↑ 8.3 47.8 ↑ 14.9

+ ICM-r2 90.1 ↑ 3.7 85.5 ↑ 3.1 79.2 ↑ 7.0 84.6 ↑ 4.5 74.7 ↑ 3.8 65.6 ↑ 7.4 80.2 ↑ 9.1 53.5 ↑ 8.9 50.2 ↑ 17.3

is judged as correct and whose corresponding “correct” token has the highest probability pn:

o∗ =

{
arg max

on∈Ocorrect
pn, if Ocorrect ̸= ∅

o1. otherwise
(4)

This approach effectively guides the agent to bypass single-shot output failures and select the most
promising action, thereby significantly boosting its overall execution accuracy.

3.3 DATA FLYWHEEL AND CRITIC SCALING

Guided by Equation 4, the execution accuracy has been significantly improved. However, some
difficult action samples require more precise judgment. Considering that ICM and test-time scal-
ing performance can be further enhanced with data, we collect agent actions guided by ICM
and, after filtering for positive and negative balance, add them to the data flywheel to form
D+ = {jk|zk, uk, hk, o

πi

k , θc}K
′

k=1. D+ further covers the distribution of actions, providing a foun-
dation for performance scaling.

Based on the challenging samples in this enriched dataset, we train the ICM on Round Two (ICM-
r2), using the same cross-entropy loss as defined in Equation 3. This new dataset, which is specif-
ically curated to expose the critic’s most significant blind spots, allows ICM-r2 to acquire a more
nuanced and accurate discriminative ability. Consequently, as illustrated in Figure 3, ICM-r2 pro-
vides more precise guidance for the agent’s action selection, thereby fundamentally strengthening
the critic’s overall judgment and significantly improving the agent’s performance on the most diffi-
cult tasks. Together with ICM, ICM-r2 demonstrates the power of a data flywheel-driven approach
to stimulate the performance of GUI agents during testing.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Experimental Setup. We use UI-TARS 1.0 (Qin et al., 2025) and UI-TARS 1.5 (Qin
et al., 2025) for inference on the AndroidControl (Li et al., 2024) and GUI-Odyssey (Lu
et al., 2024) training sets, and compare the real actions with GT to build D and D+.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: GUI grounding accuracy on ScreenSpotV2. ∗ indicates reproduced open-source agent
performance. ↑ and ↓ respectively represent the performance changes relative to the base agents.

Model Method Size
Mobile Desktop Web

Avg.
Text Icon Text Icon Text Icon

GPT-4o ZS – 30.5 23.2 20.6 19.4 11.1 7.8 18.8
OS-Atlas-Base ZS 7B 93.0 72.9 91.8 62.9 90.9 74.3 82.5
SeeClick SFT 9.6B 78.0 52.0 72.2 30.0 55.7 32.5 53.4
Aguvis SFT 7B 95.6 77.7 93.8 67.1 88.3 75.2 84.4
Qwen 2.5 VL 7B 84.8 59.7 72.1 52.1 69.2 46.3 65.0

+ ICM 87.9 ↑ 3.1 70.1 ↑ 10.4 79.4 ↑ 7.3 57.1 ↑ 5.0 74.7 ↑ 5.5 49.2 ↑ 2.9 70.4 ↑ 5.4

+ ICM-r2 89.7 ↑ 4.9 68.2 ↑ 8.5 78.9 ↑ 6.8 54.3 ↑ 2.2 76.9 ↑ 7.7 51.2 ↑ 4.9 71.1 ↑ 6.1

UI-TARS 1.0∗ 7B 93.1 82.4 94.8 76.4 91.8 84.2 88.1
+ ICM 94.5 ↑ 1.3 83.1 ↑ 0.7 93.2 ↓ 1.6 77.9 ↑ 1.5 93.5 ↑ 2.0 84.7 ↑ 0.5 88.7 ↑ 0.6

+ ICM-r2 94.2 ↑ 1.1 83.7 ↑ 1.3 95.7 ↑ 0.9 78.7 ↑ 2.3 92.1 ↑ 0.3 84.7 ↑ 0.5 89.0 ↑ 0.9

UI-TARS 1.5∗ 7B 96.2 84.3 94.3 84.2 94.4 86.6 90.8
+ ICM 96.5 ↑ 0.3 85.3 ↑ 1.0 95.4 ↑ 1.1 84.3 ↑ 0.1 94.2 ↓ 0.2 85.2 ↓ 1.4 90.2 ↓ 0.6

+ ICM-r2 97.3 ↑ 1.1 84.2 ↓ 0.1 92.4 ↓ 1.9 84.4 ↑ 0.2 95.5 ↑ 1.1 87.7 ↑ 1.1 91.0 ↑ 0.2

Table 2: Data distribution of the flywheel. D and D+

respectively represent the data of the first and the second
round of GAIA.

Category Source Postive Negtive

D AndroidControl 68.2k 69.9k
GUI-Odyssey 65.4k 66.8k

D+ AndroidControl (68.2+15.1)k (69.9+14.0)k
GUI-Odyssey (65.4+26.1)k (66.8+26.3)k

On the corresponding data, we de-
velop the ICM and ICM-r2 based on
Qwen2.5 VL 7B (Bai et al., 2025)
and adopt the ms-swift (Zhao et al.,
2024) framework for training. All
action judgments followed the high-
level approach, providing only global
instructions to the ICM and ICM-
r2, not single-step instructions. The
distribution of the data flywheel is
shown in Table 2. The critic model
guides the agents in the N-rollout process with N = 8. To allow the base agent to sample a reason-
able range of potential actions, its temperature coefficient, top k, and top p are set to 1.0, 30, and
0.8, respectively. All experiments are conducted on 8 NVIDIA H100-80G GPUs.

Evaluation. To evaluate the performance of the agent after being guided by the critic model, we
evaluate the agent’s task understanding, grounding, and planning capabilities on the AndroidCon-
trol and GUI-Odyssey test sets. Furthermore, according to the input, the settings on AndroidControl
can be divided into low-level tasks and high-level tasks. High-level tasks only input the global
instruction to the agent, while low-level tasks will additionally input the single-step action plan.
It should be noted that even for low-level agents, our critic model is guided only by high-level
information to ensure the consistency of operation. GUI-Odyssey only adopts the high-level exper-
imental setups. As for the agent’s grounding ability, we measure and compare the performance on
ScreenSpotV2 (Cheng et al., 2024).

Comparison. To verify the effectiveness of the proposed evaluation model in guiding existing agent
models during testing, we selected a wide range of models. Among the closed-source models, we se-
lected GPT4o (Hurst et al., 2024) and Doubao (UITARS 1.5) (ByteDance, 2025), and implemented
action acquisition through API calls. For open source models, we reproduced Qwen 2.5 VL (Bai
et al., 2025), UI-TARS 1.0 (Qin et al., 2025), and UI-TARS 1.5 (Qin et al., 2025), where Qwen 2.5
VL is a general multimodal understanding model and UI-TARS is a model fine-tuned for GUI agent
tasks. We used the official prompt template to reproduce basic performance and test the superpo-
sition evaluation model. The original UI-TARS requires historical actions and up to 5 images of
historical steps as input. To simplify the operation, we only let the model refer to the text descrip-
tion of the historical steps and discard the excessive historical image input. For detailed prompt and
inference scripts, please refer to the appendix.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 4 8
N

5

10

15

20

Ac
c

Agent Pass@N
Agent+ICM N-rollout
Agent+ICM-r2 N-rollout

(a) GPT4o on GUI-Odyssey

1 2 4 8
N

35

40

45

50

55

Ac
c

Agent Pass@N
Agent+ICM N-rollout
Agent+ICM-r2 N-rollout

(b) UI-TARS 1.5∗ on GUI-Odyssey

Figure 4: Performance improvements of Pass@N and N-rollout.

As a performance comparison, we selected Zero Shot (ZS) model OS-Atlas-Base (Wu et al., 2025c),
SFT-tuned SeeClick (Cheng et al., 2024), Aria-UI (Yang et al., 2024), and Aguvis (Xu et al., 2024),
and RFT-tuned UI-R1 (Lu et al., 2025) and GUI-R1 (Xia & Luo, 2025).

Evaluation Metrics. For planning tasks, in line with OS-Atlas (Wu et al., 2025c), we report action
type prediction accuracy (Type), click point prediction accuracy (GR), and step success rate (SR).
Specifically: Type measures the exact-match accuracy between predicted and ground-truth action
types (e.g., “click” vs. “swipe”). GR evaluates grounding performance via click point prediction
accuracy in specific action types (e.g., “click” and “long press”). SR is the step-wise success rate:
a step is counted as successful only if both the predicted action and its associated arguments (e.g.,
click coordinates or input text) match the ground truth. For grounding tasks, we use click point
prediction accuracy as our evaluation metric.

4.2 EXPERIMENTAL RESULTS

As shown in Table 1, the proposed ICM and ICM-r2 achieve extensive performance improvements
for both zero-shot and fine-tuned GUI agents. On the AndroidControl-High test, ICM can improve
agents’ SR performance by up to 9.3%, while ICM-r2 can further improve it by an average of 1.32%.
The same trend is also observed on GUI-Odyssey, demonstrating that existing models have the
potential to correctly infer actions. ICM can leverage this potential to effectively improve existing
agents during testing, and data flywheels can further amplify these improvements. For agents with
lower basic performance, ICM can significantly improve their performance to an advanced level,
which also demonstrates the potential of the model itself and the stimulation ability of the critic
model. In terms of generalization, GPT4o, Doubao, and Qwen 2.5 VL were not included in the
construction of the GAIA D and D+, but ICM and ICM-r2 still achieved significant performance
improvements, demonstrating the inherent consistency of real action space data. The real action
sampling in the proposed data flywheel effectively covers this space, providing effective support for
critic training.

Both our ICM and ICM-r2 use a high-level approach to judge correctness and guide action, meaning
the critic model is not aware of the current action plan. This setting is more consistent with practical
applications, where only global instructions are given, and the agent must independently reason
about each step’s plan and action. For AndroidControl-Low, the agent is aware of the current action
plan, resulting in higher baseline performance. Despite this, our ICM still achieves a certain degree
of performance improvement, demonstrating the effectiveness of our proposed approach.

Table 3 shows the improvement of ICM and ICM-r2 on the grounding ability of agents on
ScreenSpotv2. The ScreenSpotv2 data is not included in the proposed GAIA, and as a single-
step operation, its environmental information is not completely consistent with the aforementioned
datasets. Even so, our evaluation model still improves the performance of agents, which is sufficient
to prove the validity of the data flywheel definition.

Please refer to the appendix for more visualization results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Critic comparison. The performance
is calculated as (Qwen2.5 VL 7B w/ critic) -
(Qwen2.5 VL 7B w/o critic).

Model N
AndroidControl-High

∆ Type ∆ GR ∆ SR
UI-Genie-RM 10 – – 0.3
ICM 8 1.0 5.0 2.8
ICM-r2 8 1.4 5.0 3.2

Table 5: Impact of differences in critic model
attributes on accuracy and guidance.

Model Critic Acc
GUI-Odyssey

Type GR SR
UI-TARS 1.5∗ – 71.1 44.6 32.9

+ RCM 70.82% 75.6 49.2 44.1
+ ICM 83.19% 78.2 52.9 47.8

+ ICM-r2 83.56% 80.2 53.5 50.2

4.3 ABLATION STUDY

While utilizing ICM and ICM-r2, we used N-rollout to improve the test-time performance of existing
GUI agents, where N is set to 8 by default. To measure the impact of N on final performance,
we selected GPT4o and UI-TARS 1.5∗ as representative closed-source and open-source models,
respectively, and compared their SR at different N values on GUI-Odyssey. We also measured the
models’ Pass@N during the rollout process to reflect the model’s performance ceiling. As shown in
Figure 4, the increase in Pass@N accuracy reveals the potential of the agents themselves, while the
evaluation model approaches this upper limit through N-rollout. The improvement in ICM-r2 and
the gap between the upper limit provide potential performance gains for further cycles of GAIA.

4.4 QUALITATIVE EXPERIMENT

Critic Model Comparison. To evaluate the effectiveness of the proposed discriminant model,
we compared the accuracy of the Qwen 2.5 VL using a best-of-N approach to guide inference on
AndroidControl-High with UI-Genie-RM (Xiao et al., 2025). As shown in Table 4, due to the use
of real action data, the proposed ICM significantly improves the accuracy of the base model, and
ICM-r2 can further expand the advantage.

Intuitive and Reasoning Critic. To verify that the intuitive judgment proposed in this article is su-
perior, this section implements a critic model based on reinforcement learning design. Specifically,
the input of the Reasoning Critic Model (RCM) is consistent with ICM, and the output includes
<thinking>...</thinking> and <critic>...</critic>, which are supervised by format
reward and critic reward. The thought process emerges spontaneously from the model, and the critic
reward represents the judgment on the correctness of the current action. The training of RCM is
achieved through Group Relative Policy Optimization (GRPO). Considering the property of rein-
forcement learning, which is that it can stimulate model capabilities with less data, we randomly
sampled 30k data from D+ to train RCM. This setting aligns with existing work on training critic
models based on RL Wanyan et al. (2025), ensuring a fair comparison. This data includes samples
from two rounds of GAIA and has the same distribution as the training data for ICM-r2. To intu-
itively compare the discriminative performance of different critic models, we collected the GAIA
test set in a high-level manner on the AndroidControl and GUI-Odyssey test sets in the same way as
we collected the training data.

Table 5 shows that the proposed ICM achieves an accuracy of 83.19% for correctness assessment,
providing a foundation for action guidance. ICM-r2, benefiting from improved data quality, further
achieves an accuracy of 83.56%. In contrast, RCM’s classification accuracy is 70.82%, indicating
that the thinking component fails to significantly contribute to the final assessment. In terms of action
guidance accuracy, while UI-TARS 1.5∗ under RCM guidance outperforms the original model, it
still falls short of ICM. This experimental result demonstrates that intuitive judgment outperforms
reasoning for improving agents using a critic model. Besides, the RCM and GUI-Critic-R1 Wanyan
et al. (2025) are required to generate Chain-of-Thought sequences enclosed in <thinking> tags
before outputting a judgment, often consuming hundreds of tokens. In contrast, the intuitive-based
ICM is trained to output a single token (”correct” or ”wrong”). This disparity in output length
results in an order-of-magnitude reduction in inference latency for ICM. For TTS, which requires
evaluating multiple candidates, this efficiency is critical for practical deployment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 CONCLUSION

In this work, we addressed the critical challenge of high-stakes, irreversible errors in GUI agents by
proposing a novel framework designed to unleash their latent potential at test time. Our GUI Action
Critic’s Data Flywheel System (GAIA) comprises a data flywheel that iteratively curates a dataset of
realistic action samples and the Intuitive Critic Model (ICM) that evaluates action correctness. This
framework establishes a self-evolutionary cycle: the flywheel continuously enriches its data, which
in turn trains an increasingly powerful critic (ICM-r2). By leveraging a Best-of-N strategy, our ICM
enables agents to select more reliable actions without the need for resource-intensive retraining.
Experimental results on both closed-source and open-source agents demonstrate that GAIA provides
significant performance gains in task planning and grounding capabilities, presenting a promising,
scalable solution for building more robust and intelligent GUI agents.

In future work, we will consider unifying high-level and low-level guidance methods and collecting
richer data in online testing, thereby continuously iterating the data flywheel and promoting the
exploration of agent capabilities.

6 ETHICS STATEMENT

The research content of this paper is based on the LVLM GUI Agent. The research process of this
paper does not violate ICLR ethics. There are no discrimination, bias, or fairness issues that need to
be addressed. Our models are not expected to generate potentially harmful content.

7 REPRODUCIBILITY STATEMENT

This article studies a GUI Agent based on LVLM, focusing on proposing a critic model for existing
agent actions. The base model and dataset used in this article are all from open-source and well-
referenced, so this aspect does not affect the reproducibility. To further ensure reproducibility, we
describe the parameters in detail in the main text Section 4.1 and the appendix, and provide prompts
for all models involved in the appendix. We will release the source code and model checkpoints to
support reproducibility.

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2.5-VL technical report. arXiv preprint arXiv:2502.13923,
2025.

Merim Bilalić, Peter McLeod, and Fernand Gobet. Why good thoughts block better ones: The
mechanism of the pernicious einstellung (set) effect. Cognition, 108(3):652–661, 2008.

ByteDance. Doubao. https://www.volcengine.com/product/doubao, 2025. Accessed: 2025-8-1.

Weize Chen, Jiarui Yuan, Chen Qian, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Optima:
Optimizing effectiveness and efficiency for LLM-based multi-agent system. arXiv preprint
arXiv:2410.08115, 2024a.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2024b.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. SeeClick: Harnessing gui grounding for advanced visual GUI agents. arXiv preprint
arXiv:2401.10935, 2024.

Filippos Christianos, Georgios Papoudakis, Thomas Coste, Jianye Hao, Jun Wang, and Kun Shao.
Lightweight neural app control. arXiv preprint arXiv:2410.17883, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and memory-
efficient exact attention with IO-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Julien Doyon and Habib Benali. Reorganization and plasticity in the adult brain during learning of
motor skills. Current opinion in neurobiology, 15(2):161–167, 2005.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. CogAgent: A visual language model for GUI agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. LoRA: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan Xiao, Yurun Chen, Jiasheng Ye, Meiling Tao,
Xiangxin Zhou, Ziyu Zhao, et al. OS Agents: A survey on MLLM-based agents for general
computing devices use, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. OpenAI o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
LLM hallucination via self reflection. In Findings of the Association for Computational Linguis-
tics: EMNLP 2023, pp. 1827–1843, 2023.

Aditya Kalyanpur, Kailash Karthik Saravanakumar, Victor Barres, Jennifer Chu-Carroll, David
Melville, and David Ferrucci. LLM-ARC: Enhancing LLMs with an automated reasoning critic.
arXiv preprint arXiv:2406.17663, 2024.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents. arXiv e-prints, pp.
arXiv–2406, 2024.

Taosheng Liu and Timothy J Pleskac. Neural correlates of evidence accumulation in a perceptual
decision task. Journal of neurophysiology, 106(5):2383–2398, 2011.

Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
Iong, Jiadai Sun, Jiaqi Wang, et al. Autoglm: Autonomous foundation agents for guis. arXiv
preprint arXiv:2411.00820, 2024.

Yuhang Liu, Pengxiang Li, Zishu Wei, Congkai Xie, Xueyu Hu, Xinchen Xu, Shengyu Zhang,
Xiaotian Han, Hongxia Yang, and Fei Wu. Infiguiagent: A multimodal generalist gui agent with
native reasoning and reflection. arXiv preprint arXiv:2501.04575, 2025a.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. InfiGUI-R1: Advancing multimodal GUI agents from reactive actors to deliberative
reasoners. arXiv preprint arXiv:2504.14239, 2025b.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
Wang. Visual-RFT: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785, 2025c.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui Odyssey: A comprehensive dataset for cross-app
GUI navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Guanjing Xiong, and
Hongsheng Li. UI-R1: Enhancing action prediction of GUI agents by reinforcement learning.
arXiv preprint arXiv:2503.21620, 2025.

Ariana Martino, Michael Iannelli, and Coleen Truong. Knowledge injection to counter large
language model (LLM) hallucination. In European Semantic Web Conference, pp. 182–185.
Springer, 2023.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja Tre-
bacz, and Jan Leike. LLM critics help catch LLM bugs. arXiv preprint arXiv:2407.00215, 2024.

Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu, Junda
Wu, Ryan Aponte, Yu Xia, et al. GUI agents: A survey. arXiv preprint arXiv:2412.13501, 2024.

Songqin Nong, Jiali Zhu, Rui Wu, Jiongchao Jin, Shuo Shan, Xiutian Huang, and Wenhao Xu.
Mobileflow: A multimodal LLM for mobile GUI agent. arXiv preprint arXiv:2407.04346, 2024.

Russell A Poldrack, Fred W Sabb, Karin Foerde, Sabrina M Tom, Robert F Asarnow, Susan Y
Bookheimer, and Barbara J Knowlton. The neural correlates of motor skill automaticity. Journal
of Neuroscience, 25(22):5356–5364, 2005.

Mihir Prabhudesai, Tsung-Wei Ke, Alex Li, Deepak Pathak, and Katerina Fragkiadaki. Diffusion-
TTA: Test-time adaptation of discriminative models via generative feedback. Advances in Neural
Information Processing Systems, 36:17567–17583, 2023.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. UI-TARS: Pioneering automated GUI interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, et al. VLM-R1: A stable and generalizable R1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Huawen Shen, Chang Liu, Gengluo Li, Xinlong Wang, Yu Zhou, Can Ma, and Xiangyang Ji. Falcon-
UI: Understanding GUI before following user instructions. arXiv preprint arXiv:2412.09362,
2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time com-
pute optimally can be more effective than scaling parameters for reasoning. In The Thirteenth
International Conference on Learning Representations, 2025.

Yunpeng Song, Yiheng Bian, Yongtao Tang, Guiyu Ma, and Zhongmin Cai. Visiontasker: Mobile
task automation using vision based ui understanding and llm task planning. In Proceedings of the
37th Annual ACM Symposium on User Interface Software and Technology, pp. 1–17, 2024.

Fei Tang, Yongliang Shen, Hang Zhang, Siqi Chen, Guiyang Hou, Wenqi Zhang, Wenqiao Zhang,
Kaitao Song, Weiming Lu, and Yueting Zhuang. Think twice, click once: Enhancing GUI ground-
ing via fast and slow systems. arXiv preprint arXiv:2503.06470, 2025.

Xiaoyu Tian, Sitong Zhao, Haotian Wang, Shuaiting Chen, Yunjie Ji, Yiping Peng, Han Zhao, and
Xiangang Li. Think twice: Enhancing LLM reasoning by scaling multi-round test-time thinking.
arXiv preprint arXiv:2503.19855, 2025.

Xiaohong Wan, Hironori Nakatani, Kenichi Ueno, Takeshi Asamizuya, Kang Cheng, and Keiji
Tanaka. The neural basis of intuitive best next-move generation in board game experts. Science,
331(6015):341–346, 2011.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-VL: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024a.

Shuai Wang, Weiwen Liu, Jingxuan Chen, Yuqi Zhou, Weinan Gan, Xingshan Zeng, Yuhan Che,
Shuai Yu, Xinlong Hao, Kun Shao, et al. GUI agents with foundation models: A comprehensive
survey. arXiv preprint arXiv:2411.04890, 2024b.

Yutong Wang, Pengliang Ji, Chaoqun Yang, Kaixin Li, Ming Hu, Jiaoyang Li, and Guillaume Sar-
toretti. MCTS-judge: Test-time scaling in LLM-as-a-judge for code correctness evaluation. arXiv
preprint arXiv:2502.12468, 2025.

Yuyang Wanyan, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Jiabo Ye, Yutong Kou, Ming
Yan, Fei Huang, Xiaoshan Yang, et al. Look before you leap: A GUI-Critic-R1 model for pre-
operative error diagnosis in GUI automation. arXiv preprint arXiv:2506.04614, 2025.

Muning Wen, Ziyu Wan, Jun Wang, Weinan Zhang, and Ying Wen. Reinforcing LLM agents via
policy optimization with action decomposition. Advances in Neural Information Processing Sys-
tems, 37:103774–103805, 2024.

Hang Wu, Hongkai Chen, Yujun Cai, Chang Liu, Qingwen Ye, Ming-Hsuan Yang, and Yiwei Wang.
DiMo-GUI: Advancing test-time scaling in gui grounding via modality-aware visual reasoning.
arXiv preprint arXiv:2507.00008, 2025a.

Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
Baolin Peng, Bo Qiao, Reuben Tan, et al. GUI-Actor: Coordinate-free visual grounding for GUI
agents. arXiv preprint arXiv:2506.03143, 2025b.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, et al. OS-ATLAS: A foundation action model for
generalist GUI agents. In International Conference on Learning Representations, 2025c.

Xiaobo Xia and Run Luo. GUI-R1: A generalist R1-style vision-language action model for GUI
agents. arXiv preprint arXiv:2504.10458, 2025.

Han Xiao, Guozhi Wang, Yuxiang Chai, Zimu Lu, Weifeng Lin, Hao He, Lue Fan, Liuyang Bian,
Rui Hu, Liang Liu, et al. UI-Genie: A self-improving approach for iteratively boosting MLLM-
based mobile GUI agents. arXiv preprint arXiv:2505.21496, 2025.

Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, Haoqi Fan, Quanquan Gu, Heng Huang, and
Chunyuan Li. LLaVA-Critic: Learning to evaluate multimodal models. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 13618–13628, 2025.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous GUI interaction. arXiv
preprint arXiv:2412.04454, 2024.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-Mark
prompting unleashes extraordinary visual grounding in GPT-4V, 2023. URL https://arxiv.
org/abs/2310.11441.

Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
Huang, Amrita Saha, Zeyuan Chen, et al. GTA1: GUI test-time scaling agent. arXiv preprint
arXiv:2507.05791, 2025.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-UI:
Visual grounding for GUI instructions. arXiv preprint arXiv:2412.16256, 2024.

Di Zhang, Jingdi Lei, Junxian Li, Xunzhi Wang, Yujie Liu, Zonglin Yang, Jiatong Li, Weida Wang,
Suorong Yang, Jianbo Wu, et al. Critic-V: VLM critics help catch VLM errors in multimodal
reasoning. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 9050–
9061, 2025a.

13

https://arxiv.org/abs/2310.11441
https://arxiv.org/abs/2310.11441

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ziyao Zhang, Chong Wang, Yanlin Wang, Ensheng Shi, Yuchi Ma, Wanjun Zhong, Jiachi Chen,
Mingzhi Mao, and Zibin Zheng. LLM hallucinations in practical code generation: Phenomena,
mechanism, and mitigation. Proceedings of the ACM on Software Engineering, 2(ISSTA):481–
503, 2025b.

Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang,
Zhikai Wu, Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda Chen. SWIFT:a scalable
lightweight infrastructure for fine-tuning, 2024. URL https://arxiv.org/abs/2408.
05517.

Jiani Zheng, Lu Wang, Fangkai Yang, Chaoyun Zhang, Lingrui Mei, Wenjie Yin, Qingwei Lin,
Dongmei Zhang, Saravan Rajmohan, and Qi Zhang. VEM: Environment-free exploration for
training gui agent with value environment model. arXiv preprint arXiv:2502.18906, 2025.

14

https://arxiv.org/abs/2408.05517
https://arxiv.org/abs/2408.05517

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A CLARIFICATION OF THE USAGE OF LLMS

This paper only used LLMs to assist and polish the writing. The retrieval, core innovation, method
design, and experiments related to the paper were not conducted with the help of LLMs.

B INFERENCE PROMPTS

In this section, we introduce the inference parameters and prompt template of the LVLM used. The
proposed GAIA data flywheel and trained ICM are used to guide existing GUI agents at test time.
GAIA data is also constructed using the action reasoning of existing agents.

B.1 GUI AGENT PLANNING TASK PROMPTS

GPT4o We use the API to test the closed-source model GPT4o (Hurst et al., 2024) as a GUI agent.
Prompts refer to UI-TARS 1.0 (Qin et al., 2025) to ensure consistency in the action space. System
prompts and user prompts refer to Prompt 1 and Prompt 3. The “You need to: {step plan}” in User
Prompt is only used when testing AndroidControl-Low (Li et al., 2024). In other conditions, the
agent will not receive specific step instructions.

Doubao† Doubao, ByteDance’s closed-source model interface, provides a closed-source version of
UI-TARS 1.5, which represents the most advanced GUI agent. We test the performance of closed-
source UI-TARS 1.5 by calling Doubao’s API (ByteDance, 2025). The Prompt used for the test is
consistent with the open source version UI-TARS 1.5 (Qin et al., 2025), see Prompt 2 and Prompt 3.
The “You need to: {step plan}” in User Prompt is only used when testing AndroidControl-Low. In
other conditions, the Agent will not receive specific step instructions.

UI-TARS 1.0∗ For UI-TARS 1.0 (Qin et al., 2025), we use the open source weight UI-TARS-7B-
DPO for testing. System prompts and user prompts refer to Prompt 1 and Prompt 3. The “You need
to: {step plan}” in User Prompt is only used when testing AndroidControl-Low. In other conditions,
the agent will not receive specific step instructions. It should be noted that UI-TARS can receive up
to five historical images as input. To simplify the process, we only use the text of “action history”
to describe the historical steps. For the image, we only input the current screenshot.

UI-TARS 1.5∗ For UI-TARS 1.5 (Qin et al., 2025), we use the open source weight UI-TARS-1.5-7B
for testing. System prompts and user prompts refer to Prompt 2 and Prompt 3. The “You need to:
{step plan}” in User Prompt is only used when testing AndroidControl-Low. In other conditions,
the agent will not receive specific step instructions. It should be noted that UI-TARS 1.5 can receive
up to five historical images as input. To simplify the process, we only use the text of “action history”
to describe the historical steps. For the image, we only input the current screenshot.

Qwen 2.5 VL For Qwen 2.5 VL (Bai et al., 2025), we use the open source weight Qwen-2.5-VL-
7B-Instruct for testing. We refer to the official use case and use the function calls to test Qwen’s
GUI Agent capabilities. The prompt is shown in Prompt 4 and 5.

B.2 GUI AGENT GROUNDING TASK PROMPTS

Grounding capabilities are tested on the ScreenSpotV2 (Cheng et al., 2024) dataset. Because
Grounding only provides single-step instructions and screenshots, and operations only involve click
locations, the Prompts in Grounding differ from those in planning. The prompts for UI-TARS 1.0∗
and UI-TARS 1.5∗ refer to Prompt 6 and Prompt 7 respectively. The Qwen 2.5 VL test also applies
function calls and constrains its output format through JSON, where Prompt is shown in Prompt 4
and 5. Prompt is the same as planning task, but without “action history”.

B.3 ICM PROMPTS

The ICM and ICM-r2 trained on GAIA follow the same prompt and make judgments across the
full action space. Therefore, the same prompt is used for both Planning and Grounding, as shown
in Prompt 8. The information of “global instruction” and “action history” is consistent with that
obtained by the basic GUI agent. “actor set” describes the current action. If the action is click or

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

long press, it is constructed as “Tap at [x, y]”, where x and y are the absolute coordinates of the
click position in the original image. If the action is swipe, “actor set” is constructed as “Swipe to
up/down/left/right”. If the action is type or open, “actor set” is constructed as “Type/Open [text]”,
where[text] is the input text or the name of the App to be opened. The other actions have no param-
eters, so “actor set” is directly the action name, such as “Wait”, “Home”, “Back”, etc.

For the input image, we refer to the Set-of-Mark (SoM) approach (Yang et al., 2023). If the action is
click or long press, a red circle is drawn at the click location. Otherwise, the original image is used
directly as the ICM reference. The model’s attention is implemented using FlashAttention (Dao
et al., 2022). The data type is bfloat16. The epoch is 1, and the batch size is 16.

C TRAINING PARAMETERS

Using GAIA data, we train ICM and ICM-r2 with the following parameters. We fine-tune Qwen
2.5 VL 7B by inserting LoRA (Hu et al., 2022) into all linear layers, with lora rank set to 8 and
lora alpha set to 32. The epoch is 1, and the batch size is 16. The optimizer is AdamW with a
learning rate of 1e-4 and a warmup ratio of 0.05.

D BEST-OF-N METHOD

ICM and ICM-r2 use the Best-of-N approach to select the correct action with the highest probability
from the N actions in the GUI agent rollout as the actual output, where the probability is expressed
as the probability of the “correct” token. The core code of this process is shown in Code 1.

E VISUALIZATION RESULTS

We show the actions of the basic GUI agents on the sample, as well as the actions after being guided
by ICM and ICM-r2. The comparison is shown in Figure 5 to 8.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

GPT4o and UI-TARS 1.0∗ System GUI Prompt

You are a GUI agent. You are given a task and your
action history, with screenshots. You need to perform
the next action to complete the task.

Output Format
Thought: ...
Action: ...

Action Space

click(point=’(x1 y1)’)
long_press(point=’(x1 y1)’)
type(content=’’)
scroll(point=’(x1 y1)’, direction=’down or up or right or left’)
open_app(app_name=\’\’)
drag(start_point=’(x1 y1)’, end_point=’(x2 y2)’)
press_home()
press_back()
finished(content=’xxx’)

Note
- Use English in Thought part.
- Summarize your next action (with its target element) in one
sentence in Thought part.

User Instruction

Prompt 1: GPT4o and UI-TARS 1.0∗ System GUI Prompt

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Doubao† and UI-TARS 1.5∗ System GUI Prompt

You are a GUI agent. You are given a task and your
action history, with screenshots. You need to perform
the next action to complete the task.

Output Format
Thought: ...
Action: ...

Action Space

click(point=’<|box_start|>(x1 y1)<|box_end|>’)
long_press(point=’<|box_start|>(x1 y1)<|box_end|>’)
type(content=’’)
scroll(point=’<|box_start|>(x1 y1)<|box_end|>’,

direction=’down or up or right or left’)
open_app(app_name=\’\’)
drag(start_point=’<|box_start|>(x1 y1)<|box_end|>’,

end_point=’<|box_start|>(x2 y2)<|box_end|>’)
press_home()
press_back()
finished(content=’xxx’)

Note
- Use English in Thought part.
- Summarize your next action (with its target element) in one
sentence in Thought part.

User Instruction

Prompt 2: Doubao† and UI-TARS 1.5∗ System GUI Prompt

GPT4o, Doubao†, UI-TARS 1.0∗ and UI-TARS 1.5∗ User GUI Prompt

- User Instruction
{global_instruction} (You need to: {step_plan})

- Action History
{action_history}

- Current Screenshot
{image_path}

Prompt 3: GPT4o, Doubao†, UI-TARS 1.0∗ and UI-TARS 1.5∗ User GUI Prompt

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Qwen 2.5 VL GUI and Grounding Prompt

You are a GUI Agent.

Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools>
XML tags:
<tools>
{"type": "function",
"function":
{
"name": "mobile_use", "description": "Use a touchscreen to
interact with a mobile device, and take screenshots.
* This is an interface to a
mobile device with touchscreen. You can perform actions like
clicking, typing, swiping, etc.
* Some applications may take time to start or
process actions, so you may need to wait and take successive
screenshots to see the results of your actions.
* The screen\’s resolution is 1092x2408.
* Make sure to click any buttons, links, icons, etc with the

cursor tip in the center of the element. Don’t click boxes
on their edges unless asked.",

"parameters": {
"properties": {
"action": {
"description": "The action to perform. The available
actions are:
* ‘key‘: Perform a key event on the mobile device.
- This supports adb\’s ‘keyevent‘ syntax.
- Examples: \\"volume_up\\", \\"volume_down\\", \\"power\\",
\\"camera\\", \\"clear\\".
* ‘click‘: Click the point on the screen with
coordinate (x, y).
* ‘long_press‘: Press the point on the screen with coordinate
(x, y) for specified seconds.
* ‘swipe‘: Swipe from the starting point with coordinate
(x, y) to the end point with coordinates2 (x2, y2).
* ‘type‘: Input the specified text into the activated
input box.
* ‘system_button‘: Press the system button.
* ‘open‘: Open an app on the device.
* ‘wait‘: Wait specified seconds for the change to happen.
* ‘terminate‘: Terminate the current task and report its

completion status.",
"enum": ["key", "click", "long_press", "swipe", "type",
"system_button", "open", "wait", "terminate"],
"type": "string
},

Prompt 4: Qwen 2.5 VL GUI and Grounding Prompt

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Qwen 2.5 VL GUI and Grounding Prompt (cont.)

"coordinate": {"description": "(x, y): The x (pixels from
the left edge) and y (pixels from the top edge)
coordinates to move the mouse to. Required only by
‘action=click‘, ‘action=long_press‘, and ‘action=swipe‘.",
"type": "array"},

"coordinate2": {"description": "(x, y): The x (pixels from
the left edge) and y (pixels from the top edge)
coordinates to move the mouse to. Required only by
‘action=swipe‘.", "type": "array"},

"text": {"description": "Required only by ‘action=key‘,
‘action=type‘, and ‘action=open‘.", "type": "string"},

"time": {"description": "The seconds to wait. Required only
by ‘action=long_press‘ and ‘action=wait‘.",
"type": "number"},

"button": {"description": "Back means returning to the
previous interface, Home means returning to the desktop,
Menu means opening the application background menu,
and Enter means pressing the enter. Required only
by ‘action=system_button‘",

"enum": ["Back", "Home", "Menu", "Enter"], "type": "string"},
"status": {
"description": "The status of the task. Required only

by ‘action=terminate‘.",
"type": "string", "enum": ["success", "failure"]
}

},
"required": ["action"], "type": "object"

}
}

}
</tools>

For each function call, return a json object with function name
and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>

The user query:
{global_instruction}
Task progress (You have done the following operation on
the current device):
{action_history}

{image_path}

Prompt 5: Qwen 2.5 VL GUI and Grounding Prompt (cont.)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

UI-TARS 1.0∗ GUI Grounding Prompt

You are a GUI agent. You are given a task and your action
history, with screenshots. You need to perform the next
action to complete the task.

Output Format

Action: ...

Action Space
click(point=’<point>x1 y1</point>’)

User Instruction
{instruction}

{image_path}

Prompt 6: UI-TARS 1.0∗ GUI Grounding Prompt

UI-TARS 1.5∗ GUI Grounding Prompt

You are a GUI agent. You are given a task and your action
history, with screenshots. You need to perform the next
action to complete the task.

Output Format

Action: ...

Action Space
click(point=’<|box_start|>(x1,y1)<|box_end|>’)

User Instruction
{instruction}

{image_path}

Prompt 7: UI-TARS 1.5∗ GUI Grounding Prompt

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

ICM and ICM-r2 Critic Prompt

You are an expert in evaluating the performance of a phone
operating agent. The agent is designed to help a user to
complete a task or retrieve information from the phone.
Given the user’s task instruction, current action and current
screenshot, your goal is to decide whether the agent’s current
action is correct or not.
Each action in the sequence is preceded by a corresponding
screenshot that captures the context in which the action occurs.

Evaluation Criteria
Whether the agent’s current action is correct and corresponding
to the user’s task instruction.

IMPORTANT
1. An action always follows a corresponding screenshot (even if
only the last few are provided).
2. If the current action is a tap on the screen, the point where
the action is clicked is marked with a red circle on
the screenshot.
3. You should whether answer [correct] or [wrong].

Input

The input is given next, including global_task_instruction,
action_history, current_action, and screenshot.
The goal of the task (instruction): {global_instruction}
Action (plan) history: {action_history}
Current action of the agent: {actor_set}
Screenshot: {som_image_path}

Prompt 8: ICM and ICM-r2 Critic Prompt

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Best-of-N Example Code

1. construct critic input
texts = [

critic_processor.apply_chat_template(msg, tokenize=False,
add_generation_prompt=True) for msg in messages

]
image_inputs, video_inputs = process_vision_info(messages)
inputs = critic_processor(

text=texts,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",

)
inputs = inputs.to(critic_device)

2. generate output
output = critic_model.generate(**inputs,

do_sample=False,
max_new_tokens=2048,
return_dict_in_generate=True,
output_scores=True)

generated_ids = output.sequences

3. get token score
scores = output.scores[0]
critic_scores = scores[:,-2]

4. get output text: correct|wrong
for in_ids, out_ids in zip(inputs.input_ids, generated_ids):

generated_ids_trimmed = [out_ids[len(in_ids) :]]
responses = critic_processor.batch_decode(

generated_ids_trimmed, skip_special_tokens=True,
clean_up_tokenization_spaces=False

)

5. find the index of the best action
max_score = -float(’inf’)
best_idx = -1
for idx in range(len(critic_outputs)):

if responses[idx] == ’correct’:
if critic_scores[idx] > max_score:

max_score = critic_scores[idx]
best_idx = idx

Code 1: Best-of-N Example Code

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

ICM ICM-r2

Basic
Agent

Instruction:
In the Pinterest app, I want to create
flower art from the gallery and then
publish it.

Action history:
1. click on the create tab at the
centre bottom of the screen.
2. click on pin button.

GT Action:
Tap at [134, 607]

Agent Action:
Tap at [689, 381]

Action Rollout and Judge:
❌ 0.00 | Tap at [688, 367]
❌ 0.00 | Wait
❌ 0.00 | Back
❌ 0.00 | Back
✅ 0.78 | Tap at [134, 603]
❌ 0.00 | Long Press at [134, 603]
✅ 0.72 | Tap at [120, 587]
✅ 0.69 | Tap at [142, 622]

Action Rollout and Judge:
✅ 0.81 | Tap at [134, 603]
✅ 0.80 | Tap at [134, 603]
✅ 0.76 | Tap at [120, 589]
✅ 0.74 | Tap at [121, 577]
❌ 0.00 | Back
❌ 0.00 | Back
✅ 0.80 | Tap at [134, 600]
❌ 0.00 | Swipe to up

GT Action:
Tap at [134, 607]

Agent Action:
Tap at [134, 603]

GT Action:
Tap at [134, 607]

Agent Action:
Tap at [134, 603]

Basic
Agent

Basic
Agent

Figure 5: Visualization result. The basic agent selects the wrong action. Based on the action
rollout, both ICM and ICM-r2 select the correct action from the candidates.

ICM ICM-r2

Basic
Agent

Instruction:
View today's (20th December) moon
phase on the lunar phase app.

Action history:
1. Open the Lunar phase app.

GT Action:
Tap at [255, 196]

Agent Action:
Swipe to up

Action Rollout and Judge:
✅ 0.79 | Tap at [248, 215]
✅ 0.75 | Tap at [240, 220]
✅ 0.76 | Tap at [240, 219]
❌ 0.00 | Swipe to up
✅ 0.81 | Tap at [248, 215]
❌ 0.00 | Swipe to down
❌ 0.00 | Swipe to up
✅ 0.75 | Tap at [239, 215]

Action Rollout and Judge:
✅ 0.79 | Tap at [242, 208]
✅ 0.80 | Tap at [242, 210]
✅ 0.79 | Tap at [240, 215]
✅ 0.77 | Tap at [248, 215]
❌ 0.00 | Swipe to up
❌ 0.00 | Swipe to up
❌ 0.00 | Long Press at [134, 600]
❌ 0.00 | Swipe to up

GT Action:
Tap at [255, 196]

Agent Action:
Tap at [248, 215]

GT Action:
Tap at [255, 196]

Agent Action:
Tap at [242, 210]

Basic
Agent

Basic
Agent

Figure 6: Visualization result. The basic agent selects the wrong action. Based on the action
rollout, both ICM and ICM-r2 select the correct action from the candidates.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

ICM ICM-r2

Basic
Agent

Instruction:
Convert the 1 Rankine unit into all
other temperature units in the
temperature section , Skip Ads if any.

Action history:
None

GT Action:
Back

Agent Action:
Tap at [71, 207]

Action Rollout and Judge:
✅ 0.81 | Tap at [71, 207]
✅ 0.78 | Tap at [70, 205]
✅ 0.77 | Tap at [69, 203]
❌ 0.00 | Back
❌ 0.00 | Back
❌ 0.00 | Back
❌ 0.00 | Home
✅ 0.75 | Tap at [75, 209]

Action Rollout and Judge:
✅ 0.80 | Back
✅ 0.82 | Back
✅ 0.81 | Back
❌ 0.00 | Tap at [71, 207]
❌ 0.00 | Tap at [71, 207]
❌ 0.00 | Tap at [70, 203]
❌ 0.00 | Home
❌ 0.00 | Tap at [68, 210]

GT Action:
Back

Agent Action:
Tap at [71, 207]

GT Action:
Back

Agent Action:
Back

Basic
Agent

Basic
Agent

Figure 7: Visualization result. The basic agent selects the wrong action. ICM fails to select the
correct one from the rollout candidates, while the enhanced ICM-r2 guides the correct selection.

ICM ICM-r2

Basic
Agent

Instruction:
First, use Chrome to search for a
travel guide to visit Rome and note
down the resource website in
Simplenote. Next, check Weather &
Radar to pick a rain-free day for your
visit. Finally, use Expedia to book a
flight from San Francisco.
Action history:
1. Click on the Google Chrome icon to
start searching for a Rome travel
guide.
2. Type 'a travel guide to Rome' in the
Google search bar.
3. Click on the direct search option
labeled 'a travel guide to Rome -
Google Search’.
4. ……

GT Action:
Home

Agent Action:
Swipe to up

Action Rollout and Judge:
❌ 0.00 | Tap at [203, 118]
❌ 0.00 | Home
❌ 0.00 | Home
✅ 0.78 | Swipe to down
✅ 0.81 | Swipe to down
❌ 0.00 | Swipe to up
✅ 0.79 | Swipe to down
❌ 0.00 | Home

Action Rollout and Judge:
❌ 0.00 | Swipe to down
❌ 0.00 | Swipe to down
✅ 0.82 | Home
✅ 0.82 | Home
✅ 0.84 | Home
❌ 0.00 | Swipe to up
❌ 0.00 | Home
❌ 0.00 | Swipe to up

GT Action:
Home

Agent Action:
Swipe to down

GT Action:
Home

Agent Action:
Home

Basic
Agent

Basic
Agent

Figure 8: Visualization result. The basic agent selects the wrong action. ICM fails to select the
correct one from the rollout candidates, while the enhanced ICM-r2 guides the correct selection.

25

	Introduction
	Related Work
	GUI Agent
	Critic Model

	Method
	Preliminaries
	Action Decision with Intuitive Critic
	Data Curation
	ICM Training and Guidance

	Data Flywheel and Critic Scaling

	Experiment
	Implementation Details
	Experimental Results
	Ablation Study
	Qualitative Experiment

	Conclusion
	Ethics statement
	Reproducibility statement
	Clarification of the Usage of LLMs
	Inference Prompts
	GUI Agent Planning Task Prompts
	GUI Agent Grounding Task Prompts
	ICM Prompts

	Training Parameters
	Best-of-N Method
	Visualization Results

