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ABSTRACT

While Large Vision-Language Models (LVLMs) have significantly advanced GUI
agents’ capabilities in parsing textual instructions, interpreting screen content, and
executing tasks, a critical challenge persists: the irreversibility of agent opera-
tions—where a single erroneous action can trigger catastrophic deviations. To
address this, we propose the GUI Action Critic’s Data Flywheel System (GAIA),
a training framework that enables the models to have iterative critic capabilities,
which are used to improve the Test-Time Scaling (TTS) of basic GUI agents’ per-
formance. Specifically, we train an Intuitive Critic Model (ICM) using positive
and negative action examples from a base agent first. This critic evaluates the im-
mediate correctness of the agent’s intended actions, thereby selecting operations
with higher success probability. Then, the initial critic guides agent actions to
collect refined positive/negative samples, initiating the self-improving cycle. The
augmented data then trains a second-round critic with enhanced discernment ca-
pability. We conduct experiments on various datasets and demonstrate that the
proposed ICM can improve the test-time performance of various closed-source
and open-source models, and the performance can be gradually improved as the
data is recycled. The code and dataset will be publicly released.

1 INTRODUCTION

The automation of Graphical User Interface (GUI) interactions represents a critical frontier in de-
veloping intelligent digital assistants (Wang et al., 2024b; Hu et al., 2024; Nguyen et al., 2024).
Recent breakthroughs in Large Vision-Language Models (LVLMs) (Wang et al., 2024a; Bai et al.,
2025), leveraging advanced post-training techniques, have substantially enhanced agents’ capabili-
ties in interpreting natural language commands, perceiving visual elements, and executing multi-step
tasks (Hong et al., 2024; Cheng et al., 2024). Within this rapidly evolving landscape, the develop-
ment of robust GUI agents has largely converged on two primary methodological paradigms. The
first approaches (Wu et al., 2025c; Xu et al., 2024; Qin et al., 2025; Liu et al., 2025a) train models
through Supervised Fine-Tuning (SFT) to directly align their behavior with predefined task ob-
jectives. The second approaches employ Reinforcement Fine-Tuning (RFT) (Lu et al., 2025; Xia
& Luo, 2025; Liu et al., 2025b), which significantly enhances generalization in complex tasks by
adopting a reasoning format.

Despite these advances, the dynamic and continuous nature of real-world GUI tasks means that
agents can still produce ambiguous or incorrect action proposals at any step. A single mis-click
or mis-typed output can be irreversible, derailing the entire workflow and leaving the system
in an unrecoverable state. This high-stakes environment imperatively demands a mechanism for
pre-execution validation.

To avoid irreversible errors in execution and improve the performance of basic GUI agents during
testing, previous studies have designed action verifiers for GUI agents (Wu et al., 2025b; Xiao et al.,
2025; Yang et al., 2025), which are used to determine the correctness of multiple actions rolled out by
GUI agents, and then filter out incorrect candidates. However, these existing implementations suffer
from two primary limitations. First, training a correctness verifier requires defining positive and
negative action samples. Existing work on defining negative samples relies on heuristic algorithms,
such as randomly selecting click locations on the current screenshot (Xiao et al., 2025), which fails to
capture the realistic action distribution and leads to suboptimal judgment performance. Second, the
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(a) The promotion process of the critic model to the GUI Agent during testing.
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(b) Comparison of high-level task performance improvements on closed-source and open-source GUI Agents.

Figure 1: Intuitive results. ICM guides agents’ action during testing, as shown in (a), thereby
improving the agent’s accuracy, and is continuously improved by the data flywheel, as shown in (b).

reasoning-based verifiers (Wanyan et al., 2025) implemented in existing work violate the intuitive
properties of binary judgments. For an intuitive correctness judgment problem, biological research
suggests that higher-level judgment pathways are often more adept than performing extensive multi-
step reasoning (Liu & Pleskac, 2011; Poldrack et al., 2005; Doyon & Benali, 2005), which indicates
that excessive reasoning can be less effective (Bilalić et al., 2008; Wan et al., 2011). Furthermore,
reasoning-based judgment outputs more tokens, thereby reducing the efficiency of test-time scaling.

To fully leverage pre-execution evaluation to enhance GUI agent capabilities and execution correct-
ness, we developed a GUI Action Critic’s Data Flywheel System (GAIA). This system comprises
two core phases: the initialization phase (Phase 1) and the iteration phase (Phase 2), yielding the
Intuitive Critic Model (ICM). In Phase 1, we use real GUI agents to act on an existing dataset
to collect positive and negative action data that are random but consistent with the behavior distri-
bution. Using this binary-labeled action dataset, we train ICM to assess action correctness given
environmental context. In Phase 2, as illustrated in Figure 1(a), ICM employs a Best-of-N approach
to select the highest-probability correct actions from agent rollouts. While ICM guidance signif-
icantly improves action accuracy, challenging samples persist and produce errors. These difficult
cases are annotated and fed back into the data flywheel. Through iterative data augmentation, the
flywheel continuously incorporates new action samples, progressively covering challenging scenar-
ios within the action space. Driven by this enriched dataset, we train an enhanced critic—Intuitive
Critic Model on Round Two (ICM-r2)—which achieves higher discriminative accuracy for more
precise behavioral guidance. This establishes a self-evolutionary virtuous cycle between the data
flywheel and critic models, continuously improving GUI agent action accuracy.

Leveraging the proposed system GAIA, ICM achieves SOTA performance in action critique. Nat-
urally, we integrate it into Test-Time Scaling (TTS) (Snell et al., 2025; Chen et al., 2024b; Snell
et al., 2024; Prabhudesai et al., 2023; Wang et al., 2025; Tian et al., 2025) during inference, where
ICM evaluates stochastically generated actions from the TTS process, releasing only executes the
action if it is judged to be correct and has the highest probability of the correct token. Furthermore,
based on GAIA’s comprehensive definition, ICM can evaluate the correctness of actions across the
entire space, rather than being limited to the accuracy of click actions in grounding tasks Yang et al.
(2025); Wu et al. (2025a). To validate the framework’s general applicability, we conduct joint ex-
periments using mainstream GUI Agents (including GPT-4o (Hurst et al., 2024) and UI-TARS (Qin
et al., 2025)) on several GUI Agent benchmarks.

As shown by the comparative results in Figure 1 (b), the guidance from our iteratively evolved critic
models (ICM and ICM-r2) leads to significant performance improvements in basic GUI agents,
including GUI operation task planning and grounding capabilities.
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Figure 2: Data flywheel curation pipeline for GAIA. A sample dataset is constructed using GUI
agent interactions. The positive and negative labels are marked by comparing the ground truth
actions to train an action correctness discrimination model. After the critic model guides the GUI
agent, it further expands the dataset, pushing the data flywheel to cover more action distributions,
thereby promoting the iterative improvement of model performance.

Overall, the main contributions are summarized as follows:

1. We introduce GAIA—a novel Data Flywheel System designed for training GUI action-
critic models. By iteratively curating positive and negative samples from real-world action
data, GAIA continuously boosts model performance and robustness.

2. We propose the ICM for GUI interaction tasks, a critic model trained on data curated by our
data flywheel. The ICM enhances the performance of existing GUI agents by employing a
best-of-N approach to select the most probable correct action with TTS. This initial boost
is then continuously refined as the ICM’s discriminatory accuracy is iteratively improved
by the data flywheel.

3. We comprehensively demonstrate across multiple datasets that ICM trained with our pro-
posed GAIA system significantly enhances the overall performance of both closed-source
and open-source GUI agents.

2 RELATED WORK

2.1 GUI AGENT

The development of autonomous agents powered by LLMs and LVLMs has significantly advanced
interactive functionalities within digital environments. Early GUI systems primarily leveraged
LLMs to interpret structured representations (Hong et al., 2024; Nong et al., 2024; Song et al.,
2024). The development of LVLM simplifies the paradigm, allowing GUI agents to receive raw
visual signals from the screenshots (Hu et al., 2024; Liu et al., 2024; Shen et al., 2024; Tang et al.,
2025; Christianos et al., 2024; Zheng et al., 2025; Gou et al., 2024; Wu et al., 2025c). Recent ef-
forts, such as Aguvis (Xu et al., 2024) and UI-TARS (Qin et al., 2025), have advanced autonomous
GUI navigation by integrating explicit planning, sophisticated reasoning, and GUI-specific pretrain-
ing to handle complex digital environments. Concurrently, the advent of rule-based Reinforcement
Learning (RL) approaches (Jaech et al., 2024; Guo et al., 2025) has further enhanced GUI agent
capabilities. These RFT methods improve reasoning and generalization by enabling models to learn
universal action strategies from high-quality samples (Liu et al., 2025c; Shen et al., 2025; Lu et al.,
2025; Xia & Luo, 2025; Liu et al., 2025b). While fine-tuning and model scaling can enhance GUI
agent capabilities, these methods are often prohibitively resource-intensive. This highlights a clear
need for test-time enhancements that can offer universal performance improvements across various
agent models without costly retraining.
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2.2 CRITIC MODEL

To solve the problem of suboptimal single-shot model output (Zhang et al., 2025b; Martino et al.,
2023; Wen et al., 2024; Chen et al., 2024a), research has gradually focused on improving the perfor-
mance of the basic model during testing with the help of the critic model (McAleese et al., 2024; Ji
et al., 2023; Kalyanpur et al., 2024; Zhang et al., 2025a; Xiong et al., 2025). This concept has been
expanded to the GUI domain with notable works like GUI-Genie (Xiao et al., 2025), GUI-Actor (Wu
et al., 2025b), GTA1 (Yang et al., 2025), and GUI-Critic-R1 (Wanyan et al., 2025). However, ex-
isting GUI critics often rely on synthetic data generated by heuristic algorithms, such as randomly
selecting click locations (Wu et al., 2025b), cross-task substitution, or early truncation (Xiao et al.,
2025). This approach fails to accurately simulate the complex behavior of real GUI agents across
the full action space, thereby preventing the critic from learning faithful discrimination criteria. Fur-
thermore, while some approaches use RL to inject reasoning capabilities into the critic (Wanyan
et al., 2025), this often contradicts the very motivation for intuitive judgment (Liu & Pleskac, 2011;
Wan et al., 2011) and introduces delays due to extended output token generation.

3 METHOD

In this section, we detail the design of our data flywheel-driven GAIA system for the GUI agent
shown in Figure 2. We begin in Section 3.1 by introducing the general definition of the GUI agent
task and the crucial role of the critic model. Section 3.2 delves into the design and application of our
data flywheel system within the initial round of the evaluation process. In Section 3.3, we present
the model training in the second round, which builds upon the outcomes from the first iteration and
forms a virtuous cycle.

3.1 PRELIMINARIES

The interaction between a GUI agent and its environment can be formulated as a Markov Decision
Process (MDP), denoted by the tuple ⟨S,A,Z, T ,O⟩. Here, S defines the state space of possible
screen states, while A encompasses the action space, including interaction types like clicking, typ-
ing, and scrolling. The observation space Z captures inputs such as screenshots or structured UI
representations. The state transition probability is given by T : S × A × S → [0, 1], mapping a
state and action to a new state. Similarly, O : S × A → Z describes the likelihood of observing a
particular output given a state and an action. During GUI task execution, at each discrete time step
t, the agent receives an input tuple (zt, u, h), comprising the current screen observation zt ∈ Z , the
global task instruction u, and the accumulated interaction history h. The agent’s decision-making
process for GUI actions is then formalized by a structured policy function F :

F(zt, u, h) → ot = {at, ct}, (1)

where ot represents the agent output at time t, consisting of the action type at (e.g., click, scroll,
and type) and its corresponding parameters ct (e.g., click coordinates, text content for typing). After
at is executed, the environment transitions to a new state zt+1, and this iterative process continues
until the task is successfully completed or a predefined termination condition is met.

The proposed ICM, building upon the same observations and the GUI agent’s current proposed
action ot, outputs a judgment jt regarding the correctness of that action:

J (ot|(zt, u, h)) → {jt, pt}, (2)

where jt is a binary indicator, “correct” for correct actions and “wrong” for incorrect, pt represents
the probability of the judgment, which supports finding the correct action with the highest confi-
dence. By enabling the sampling of multiple candidate actions and prioritizing them based on their
respective correctness probabilities, ICM ensures that a more optimal action for the current state is
selected and executed, significantly enhancing the agent’s actual success rate.

3.2 ACTION DECISION WITH INTUITIVE CRITIC

3.2.1 DATA CURATION

To enable the judgment model to distinguish the correctness of real actions, we meticulously define
both positive and negative samples of GUI agent actions. We begin by having existing GUI agents
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GUI Agent Action Rollout

Instruction: Watch a lecture on 
Smart Cities on YouTube and then 
write down the name of the course 
in Microsoft Word.
Action history: 1. Click on the 
YouTube app icon on the bottom 
row to open it. 2. Click on the title 
"What is a Smart City?" to start 
the lecture. 3. Close the sharing 
menu to return to the video screen.

Instruction: First, 
listen to a country-style 
album on Amazon Music. 
Once you've enjoyed the 
tunes, share the album's 
name with caba62244@ 
gmail.com via Gmail.
Action history: [None].
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* Refer to Table 1 for complete results.

Figure 3: Test-Time scaling pipeline. Through best-of-N rollout, multi-candidate actions of GUI
agents are given, and the correct action with the highest probability is selected after ICM evaluation.

Π = {π1, π2, ..., πi} (Qin et al., 2025) interact with and traverse publicly accessible datasets (Li
et al., 2024; Lu et al., 2024), allowing us to collect authentic, step-level operations across various
GUI scenarios. The datasets used are static and well-defined, meaning that each single-step action
has a ground truth label to indicate the action the agent should take in the corresponding environ-
ment. Minor deviations in action parameters, such as slight offsets in click coordinates and semantic
deviations in input text, are also guaranteed by recognized validation rules Wu et al. (2025c). For
each action executed in a specific state (z, u, h), we then leverage ground truth labels to determine
its correctness. An action is designated positive (with a correctness judge j = “correct”) if it aligns
with the GT.

Conversely, we identify negative samples (with a correctness score j = “wrong”) based on states
where the agent’s action deviates from the GT. This approach ensures that our collected negative
operations are closely aligned with the actual error distribution observed in real GUI environments,
significantly enhancing the quality and realism of our training dataset. To prevent bias during ICM
training, we balance the collected positive and negative samples, ensuring an equal 50% split for
each. This carefully curated dataset, denoted as D = {jk|zk, uk, hk, o

πi

k }Kk=1, forms the foundation
of our data flywheel GAIA.

3.2.2 ICM TRAINING AND GUIDANCE

Based on the dataset D, ICM is trained to intuitively judge the correctness of actions. Specifically,
the input of ICM includes the screen observation zk, the instruction description uk, the action history
hk, and the given agent action oπi

k . We implement ICM using LVLM and use standard cross-entropy
loss to supervise the ICM’s output tokens. For each sample in our dataset D, the model’s output
is a token representing either “correct” or “wrong”. The training process aims to minimize the
discrepancy between the model’s predicted probability and the ground truth label:

LCE = − 1

K

K∑
k=1

[
jk log (Pθc(“correct” | zk, uk, hk, o

πi

k ))

+(1− jk) log (1− Pθc(“correct” | zk, uk, hk, o
πi

k ))

]
,

(3)

where Pθc(“correct” | zk, uk, hk, o
πi

k ) represents the probability assigned by the critic model θc to
the “correct” token.

During test-time, a GUI agent πi generates N candidate actions O = {o1, . . . , oN} through N-
rollout sampling. ICM evaluates these candidates by assigning each action a correctness judge jn
and a potential confidence score represented by the token probability pn. Leveraging the best-of-N
filtering strategy, we select the optimal action o∗ from the subset of correct candidates Ocorrect that
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Table 1: GUI planning accuracy on AndroidControl and GUI-Odyssey. † represents the closed-
source UI-TARS 1.5 called through the Doubao API. ∗ represents an agent that reproduces the open-
source model. ↑ and ↓ respectively represent the performance changes relative to the base agents.

Model Method Size
AndroidControl-Low AndroidControl-High GUI-Odyssey

Type GR SR Type GR SR Type GR SR
OS-Atlas-Base ZS 7B 73.0 73.4 50.9 57.4 54.9 29.8 60.4 39.7 27.0
SeeClick SFT 9.6B 93.0 73.4 75.0 82.9 62.9 59.1 71.0 52.4 53.9
Aria-UI SFT 3.9B – 87.7 67.3 – 43.2 10.2 – 86.8 36.5
Aguvis SFT 7B – – 80.5 – – 61.5 – – –
UI-R1 RFT 3B 79.2 82.4 66.4 57.9 55.7 45.4 52.2 34.5 32.5
GUI-R1 RFT 3B 83.7 81.6 64.4 58.0 56.2 46.6 54.8 41.5 41.3
GPT4o – 78.8 8.0 20.4 52.4 3.6 13.2 36.6 11.6 11.4

+ ICM 82.4 ↑ 3.6 9.2 ↑ 1.2 24.8 ↑ 4.4 58.0 ↑ 5.6 5.3 ↑ 1.7 17.0 ↑ 3.8 42.9 ↑ 6.3 10.0 ↓ 1.6 13.4 ↑ 2.0

+ ICM-r2 81.6 ↑ 2.8 8.5 ↑ 0.5 23.8 ↑ 3.4 57.6 ↑ 5.2 6.1 ↑ 2.5 18.8 ↑ 5.6 43.2 ↑ 6.6 11.4 ↓ 0.2 14.5 ↑ 3.1

Doubao† – 97.0 86.4 86.2 82.0 75.0 62.4 67.1 67.3 43.8
+ ICM 97.0 – 86.6 ↑ 0.2 86.4 ↑ 0.2 83.2 ↑ 1.2 75.1 ↑ 0.1 64.4 ↑ 2.0 70.1 ↑ 3.0 68.4 ↑ 1.1 46.9 ↑ 3.1

+ ICM-r2 96.6 ↓ 0.4 86.6 ↑ 0.2 86.0 ↓ 0.2 84.2 ↑ 2.2 75.5 ↑ 0.5 66.0 ↑ 3.6 71.6 ↑ 4.5 68.0 ↑ 0.7 47.9 ↑ 4.1

Qwen 2.5 VL 7B 94.4 85.6 81.8 83.0 70.9 60.6 52.7 77.2 40.2
+ ICM 95.4 ↑ 1.0 86.0 ↑ 0.4 81.2 ↓ 0.6 84.0 ↑ 1.0 75.9 ↑ 5.0 63.4 ↑ 2.8 57.3 ↑ 4.6 77.2 – 43.7 ↑ 3.5

+ ICM-r2 94.6 ↑ 0.2 85.4 ↓ 0.2 81.8 – 84.4 ↑ 1.4 75.9 ↑ 5.0 63.8 ↑ 3.2 58.1 ↑ 5.4 78.3 ↑ 1.1 44.8 ↑ 4.6

UI-TARS 1.0∗ 7B 90.0 85.1 75.4 80.8 68.9 58.2 60.8 71.0 43.3
+ ICM 90.5 ↑ 0.5 87.6 ↑ 2.5 80.4 ↑ 5.0 82.3 ↑ 1.5 79.5 ↑ 10.6 67.5 ↑ 9.3 72.3 ↑ 11.5 76.1 ↑ 5.1 55.3 ↑ 12.0

+ ICM-r2 90.0 – 86.8 ↑ 1.7 80.2 ↑ 4.8 82.7 ↑ 1.9 78.9 ↑ 10.0 67.1 ↑ 8.9 71.4 ↑ 10.6 78.5 ↑ 7.5 56.3 ↑ 13.0

UI-TARS 1.5∗ 7B 86.4 82.4 72.2 80.2 68.1 55.8 71.1 44.6 32.9
+ ICM 90.3 ↑ 3.9 85.0 ↑ 2.6 79.0 ↑ 6.8 84.2 ↑ 4.0 73.3 ↑ 5.2 64.5 ↑ 8.7 78.2 ↑ 7.1 52.9 ↑ 8.3 47.8 ↑ 14.9

+ ICM-r2 90.1 ↑ 3.7 85.5 ↑ 3.1 79.2 ↑ 7.0 84.6 ↑ 4.5 74.7 ↑ 3.8 65.6 ↑ 7.4 80.2 ↑ 9.1 53.5 ↑ 8.9 50.2 ↑ 17.3

is judged as correct and whose corresponding “correct” token has the highest probability pn:

o∗ =

{
arg max

on∈Ocorrect
pn, if Ocorrect ̸= ∅

o1. otherwise
(4)

This approach effectively guides the agent to bypass single-shot output failures and select the most
promising action, thereby significantly boosting its overall execution accuracy.

3.3 DATA FLYWHEEL AND CRITIC SCALING

Guided by Equation 4, the execution accuracy has been significantly improved. However, some
difficult action samples require more precise judgment. Considering that ICM and test-time scal-
ing performance can be further enhanced with data, we collect agent actions guided by ICM
and, after filtering for positive and negative balance, add them to the data flywheel to form
D+ = {jk|zk, uk, hk, o

πi

k , θc}K
′

k=1. D+ further covers the distribution of actions, providing a foun-
dation for performance scaling.

Based on the challenging samples in this enriched dataset, we train the ICM on Round Two (ICM-
r2), using the same cross-entropy loss as defined in Equation 3. This new dataset, which is specif-
ically curated to expose the critic’s most significant blind spots, allows ICM-r2 to acquire a more
nuanced and accurate discriminative ability. Consequently, as illustrated in Figure 3, ICM-r2 pro-
vides more precise guidance for the agent’s action selection, thereby fundamentally strengthening
the critic’s overall judgment and significantly improving the agent’s performance on the most diffi-
cult tasks. Together with ICM, ICM-r2 demonstrates the power of a data flywheel-driven approach
to stimulate the performance of GUI agents during testing.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Experimental Setup. We use UI-TARS 1.0 (Qin et al., 2025) and UI-TARS 1.5 (Qin
et al., 2025) for inference on the AndroidControl (Li et al., 2024) and GUI-Odyssey (Lu
et al., 2024) training sets, and compare the real actions with GT to build D and D+.
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Table 3: GUI grounding accuracy on ScreenSpotV2. ∗ indicates reproduced open-source agent
performance. ↑ and ↓ respectively represent the performance changes relative to the base agents.

Model Method Size
Mobile Desktop Web

Avg.
Text Icon Text Icon Text Icon

GPT-4o ZS – 30.5 23.2 20.6 19.4 11.1 7.8 18.8
OS-Atlas-Base ZS 7B 93.0 72.9 91.8 62.9 90.9 74.3 82.5
SeeClick SFT 9.6B 78.0 52.0 72.2 30.0 55.7 32.5 53.4
Aguvis SFT 7B 95.6 77.7 93.8 67.1 88.3 75.2 84.4
Qwen 2.5 VL 7B 84.8 59.7 72.1 52.1 69.2 46.3 65.0

+ ICM 87.9 ↑ 3.1 70.1 ↑ 10.4 79.4 ↑ 7.3 57.1 ↑ 5.0 74.7 ↑ 5.5 49.2 ↑ 2.9 70.4 ↑ 5.4

+ ICM-r2 89.7 ↑ 4.9 68.2 ↑ 8.5 78.9 ↑ 6.8 54.3 ↑ 2.2 76.9 ↑ 7.7 51.2 ↑ 4.9 71.1 ↑ 6.1

UI-TARS 1.0∗ 7B 93.1 82.4 94.8 76.4 91.8 84.2 88.1
+ ICM 94.5 ↑ 1.3 83.1 ↑ 0.7 93.2 ↓ 1.6 77.9 ↑ 1.5 93.5 ↑ 2.0 84.7 ↑ 0.5 88.7 ↑ 0.6

+ ICM-r2 94.2 ↑ 1.1 83.7 ↑ 1.3 95.7 ↑ 0.9 78.7 ↑ 2.3 92.1 ↑ 0.3 84.7 ↑ 0.5 89.0 ↑ 0.9

UI-TARS 1.5∗ 7B 96.2 84.3 94.3 84.2 94.4 86.6 90.8
+ ICM 96.5 ↑ 0.3 85.3 ↑ 1.0 95.4 ↑ 1.1 84.3 ↑ 0.1 94.2 ↓ 0.2 85.2 ↓ 1.4 90.2 ↓ 0.6

+ ICM-r2 97.3 ↑ 1.1 84.2 ↓ 0.1 92.4 ↓ 1.9 84.4 ↑ 0.2 95.5 ↑ 1.1 87.7 ↑ 1.1 91.0 ↑ 0.2

Table 2: Data distribution of the flywheel. D and D+

respectively represent the data of the first and the second
round of GAIA.

Category Source Postive Negtive

D AndroidControl 68.2k 69.9k
GUI-Odyssey 65.4k 66.8k

D+ AndroidControl (68.2+15.1)k (69.9+14.0)k
GUI-Odyssey (65.4+26.1)k (66.8+26.3)k

On the corresponding data, we de-
velop the ICM and ICM-r2 based on
Qwen2.5 VL 7B (Bai et al., 2025)
and adopt the ms-swift (Zhao et al.,
2024) framework for training. All
action judgments followed the high-
level approach, providing only global
instructions to the ICM and ICM-
r2, not single-step instructions. The
distribution of the data flywheel is
shown in Table 2. The critic model
guides the agents in the N-rollout process with N = 8. To allow the base agent to sample a reason-
able range of potential actions, its temperature coefficient, top k, and top p are set to 1.0, 30, and
0.8, respectively. All experiments are conducted on 8 NVIDIA H100-80G GPUs.

Evaluation. To evaluate the performance of the agent after being guided by the critic model, we
evaluate the agent’s task understanding, grounding, and planning capabilities on the AndroidCon-
trol and GUI-Odyssey test sets. Furthermore, according to the input, the settings on AndroidControl
can be divided into low-level tasks and high-level tasks. High-level tasks only input the global
instruction to the agent, while low-level tasks will additionally input the single-step action plan.
It should be noted that even for low-level agents, our critic model is guided only by high-level
information to ensure the consistency of operation. GUI-Odyssey only adopts the high-level exper-
imental setups. As for the agent’s grounding ability, we measure and compare the performance on
ScreenSpotV2 (Cheng et al., 2024).

Comparison. To verify the effectiveness of the proposed evaluation model in guiding existing agent
models during testing, we selected a wide range of models. Among the closed-source models, we se-
lected GPT4o (Hurst et al., 2024) and Doubao (UITARS 1.5) (ByteDance, 2025), and implemented
action acquisition through API calls. For open source models, we reproduced Qwen 2.5 VL (Bai
et al., 2025), UI-TARS 1.0 (Qin et al., 2025), and UI-TARS 1.5 (Qin et al., 2025), where Qwen 2.5
VL is a general multimodal understanding model and UI-TARS is a model fine-tuned for GUI agent
tasks. We used the official prompt template to reproduce basic performance and test the superpo-
sition evaluation model. The original UI-TARS requires historical actions and up to 5 images of
historical steps as input. To simplify the operation, we only let the model refer to the text descrip-
tion of the historical steps and discard the excessive historical image input. For detailed prompt and
inference scripts, please refer to the appendix.
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(a) GPT4o on GUI-Odyssey
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(b) UI-TARS 1.5∗ on GUI-Odyssey

Figure 4: Performance improvements of Pass@N and N-rollout.

As a performance comparison, we selected Zero Shot (ZS) model OS-Atlas-Base (Wu et al., 2025c),
SFT-tuned SeeClick (Cheng et al., 2024), Aria-UI (Yang et al., 2024), and Aguvis (Xu et al., 2024),
and RFT-tuned UI-R1 (Lu et al., 2025) and GUI-R1 (Xia & Luo, 2025).

Evaluation Metrics. For planning tasks, in line with OS-Atlas (Wu et al., 2025c), we report action
type prediction accuracy (Type), click point prediction accuracy (GR), and step success rate (SR).
Specifically: Type measures the exact-match accuracy between predicted and ground-truth action
types (e.g., “click” vs. “swipe”). GR evaluates grounding performance via click point prediction
accuracy in specific action types (e.g., “click” and “long press”). SR is the step-wise success rate:
a step is counted as successful only if both the predicted action and its associated arguments (e.g.,
click coordinates or input text) match the ground truth. For grounding tasks, we use click point
prediction accuracy as our evaluation metric.

4.2 EXPERIMENTAL RESULTS

As shown in Table 1, the proposed ICM and ICM-r2 achieve extensive performance improvements
for both zero-shot and fine-tuned GUI agents. On the AndroidControl-High test, ICM can improve
agents’ SR performance by up to 9.3%, while ICM-r2 can further improve it by an average of 1.32%.
The same trend is also observed on GUI-Odyssey, demonstrating that existing models have the
potential to correctly infer actions. ICM can leverage this potential to effectively improve existing
agents during testing, and data flywheels can further amplify these improvements. For agents with
lower basic performance, ICM can significantly improve their performance to an advanced level,
which also demonstrates the potential of the model itself and the stimulation ability of the critic
model. In terms of generalization, GPT4o, Doubao, and Qwen 2.5 VL were not included in the
construction of the GAIA D and D+, but ICM and ICM-r2 still achieved significant performance
improvements, demonstrating the inherent consistency of real action space data. The real action
sampling in the proposed data flywheel effectively covers this space, providing effective support for
critic training.

Both our ICM and ICM-r2 use a high-level approach to judge correctness and guide action, meaning
the critic model is not aware of the current action plan. This setting is more consistent with practical
applications, where only global instructions are given, and the agent must independently reason
about each step’s plan and action. For AndroidControl-Low, the agent is aware of the current action
plan, resulting in higher baseline performance. Despite this, our ICM still achieves a certain degree
of performance improvement, demonstrating the effectiveness of our proposed approach.

Table 3 shows the improvement of ICM and ICM-r2 on the grounding ability of agents on
ScreenSpotv2. The ScreenSpotv2 data is not included in the proposed GAIA, and as a single-
step operation, its environmental information is not completely consistent with the aforementioned
datasets. Even so, our evaluation model still improves the performance of agents, which is sufficient
to prove the validity of the data flywheel definition.

Please refer to the appendix for more visualization results.
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Table 4: Critic comparison. The performance
is calculated as (Qwen2.5 VL 7B w/ critic) -
(Qwen2.5 VL 7B w/o critic).

Model N
AndroidControl-High

∆ Type ∆ GR ∆ SR
UI-Genie-RM 10 – – 0.3
ICM 8 1.0 5.0 2.8
ICM-r2 8 1.4 5.0 3.2

Table 5: Impact of differences in critic model
attributes on accuracy and guidance.

Model Critic Acc
GUI-Odyssey

Type GR SR
UI-TARS 1.5∗ – 71.1 44.6 32.9

+ RCM 70.82% 75.6 49.2 44.1
+ ICM 83.19% 78.2 52.9 47.8

+ ICM-r2 83.56% 80.2 53.5 50.2

4.3 ABLATION STUDY

While utilizing ICM and ICM-r2, we used N-rollout to improve the test-time performance of existing
GUI agents, where N is set to 8 by default. To measure the impact of N on final performance,
we selected GPT4o and UI-TARS 1.5∗ as representative closed-source and open-source models,
respectively, and compared their SR at different N values on GUI-Odyssey. We also measured the
models’ Pass@N during the rollout process to reflect the model’s performance ceiling. As shown in
Figure 4, the increase in Pass@N accuracy reveals the potential of the agents themselves, while the
evaluation model approaches this upper limit through N-rollout. The improvement in ICM-r2 and
the gap between the upper limit provide potential performance gains for further cycles of GAIA.

4.4 QUALITATIVE EXPERIMENT

Critic Model Comparison. To evaluate the effectiveness of the proposed discriminant model,
we compared the accuracy of the Qwen 2.5 VL using a best-of-N approach to guide inference on
AndroidControl-High with UI-Genie-RM (Xiao et al., 2025). As shown in Table 4, due to the use
of real action data, the proposed ICM significantly improves the accuracy of the base model, and
ICM-r2 can further expand the advantage.

Intuitive and Reasoning Critic. To verify that the intuitive judgment proposed in this article is su-
perior, this section implements a critic model based on reinforcement learning design. Specifically,
the input of the Reasoning Critic Model (RCM) is consistent with ICM, and the output includes
<thinking>...</thinking> and <critic>...</critic>, which are supervised by format
reward and critic reward. The thought process emerges spontaneously from the model, and the critic
reward represents the judgment on the correctness of the current action. The training of RCM is
achieved through Group Relative Policy Optimization (GRPO). Considering the property of rein-
forcement learning, which is that it can stimulate model capabilities with less data, we randomly
sampled 30k data from D+ to train RCM. This setting aligns with existing work on training critic
models based on RL Wanyan et al. (2025), ensuring a fair comparison. This data includes samples
from two rounds of GAIA and has the same distribution as the training data for ICM-r2. To intu-
itively compare the discriminative performance of different critic models, we collected the GAIA
test set in a high-level manner on the AndroidControl and GUI-Odyssey test sets in the same way as
we collected the training data.

Table 5 shows that the proposed ICM achieves an accuracy of 83.19% for correctness assessment,
providing a foundation for action guidance. ICM-r2, benefiting from improved data quality, further
achieves an accuracy of 83.56%. In contrast, RCM’s classification accuracy is 70.82%, indicating
that the thinking component fails to significantly contribute to the final assessment. In terms of action
guidance accuracy, while UI-TARS 1.5∗ under RCM guidance outperforms the original model, it
still falls short of ICM. This experimental result demonstrates that intuitive judgment outperforms
reasoning for improving agents using a critic model. Besides, the RCM and GUI-Critic-R1 Wanyan
et al. (2025) are required to generate Chain-of-Thought sequences enclosed in <thinking> tags
before outputting a judgment, often consuming hundreds of tokens. In contrast, the intuitive-based
ICM is trained to output a single token (”correct” or ”wrong”). This disparity in output length
results in an order-of-magnitude reduction in inference latency for ICM. For TTS, which requires
evaluating multiple candidates, this efficiency is critical for practical deployment.
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5 CONCLUSION

In this work, we addressed the critical challenge of high-stakes, irreversible errors in GUI agents by
proposing a novel framework designed to unleash their latent potential at test time. Our GUI Action
Critic’s Data Flywheel System (GAIA) comprises a data flywheel that iteratively curates a dataset of
realistic action samples and the Intuitive Critic Model (ICM) that evaluates action correctness. This
framework establishes a self-evolutionary cycle: the flywheel continuously enriches its data, which
in turn trains an increasingly powerful critic (ICM-r2). By leveraging a Best-of-N strategy, our ICM
enables agents to select more reliable actions without the need for resource-intensive retraining.
Experimental results on both closed-source and open-source agents demonstrate that GAIA provides
significant performance gains in task planning and grounding capabilities, presenting a promising,
scalable solution for building more robust and intelligent GUI agents.

In future work, we will consider unifying high-level and low-level guidance methods and collecting
richer data in online testing, thereby continuously iterating the data flywheel and promoting the
exploration of agent capabilities.

6 ETHICS STATEMENT

The research content of this paper is based on the LVLM GUI Agent. The research process of this
paper does not violate ICLR ethics. There are no discrimination, bias, or fairness issues that need to
be addressed. Our models are not expected to generate potentially harmful content.

7 REPRODUCIBILITY STATEMENT

This article studies a GUI Agent based on LVLM, focusing on proposing a critic model for existing
agent actions. The base model and dataset used in this article are all from open-source and well-
referenced, so this aspect does not affect the reproducibility. To further ensure reproducibility, we
describe the parameters in detail in the main text Section 4.1 and the appendix, and provide prompts
for all models involved in the appendix. We will release the source code and model checkpoints to
support reproducibility.
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A CLARIFICATION OF THE USAGE OF LLMS

This paper only used LLMs to assist and polish the writing. The retrieval, core innovation, method
design, and experiments related to the paper were not conducted with the help of LLMs.

B INFERENCE PROMPTS

In this section, we introduce the inference parameters and prompt template of the LVLM used. The
proposed GAIA data flywheel and trained ICM are used to guide existing GUI agents at test time.
GAIA data is also constructed using the action reasoning of existing agents.

B.1 GUI AGENT PLANNING TASK PROMPTS

GPT4o We use the API to test the closed-source model GPT4o (Hurst et al., 2024) as a GUI agent.
Prompts refer to UI-TARS 1.0 (Qin et al., 2025) to ensure consistency in the action space. System
prompts and user prompts refer to Prompt 1 and Prompt 3. The “You need to: {step plan}” in User
Prompt is only used when testing AndroidControl-Low (Li et al., 2024). In other conditions, the
agent will not receive specific step instructions.

Doubao† Doubao, ByteDance’s closed-source model interface, provides a closed-source version of
UI-TARS 1.5, which represents the most advanced GUI agent. We test the performance of closed-
source UI-TARS 1.5 by calling Doubao’s API (ByteDance, 2025). The Prompt used for the test is
consistent with the open source version UI-TARS 1.5 (Qin et al., 2025), see Prompt 2 and Prompt 3.
The “You need to: {step plan}” in User Prompt is only used when testing AndroidControl-Low. In
other conditions, the Agent will not receive specific step instructions.

UI-TARS 1.0∗ For UI-TARS 1.0 (Qin et al., 2025), we use the open source weight UI-TARS-7B-
DPO for testing. System prompts and user prompts refer to Prompt 1 and Prompt 3. The “You need
to: {step plan}” in User Prompt is only used when testing AndroidControl-Low. In other conditions,
the agent will not receive specific step instructions. It should be noted that UI-TARS can receive up
to five historical images as input. To simplify the process, we only use the text of “action history”
to describe the historical steps. For the image, we only input the current screenshot.

UI-TARS 1.5∗ For UI-TARS 1.5 (Qin et al., 2025), we use the open source weight UI-TARS-1.5-7B
for testing. System prompts and user prompts refer to Prompt 2 and Prompt 3. The “You need to:
{step plan}” in User Prompt is only used when testing AndroidControl-Low. In other conditions,
the agent will not receive specific step instructions. It should be noted that UI-TARS 1.5 can receive
up to five historical images as input. To simplify the process, we only use the text of “action history”
to describe the historical steps. For the image, we only input the current screenshot.

Qwen 2.5 VL For Qwen 2.5 VL (Bai et al., 2025), we use the open source weight Qwen-2.5-VL-
7B-Instruct for testing. We refer to the official use case and use the function calls to test Qwen’s
GUI Agent capabilities. The prompt is shown in Prompt 4 and 5.

B.2 GUI AGENT GROUNDING TASK PROMPTS

Grounding capabilities are tested on the ScreenSpotV2 (Cheng et al., 2024) dataset. Because
Grounding only provides single-step instructions and screenshots, and operations only involve click
locations, the Prompts in Grounding differ from those in planning. The prompts for UI-TARS 1.0∗
and UI-TARS 1.5∗ refer to Prompt 6 and Prompt 7 respectively. The Qwen 2.5 VL test also applies
function calls and constrains its output format through JSON, where Prompt is shown in Prompt 4
and 5. Prompt is the same as planning task, but without “action history”.

B.3 ICM PROMPTS

The ICM and ICM-r2 trained on GAIA follow the same prompt and make judgments across the
full action space. Therefore, the same prompt is used for both Planning and Grounding, as shown
in Prompt 8. The information of “global instruction” and “action history” is consistent with that
obtained by the basic GUI agent. “actor set” describes the current action. If the action is click or

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

long press, it is constructed as “Tap at [x, y]”, where x and y are the absolute coordinates of the
click position in the original image. If the action is swipe, “actor set” is constructed as “Swipe to
up/down/left/right”. If the action is type or open, “actor set” is constructed as “Type/Open [text]”,
where[text] is the input text or the name of the App to be opened. The other actions have no param-
eters, so “actor set” is directly the action name, such as “Wait”, “Home”, “Back”, etc.

For the input image, we refer to the Set-of-Mark (SoM) approach (Yang et al., 2023). If the action is
click or long press, a red circle is drawn at the click location. Otherwise, the original image is used
directly as the ICM reference. The model’s attention is implemented using FlashAttention (Dao
et al., 2022). The data type is bfloat16. The epoch is 1, and the batch size is 16.

C TRAINING PARAMETERS

Using GAIA data, we train ICM and ICM-r2 with the following parameters. We fine-tune Qwen
2.5 VL 7B by inserting LoRA (Hu et al., 2022) into all linear layers, with lora rank set to 8 and
lora alpha set to 32. The epoch is 1, and the batch size is 16. The optimizer is AdamW with a
learning rate of 1e-4 and a warmup ratio of 0.05.

D BEST-OF-N METHOD

ICM and ICM-r2 use the Best-of-N approach to select the correct action with the highest probability
from the N actions in the GUI agent rollout as the actual output, where the probability is expressed
as the probability of the “correct” token. The core code of this process is shown in Code 1.

E VISUALIZATION RESULTS

We show the actions of the basic GUI agents on the sample, as well as the actions after being guided
by ICM and ICM-r2. The comparison is shown in Figure 5 to 8.
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GPT4o and UI-TARS 1.0∗ System GUI Prompt

You are a GUI agent. You are given a task and your
action history, with screenshots. You need to perform
the next action to complete the task.

## Output Format
Thought: ...
Action: ...

## Action Space

click(point=’(x1 y1)’)
long_press(point=’(x1 y1)’)
type(content=’’)
scroll(point=’(x1 y1)’, direction=’down or up or right or left’)
open_app(app_name=\’\’)
drag(start_point=’(x1 y1)’, end_point=’(x2 y2)’)
press_home()
press_back()
finished(content=’xxx’)

## Note
- Use English in Thought part.
- Summarize your next action (with its target element) in one
sentence in Thought part.

## User Instruction

Prompt 1: GPT4o and UI-TARS 1.0∗ System GUI Prompt
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Doubao† and UI-TARS 1.5∗ System GUI Prompt

You are a GUI agent. You are given a task and your
action history, with screenshots. You need to perform
the next action to complete the task.

## Output Format
Thought: ...
Action: ...

## Action Space

click(point=’<|box_start|>(x1 y1)<|box_end|>’)
long_press(point=’<|box_start|>(x1 y1)<|box_end|>’)
type(content=’’)
scroll(point=’<|box_start|>(x1 y1)<|box_end|>’,

direction=’down or up or right or left’)
open_app(app_name=\’\’)
drag(start_point=’<|box_start|>(x1 y1)<|box_end|>’,

end_point=’<|box_start|>(x2 y2)<|box_end|>’)
press_home()
press_back()
finished(content=’xxx’)

## Note
- Use English in Thought part.
- Summarize your next action (with its target element) in one
sentence in Thought part.

## User Instruction

Prompt 2: Doubao† and UI-TARS 1.5∗ System GUI Prompt

GPT4o, Doubao†, UI-TARS 1.0∗ and UI-TARS 1.5∗ User GUI Prompt

- User Instruction
{global_instruction} (You need to: {step_plan})

- Action History
{action_history}

- Current Screenshot
{image_path}

Prompt 3: GPT4o, Doubao†, UI-TARS 1.0∗ and UI-TARS 1.5∗ User GUI Prompt
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Qwen 2.5 VL GUI and Grounding Prompt

You are a GUI Agent.

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools>
XML tags:
<tools>
{"type": "function",
"function":
{
"name": "mobile_use", "description": "Use a touchscreen to
interact with a mobile device, and take screenshots.
* This is an interface to a
mobile device with touchscreen. You can perform actions like
clicking, typing, swiping, etc.
* Some applications may take time to start or
process actions, so you may need to wait and take successive
screenshots to see the results of your actions.
* The screen\’s resolution is 1092x2408.
* Make sure to click any buttons, links, icons, etc with the

cursor tip in the center of the element. Don’t click boxes
on their edges unless asked.",

"parameters": {
"properties": {
"action": {
"description": "The action to perform. The available
actions are:
* ‘key‘: Perform a key event on the mobile device.
- This supports adb\’s ‘keyevent‘ syntax.
- Examples: \\"volume_up\\", \\"volume_down\\", \\"power\\",
\\"camera\\", \\"clear\\".
* ‘click‘: Click the point on the screen with
coordinate (x, y).
* ‘long_press‘: Press the point on the screen with coordinate
(x, y) for specified seconds.
* ‘swipe‘: Swipe from the starting point with coordinate
(x, y) to the end point with coordinates2 (x2, y2).
* ‘type‘: Input the specified text into the activated
input box.
* ‘system_button‘: Press the system button.
* ‘open‘: Open an app on the device.
* ‘wait‘: Wait specified seconds for the change to happen.
* ‘terminate‘: Terminate the current task and report its

completion status.",
"enum": ["key", "click", "long_press", "swipe", "type",
"system_button", "open", "wait", "terminate"],
"type": "string
},

Prompt 4: Qwen 2.5 VL GUI and Grounding Prompt
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Qwen 2.5 VL GUI and Grounding Prompt (cont.)

"coordinate": {"description": "(x, y): The x (pixels from
the left edge) and y (pixels from the top edge)
coordinates to move the mouse to. Required only by
‘action=click‘, ‘action=long_press‘, and ‘action=swipe‘.",
"type": "array"},

"coordinate2": {"description": "(x, y): The x (pixels from
the left edge) and y (pixels from the top edge)
coordinates to move the mouse to. Required only by
‘action=swipe‘.", "type": "array"},

"text": {"description": "Required only by ‘action=key‘,
‘action=type‘, and ‘action=open‘.", "type": "string"},

"time": {"description": "The seconds to wait. Required only
by ‘action=long_press‘ and ‘action=wait‘.",
"type": "number"},

"button": {"description": "Back means returning to the
previous interface, Home means returning to the desktop,
Menu means opening the application background menu,
and Enter means pressing the enter. Required only
by ‘action=system_button‘",

"enum": ["Back", "Home", "Menu", "Enter"], "type": "string"},
"status": {
"description": "The status of the task. Required only

by ‘action=terminate‘.",
"type": "string", "enum": ["success", "failure"]
}

},
"required": ["action"], "type": "object"

}
}

}
</tools>

For each function call, return a json object with function name
and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>

The user query:
{global_instruction}
Task progress (You have done the following operation on
the current device):
{action_history}

{image_path}

Prompt 5: Qwen 2.5 VL GUI and Grounding Prompt (cont.)
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UI-TARS 1.0∗ GUI Grounding Prompt

You are a GUI agent. You are given a task and your action
history, with screenshots. You need to perform the next
action to complete the task.

## Output Format

Action: ...

## Action Space
click(point=’<point>x1 y1</point>’)

## User Instruction
{instruction}

{image_path}

Prompt 6: UI-TARS 1.0∗ GUI Grounding Prompt

UI-TARS 1.5∗ GUI Grounding Prompt

You are a GUI agent. You are given a task and your action
history, with screenshots. You need to perform the next
action to complete the task.

## Output Format

Action: ...

## Action Space
click(point=’<|box_start|>(x1,y1)<|box_end|>’)

## User Instruction
{instruction}

{image_path}

Prompt 7: UI-TARS 1.5∗ GUI Grounding Prompt
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ICM and ICM-r2 Critic Prompt

You are an expert in evaluating the performance of a phone
operating agent. The agent is designed to help a user to
complete a task or retrieve information from the phone.
Given the user’s task instruction, current action and current
screenshot, your goal is to decide whether the agent’s current
action is correct or not.
Each action in the sequence is preceded by a corresponding
screenshot that captures the context in which the action occurs.

## Evaluation Criteria
Whether the agent’s current action is correct and corresponding
to the user’s task instruction.

## IMPORTANT
1. An action always follows a corresponding screenshot (even if
only the last few are provided).
2. If the current action is a tap on the screen, the point where
the action is clicked is marked with a red circle on
the screenshot.
3. You should whether answer [correct] or [wrong].

## Input

The input is given next, including global_task_instruction,
action_history, current_action, and screenshot.
The goal of the task (instruction): {global_instruction}
Action (plan) history: {action_history}
Current action of the agent: {actor_set}
Screenshot: {som_image_path}

Prompt 8: ICM and ICM-r2 Critic Prompt
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Best-of-N Example Code

# 1. construct critic input
texts = [

critic_processor.apply_chat_template(msg, tokenize=False,
add_generation_prompt=True) for msg in messages

]
image_inputs, video_inputs = process_vision_info(messages)
inputs = critic_processor(

text=texts,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",

)
inputs = inputs.to(critic_device)

# 2. generate output
output = critic_model.generate(**inputs,

do_sample=False,
max_new_tokens=2048,
return_dict_in_generate=True,
output_scores=True)

generated_ids = output.sequences

# 3. get token score
scores = output.scores[0]
critic_scores = scores[:,-2]

# 4. get output text: correct|wrong
for in_ids, out_ids in zip(inputs.input_ids, generated_ids):

generated_ids_trimmed = [out_ids[len(in_ids) :]]
responses = critic_processor.batch_decode(

generated_ids_trimmed, skip_special_tokens=True,
clean_up_tokenization_spaces=False

)

# 5. find the index of the best action
max_score = -float(’inf’)
best_idx = -1
for idx in range(len(critic_outputs)):

if responses[idx] == ’correct’:
if critic_scores[idx] > max_score:

max_score = critic_scores[idx]
best_idx = idx

Code 1: Best-of-N Example Code
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ICM ICM-r2

Basic
Agent

Instruction:
In the Pinterest app, I want to create 
flower art from the gallery and then 
publish it.

Action history: 
1. click on the create tab at the 
centre bottom of the screen.
2. click on pin button.

GT Action:
Tap at [134, 607]

Agent Action:
Tap at [689, 381]

Action Rollout and Judge:
❌ 0.00 | Tap at [688, 367]
❌ 0.00 | Wait
❌ 0.00 | Back
❌ 0.00 | Back
✅ 0.78 | Tap at [134, 603]
❌ 0.00 | Long Press at [134, 603]
✅ 0.72 | Tap at [120, 587]
✅ 0.69 | Tap at [142, 622]

Action Rollout and Judge:
✅ 0.81 | Tap at [134, 603]
✅ 0.80 | Tap at [134, 603]
✅ 0.76 | Tap at [120, 589]
✅ 0.74 | Tap at [121, 577]
❌ 0.00 | Back
❌ 0.00 | Back
✅ 0.80 | Tap at [134, 600]
❌ 0.00 | Swipe to up

GT Action:
Tap at [134, 607]

Agent Action:
Tap at [134, 603]

GT Action:
Tap at [134, 607]

Agent Action:
Tap at [134, 603]

Basic
Agent

Basic
Agent

Figure 5: Visualization result. The basic agent selects the wrong action. Based on the action
rollout, both ICM and ICM-r2 select the correct action from the candidates.

ICM ICM-r2

Basic
Agent

Instruction:
View today's (20th December) moon 
phase on the lunar phase app.

Action history: 
1. Open the Lunar phase app.

GT Action:
Tap at [255, 196]

Agent Action:
Swipe to up

Action Rollout and Judge:
✅ 0.79 | Tap at [248, 215]
✅ 0.75 | Tap at [240, 220]
✅ 0.76 | Tap at [240, 219]
❌ 0.00 | Swipe to up
✅ 0.81 | Tap at [248, 215]
❌ 0.00 | Swipe to down
❌ 0.00 | Swipe to up
✅ 0.75 | Tap at [239, 215]

Action Rollout and Judge:
✅ 0.79 | Tap at [242, 208]
✅ 0.80 | Tap at [242, 210]
✅ 0.79 | Tap at [240, 215]
✅ 0.77 | Tap at [248, 215]
❌ 0.00 | Swipe to up
❌ 0.00 | Swipe to up
❌ 0.00 | Long Press at [134, 600]
❌ 0.00 | Swipe to up

GT Action:
Tap at [255, 196]

Agent Action:
Tap at [248, 215]

GT Action:
Tap at [255, 196]

Agent Action:
Tap at [242, 210]

Basic
Agent

Basic
Agent

Figure 6: Visualization result. The basic agent selects the wrong action. Based on the action
rollout, both ICM and ICM-r2 select the correct action from the candidates.
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ICM ICM-r2

Basic
Agent

Instruction:
Convert the 1 Rankine unit into all 
other temperature units in the 
temperature section , Skip Ads if any.

Action history: 
None

GT Action:
Back

Agent Action:
Tap at [71, 207]

Action Rollout and Judge:
✅ 0.81 | Tap at [71, 207]
✅ 0.78 | Tap at [70, 205]
✅ 0.77 | Tap at [69, 203]
❌ 0.00 | Back
❌ 0.00 | Back
❌ 0.00 | Back
❌ 0.00 | Home
✅ 0.75 | Tap at [75, 209]

Action Rollout and Judge:
✅ 0.80 | Back
✅ 0.82 | Back
✅ 0.81 | Back
❌ 0.00 | Tap at [71, 207]
❌ 0.00 | Tap at [71, 207]
❌ 0.00 | Tap at [70, 203]
❌ 0.00 | Home
❌ 0.00 | Tap at [68, 210]

GT Action:
Back

Agent Action:
Tap at [71, 207]

GT Action:
Back

Agent Action:
Back

Basic
Agent

Basic
Agent

Figure 7: Visualization result. The basic agent selects the wrong action. ICM fails to select the
correct one from the rollout candidates, while the enhanced ICM-r2 guides the correct selection.

ICM ICM-r2

Basic
Agent

Instruction:
First, use Chrome to search for a 
travel guide to visit Rome and note 
down the resource website in 
Simplenote. Next, check Weather & 
Radar to pick a rain-free day for your 
visit. Finally, use Expedia to book a 
flight from San Francisco.
Action history: 
1. Click on the Google Chrome icon to 
start searching for a Rome travel 
guide.
2. Type 'a travel guide to Rome' in the 
Google search bar.
3. Click on the direct search option 
labeled 'a travel guide to Rome - 
Google Search’.
4. ……

GT Action:
Home

Agent Action:
Swipe to up

Action Rollout and Judge:
❌ 0.00 | Tap at [203, 118]
❌ 0.00 | Home
❌ 0.00 | Home
✅ 0.78 | Swipe to down
✅ 0.81 | Swipe to down
❌ 0.00 | Swipe to up
✅ 0.79 | Swipe to down
❌ 0.00 | Home

Action Rollout and Judge:
❌ 0.00 | Swipe to down 
❌ 0.00 | Swipe to down 
✅ 0.82 | Home
✅ 0.82 | Home
✅ 0.84 | Home
❌ 0.00 | Swipe to up 
❌ 0.00 | Home
❌ 0.00 | Swipe to up

GT Action:
Home

Agent Action:
Swipe to down

GT Action:
Home

Agent Action:
Home

Basic
Agent

Basic
Agent

Figure 8: Visualization result. The basic agent selects the wrong action. ICM fails to select the
correct one from the rollout candidates, while the enhanced ICM-r2 guides the correct selection.
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