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Abstract

Audio-Visual Question Answering (AVQA) is001
a challenging task that involves answering ques-002
tions based on both auditory and visual infor-003
mation in videos. A significant challenge is in-004
terpreting complex multi-modal scenes, which005
include both visual objects and sound sources,006
and connecting them to the given question. In007
this paper, we introduce the Source-aware Se-008
mantic Representation Network (SaSR-Net), a009
novel model designed for AVQA. SaSR-Net uti-010
lizes source-wise learnable tokens to efficiently011
capture and align audio-visual elements with012
the corresponding question. It streamlines the013
fusion of audio and visual information using014
spatial and temporal attention mechanisms to015
identify answers in multi-modal scenes. Ex-016
tensive experiments on the Music-AVQA and017
AVQA-Yang datasets show that SaSR-Net out-018
performs state-of-the-art AVQA methods. We019
will release our source code and pre-trained020
models.021

1 Introduction022

Recent contributions to the field of audio-visual023

question answering (AVQA) include the creation024

of diverse datasets and sophisticated models (Yun025

et al., 2021; Yang et al., 2022; Li et al., 2022,026

2023; Jiang and Yin, 2023). For example, the027

Pano-AVQA dataset (Yun et al., 2021) contains028

360-degree videos paired with corresponding QA029

sets, while the AVQA-Yang dataset (Yang et al.,030

2022) is designed for answering audio-visual ques-031

tions in real-world scenarios. The MUSIC-AVQA032

dataset (Li et al., 2022) further broadened the re-033

search scope by focusing on spatio-temporal un-034

derstanding in audio-visual scenes. This dataset035

uses a dual attention mechanism, identifying sound-036

producing areas visually first and then applying037

attention for spatio-temporal reasoning. More re-038

cently, PSTP-Net (Li et al., 2023) was introduced,039

which progressively identifies key regions relevant040

Figure 1: Leveraging semantic representation for AVQA
involves: (1) Extracting features of various instrument
types based on semantic tokens, (2) Identifying the lo-
cation of the relevant sounding instruments, and (3) Es-
tablishing connections between the extracted semantic
features, identified instrument locations, and the crucial
parts of the question, guiding the model to answer the
question accurately.

to audio-visual questions using refined attention 041

mechanisms. 042

Existing AVQA methods typically employ gen- 043

eral audio and visual encoders to extract features 044

from videos. However, this strategy often fails to 045

link certain sound-producing objects in the video 046

with the responses. Consider questions like What 047

is the instrument on the left of the cello? which ne- 048

cessitates specific type and location awareness, as 049

shown in Fig. 1. Current models often find it diffi- 050

cult to associate the cello mentioned in the question 051

with its actual representation in the video scene. 052

To address these challenges, we propose the 053

Source-aware Semantic Representation Network 054

(SaSR-Net). This model enhances the understand- 055

ing and integration of individual sound sources 056

and visual objects in AVQA by two strategies: 057

(1) Source-wise Learnable Tokens: Embedded 058
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within the Source-aware Semantic Representation059

Block, these tokens capture essential semantic fea-060

tures from both audio and visual data. This fa-061

cilitates precise alignment and enhances semantic062

richness, enabling the model to accurately associate063

auditory and visual elements based on the query064

context. (2) Attention Mechanisms: The model065

utilizes spatial and temporal attention mechanisms066

to identify and synchronize relevant visual and au-067

dio regions with the query. This not only enhances068

the accuracy of localization but also strengthens069

cross-modal associations, crucial for forming a co-070

herent understanding of the scene.071

The efficacy of SaSR-Net is demonstrated by072

its performance on the Music-AVQA (Li et al.,073

2022) and AVQA-Yang (Yang et al., 2022)074

datasets, where it surpasses state-of-the-art AVQA075

approaches. The results highlight the effective-076

ness of the model’s source-aware and semantically077

driven approach in managing complex audio-visual078

data. Our key contributions are as follows:079

1. We introduce SaSR-Net, a novel framework080

that enriches the understanding of sound and081

visual information, leveraging Source-wise082

Learnable Tokens to extract semantic-aware083

audio and visual representations for AVQA.084

2. SaSR-Net integrates multi-modal spatial and085

temporal attention mechanisms to adaptively086

leverage visual and audio information in087

videos for accurate scene understanding.088

3. Our extensive experiments and ablation stud-089

ies can validate the effectiveness of our pro-090

posed method.091

2 Related Works092

Audio-Visual Scene Understanding: Audio-093

visual learning focuses on understanding and corre-094

lating information from both modalities, aiming to095

mimic the human’s multi-modal perception. This096

field has been extensively researched in various097

directions, showing remarkable progress in tasks,098

e.g., sound source localization (Hu et al., 2021; Liu099

et al., 2022; Qian et al., 2020; Mo and Tian, 2023),100

action recognition (Gao et al., 2020), event localiza-101

tion (Mahmud and Marculescu, 2023; Brousmiche102

et al., 2021; Tian et al., 2018; Zhou et al., 2021),103

video parsing (Wu and Yang, 2021; Tian et al.,104

2020; Rachavarapu et al., 2023), captioning (Iashin105

and Rahtu, 2020; Tian et al., 2019), separation (Gao106

and Grauman, 2021; Tian et al., 2021; Zhao et al.,107

2018; Chen et al., 2023), and dialog (Zhu et al.,108

2020; Alamri et al., 2019; Hori et al., 2019). De- 109

spite this progress, these models still face chal- 110

lenges in integrating the audio modality with visual 111

scene understanding. Effectively leveraging both 112

audio and visual inputs for comprehensive video 113

understanding remains concern. It is essential to 114

consider both audio and visual signals holistically 115

for effective video comprehension. In this work, 116

we propose using Source-wise Learnable Tokens 117

to leverage semantically-aware representations for 118

audio-visual scene understanding. 119

Audio-Visual Question Answering: Audio-Visual 120

Question Answering (AVQA) integrates both 121

modalities, offering a more holistic understand- 122

ing of scenes. Recent efforts in AVQA include 123

the introduction of datasets such as the Pano- 124

AVQA dataset (Yun et al., 2021), which features 125

360-degree videos (Yun et al., 2021), the real-life 126

AVQA-Yang dataset (Yang et al., 2022), and the 127

MUSIC-AVQA dataset (Li et al., 2022), which fo- 128

cuses on various musical performances (Li et al., 129

2022). The MUSIC-AVQA v2.0 dataset was re- 130

cently introduced to further reduce dataset bias 131

(Liu et al., 2024). Innovations like PSTP-Net (Li 132

et al., 2023), which identifies key regions relevant 133

to audio-visual questions through refined attention 134

mechanisms, have been instrumental. Addition- 135

ally, LAVISH (Lin et al., 2023) introduced a novel 136

parameter-efficient framework for encoding audios 137

and videos, enhancing the potential for practical 138

applications. Despite these advancements, chal- 139

lenges remain in accurately learning video seman- 140

tics, which can limit the effectiveness of AVQA. 141

Our approach aims to enhance video understanding 142

by modeling semantic entities and strengthening 143

the connections between questions and video con- 144

tent, thereby achieving competitive accuracy. 145

3 The Proposed SaSR-Net 146

Given a video with both visual and audio tracks, 147

along with a question related to the content within 148

the video, the objective of the AVQA task is to pre- 149

dict an accurate answer response. To achieve this, 150

we propose a novel SaSR-Net architecture. This 151

model is designed to generate compact, semantic- 152

aware embeddings by identifying salient sounding 153

objects present in the audio-visual input that are 154

relevant to the given query. The overview of our 155

proposed framework is illustrated in Figure 2. 156

2



Figure 2: The architecture of the proposed SaSR-Net.

3.1 Representations for Different Modalities157

Given a video with both visual and audio tracks, VT158

and AT , we split it into 1-second non-overlapping159

segment pairs {(vt, at)}Tt=1, where vt and at are the160

video and audio clips during time [t−1, t). Besides,161

each sample has a related question QL = {ql}Ll=1162

and answer y, i.e., ({(vt, at)}Tt=1, {ql}Ll=1,y),163

where ql is a word and y is a one-hot encoding164

representing the correct answer.165

Audio Feature: Each audio segment at is con-166

verted into a raw feature vector f rat using the pre-167

trained VGGish (Gemmeke et al., 2017) model,168

which works on transformed audio spectrograms.169

In all, the full audio will be transformed to a set of170

raw feature vectors f rAT
= {f rat}

T
t=1.171

Visual Feature: Using ResNet-18 (He et al., 2016),172

we process the initial frames from VT into raw vec-173

tors f rVT
= {f rvt}

T
t=1 and feature maps Xr

PT =174

{Xr
P t}

T
t=1 = {{xr

pt
}Pp=1}Tt=1, where p denotes po-175

sitions on the feature maps, up to P positions.176

Question Feature: For a question QL = {ql}Ll=1,177

word embeddings are passed through an LSTM.178

The resulting feature vectors fQL
= {fql}Ll=1 are179

derived from the LSTM’s final hidden state. Here,180

L is the max sequence length. The encoder is181

trained from scratch along with the entire model.182

3.2 Source-wise Learnable Tokens183

Distinguishing between audio sources and visual184

objects in videos fundamentally requires the associ-185

ation of these two modalities. A video may contain186

several visual objects and sound sources. To accu-187

rately respond to questions related to these video188

scenes, it is essential that our model effectively189

aligns and associates audio and visual content that190

are semantically synchronized. To achieve this, we191

introduce a series of Source-wise Learnable Tokens192

(SLT). Each token represents a distinct semantic 193

category, such as a guitar or piano. These tokens 194

will be utilized to align the two modalities and ag- 195

gregate multimodal source-aware contexts for QA. 196

We denote Source-wise Learnable Tokens as 197

GC = {gi}Ci=1. Here, C represents the total num- 198

ber of distinct categories of sounding objects within 199

our dataset. 200

Initially, we align the Source-wise Learnable 201

Tokens with features from both video and audio by 202

concatenating them. This computation will help 203

ensure each token matches one of our intended 204

categories, such as guitar or piano. To achieve 205

this, we prepare category annotations in the labels 206

and guide the model by applying penalties to the 207

tokens during training. This will be elaborated in 208

the following sections. 209

Subsequently, we apply self-attention SelfAttn 210

to aggregate the auditory features f rat and visual 211

features f rvt separately. Here, we use the notation 212

[a;b] to represent the concatenation operation be- 213

tween tensor a and tensor b, or the split operation 214

between tensor a and tensor b 215

[f sat ;G
a
C ] = SelfAttn([f rat ;GC ]) 216

[f svt ;G
v
C ] = SelfAttn([f rvt ;GC ]) 217

After applying self-attention and splitting, we 218

obtain source-aware audio embedding f sat , source- 219

aware visual embedding f svt , and tokens Ga
C and 220

Gv
C . In detail, if we assume D is the dimension 221

for each single feature embedding above, the self- 222

attention S can be represented as (f is an input 223

feature), 224

S(f) = σ(
f · f⊺√

D
) · f 225

where σ is representing Softmax function. 226
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The obtained representation f sat , f
s
vt , G

a
C and227

Gv
C will be used next to compute the source-aware228

semantic representation.229

3.3 Source-aware Semantic Representation230

In this section, we assign semantic attention more231

directly and introduce training penalties to ensure232

that all learnable tokens accurately represent spe-233

cific semantic categories. This design aims to im-234

prove our model’s capability to precisely represent235

multi-modal scenes in videos and generate source-236

aware audio and visual semantic embeddings.237

We introduce a source-aware semantic represen-238

tation block. In the previous section, we have al-239

ready got both semantically enriched audio and240

visual embeddings which enhanced with token in-241

formation. Instead of treating the embeddings and242

Source-wise Learnable Tokens within the same243

modality as a single entity as we did in Sec. 3.2,244

we hope the model to learn specific information fu-245

sion / weighting relationships between the Source-246

wise Learnable Tokens and the embeddings. As247

a result, as for the audio/video features that are248

contained in the embedding and we are also inter-249

ested in, the model will finally enhance them by250

properly-learned tokens. To achieve it, we will use251

our Source-aware Semantic Representation Block252

to perform cross attention from learnable tokens253

Ga
C and Gv

C to the semantically enriched audio254

and visual embeddings.255

The resulting semantically-enriched audio em-256

bedding fgAT
= {fgat}Tt=1 and video embedding fgVT

257

= {fgvt}Tt=1 are computed as the following equations258

performing cross-attention:259

Ga′
C = Ga

C + FC((CrossAttn(Ga
C , f

s
AT

))260

Gv′
C = Gv

C + FC((CrossAttn(Gv
C , f

s
VT

))261

fgAT
= FC((CrossAttn(f sAT

,Ga′
C))262

fgVT
= FC((CrossAttn(f sVT

,Gv′
C , ))263

where f sAT
= {f sat}

T
t=1, f sVT

= {f svt}
T
t=1, Ga′

C and Gv′
C264

are source-aware represented tokens, FC represents265

a fully-connected layer, LN is layer normalization,266

and the cross-attention works as:267

CrossAttn(a,b) = σ(
FC(a) · FC(b)√

D
) · FC(b)268

The calculation of cross-attention for269

CrossAttn(Ga′
C , f

s
AT

) and CrossAttn(Gv′
C , f

s
VT

)270

follows the equations above. The fully-connected271

layer FC is used to align the dimensions of features272

from different latent spaces.273

While the entire set of trainable parameters in 274

SaSR-Net is optimized for minimizing the AVQA 275

loss function that we will define later, it is also 276

important to incorporate auxiliary loss functions 277

specifically targeting the Source-wise Learnable 278

Tokens. These additional loss functions are ba- 279

sically utilizing the prior knowledge to force the 280

Source-wise Learnable Tokens to become the cen- 281

troids in the hidden space. It will highlight the 282

task-specific significance of these tokens, ensur- 283

ing that they capture the characteristics of sound 284

sources present in the audio and video. At last, 285

they facilitate the extraction of more meaningful, 286

source-aware representations, which are essential 287

for the AVQA task. 288

The first auxiliary loss function is the binary 289

cross-entropy (BCE) loss, which focuses on iden- 290

tifying individual sound sources’ presence in the 291

input audio and video channel, 292

Lsource = BCE(σ(FC(Ga′
C)),pC)+ 293

BCE(σ(FC(Gv′
C)),pC) 294

where pC is the ground truth label for the source 295
class. This label is compared against the predicted 296

labels generated by applying the sigmoid activation 297

function σ to a fully connected layer, operating on 298

the semantically enriched audio embedding fgAT
299

and video embedding fgVT
. 300

The second auxiliary loss function serves as a 301

regularization term to ensure that each learned to- 302

ken uniquely represents a distinct type of sound 303

source. Specifically, we aim for each token vector 304

gi to exclusively represent a single type of sound 305

source. To achieve this, we define the loss using 306

cross-entropy (CE) for sound source classification: 307

Lreg = CE(FC(gi), {c}Cc=1) 308

3.4 Multi-modal Spacial Attention 309

One significant challenge involves localizing visual 310

areas relevant to the given question in the AVQA 311

task. This entails two tasks: firstly, identifying ar- 312

eas with key items by allocating reasonable spatial 313

attention on the visual feature map, and secondly, 314

establishing a temporal connection between the 315

weighted feature map and the question. 316

Fortunately, the sections from 3.1 to 3.3 have 317

already provided us with semantic-aware audio and 318

visual embeddings. The semantic information in 319

these embeddings proves beneficial in creating a 320

meaningful association between the two modalities 321

through shared semantic tokens. 322
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Figure 3: Visualization of Spatial Attention (SA) and Temporal Attention (TA) Blocks. The SA Block heatmaps
pinpoint sounding object locations, and the TA Block displays audio-visual feature scores. SA localizes critical
visual areas, while TA synchronizes video moments with questions, boosting overall audio-visual comprehension.

To address the first task, in our model, visual323

features differentiate semantic items from the back-324

ground spatially based on their associated sounds.325

This involves applying a multi-modal spatial atten-326

tion between the source-aware audio embedding327

fgat and the initial video encoding feature maps Xr
P .328

By incorporating the source-aware video embed-329

ding fgvt , we derive the spatially-attended video330

representation f savt :331

fattnvt = σ(Xr
P
⊺
t ⊛ fgat)) ·X

r
P t332

f savt = FC(tanh([fgvt ; f
attn
vt ]))333

334
where ⊛ represents the convolution operation,335

which means this incorporating is broadcasting to336

all locations on the feature map.337

In practice, based on the computations above,338

we also observed the presence of contrastive infor-339

mation, allowing the model to better learn how to340

accurately extract semantic object embeddings spa-341

cially on the feature maps. Essentially, it is crucial342

not only allow the model to learn how to success-343

fully align visual and audio information but also344

to penalize those errors in cases where visual and345

audio inputs do not belong to the same scene at all.346

This will ultimately enhance SaSR-Net’s spatial347

attention capabilities.348

To achieve this, during training, we supple-349

ment both a matched (positive) audio-video pair350

{(vt, at)}Tt=1 along with a mismatched (negative)351

pair, {(v′t, at)}Tt=1, where v′t is from a 1-second352

random video clip that belongs to a different video353

than at. Let f savt be the spatially-attended represen-354

tation for a matched sample, and f sav′t
be that for a355

mismatched sample. For the optimization of the356

traning process, we employ a loss function to distin-357

guish between matched and mismatched samples358

using a binary classifier: 359

Lmatch = CE(f savt , 1) + CE(f savt , 0) 360

This optimization will make the learned represen- 361

tations more discriminative. 362

3.5 Multi-modal Temporal Attention 363

In this section, we address the second task outlined 364

in Sec. 3.4. 365

Traditional QA methods treat questions as single 366

entities, as in (Alamri et al., 2019). Our AVQA 367

approach, however, utilizes the temporal sequences 368

of data, such as frames and audio, to align ques- 369

tions with specific content moments. For example, 370

a violin query directs the focus to relevant video 371

segments. This alignment leads to contextually ac- 372

curate responses by linking question tokens to the 373

correct temporal embeddings. 374

To achieve this, we introduce multi-modal tem- 375

poral attention block that employs cross-attention 376

through t = 0 to T − 1 for updated audio embed- 377

ding f taAT
and visual embedding f taVT

based on the 378

question’s embedding fQL
. The cross attention is 379

calculated as follows, 380

f taAT
= σ(

fQL
fgAT

⊺

√
D

)fgAT
, fgAT

= {fgat}
T
t=1 381

f taVT
= σ(

fQL
f saVT

⊺

√
D

)f saVT
, f saVT

= {f savt }
T
t=1 382

3.6 Answer Prediciton 383

To predict the final answer to the question, we 384

utilize the multi-modal temporal embeddings and 385

semantically-enriched embeddings, as they have 386

already been proven to contain competent high- 387

dimensional values after attention masks. The im- 388

plementation includes a shortcut connection struc- 389

ture and a necessary fusion network. 390
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For the shortcut connection structure, we (av-391

eragely) reduce the semantically-enriched embed-392

dings across their time dimension and aggregate393

them with the multi-modal temporal embeddings,394

modality by modality. This operation is expected395

to help maintain global information and facilitate396

gradient back-propagation.397

We hope the fusion network could integrate both398

the audio-text modal and visual-text modal into399

a final mixed modal that could be directly taken400

advantage of by its classifier and output predic-401

tions. Hence, we concatenate the two embeddings402

after the shortcut connection structure and employ403

a fully-connected layer as a classifier to predict the404

answer. The full operation is formulated as follows,405

fav = FC(tanh([f taAT
+ fgAT

; f taVT
+ fgVT

)])406

407
ŷ = σ(FC(tanh(fav · fQL

)))408

Here y denotes the right answer id encoded by409

an one-hot vector.ŷ represents the probabilities of410

selection among all the answers, to match y closely.411

Therefore, we use cross-entropy loss for AVQA to412

penalize incorrect predictions,413

Lavqa = CE(y, ŷ)414

At last, the overall training loss is:415

L = Lavqa + λ1Lsource + λ2Lreg + λ3Lmatch416

4 Experiment417

4.1 Experiments Setting418

Datasets: The MUSIC-AVQA dataset (Li et al.,419

2022) includes 9,290 videos, featuring 7,423 real420

and 1,867 synthetic examples, and 45,867 question-421

answer pairs. This dataset spans 9 audio-visual422

question types and 33 templates, showcasing 22423

instruments categorized into Strings, Winds, Per-424

cussion, and Keyboards. Each video is annotated425

with instrument category labels. The dataset, de-426

signed for answering questions about the appear-427

ance, sounds, and associations of different ob-428

jects in videos, is published under the Creative429

Commons Attribution-NonCommercial 4.0 Inter-430

national License and is public for research use.431

The question type primarily involves estimating432

answers.433

The AVQA-Yang dataset (Yang et al., 2022) con-434

tains 57,015 videos paired with 57,335 questions435

that require understanding both audio and visual436

clues. The question type in this dataset is multiple-437

choice.438

Implementation: The audio data has a sampling 439

rate of 16 Hz, and video data has 1 fps. Videos are 440

segmented into non-overlapping 1-frame segments, 441

each yielding a 512D feature vector. We sample 442

1-second video segments every 6 seconds. Audio 443

segments, also 1-second long, are processed using 444

a linear layer, converting them from 128D VGGish 445

features to 512D feature vectors. Word embed- 446

dings are set to 512 dimensions. Our batch size 447

is 16, and we train for 80 epochs using the Adam 448

optimizer with an initial learning rate of 1e − 4, 449

which decreases by a factor of 0.3 every 16 epochs. 450

Also, we set λ1 = λ2 = λ3 = 0.5. Our model 451

and related utility codes are based on PyTorch. We 452

use torchinfo to summary our model’s configura- 453

tion. Our model contains 65,117,283 parameters 454

(approximately 205.24 MB storage). We put our 455

model trained as well as evaluated on an NVIDIA 456

GeForce GTX 1080 Ti. 457

Evaluation: Following (Li et al., 2022), we use an- 458

swer prediction accuracy as our evaluation metric. 459

4.2 Comparison to Prior Work 460

In this study, we introduced SaSR-Net, a novel 461

multi-modal AVQA framework, and compared it 462

with established unimodal and cross-modal ques- 463

tion answering systems in Tab. 1 to demonstrate 464

its effectiveness. The baselines include: (1) 465

Audio Question Answering: FCNLSTM (Fayek 466

and Johnson, 2020), CONVLSTM (Fayek and 467

Johnson, 2020). (2) Visual Question Answering: 468

HCAttn (Lu et al., 2016), MCAN (Yu et al., 2019) 469

(3) Video Question Answering: PSAC (Li et al., 470

2019b), HME (Fan et al., 2019), HCRN (Le et al., 471

2020). (4) Audio-Visual Question Answering: 472

AVSD (Schwartz et al., 2019), Pano-AVQA (Yun 473

et al., 2021), AVST (Li et al., 2022). PSTP-Net (Li 474

et al., 2023) and TJSTG (Jiang and Yin, 2023). 475

These baselines primarily use general encoders 476

to extract video features, which are then processed 477

through attention mechanisms for question answer- 478

ing. In contrast, our SaSR-Net uses Source-wise 479

Learnable Tokens to extract semantically compact 480

features from videos and employs Source-aware 481

Semantic Representation to align these with visual 482

and audio features. This enhances the model’s 483

capability to integrate and understand individual 484

sound sources and visual objects in AVQA queries, 485

enriching the features semantically. 486

SaSR-Net not only delivers robust performance 487

in audio and visual QA but also showcases excep- 488

tional results in audio-visual QA, a domain where 489
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Task Method Audio Question Visual Question Audio-Visual Question All
Count Comp Avg. Count Local Avg. Exist Local Count Comp Temp Avg. Avg.

AudioQA FCNLSTM 70.45 66.22 68.88 63.89 46.74 55.21 82.01 46.28 59.34 62.15 47.33 60.06 60.34
CONVLSTM 73.55 67.17 71.20 67.17 55.84 61.44 82.49 63.08 51.85 62.13 50.36 62.56 63.79

VisualQA HCAttn 70.25 54.91 64.57 64.05 66.37 65.22 79.10 49.51 59.97 55.25 56.43 60.19 62.30
MCAN 77.50 55.24 69.25 71.56 70.93 71.24 80.40 54.48 64.91 57.22 47.57 61.58 65.49

VideoQA HME 74.76 63.56 70.61 67.97 69.46 68.76 80.30 53.18 63.19 62..69 59.83 64.05 66.45
HCRN 68.59 50.92 62.05 64.39 61.81 63.08 54.47 41.53 53.38 52.11 47.69 50.26 55.73

AVQA

AVSD 72.41 61.90 68.52 67.39 74.19 70.83 81.61 58.79 63.89 61.52 61.41 65.49 67.44
Pano-AVQA 74.36 64.56 70.73 69.39 75.65 72.56 81.21 59.33 64.91 64.22 63.23 66.64 68.93

AVST 77.78 67.17 73.87 73.52 75.27 74.40 82.49 69.88 64.24 64.67 65.82 69.53 71.59
PSTP-Net 73.97 65.59 70.91 77.15 77.36 77.26 76.18 73.23 71.80 71.79 69.00 72.57 73.52

TJSTG 80.38 69.87 76.47 76.19 77.55 76.88 82.59 71.54 64.24 66.21 64.84 70.13 73.04
SaSR-Net(ours) 73.95 69.81 73.56 73.76 71.84 73.28 69.76 73.43 73.64 79.15 77.46 74.66 74.21

Table 1: Different methods on Music-AVQA dataset. The top-2 results are highlighted.

SLT SaSR Accuracy Improvement

✗ ✗ 70.31% -
✗ ✓ 71.78% ↑ 1.47%
✓ ✗ 72.16% ↑ 1.85%
✓ ✓ 74.21% ↑ 3.90%

Table 2: Ablation on Source-wise Learnable To-
kens (SLT) and Source-aware Semantic Representation
(SaSR)

previous AVQA methods have been less effective.490

We have made substantial improvements in this491

area. SaSR-Net excels particularly in Audio-Visual492

Questions, significantly outperforming AVST (Li493

et al., 2022) with notable improvements in Count-494

ing (3.55%), Localization (9.4%), Comparative495

(14.48%), and Temporal (11.64%) questions.496

Moreover, our method surpasses AVSD by 9.22%,497

Pano-AVQA by 7.9%, AVST by 5.13%, PSTP-Net498

by 2.09%, and TJSTG by 4.53% in average accu-499

racy,indicating a strong advancement in AVQA. In500

Audio QA, SaSR-Net achieves an average accu-501

racy of 73.56%, exceeding specialized models like502

FCNLSTM and CONVLSTM.503

These exceptional results provide strong evi-504

dence of the effectiveness of our proposed Source-505

wise Learnable Tokens and Source-aware Seman-506

tic Representation. By embedding audio and vi-507

sual features with semantic context relevant to the508

queries, these innovations significantly enhance the509

representational capabilities of the framework. The510

effective use of Source-wise Learnable Tokensfa-511

cilitates a deeper integration of audio and visual512

modalities, allowing SaSR-Net to accurately iden-513

tify and address complex multimodal interactions514

inherent in AVQA tasks.515

516

4.3 Ablation Studies517

In this section, we conducted ablation studies518

on Music-AVQA dataset to quantitatively evalu-519

ate the Source-wise Learnable Tokens (SLT) and520

TA SA Accuracy Improvement

✗ ✗ 70.17% −
✓ ✗ 72.03% ↑ 1.03%
✓ ✓ 74.21% ↑ 2.18%

Table 3: Ablation studies on Multi-modal Special Atten-
tion (SA), Multi-modal Temporal Attention (TA) blocks

the Source-aware Semantic Representation (SaSR) 521

block, as presented in Table 2. Additionally, we 522

performed ablation studies to quantitatively assess 523

the Multi-modal Spacial Attention (SA) and Multi- 524

modal Temporal Attention (TA) blocks, as pre- 525

sented in Table 3. 526

Effectiveness of SLT and SaSR: The inclusion 527

and removal of the SLT (Source-wise Learnable 528

Tokens ) and SaSR (Source-aware Semantic Rep- 529

resentation) blocks impact the performance of the 530

AVQA model. Removing both blocks leads to a 531

considerable accuracy drop to 70.31%. This de- 532

cline occurs primarily because the model struggles 533

to extract distinct semantic visual and auditory fea- 534

tures without the SLT and fails to integrate these 535

features without the SaSR, highlighting the criti- 536

cal roles these components play in comprehending 537

complex audio-visual content. Conversely, intro- 538

ducing the SLT block in the baseline model in- 539

creases the AVQA accuracy by 1.85%, demonstrat- 540

ing its effectiveness in enhancing video compre- 541

hension by extracting more semantic information 542

from diverse sources. Additionally, retaining the 543

SaSR block while eliminating the SLT block re- 544

sults in a 1.47% increase in accuracy, emphasizing 545

the SaSR’s crucial role in integrating diverse audio 546

and visual features. More importantly, incorporat- 547

ing both SLT and SaSR into the model leads to 548

a substantial improvement in accuracy by 3.90%. 549

These findings underscore the importance of both 550

SLT and SaSR in aligning auditory elements with 551

their corresponding visual cues and enhancing the 552

model’s question-answering capabilities. 553
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Figure 4: Comparison of our SaSR-Net and AVST (Li et al., 2022). Our SaSR-Net provides more precise answers
to complex questions by effectively integrating semantic information into audio and visual features.

Method Avg(%)
HME (Fan et al., 2019)+HAVF (Yang et al., 2022) 85.0
PSAC (Li et al., 2019b)+HAVF (Yang et al., 2022) 87.4

LADNet (Li et al., 2019a)+HAVF (Yang et al., 2022) 84.1
HGA (Jiang and Han, 2020)+HAVF (Yang et al., 2022) 87.7

HCRN (Le et al., 2020)+HAVF (Yang et al., 2022) 89.0
SaSR-Net(ours) 89.9

Table 4: Results of different methods on AVQA-Yang
dataset.

Effectiveness of SA and TA: Removing the TA554

(Multi-modal Temporal Attention) and SA (Multi-555

modal Spatial Attention) blocks significantly re-556

duces accuracy to 70.17%, underscoring their im-557

portance. Without SA, the model cannot accurately558

locate sounding instruments in videos, and without559

TA, it struggles to understand temporal dynamics,560

severely impairing its ability to identify key frames561

and localize sound sources. Introducing SA en-562

hances the model’s ability to link sounding objects563

with their sounds in complex scenes, improving564

spatial precision. Adding TA helps align temporal565

sequences, pinpointing key video frames relevant566

to the query. Together, SA and TA increase AVQA567

accuracy by 1.03%, highlighting their synergistic568

effect in boosting the model’s comprehension of569

audio-visual content.570

4.4 Visualization571

Visualization of SA and TA: In Fig. 3, we visual-572

ize the results of the Spatial Attention and Tempo-573

ral Attention Blocks.574

Comparative Results: In Fig. 4, we present the575

results of our SaSR-Net method, compared with576

the results of AVST (Li et al., 2022). Our ap-577

proach more accurately answers complex questions578

with specific semantic information due to our SLT579

and SaSR blocks. The SLT extracts and aggre-580

gates semantic category information from various581

sources, while the SaSR effectively integrates these582

semantic-aware features into both audio and visual583

features. These aggregated features outperform the584

original features, leading to superior performance.585

Previous AVQA methods often fail to accurately586

associate visual objects with corresponding sounds 587

in complex scenes, leading to incorrect answers. 588

In contrast, our SaSR-Net, with its SLT and SaSR 589

blocks, effectively connects sounding objects with 590

mixed audio sources and accurately pinpoints their 591

locations using spatial attention. It also employs 592

temporal attention to identify key timestamps re- 593

lated to the posed question. This enhances the 594

model’s ability to map sound sources accurately, 595

significantly improving audio-visual analysis in dy- 596

namic multi-modal environments. 597

4.5 Experiments on AVQA Dataset 598

While most existing methods are tested on the 599

MUSIC-AVQA dataset (Li et al., 2022), we extend 600

the validation of our method to the AVQA-Yang 601

dataset (Yang et al., 2022) to further demonstrate its 602

effectiveness. This confirms its applicability across 603

different question formats and more complex sce- 604

narios. Following the approach in (Yang et al., 605

2022), we integrate various strategies (Fan et al., 606

2019; Li et al., 2019b,a; Jiang and Han, 2020; Le 607

et al., 2020) with HAVF (Yang et al., 2022) as our 608

evaluation metric. The comparative results in Table 609

4 show that our method outperforms others on the 610

AVQA dataset. This underscores the robustness 611

of our proposed SaSR-Net in diverse audio-visual 612

question answering environments. 613

5 Conclusion 614

In this paper, we present SaSR-Net, a novel AVQA 615

approach that introduces source-aware learnable to- 616

kens to effectively capture and integrate semantic- 617

aware audio-visual representations. This enhances 618

alignment between audio elements and visual cues, 619

crucial for identifying relevant scene regions and 620

their association with questions. By excelling at ex- 621

tracting and understanding single-source informa- 622

tion within complex scenes, SaSR-Net significantly 623

improves performance on AVQA tasks. 624

Limitation: SaSR-Net marks a transformative 625

milestone in AVQA research. However, it may still 626
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face challenges in handling extremely noisy audio-627

visual data or scenarios with highly complex and628

overlapping audio sources, which could be areas629

for future improvement and research.630
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