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Abstract

The concern about hidden discrimination in machine learning (ML) models is
growing, as their widespread real-world applications increasingly impact human
lives. Various techniques, including commonly used group fairness measures and
several fairness-aware ensemble-based methods, have been developed to enhance
fairness. However, existing fairness measures typically focus on only one aspect—
either group or individual fairness, and the hard compatibility among them indicates
a possibility of remaining biases even when one of them is satisfied. Moreover,
existing mechanisms to boost fairness usually present empirical results to show
validity, yet few of them discuss whether fairness can be boosted with certain
theoretical guarantees. To address these issues, we propose a fairness quality
measure named ‘discriminative risk (DR)’ to reflect both individual and group
fairness aspects. Furthermore, we investigate its properties and establish the first-
and second-order oracle bounds concerning fairness to show that fairness can
be boosted via ensemble combination with theoretical learning guarantees. The
analysis is suitable for both binary and multi-class classification. Comprehensive
experiments are conducted to evaluate the effectiveness of the proposed methods.

1 Introduction

Machine learning (ML) is increasingly applied in sensitive decision-making domains such as recruit-
ment, jurisdiction, and credit evaluation. As ML becomes more pervasive in real-world scenarios
nowadays, concerns about the fairness and reliability of ML models have emerged and grown.
Discriminative models may perpetuate or even exacerbate improper human prejudices, negatively
impacting on both model performance and societal equity. Unfairness in ML models identified in
the literature primarily stems from two causes: data biases and algorithmic biases [44]. Data biases
mainly arise from inaccurate device measurements, erroneous reports, or historically biassed human
decisions, misleading ML models to replicate them. Missing data can also distort the distribution
of the dataset from the target population and introduce further biases. Algorithmic biases occur even
with purely clean data. These biases may arise from proxy attributes for sensitive variables or from
tendentious objectives of the learning algorithms themselves. For example, minimising aggregated
prediction errors may inadvertently favour the privileged group over unprivileged minorities.

Numerous mechanisms have been proposed to mitigate biases and enhance fairness in ML models,
typically categorised as pre-processing, inprocessing, and post-processing mechanisms. Pre- and
post-processing mechanisms normally function by manipulating input or output, while inprocessing
mechanisms incorporate fairness constraints into training procedures or algorithmic objectives.
Determining the superior approach is challenging as results vary based on applied fairness measures,
datasets, and even the training-test split handling [20, 16]. Various fairness measures have been
developed to facilitate the design of fair ML models, such as group and individual fairness measures.
Group fairness emphasises statistical/demographic equality among groups defined by sensitive
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attributes (SAs), including but not limited to demographic parity (DP) [17, 21], equality of opportunity
(EO) [25], and predictive quality parity (PQP) [11, 44]. In contrast, individual fairness follows the
principle that ‘similar individuals should be evaluated or treated similarly,’ with similarity measured
by specific distances between individuals [27, 15]. However, these measures often conflict, meaning
that unfair outcomes may persist even when one criterion is met, such as the incompatibility of group
fairness measures themselves and that between individual and group fairness measures [4, 6, 41, 25].

To address these challenges, we propose a novel fairness quality measure named ‘discriminative risk
(DR)’, which reflects the bias degree of learners from both individual and group fairness perspectives.
We further investigate its properties and suggest that the fairness quality of learners can benefit from
combination with theoretical learning guarantees, inspired by a cancellation-of-errors effect of the
ensemble combination, where combining multiple weak learners yields a more powerful learner.
In essence, we explore the possibility of a cancellation-of-biases effect in combination, seeking to
answer the question: Will combination help mitigate discrimination in multiple biassed individual
classifiers? Our proposed bounds regarding fairness indicate a positive answer, demonstrating that
the fairness quality of an ensemble is superior to that of one single individual classifier.

Our contributions in this work are three-fold: (1) We propose a novel fairness quality measure that
assesses the bias level of classifiers from both individual and group fairness sides, along with its
properties. (2) We establish first- and second-order oracle bounds concerning fairness, theoretically
demonstrating the cancellation-of-biases effect in ensemble combination, and present two PAC
bounds to further support this effect. (3) We conduct comprehensive experiments to validate the
effectiveness of the proposed fairness measure and its corresponding bounds.

2 Methodology

In this section, we formally study the fairness properties of ensemble methods with a majority vote.

We denote a dataset by S= {(xi, yi)}ni=1, where instances are independent identically distributed
(i.i.d.) drawn from an input/feature-output/label space X×Y according to an unknown distribution
D. The label space Y= {1, 2, ..., nc}(nc ⩾ 2) is finite and could represent binary or multi-class
classification, and the feature space X is arbitrary. An instance including SAs a is represented as
x≜ (x̆,a), and ã indicates perturbed a. A hypothesis in the space of hypotheses F is a function
f ∈ F : X 7→ Y . The weighted voting prediction by an ensemble of m individual classifiers,
parameterised by a weight vector ρ = [w1, ..., wm]T ∈ [0, 1]m, is originally given by wvρ(x) =
argmaxy∈Y

∑m
j=1 wjI(fj(x) = y), such that

∑m
j=1wj = 1, where wj is the weight of individual

classifier fj(·). Note that ties are resolved arbitrarily, and both parametric and non-parametric models
can serve as individual classifiers here. The ensemble classifier can be reformulated to ρ-weighted
majority vote wvρ(x)= argmaxy∈Y Ef∼ρ[I(f(x)=y)]. Note that E(x,y)∼D[·] and Ef∼ρ[·] can be
respectively abbreviated as ED[·] and Eρ[·] for brevity when the context is unambiguous.

2.1 Fairness quality from both individual and group fairness aspects

To discuss the properties of fairness, it is essential to have a proper measure that accurately reflects
the prediction quality of hypotheses. Lots of fairness measures have been proposed (see Section A.2),
including three commonly used ones (i.e., DP, EO, and PQP).1 However, the hard compatibility
among them means that each one of them focuses only on one specific aspect of fairness (either
group or individual fairness). Therefore, to capture the discriminative degree of hypotheses from both
individual and group sides, we propose a new fairness quality measure named discriminative risk (DR).

Presume that the considered dataset S consists of instances containing SAs, where the features of
an instance x=(x̆,a) include the SAs a and non-sensitive attributes x̆. Note that a=[a1, ..., ana

]T

allows multiple attributes, with na as the number of SAs, and for each attribute, ai∈Z+(1⩽ i⩽na)
allows binary and multiple values. Following the principle of individual fairness, the treat-

1 In this paper, these three group fairness measures of one hypothesis f(·) are evaluated respectively as
DP(f)= |PD[f(x)=1|a=1]−PD[f(x)=1|a=0]| , (1a)

EO(f)= |PD[f(x)=1|a=1, y=1]−PD[f(x)=1|a=0, y=1]|, (1b)

PQP(f)= |PD[y=1|a=1, f(x)=1]−PD[y=1|a=0, f(x)=1]|, (1c)
where x = (x̆,a), y is the true label, and f(x) is the prediction. Note that a = 1 and a = 0 mean that the instance x
belongs to the privileged group and marginalised groups, respectively.
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ment/evaluation of one instance should not change solely due to minor changes in its SAs. This
indicates the existence of underlying discriminative risks if one hypothesis/classifier makes different
predictions for an instance based solely on changes in its SAs. Consequently, the fairness quality
of one hypothesis f(·) can be evaluated by

ℓbias(f,x) = I(f(x̆,a) ̸= f(x̆, ã)) , (2)

similarly to the 0/1 loss. Note that (2) is evaluated on only one instance. To describe this
characteristic of the hypothesis on multiple instances (aka. from a group level), then the empirical
discriminative risk on S and the true discriminative risk of the hypothesis are expressed as

L̂bias(f, S) =
1
n

∑n
i=1 ℓbias(f,xi) , (3)

and
Lbias(f) = E(x,y)∼D[ℓbias(f,x)] , (4)

respectively. Therefore, by ℓbias(f,x), we are able to measure the discriminative risk of one
hypothesis on one instance, guided by the principle of individual fairness that ‘there will exist
discriminative risk if similar instances are not treated similarly’.2 Meanwhile, by L̂bias(f, S) and
Lbias(f), we are able to weigh the discriminative risk of the hypothesis over the whole group
including all subgroups divided by SAs, in the sense, consistent with the idea of group fairness
as well. Overall, the proposed fairness quality could provide benefits to properly measure the
discriminative risk of one hypothesis from both individual and group fairness aspects.

Ensemble classifiers predict by taking a weighted combination of predictions by hypotheses from F ,
and the fairness quality of the ensemble will be evaluated corresponding to the total weight assigned
to individual classifiers, that is, ℓbias(wvρ,x)= I(wvρ(x̆,a) ̸=wvρ(x̆, ã)). Then we can obtain the
empirical discriminative risk on S and the true discriminative risk of the ensemble analogously.

2.2 The distinction of DR compared with existing fairness measures

The design of DR shares some similarities with the ideas of individual fairness and group fairness,
therefore it is supposed to be able to reflect the bias level of one hypothesis from both individual and
group aspects. Besides, from some point of view, the proposed DR in (3) and (4) could be viewed as a
simplified version of causal fairness (such as counterfactual fairness3 (CFF) [35] and proxy discrimi-
nation4 (PD) [33]), because both of them consider the situation where SAs are altered. However, there
are still many distinctions between our proposed DR and these existing fairness and their measures.

Two distinctions from individual fairness The intuition behind individual fairness [15, 14] is
that we want similar predicted outcomes for similar individuals based on specific similarity metrics.
It is easily notable that the choice of the similarity metric (that is, dX and dY in (5)) plays an
essential role in comparison and may mislead results if it is chosen less properly. Besides, all these
formulations make comparisons between existing individual pairs, while DR finds another way

2 Apart from various choices of the metric, there are different formulations in the literature to mathematically capture the
aforementioned intuition, such as Lipschitz mapping-based, probability Lipschitzness, and the (ϵ−δ) language-based formula-
tions. In other words, for a mapping h : X 7→Y , we say it satisfies individual fairness if for all possible (x̆,a), (x̆′,a′) ∈ X ,
it holds any one of the following: (1) it is λ-Lipschitz w.r.t. appropriate metrics on the domain X and the codomain Y , that is,

dY
(
h(x̆,a), h(x̆

′
,a
′
)
)
⩽ λ · dX

(
(x̆,a), (x̆

′
,a
′
)
)
; (5)

(2) it is probability Lipschitz w.r.t. appropriate metrics on the domain and the codomain, that is,
PD

[
dY

(
h(x̆,a), h(x̆

′
,a
′
)
)
/dX

(
(x̆,a), (x̆

′
,a
′
)
) ⩾ ϵ

]
⩽ δ ; (6)

or (3) it holds
dX

(
(x̆,a), (x̆

′
,a
′
)
)
⩽ ϵ ⇒ dY

(
h(x̆,a), h(x̆

′
,a
′
)
)
⩽ δ , (7)

where we consider ϵ ⩾ 0 and δ ⩾ 0.
3Given a predictive problem where A, X and Y denote the protected attributes, remaining attributes, and output of interest

respectively, Kusner et al. [35] assume that a causal model (U, V, F ) is given, where V ≡A∪X . The counterfactual fairness
is a postulated criterion for predictors of Y , that is, a predictor Ŷ is counterfactual fair if under any context X=x and A=a,

P(ŶA←a(U)=y | X=x,A=a)=P(ŶA←a′ (U)=y | X=x,A=a) , (8)

for any y and for any value a′ attainable by A.
4 Kilbertus et al. [33] generally consider causal graphs involving a protected attribute A, a set of proxy variables P ,

features X , a predictor R, and sometimes an observed outcome Y . A causal graph is a directed, acyclic graph whose nodes
represent random variables. A variable V in a causal graph exhibits potential proxy discrimination, if there exists a direct path
from A to V that is blocked by a proxy variable and V itself is not a proxy; An intervention on P is denoted by do(P =p),
and a predictor R exhibits no proxy discrimination based on a proxy P if for all p, p′,

P(R | do(P = p)) = P(R | do(P = p
′
)) . (9)
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to compare individuals by slightly perturbing one individual’s SA(s), in order to ensure the two
individuals for comparison are similar enough. In other words, the distance between the original
individual/instance and its slightly perturbed version is zero(i.e., d((x̆,a), (x̆, ã))=0)—because the
only possible difference that exists between (x̆,a) and (x̆, ã) is within SAs, and it is not restricted by
or heavily relys on some carefully selected distance metric. DR does not compare the original instance
pairs within the dataset, which is also different from the existing individual fairness computation.
That is to say, all (x̆,a) and (x̆′,a′) in (5) come from the original dataset S, while for an original
instance (x̆,a), its slightly perturbed version (x̆, ã) in (2) does not.

Two distinctions from group fairness Group fairness focuses on statistical/demographic equality
among groups defined by SAs, therefore, it is usually calculated in a way of computing the difference
of one specific criterion or metric between two different subgroups that are divided by SAs. However,
unlike three commonly-used group fairness measures in (1), the proposed DR in (3) and (4) does
not need to split different subgroups and calculate them separately. DR can be gotten for a dataset
as a whole including the privileged group and unprivileged groups. The reason is that in (2), if one
hypothesis/classifier makes different predictions for one instance with only changes in SAs, there
will exist underlying discriminative risks, regardless of which group this instance/member belongs to.
Note that DR can be computed in the same way as (1),

L′
bias(f) = |E(x,y)∼D|a=1[ℓbias(f,x)]− E(x,y)∼D|a=0[ℓbias(f,x)]| , (10)

if the practitioner wants, except that they do not have to. Moreover, these three group fairness
measures only work for the scenario of one SA (usually with binary values). Thus a bonus advantage
of the proposed DR is that it is suitable for not only binary but also multi-class classification scenarios,
as well as for the scenarios of several SAs and multiple values, enlarging its applicable fields.

Five distinctions from causal fairness Despite the similarity shared between DR and causal
fairness (that is, CFF [35] and PD [33]), there are also differences. First, DR is a quantitative measure
to evaluate the discriminative risk, while causal fairness is validated based on causal models/graphs
(U, V, F )—not being computed in concrete values. As one measure without causal analysis, DR is
easy to calculate and avoids the risk of misplacing the relationship among factors, yet is still somehow
able to achieve similar observations guided by the same idea of evaluating what if SAs of instances are
altered. Second, both CFF and PD only work for one SA, as shown in (8) and (9), while DR is more
applicable as it can deal with scenarios of multiple SAs. Third, note that non-sensitive attributes may
be changed as well in CFF when SAs are perturbed due to the existence of proxy attributes, which
means x̆ might not remain the same. In contrast, DR and PD do not consider the subsequent change
of proxy attributes after perturbing the SAs. Fourth, both CFF and PD have a quite strong condition in
(8) and (9) by ‘it is achieved only if the equality holds for any value ã different from a′, while DR has
a weaker one by ‘it is broken if the equality does not hold anymore when there exists one ã different
from a, without checking all possible ã that does not equal a′. We implement it by using a probability
of altering SAs within DR when computing it in practice. In other words, ã is perturbed with a
probability of p ∈ [0, 1] from a, which means it is with a teeny tiny little possibility that ã=a for
certain instance (not all of them in one dataset), while usually ã ̸=a in CFF and PD. Lastly, DR can be
proved to be bounded, presented in Section 2.3, which is an advantage that CFF and PD do not have.

2.3 Properties of DR and bounds regarding fairness for weighted vote

In this subsection, we firstly discuss properties of DR, where no restrictions apply on the type of
classifiers. In other words, it works for both individual/member classifiers and ensemble classifiers via
weighted vote. We argue that the empirical DR on S is an unbiassed estimation of the true DR, that
is, L̂bias(f, S) in (3) is an unbiassed estimation of Lbias(f) in (4). The reason is that for one random
variable X representing instances, ℓbias(f,x) in (2) could be viewed as a new random variable obtained
by using a few fixed operations on X, recorded as Y. Then for n random variables (i.e., X1,X2, ...,Xn

representing instances) that are independent and identically distributed (iid.), by operating them in
the same way, we can get random variables Y1,Y2, ...,Yn that are iid. as well. Then we can rewrite
L̂bias(f, S) as 1

n

∑n
i=1Yi and Lbias(f) as EY∼D′ [Y], where D′ denotes the space after operating X∼D.

Therefore, it could be easily seen that the former is an unbiased estimation of the latter.

Then we provide some bounds concerning fairness for the weighted vote, inspired by the work of
Masegosa et al. [37]. Following the notations described in Section 2.1, if the weighted vote makes a
discriminative decision, then at least a ρ-weighted half of the classifiers have made a discriminative
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decision and, therefore, ℓbias(wvρ,x) ⩽ I(Eρ[I(f(x̆,a) ̸= f(x̆, ã))] ⩾ 0.5). This observation leads
to our proposed first- and second-order oracle bounds for the fairness quality of weighted vote. Note
that there are no more assumptions except the aforementioned notations in the following theorems.
Also, note that a prominent difference between our work and the work of Masegosa et al. [37] is that
they investigate the expected risk or accuracy rather than fairness quality.

2.3.1 Oracle bounds regarding fairness for weighted vote

Theorem 1 (First-order oracle bound).
Lbias(wvρ) ⩽ 2Eρ[Lbias(f)] . (11)

To investigate the bound deeper, we introduce here the tandem fairness quality of two hypotheses
f(·) and f ′(·) on one instance (x, y), adopting the idea of the tandem loss [37], by

ℓbias(f, f
′,x)= I

((
f(x̆,a) ̸=f(x̆, ã)

)
∧
(
f ′(x̆,a) ̸=f ′(x̆, ã)

))
. (12)

The tandem fairness quality counts a discriminative decision on the instance (x, y) if and only if both
f(·) and f ′(·) give a discriminative prediction on it. Note that in the degeneration case ℓbias(f, f,x)=
ℓbias(f,x). Then the expected tandem fairness quality is defined by Lbias(f, f

′)= ED[ℓbias(f, f
′,x)].

Lemma 1 relates the expectation of the second moment of the standard fairness quality to the expected
tandem fairness quality. Note that Ef∼ρ,f ′∼ρ[Lbias(f, f

′)] for the product distribution ρ×ρ over
F×F can be abbreviated as Eρ2 [Lbias(f, f

′)] for brevity.
Lemma 1. In multi-class classification,

ED[Eρ[ℓbias(f,x)]
2] = Eρ2 [Lbias(f, f

′)] . (13)

Theorem 2 (Second-order oracle bound). In multi-class classification
Lbias(wvρ) ⩽ 4Eρ2 [Lbias(f, f

′)] . (14)

Furthermore, we can also obtain an alternative second-order bound based on Chebyshev-Cantelli
inequality, presented in Theorem 3.
Theorem 3 (C-tandem oracle bound). If Eρ[Lbias(f)] < 1/2 , then

Lbias(wvρ) ⩽
Eρ2 [Lbias(f, f

′)]− Eρ[Lbias(f)]
2

Eρ2 [Lbias(f, f ′)]− Eρ[Lbias(f)] +
1
4

. (15)

Up to now, we have gotten the first- and second-order oracle bounds regarding the fairness quality
for the weighted vote, which will help us further investigate fairness. Furthermore, it is worth
noting that, despite the similar names of ‘first- and second-order oracle bounds’ from our inspiration
[37], the essences of our bounds are distinct from theirs. Specifically, their work investigates the
bounds for generalisation error and is not relevant to fairness issues at all, while ours focus on
the theoretical support for bias mitigation. In other words, their bounds are based on the 0/1 loss
ℓerr(f,x)= I(f(x) ̸=y), while ours are built upon ℓbias(f,x) in (2).

2.3.2 PAC bounds for the weighted vote

All oracle bounds described above are expectations that can only be estimated on finite samples
instead of being calculated precisely. They could be transformed into empirical bounds via PAC
analysis as well to ease the difficulty of giving a theoretical guarantee of the performance on any
unseen data, which we discuss in this subsection. Based on Hoeffding’s inequality, we can deduct
generalisation bounds presented in Theorems 4 and 5.
Theorem 4. For any δ ∈ (0, 1), with probability at least (1−δ) over a random draw of S with a size
of n, for a single hypothesis f(·),

Lbias(f) ⩽ L̂bias(f, S) +
√

1
2n

ln 1
δ
. (16)

Theorem 5. For any δ ∈ (0, 1), with probability at least (1− δ) over a random draw of S with a
size of n, for all distributions ρ on F ,

Lbias(wvρ) ⩽ L̂bias(wvρ) +

√
1
2n

log |F|
δ

. (17)

Note that all proofs in this subsection are provided in Appendix B.
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3 Empirical results

In this section, we present our experiments to evaluate the effectiveness of the proposed discriminative
risk (DR) and its corresponding bounds. These experiments are conducted to explore the following
research questions: RQ1. Compared with the baseline fairness measures, does DR capture the bias
level of classifiers effectively, and can it capture discrimination from both individual and group
fairness aspects? RQ2. Are the oracle bounds and generalisation bounds in Section 2.3 valid? Note
that more details (including the experimental setup) are elaborated on in Appendix C to save space.
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Figure 1: Comparison of the proposed discriminative
risk (DR) with three group fairness measures, that is, DP,
EO, and PQP. (a) Scatter diagrams with the degree of
correlation, where the x- and y-axes are different fair-
ness measures and the variation of accuracy between the
raw and perturbed data. (b) Correlation among multiple
criteria. Note that correlation here is calculated based on
the results from all datasets.
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Figure 2: Correlation for generalisation bounds
in section 2.3.2. (a–b) Correlation between Lbias(·)
and generalisation bounds, where Lbias(·) is indi-
cated on the vertical axis and the right-hand sides of
inequalities (16) and (17) are indicated on the hori-
zontal axes, respectively. Note that correlation here
is calculated based on the results from all datasets.
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Figure 3: Correlation for oracle bounds in section 2.3.1. (a–c) Correlation between Lbias(wvρ) and oracle
bounds, where Lbias(wvρ) is indicated on the vertical axis and the horizontal axes represent the right-hand sides
of inequalities (11), (14), and (15), respectively. (d) The horizontal and vertical axes in (d) denote the right- and
left-hand sides in (13), respectively. Note that correlation here is calculated based on the results from all datasets.

Validating the proposed fairness quality measure We evaluate here the validity of the proposed
fairness quality measure (namely discriminative risk, DR) in section 2.1, compared with three group
fairness measures. Classifiers are conducted using several ensemble methods including bagging,
AdaBoost, lightGBM, FairGBM, and AdaFair. The empirical results are reported in Fig. 1. As we
can see from Fig. 1(a), compared with three group fairness measures, DR has the highest value of
correlation (namely the Pearson correlation coefficient) between itself and the variation of accuracy. It
means that DR captures better the characteristic of changed treatment than three other group fairness
measures when SAs are perturbed, as the drop in accuracy indicates the existence of underlying
discrimination hidden in models. Fig. 1(b) reports the correlation between the variation of other
criteria (such as precision, recall/sensitivity, f1 score, and specificity) including accuracy and multiple
fairness measures. It shows that DR also has a high correlation with the variation of specificity.

Validating the oracle bounds and PAC-Bayesian bounds Experiments here are conducted to
verify the proposed oracle bounds in section 2.3.1 and generalisation bounds in section 2.3.2, of
which the validity is evaluated on scatter diagrams with the degree of correlation, namely the Pearson
correlation coefficient, reported in Figures 3 and 2. As we may see from Fig. 3(a), it shows a high
level of correlation between Lbias(wvρ) and 2Eρ[Lbias(f)] and that Lbias(wvρ) is indeed smaller than
2Eρ[Lbias(f)] in most cases, indicating the inequality (11) is faithful. Similar results are presented
in Figures 3(b) and 3(c) as well for inequalities (14) and (15), respectively. Note that the correlation
between ED[Eρ[ℓbias(f,x)]

2] and Eρ2 [Lbias(f, f
′)] in (13) is close to one, indicating that (13) is

faithful. As for Fig. 3(b), it shows a relatively high level of correlation between Lbias(wvρ) and the
generalisation bound in inequality (17) and that Lbias(wvρ) is indeed smaller than the generalisation
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bound in most of the cases, indicating the inequality (17) for an ensemble is reliable. Similar results for
one single individual classifier are presented in Fig. 3(a) to demonstrate that inequality (16) is reliable.

4 Conclusion

We have presented a novel analysis of the expected fairness quality via weighted vote and demon-
strated the existence of a cancellation-of-biases effect in ensemble combination, confirmed by
extensive empirical results. Our work shows that combination could boost fairness with theoretical
learning guarantees, which is helpful to save some fruitless efforts on (hyper-)parameter tuning.
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A Related work

In this section, we first introduce existing techniques to mitigate bias issues in ML models and then
summarise relevant fairness-aware ensemble-based methods in turn.

A.1 Mechanisms to enhance fairness

Three typical mechanisms are employed to mitigate biases and enhance fairness in ML models:
pre-processing, inprocessing, and post-processing mechanisms. Pre-processing mechanisms usually
manipulate features or labels of instances before they are fed into the algorithm, aiming to assimilate
the distributions of unprivileged groups with those of the privileged group, thus making it harder
for the algorithm to distinguish between them [3, 43, 10, 9, 36, 17, 28]. While advantageous for their
flexibility across classification tasks, pre-processing mechanisms often suffer from high uncertainty
in the final accuracy. Post-processing mechanisms adjust output scores or decouple predictions
for each group [38, 16, 12, 25]. Though also task-agnostic, they typically yield inferior results due
to their late application in the learning process, and may compromise individual fairness through
differentiated treatment. Inprocessing mechanisms favour directly incorporating fairness constraints
during the training by incorporating penalty/regularisation terms [47, 48, 46, 42, 31, 29], while some
adjusting these constraints in minimax or multi-objective optimisation settings [2, 1, 49]. These
mechanisms enforce explicit trade-offs between accuracy and fairness in objectives, but are closely
tied to the specific ML algorithm used. Choosing the optimal mechanism is context-dependent,
varying with fairness measures, datasets, and even the training-test split handling [20, 16].

A.2 Types of fairness measures

Various fairness measures have been proposed to facilitate the design of fair ML models, which can
be generally divided into distributive and procedural fairness measures. Procedural fairness concerns
the fairness of decision-making processes, encompassing feature-apriori fairness, feature-accuracy
fairness, and feature-disparity fairness [22]. These measures depend on features and user perceptions
of fairness but may still introduce hidden biases within the data. Distributive fairness pertains to
the fairness of decision-making outcomes (predictions), including unconscious/unawareness fairness,
group fairness, individual fairness, and counterfactual fairness. As the simplest, unawareness fairness
means making predictions without explicitly using any protected SAs, though it does not prevent
biases linked to associations between unprotected and protected attributes [15]. Group fairness
focuses on statistical/demographic equality among groups defined by SAs, such as demographic
parity, equality of opportunity, and predictive quality parity [6, 51, 34, 12, 25, 17, 30, 8]. In contrast,
individual fairness operates on the principle that ‘similar individuals should be evaluated or treated
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similarly,’ where similarity is measured by some certain distance between individuals while the
specified distance also matters a lot [27, 15]. Besides, counterfactual fairness aims to explain the
sources of discrimination and qualitative equity through causal interference tools [39, 35].

However, the group fairness measures are often hardly compatible with each other, for example,
the occurrence between equalised odds and demographic parity, or that between equalised
calibration and equalised odds [6, 41, 25]. Individual and group fairness such as demographic
parity are also incompatible except in the case of trivial degenerate solutions. Moreover, three
fairness criteria—independence, separation, and sufficiency—are demonstrated not to be satisfied
concurrently unless in degenerate cases [4]. Furthermore, significant attention has been paid to
compromising accuracy in the pursuit of higher levels of fairness [20, 38, 12, 5]. It is widely accepted
that introducing fairness constraints into an optimisation problem likely results in reduced accuracy
compared to optimising solely for accuracy. However, some researchers have recently proposed
a few unique scenarios where fairness and accuracy can be simultaneously improved [40, 45].

A.3 Fairness-aware ensemble-based methods

One of the primary challenges in designing fair learning algorithms is the potential trade-off between
fairness and accuracy. Recent studies have explored various fairness-enhancing techniques and their
impact on ML models, including a few methods employing typical boosting mechanisms in ensemble
learning, such as AdaFair [26], FARF [50], and FairGBM [13]. For instance, FARF and AdaFair
combined different fairness-related criteria into the training phase, while FairGBM transformed
non-differentiable fairness constraints into a proxy inequality constraint to facilitate gradient-based
optimisation. Despite these advancements, there is a paucity of research addressing the theoretical
guarantees of these methods in enhancing fairness, with most studies relying on empirical results to
demonstrate practical effectiveness.

B Proofs for the proposed bounds in Section 2.3

In this section, we provide the corresponding proofs for Sections 2.3.1 and 2.3.2 in turn.

B.1 Proof of oracle bounds in section 2.3.1

Proof of theorem 1. We have
Lbias(wvρ) = ED[ℓbias(wvρ,x)] ⩽ PD(Eρ[I(f(x̆,a) ̸= f(x̆, ã))] ⩾ 0.5) .

By applying Markov’s inequality to random variable Z = Eρ[I(f(x̆,a) ̸= f(x̆, ã))] we get
Lbias(wvρ) ⩽ PD(Eρ[I(f(x̆,a) ̸=f(x̆, ã))]⩾0.5) ⩽ 2ED[Eρ[I(f(x̆,a) ̸=f(x̆, ã))]] = 2Eρ[Lbias(f)] .

Proof of lemma 1. We have
ED[Eρ[ℓbias(f,x)]

2] = ED[Eρ[I(f(x̆,a) ̸= f(x̆, ã))]Eρ[I(f ′(x̆,a) ̸= f ′(x̆, ã))]]

= ED[Eρ2 [I(f(x̆,a) ̸= f(x̆, ã))I(f ′(x̆,a) ̸= f ′(x̆, ã))]]

= ED[Eρ2 [I((f(x̆,a) ̸= f(x̆, ã))∧(f ′(x̆,a) ̸= f ′(x̆, ã)))]]

= Eρ2 [ED[I((f(x̆,a) ̸= f(x̆, ã))∧(f ′(x̆,a) ̸= f ′(x̆, ã)))]]

= Eρ2 [ED[ℓbias(f, f
′,x)]]

= Eρ2 [Lbias(f, f
′)] .

Proof of theorem 2. By applying second-order Markov’s inequality to Z=Eρ[I(f(x̆,a) ̸=f(x̆, ã))]
and lemma 1, we get
Lbias(wvρ) ⩽ PD(Eρ[I(f(x̆,a) ̸=f(x̆, ã))]⩾0.5) ⩽ 4ED[Eρ[I(f(x̆,a) ̸=f(x̆, ã))]2] = 4Eρ2 [Lbias(f, f

′)] .

Proof of theorem 3. By applying the Chebyshev-Cantelli inequality to Eρ[ℓbias(f,x)], we can obtain

Lbias(wvρ)⩽ PD(Eρ[ℓbias(f,x)] ⩾ 1
2
)

= PD(Eρ[ℓbias(f,x)]−Eρ[Lbias(f)] ⩾ 1
2
−Eρ[Lbias(f)])
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⩽
Eρ2 [Lbias(f, f

′)]− Eρ[Lbias(f)]
2

( 1
2
−Eρ[Lbias(f)])2+Eρ2 [Lbias(f, f ′)]−Eρ[Lbias(f)]2

=
Eρ2 [Lbias(f, f

′)]− Eρ[Lbias(f)]
2

Eρ2 [Lbias(f, f ′)]− Eρ[Lbias(f)] +
1
4

.

B.2 Proof of generalisation bounds in section 2.3.2

Proof of theorem 4. According to Hoeffding’s inequality, for any ε > 0, we have

P(Lbias(f)− L̂bias(f, S) ⩾ ε) ⩽ e−2nε2 . (24)

Let δ ≜ e−2nε2 ∈ (0, 1), we can obtain ε=
√

1/(2n)ln(1/δ). Then with probability at least (1−δ) we
have (16).

Proof of theorem 5. We have known that for one single hypothesis f(·), and for any ε > 0, it holds
(24). Then for a finite hypotheses set F such that |F | = m, we will have

P
(
∃ ρ ∈ [0, 1]m : Lbias(wvρ)− L̂bias(wvρ, S) ⩾ ε

)
⩽

∑m
j=1 P

(
Lbias(fj)− L̂bias(fj , S) ⩾ ε

)
⩽

∑m
j=1 e

−2nε2

= me−2nε2 .

Let δ ≜ me−2nε2 , then we obtain ε =
√

1/(2n) ln(m/δ). Therefore with probability at least (1−δ) we
have (17).

Note that lemma 2 is deducted based on McAllester Bound [23, 24].
Lemma 2. For any probability distribution π on F that is independent of S and any δ ∈ (0, 1), with
probability at least (1− δ) over a random draw of S, for all distributions ρ on F ,

Lbias(wvρ) ⩽ L̂bias(wvρ) +

√
1
2n

(
KL(ρ∥π) + ln 2

√
n

δ

)
, (26)

where KL(ρ∥π) is the Kullback-Leibler divergence between distributions ρ and π.

C Supplemental empirical results

In this section, we elaborate on our experiments to evaluate the effectiveness of the proposed
discriminative risk (DR) and its corresponding bounds.

C.1 Experimental setups

In this subsection, we present the experimental setting, including datasets, evaluation metrics, baseline
fairness measures, baseline fairness-aware ensemble-based methods, baseline ensemble pruning
methods, and implementation details.

Datasets Five public datasets5 that we use include Ricci, Credit, Income, PPR, and PPVR, with
more details about the dataset statistics provided in Table 1.

Evaluation metrics, and baseline fairness measures As data imbalance usually exists within
unfair datasets, we consider multiple criteria to evaluate the prediction performance from different
perspectives, including accuracy, precision, recall (aka. sensitivity), f1 score, and specificity. More-
over, to measure the discrimination degree within classifiers as well as to evaluate the validity of DR
in capturing the discriminative risk of classifiers, we consider three commonly-used group fairness
measures (that is, demographic parity (DP) [17, 21], equality of opportunity (EO) [25], and predictive
quality parity (PQP) [11, 44]) and compare DR with these three baseline fairness measures.

5Ricci https://rdrr.io/cran/Stat2Data/man/Ricci.html, Credit https://archive.ics.uci.
edu/ml/datasets/statlog+(german+credit+data), Income https://archive.ics.uci.edu/ml/
datasets/adult, Propublica-Recidivism (PPR) and Propublica-Violent-Recidivism (PPVR) datasets https:
//github.com/propublica/compas-analysis/
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Table 1: Dataset statistics. Note that the columns named “#inst” and “#sen att” represent the number of instances
and the number of sensitive attributes (SAs) in the dataset, respectively. The joint SA of one instance represents
both two of the SAs of it belong to the corresponding privileged group.

Dataset #inst #feature #sen
att

#privileged group for sensitive attribute
raw binarized 1st sen att 2nd sen att joint

ricci 118 5 6 1 68 in race — —
credit 1000 21 59 2 690 in sex 851 in age 625

income 30162 14 99 2 25933 in race 20380 in sex 18038
ppr 6167 11 402 2 4994 in sex 2100 in race 1620

ppvr 4010 11 328 2 3173 in sex 1452 in race 1119

Baseline fairness-aware ensemble-based methods To evaluate the validity of DR in Section 2.1,
ensemble classifiers in Section 3 are conducted using several ensemble methods including bagging
[7], AdaBoost [19, 18], lightGBM [32], as well as two fairness-aware ensemble-based methods (that
is, FairGBM [13] and AdaFair [26]). Besides, to verify the proposed oracle bounds and generalisation
bounds in Section 2.3, bagging, AdaBoostM1, and SAMME are used in Section 3 to constitute an
ensemble classifier on various kinds of individual classifiers including decision trees (DT), naive
Bayesian (NB) classifiers, k-nearest neighbours (KNN) classifiers, Logistic Regression (LR), support
vector machines (SVM), linear SVMs (linSVM), and multilayer perceptrons (MLP).

Implementation details We use standard five-fold cross-validation in these experiments, that is
to say, in each iteration, the entire dataset is split into two parts, with 80% as the training set and
20% as the test set. Note that GPU is not necessarily required, and CPU would be sufficient to
run our experiments. All experiments were run on our lab servers using a Docker image named
“continuumio/anaconda3”.6

C.2 Limitations and discussion

Discrimination mitigation techniques are meaningful given the wide applications of ML models
nowadays, therefore, bringing such a technique with learning guarantees matters as it could provide
theoretical foundations to boost fairness without potentially vain and repetitive practical attempts. In
this view, our work throws away a brick in order to get a gem, showing that fairness can indeed be
boosted with learning guarantees instead of being dependent on specific (hyper-)parameters. The
proposed discriminative risk (DR) measure and the proposed oracle bounds are suitable for both
binary and multi-class classification, enlarging the applicable fields, which is advantageous. However,
there is also a limitation in DR. For instance, its computation is relevant to perturbed SAs, which
means a randomness factor exists and may affect somehow computational results. Therefore, the
effect of randomness on discriminative risk is worth exploring in the future.

6https://hub.docker.com/r/continuumio/anaconda3
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