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ABSTRACT

Recent large language models (LLMs) based on autoregressive (AR) next-token
prediction have achieved remarkable success in natural language generation and
are rapidly expanding to image and speech synthesis. Yet most current ap-
proaches still treat these modalities in isolation—training independent models or
loosely coupling multiple generators. Even recent omni-models such as UGen
and Qwen2.5-Omni mainly address understanding tasks or text—image generation
and do not provide a single AR backbone capable of simultaneously producing
high-fidelity images and natural speech. Inspired by the human brain’s capabil-
ity to imagine and speak simultaneously, we propose OmniVIVO, a unified AR
approach for modeling visual and voice modalities together, capable of generat-
ing high-fidelity images and natural speech in parallel from a single text input.
Our OmniVIVO integrates a state-of-the-art AR image generator with a novel
lightweight speech decoder, enabling the first unified approach for the concurrent
generation of natural speech and high-fidelity images. By sharing representations
across modalities within a single transformer backbone, the model learns a rich
multimodal space that enables tighter semantic alignment and more efficient joint
generation than existing multi-model pipelines. Through a unified backbone, Om-
niVIVO produces speech with high perceptual quality and naturalness, surpassing
comparably sized text-to-speech (TTS) systems and being on par with state-of-
the-art systems like Cosyvoice2 and VITS, while maintaining high-fidelity image
generation. To quantify contextual understanding across modalities, we propose a
multimodal ranking metric spanning text, speech, and images, demonstrating that
OmniVIVO’s bi-modal outputs are effective in information acquisition. We con-
struct VIVOGen, a high-quality tri-modal text-image—speech dataset that lever-
ages OmniVIVO’s multimodal outputs, providing a valuable resource for research
in multimodal learning and applications in education and language acquisition,
which we will publicly release.

1 INTRODUCTION

Recent advancements in artificial intelligence (Al), driven by large language models (LLMs) such
as GPT-4 (OpenAl, 2023), LLaMA-3 (Dubey et al.| 2024), and Qwen2.5 (Yang et al., |2024), have
significantly expanded the boundaries of AI, making powerful tools more accessible to a broader
audience. Recently, research has expanded LLM applications to new areas such as visual generation
and speech synthesis. Noteworthy achievements have been made in text-to-image (T2I) generation,
where LLMs produce high-fidelity images, rivaling the performance of task-specific models such
as diffusion-based architectures (Sun et al., 2024} Tian et al.). In the domain of speech synthe-
sis, LLMs have also demonstrated impressive progress in text-to-speech (TTS) systems, generating
highly natural-sounding speech (Gao et al., 2025) while showcasing advanced capabilities such as
prompt-based control and zero-shot learning (Du et al.,2024). Furthermore, recent studies have ex-
plored multimodal LLMs such as Qwen2.5-Omni (Jin Xul 2025)), UGen (Tang et al., [2025), which
are capable of processing inputs from diverse modalities—images, text, and speech—and producing
text or speech output.
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While existing research in multimodal AI has primarily concentrated on processing and understand-
ing multimodal inputs, there remains a significant gap in the generation of multimodal outputs. In
particular, producing outputs such as speech and images is a fundamental step toward emulating the
human capacity to imagine and vocalize simultaneously. To bridge this gap, we propose a novel ap-
proach that enables the concurrent generation of high-fidelity images and natural-sounding speech
from a single LLM architecture. This method not only mimics human-like cognition but also en-
hances the flexibility and scalability of multimodal systems, paving the way for more immersive
human-Al interactions, including dynamic storytelling applications.

We present OmniVIVO, the first model capable of generating both visual and voice outputs within
a single LLM backbone. Unlike prior works that treat image and speech generation as indepen-
dent tasks, OmniVIVO integrates a state-of-the-art (SOTA) pretrained image generator with a novel
lightweight yet effective speech generation module, enabling parallel production of both high-
quality images and speech. Through this unified design, experiments show that OmniVIVO not
only surpasses TTS baselines of comparable scale in speech quality but also demonstrates strong
cross-modal coherence, marking a step toward truly multimodal generative intelligence.

To systematically evaluate the multimodal generation, we further introduce a multimodal ranking
metric that complements conventional subjective and objective evaluations used in speech gener-
ation, providing a more comprehensive assessment of OmniVIVO’s outputs. Experimental find-
ings confirm that OmniVIVO produces multimodal outputs that are highly effective for informa-
tion acquisition, highlighting its promise for diverse applications. In addition, we release VIVO-
Gen, a high-quality tri-modal dataset consisting of language-specific knowledge inputs paired with
OmniVIVO-generated image and speech outputs, fostering progress in multimodal education, lan-
guage acquisition, and related domains.

The key contributions of this work include: (a) we introduce OmniVIVO, the first LLM model
capable of simultaneously generating high-quality speech and images; (b) we present a new multi-
modal ranking metric to evaluate the quality of OmniVIVO’s outputs and multimodal generation;
and (c) we release VIVOGen, a high-quality tri-modal text-image—speech dataset designed to ad-
vance research in multimodal applications.

2 RELATED WORK

Autoregressive Image Generation: Early advancements in image generation transitioned from
GANSs (Goodfellow et al., 2020), which achieved high fidelity but struggled with unstable training,
to diffusion models (Ho et al., 2020), which have become the dominant approach due to their scalable
architectures and stable likelihood-based training. However, diffusion models are computationally
expensive during inference due to the iterative denoising process, which has sparked renewed inter-
est in autoregressive (AR) approaches that directly model discrete image tokens in sequence. Initial
AR models, such as VQ-VAE (Van Den Oord et al., [2017) and VQGAN (Esser et al.), employed
transformer decoders to predict image tokens in a raster-scan order. While these models demon-
strated feasibility, they were inefficient and produced spatially unnatural results. The introduction of
VAR (Tian et al.), which employed a coarse-to-fine next-scale prediction strategy, improved image
quality but still required thousands of tokens per image, resulting in significant computational costs.

Recent advances have redefined AR generation by leveraging the power of LLMs. For instance,
LlamaGen (Sun et al., 2024) demonstrates that scaling a vanilla decoder-only LLM to billions of
parameters, combined with carefully curated data, enables AR models to match or even surpass
diffusion models on ImageNet (Deng et al.,[2009). Similarly, Muse (Chang et al.) employs masked
AR training with LLM-based techniques to achieve T2I quality on par with diffusion models.

Autoregressive Text-Speech Language Model: Modern TTS systems have recently made a
breakthrough by moving from specialized modules such as Tacotron2 (Shen et al.,|2018) and Fast-
Speech2 (Ren et al.) to architectures based on LLMs (Du et al., [2024). This shift enables models to
leverage the power of pretrained LLMs trained on massive datasets, thereby improving contextual
modeling and producing speech that is natural, expressive, and high-fidelity. Instead of separating
linguistic and acoustic processing, LLM-based TTS unifies the workflow by modeling sequences
of discrete units (semantic, prosodic, acoustic) quantized from speech signals, thus providing a
smoother bridge between text and speech (Wang et al.).



Under review as a conference paper at ICLR 2026

Pioneering models that applied LLMs to speech generation include VALL-E (Wang et al.), which
demonstrated zero-shot TTS from just a few seconds of reference audio. More recently, systems
such as CosyVoice2 (Du et al.l|2024) and Spark-TTS (Wang et al., [2025)) have advanced this direc-
tion further, not only achieving high synthesis quality but also supporting advanced controllability
features such as instruction prompting, zero-shot. These advances mark a paradigm shift from task-
specific pipelines toward general-purpose generative models, where a single backbone can flexibly
handle speech generation.

Multimodal Large Language Models: Recent advancements in multimodal large language mod-
els (MLLMs) have extended the capabilities of text-based models to process different modalities.
Systems like Flamingo (Alayrac et al.), Qwen2.5-Omni (Jin Xul [2025), UGen (Tang et al., 2025)
integrate vision and speech with text, enabling models to process diverse inputs. However, these
approaches are primarily focused on multimodal understanding, where inputs come from various
sources, but the outputs are typically limited to text or speech. Recently, Team|(2024) introduced a
multimodal large language model (MLLM) capable of bidirectional generation, enabling both text
and image processing. This is achieved through the integration of an image tokenizer and a text to-
kenizer within a unified autoregressive backbone, allowing flexible support for diverse multimodal
tasks. Despite these advancements, [Team| (2024) and related models remain limited, as they do not
extend to the generation of speech outputs.

To address this gap, we propose OmniVIVO, the first unified AR model designed to generate both
images and speech simultaneously from a single text input. By leveraging a SOTA image generator
with a lightweight speech decoder under a shared LLM backbone, OmniVIVO pushes the bound-
aries of multimodal generation, enabling groundbreaking advancements in fields such as multimodal
education, language acquisition, and interactive Al

3 METHODOLOGY
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Figure 1: OmniVIVO: the proposed model is capable of generating high-quality images and speech.
Additionally, VIVOGen is released to advance multimodal applications like storytelling.

3.1 PROPOSED MODEL: OMNIVIVO

We propose OmniVIVO, shown in Figure|l} a multimodal LLM model capable of generating both
images and speech from a text input. Our design leverages a pretrained image backbone as a shared
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semantic encoder, augmented with lightweight LoRA adapters and an additional speech branch.
This approach preserves image generation quality while enabling efficient cross-modal adaptation.

3.1.1 OMNICORE

First, the input text is tokenized by the pretrained Flan-T5 tokenizer (Chung et al.) into a vector z
with T token:

x=(x1,...,27), Xt € Viext-

We adopt a pretrained image generator backbone fy (LlamaGen (Sun et al., [2024)) as the shared
transformer. To enable adaptation without degrading image generation, we freeze all original pa-
rameters Wy and insert low-rank adapters (LoRA Hu et al.|(2022)) into each linear projection:

Wg =Wo+a- - WailWpg,

where W, € R% X" and Wy € R"*%w are trainable low-rank matrices, and « is a fixed scaling
factor. This yields an adapted backbone f3 that retains the representational capacity of fp while
gaining flexibility for new modalities.

3.1.2 IMAGE GENERATION

For image generation, the token vector x is embedded and passed through the frozen backbone to
obtain the latent feature h; with d-dimension:

hi = fo(z), h; € RT*4

The pretrained output head Wj from LlamaGen (Sun et al., |2024) is kept fixed. The conditional
distribution over [V image tokens E is:

N
po(e | z) = ][ Softmax(Whi[n]).

n=1
Because neither fy nor Wy is updated, OmniVIVO fully preserves the image generation performance
of the pretrained model.

3.1.3 SPEECH GENERATION

To extend the backbone for speech generation, we attach a lightweight speech transformer fy4 on top
of the adapted backbone to obtain the latent feature z,:

hs = f B (-T)»
zo = fo(hs), 25 € RTX4
The outputs are projected into M discrete speech tokens S through a trainable head Ws:

M
py(5 | x) = H Softmax (W3z,[m])

m=1

Here, {Wa, Wp, fs, Wg} are updated during training.

3.1.4 OMNIVIVO TRAINING OBJECTIVE

OmniVIVO is trained solely on speech data using cross-entropy loss:

M
Lo=FEqgs |~ Z log pg(5m | 5<m, )

m=1
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3.1.5 OMNIVIVO DESIGN PROPERTIES
The OmniVIVO architecture aims to facilitate three desirable properties:

* Preservation: Freezing fy and W ensures image quality is unaffected.

* Efficiency: Only LoRA adapters and the speech branch are trainable, reducing parameter
updates.

* Cross-modal sharing: The backbone provides a shared semantic space between text, im-
age, and speech.

Together, this lightweight unified design enables OmniVIVO to balance cross-modal sharing with
modality-specific specialization

3.2 SPEECH TOKENIZER AND RECONSTRUCTION

The semantic speech tokenizer (Du et al., 2024) converts the raw speech input .S into intermediate
feature representations R through a speech encoder, SenseVoice-Large ASR model (An et al.|[2024)),
Egpeech- The encoder outputs a sequence R = {r1,ra,...,r7}, where T is the sequence length.

R = Espeech(Y)

The features R are quantized into discrete values using Finite Scalar Quantization (FSQ) (Mentzer
et al.,|2024), which maps each feature to a scalar within the range [—L, L], where L is the number
of quantization levels:

Rl = FSQ(R)

Subsequently, discrete speech tokens 7}, are computed as:

M-1
Sk =Y Rigm - QL+
m=0

Where Sy, is the speech token at time step k, which represents the discrete value corresponding to

the quantized feature vector at time step k. The summation Zf\,{;& indicates that the token Sy, is
generated by summing the quantized feature vector Rat at time step k£ and with m dimension.

Finally, speech reconstruction is performed in two stages. A flow matching model (Lipman et al.)
first maps the quantized representations into a Mel-spectrogram, and a HiFi-GAN vocoder (Kong
et al.) subsequently converts this Mel-spectrogram into high-fidelity, natural-sounding waveforms.
This process is similarly applied to the speech token from OmniVIVO S.

3.3 IMAGE TOKENIZER AND RECONSTRUCTION
To transform images into discrete symbols for AR modeling, we employ a VQGAN-based model
(Esser et al.) consisting of an encoder, a vector quantizer, and a decoder.
Given an input image y € R *W>3 the encoder compresses it into a latent representation
f = Encoder(y) € R">*“XC " h = H/p, w=W/p,
where p is the downsampling factor and C' denotes the feature dimensionality.

The quantizer replaces each latent vector f(7, ) with the closest entry from a learnable codebook
E={ey,...,ex} C REXY containing K prototype embeddings of dimension C'. This assignment
is defined as

N . . 2
q(i,j) = arg, _min £, 5) — exll3-

The resulting discrete index map g € {0, ..., K — 1}"*% is subsequently linearized into a sequence
of h - w tokens that can be modeled autoregressively.
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Finally, image reconstruction is performed by mapping the quantized embeddings back into pixel
space, similarly to the image token from OmniVIVO E:

y= Decoder(eq(i}j)).

3.4 DATA CREATION

We introduce VIVOGen, a dataset designed to advance multimodal applications in various domains,
including language education and storytelling. The dataset consists of 100 high-fidelity samples
of images and speech generated by OmniVIVO. Specifically, we use ChatGPT (OpenAl, 2023) to
generate text inputs on diverse topics such as animals, pets, vehicles, nature, and more. Addition-
ally, Whisper-V2 (Radford et al.) is used to remove low-quality speech samples, ensuring that the
VIVOGen dataset maintains high intelligibility. Finally, human reviewers are involved in the final
filtering stage, retaining only high-quality image and speech pairs.

4 EXPERIMENTAL SETUP

Architecture. OmniVIVO unifies visual and speech generation within a single transformer back-
bone. It leverages a pretrained 36-layer transformer image generator with 20 attention heads and a
hidden size of 1280, termed Omni-Core, with an 8-layer speech branch, totaling approximately 1
billion parameters, of which 225 million are trainable.

Adaptation. To enable efficient fine-tuning, we apply Low-Rank Adaptation (LoRA) (Hu et al.,
2022) with rank » = 16 and scaling factor & = 16, updating task-specific modules in Omni-Core
and the speech branch while freezing most Omni-Core weights.

Tokenization: Text inputs are processed using the Flan-T5 tokenizer (Chung et al.) (vocabulary size
32,100). Speech tokens are generated via a pretrained Semantic Speech Tokenizer from Cosy Voice2
(Du et al., [2024), and reconstructed using flow-matching models with HiFi-GAN vocoders (Kong
et al.). Images are tokenized and reconstructed via the pretrained VQ-VAE from LlamaGen (Sun
et al., [2024).

Training: OmniVIVO is fine-tuned on the LibriTTS (Zen et al., 2019) dataset (585 hours, multi-
speaker) for 100,000 steps using the AdamW optimizer (Loshchilov & Hutter) (5 = (0.9,0.999),
weight decay = 0.01, learning rate 1 x 10~%, constant schedule). Training minimizes a cross-entropy
loss with a batch size of 14, applies gradient clipping (||g|l2 < 1.0), and averages the last five
checkpoints for stability.

Evaluation To evaluate the proposed OmniVIVO system, we first conduct an ablation study using
Word Error Rate (WER) and Character Error Rate (CER) to assess the impact of model depth on
intelligibility, using 1,000 test clean samples from LibriTTS (Zen et al., [2019). For this, we use
Whisper-Large-V2 (Radford et al.), an Automatic Speech Recognition (ASR) model, to transcribe
speech into text. Additionally, we perform subjective evaluations of speech and image quality across
four metrics: Naturalness, Intelligibility, Multimodal Coherence, and Multimodal Ranking. Each
subjective test involves 15 participants. For speech quality (Naturalness and Intelligibility), we
compare OmniVIVO, VITS (Kim et al.), CosyVoice2 (Du et al.| |2024), and Ground Truth, with
each system contributing 10 samples, resulting in 40 total. For multimodal evaluations (Coherence
and Ranking), only OmniVIVO is assessed, with 10 samples per experiment, as no baseline systems
are available. Detailed evaluation protocols and criteria are provided in Appendix [A.T}

Multimodel Ranking: To address the lack of effective evaluation methods for multimodal genera-
tion outputs, we propose a new metric to investigate how different presentation formats influence the
ease of acquiring information. We categorize the formats into three levels: Excellent, Acceptable,
and Less Effective.

* Excellent: Information is conveyed quickly, clearly, and effortlessly.
* Acceptable: Information is sufficiently clear, though not optimal.
* Less Effective: Information is understandable but lacks clarity and effectiveness.

At each level, the participant will select one of the following formats: (A) Text, (B) Speech, (C)
Image, (D) Text + Speech, (E) Text + Image, (F) Speech + Image, or (G) Text + Speech + Image.
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Table 1: Comparison of WER and CER for TTS-Baseline and OmniVIVO across Different Model

Depths.
TTS-Baseline OmniVIVO
Model Depths
WER] | CER] | WER| | CER]
2Layer 37.77 | 26.36 18.72 11.95
4Layer 25.41 17.17 12.50 7.28
6Layer 24.28 16.23 11.51 6.50
8Layer (Proposed) | 22.65 | 15.26 | 10.64 6.06
10Layer 22.50 15.42 11.07 6.12
5 RESULTS
5.1 EFFECT OF MODEL DEPTH ON SPEECH QUALITY
6.25
———- TTS-Baseline(2Layers) —— OmniVIVO(2Layers)
———- TTS-Baseline(4Layers) —— OmniVIVO(4Layers)
6.001 TTS-Baseline(6Layers) OmniVIVO(6Layers)
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\*\ -==- TTS-Baseline(10Layers) ——— OmniVIVO(10Layers)
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Figure 2: Comparison of validation loss for TTS-Baseline and OmniVIVO on Speech Branch across
Different Model Depths.

Table [T presents the results of a depth ablation study comparing the proposed OmniVIVO architec-
ture against a TTS baseline across five network depths (2, 4, 6, 8, and 10 layers), using the WER
and CER metrics. Note that the TTS-Baseline uses the same architecture and parameters as Omni-
VIVO, but it is trained from scratch independently. We use 1,000 text sentences from the test-clean
subset of LibriTTS and employ Whisper V2 to transcribe speech to text. OmniVIVO consistently
outperforms the baseline across all depths. For example, at the 8-layer configuration, OmniVIVO
achieves a WER of 10.64 and a CER of 6.06, compared to the baseline’s WER of 22.65 and CER of
15.26, yielding absolute reductions of 12.01 WER points and 9.20 CER points (relative reductions
of 53.0% and 60.3%, respectively). Comparable improvements are observed at other depths, includ-
ing the 2-layer and 4-layer configurations, highlighting the robustness and efficacy of OmniVIVO’s
design.

Furthermore, as shown in Figure 2] OmniVIVO consistently achieves lower validation loss (lower is
better) compared to the TTS baseline at similar depths, reinforcing the superiority of our proposed
approach.
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5.2 IMAGE GENERATION QUALITY

Table 2: Inception Score (IS) Comparison for LlamaGen and OmniVIVO
Image Quality | IS Score 1
LlamaGen 7.78+0.78
OmniVIVO 6.93+0.65

Table 2] presents a comparison of the Inception Score (IS) between OmniVIVO and LlamaGen, eval-
uated on 250 images generated from text prompts produced by ChatGPT (OpenAl, 2023)) on diverse
topics. OmniVIVO, which extends the LlamaGen architecture with modifications to support speech
generation, achieves an IS of 6.93 £ 0.65, compared to LlamaGen’s 7.78 £ 0.78. The compara-
ble scores indicate that OmniVIVO preserves strong image generation quality while additionally
enabling speech synthesis, demonstrating its effectiveness for multimodal generation.

5.3 SUBJECTIVE SPEECH QUALITY ASSESSMENT

Table 3: Mean Opinion Scores (MOS) with 95% confidence intervals.

Method Naturalness? | Intelligibility !
GroundTruth | 4.25+0.14 438 +£0.13
VITS 3.86 £0.15 431 +£0.12
CosyVoice2 3.70 £0.17 4.33 +0.12
OmniVIVO 3.94 £ 0.16 4.19+0.14

In this experiment, we evaluate the Mean Opinion Scores (MOS) for speech quality using pretrained
VITS, pretrained Cosy Voice2, and our proposed OmniVIVO, as shown in Table (3] Among the gen-
erative models, OmniVIVO achieves the highest score in Naturalness (3.9440.16), surpassing VITS
(3.86 £ 0.15) and CosyVoice2 (3.70 &= 0.17). For Intelligibility, OmniVIVO obtains 4.19 4 0.14,
which is slightly lower than CosyVoice2 (4.33 £0.12) and VITS (4.31 £ 0.12), but remains compet-
itive. These results, based on training OmniVIVO with LibriTTS for speech-unit token generation,
demonstrate its ability to produce more natural-sounding speech while preserving robust intelligi-
bility.

Table 4: Subjective test for Multimodal Coherence with 95% confidence intervals
Multimodal quality{
OmniVIVO 3.79 £ 0.16

5.4 MULTIMODEL RANKING

As shown in Table[d OmniVIVO achieves a high subjective multimodal coherence score of 3.79
0.16. Since no prior work provides directly comparable multimodal evaluations, results are reported
exclusively for OmniVIVO. The 5-level scale used for evaluation is described in Section

Table [5] presents the multimodal ranking evaluation. The combination of text input with Omni-
VIVO’s speech and image outputs receives the highest proportion of excellent ratings (56.95%).
Dual-modality configurations (e.g., Text+Image) are rated at 27.81%, while single-modality op-
tions are less effective for information acquisition. These findings suggest that tri-modality
(text+speech+image) plays a crucial role in multimodal applications. Therefore, we release VIVO-
Gen, a high-quality dataset with 100 samples, to advance multimodal applications such as story-
telling, interactive interfaces. Representative outputs from VIVOGen are shown in Figure [3] Note
that we use WhisperV2 (Radford et al.), an ASR model, to transcribe the speech output of Omni-
VIVO into text.

Overall, these results demonstrate OmniVIVO’s ability to generate coherent multimodal outputs
while maintaining strong speech quality (Table 3).
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Table 5: Multimodel Ranking Metric, Unit:%

Excellent Acceptable Less Effective

Text + Speech + Image | 56.95 | Speech + Image | 27.81 Text | 39.74
Text + Image 17.88 Image 17.22 | Speech | 27.81
Text + Speech 9.27 Text 15.89 | Image | 25.83
Other 15.9 Other 39.08 | Other | 6.62

a golden retriever a zebra grazed a jaguar prowled a crocodile basked a stag stood
" chased a ball o{ peacefully on the 81 near the forest river of: lazily onthe ofi proudly at
across the yard golden grassland muddy bank the forest edge

a clock ticked an ambulance rushed a tennis racket a bicycle rang a tram rolled
o{! loudly on the wall #{1 through traffic of" leaned against o its bell on o slowly through

with sirens loud the wall the garden path the city center

b

a breeze shook a lavender field a long green train a bamboo grove a rainbow stretched

o' the tall reeds ' spreadpurple W' rolled through of! swayed gently of1  across the
by the river across the hill the mountain valley in the morning air blue sky after rain

Figure 3: The images and text transcripts are taken from our released dataset, VIVOGen. Note that
Whisper-V2, an ASR model, is used to transcribe speech into text.

6 CONCLUSION

In this work, we present OmniVIVO, the first unified autoregressive backbone capable of concur-
rently generating high-fidelity images and natural speech from a single text input. Unlike prior
approaches that isolate modalities or combine separate generators, our OmniVIVO demonstrates the
effectiveness of a single neural architecture that jointly models vision and voice within a shared mul-
timodal space. Through extensive evaluation, we demonstrate that OmniVIVO outperforms a TTS
baseline model of comparable size, and achieves comparable quality to SOTA models in both image
quality (e.g., LlamaGen) and speech quality (e.g., VITS and CosyVoice2), as shown in subjective
tests. Furthermore, we propose a new multimodal ranking metric that provides an effective way of
assessing performance across modalities. Our experiments demonstrate that integrating text, image,
and speech enhances information acquisition and broadens the scope of multimodal applications. In
line with these findings, we target to release VIVOGen, a high-quality tri-modal dataset containing
paired text, image, and speech data, which we expect will serve as a valuable resource for advancing
multimodal generation in domains such as dynamic storytelling and education. Both the source code
and dataset will be released upon acceptance of the paper.
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7 ETHICS STATEMENT

We confirm that we have read and agree to follow the ICLR Code of Ethics. We commit to con-
ducting our research responsibly, adhering to ethical standards throughout our involvement in the
conference.

8 REPRODUCIBILITY STATEMENT

We confirm that our work is reproducible. We will release our source code upon acceptance of the
paper.

9 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We adhere to the ICLR guidelines regarding the use of LLMs. In this research, we used ChatGPT-5
to improve our writing and conduct surveys of related work.
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A APPENDIX

A.1 SUBJECTIVE EVALUATION METRIC

Participants rate Naturalness and Intelligibility on a 1-5 scale, with the following criteria:

Naturalness Rating Scale:

* 1 - Very Unnatural: Speech sounds robotic or synthetic.

* 2 - Unnatural: Noticeable artificiality in speech.

* 3 - Neutral: Neither natural nor unnatural.

* 4 - Natural: Speech is mostly natural with minor artifacts.

* 5 - Very Natural: Fully natural, indistinguishable from human speech.

Intelligibility Rating Scale:

* 1 - Unintelligible: Speech is entirely unclear.

* 2 - Poor: Only a few words are recognizable.

* 3 - Fair: Some segments are intelligible, but errors persist.
* 4 - Good: Largely intelligible with minor artifacts.

* 5 - Perfect: Fully intelligible, no effort required.

For Multimodal Coherence, participants evaluate the combined quality of OmniVIVO’s image and
speech outputs for clarity and coherence on a 1-5 scale:

Multimodal Coherence Rating Scale:

* 1 - Very Poor: Image and speech are unclear, hard to understand, and not coherent.

* 2 - Poor: Image and speech are somewhat unclear, difficult to understand, and lack coher-
ence.

* 3 - Neutral: Image and speech are clear but lack a seamless connection.
* 4 - Good: Image and speech are clear, easy to understand, and mostly coherent.

* 5 - Excellent: Image and speech are completely clear, easy to understand, and flow seam-
lessly.
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