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Figure 1: Performance comparison between default LLM and reference trustable decoding in reason-
ing tests.

Abstract

Large language models (LLMs) have rapidly advanced and demonstrated impres-
sive capabilities. In-Context Learning (ICL) and Parameter-Efficient Fine-Tuning
(PEFT) are currently two mainstream methods for augmenting LLMs to down-
stream tasks. ICL typically constructs a few-shot learning scenario, either manually
or by setting up a Retrieval-Augmented Generation (RAG) system, helping models
quickly grasp domain knowledge or question-answering patterns without changing
model parameters. However, this approach involves trade-offs, such as slower in-
ference speed and increased space occupancy. PEFT assists the model in adapting
to tasks through minimal parameter modifications, but the training process still
demands high hardware requirements, even with a small number of parameters
involved. To address these challenges, we propose Reference Trustable Decod-
ing (RTD), a paradigm that allows models to quickly adapt to new tasks without
fine-tuning, maintaining low inference costs. RTD constructs a reference datastore
from the provided training examples and optimizes the LLM’s final vocabulary
distribution by flexibly selecting suitable references based on the input, resulting
in more trustable responses and enabling the model to adapt to downstream tasks
at a low cost. Experimental evaluations on various LLMs using different bench-
marks demonstrate that RTD establishes a new paradigm for augmenting models
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to downstream tasks. Furthermore, our method exhibits strong orthogonality with
traditional methods, allowing for concurrent usage. Our code can be found at
https://github.com/ShiLuohe/ReferenceTrustableDecoding

1 Introduction

In the rapidly advancing field of artificial intelligence, Large Language Models (LLMs) have demon-
strated substantial progress. With their extensive parameter size, LLMs have acquired emergent
abilities [41] and been able to tackle diverse and challenging tasks in fields like education [22] and
medicine [38]. Despite their immense potential, Large Language Models that have just completed
pre-training often struggle to effectively adapt to downstream tasks. Moreover, the process of adapting
the model is typically costly and requires careful execution by experienced individuals. Otherwise, it
could lead to the model generating hallucination [50; 28] at best, or at worst, result in a loss of its
language capabilities.

In-Context Learning (ICL), as a category of methods that do not require parameter adjustments,
is one of the mainstream methods for adapting models to downstream tasks. ICL embeds domain
knowledge, question-answering patterns, etc., into prompts through few-shot learning [6], prompt
engineering [51], and Retrieval-Augmented Generation (RAG) [26] methods, leveraging the learning
ability of the model itself to provide better answers. As pointed out in Figure 2, ICL focuses on the
prompt stage. However, ICL significantly increases the length of the input, consequently increases
the space occupied by the KV-Cache required for inference. Further, according to the Roofline
model [46], this part of the KV-Cache cannot be parallelized through batch processing, making
memory I/O throughput a system bottleneck, wasting hardware computing power, and increasing
token generation time during the entire inference stage.

Fine-tuning is also used to adapt models to downstream tasks. By fine-tuning the pre-trained model
based on domain tasks, the model can quickly acquire capabilities within the domain. However,
traditional full-parameter fine-tuning often requires a large amount of resources (empirically 8-15
times that of inference), making Parameter-Efficient Fine-Tuning (PEFT) a more popular method.
By freezing most parameters and only modifying a few, methods such as Adapters, P-tuning [27],
LoRA [16] and others [48; 36; 44] have become mainstream methods for quickly adapting models to
downstream tasks. However, fine-tuning methods introduce several hyperparameters, which require
high experience from the fine-tuners and the effects are unpredictable. Furthermore, due to the
need for backpropagation, the computation graph must be saved, meaning that even if only a few
parameters need to be updated, there will be a large amount of additional computation and space
requirements (several times that of inference), raising the threshold for methods based on fine-tuning.

To address these challenges, we introduce Reference Trustable Decoding (RTD), a novel framework
designed to fit LLMs for downstream tasks. Distinct from a conventional LM_Head module, RTD
strategically retrieves relevant references from a pre-constructed datastore, guided by the final hidden
states of the language model. This approach not only enhances the final output distribution by
recalculating it with the similarity score of the retrieved references but also allows for the seamless
integration of new knowledge or constraints into the response generation process without increasing
the input length or using gradient descent.

RTD, distinctively training-free, emphasizes compact input lengths to expedite inference. RTD’s ef-
fectiveness was rigorously tested using varied benchmarks focused on different tasks and a Wikipedia-
based knowledge injection scenario. On these benchmarks, RTD achieved results comparable to
traditional methods like PEFT and ICL, providing significant improvement. Additionally, we com-
bined RTD with traditional methods, further enhancing the model’s capabilities and demonstrating
the good orthogonality of RTD with other approaches.

Our contribution includes:

• We propose a new paradigm, called RTD, for fitting LLMs for downstream tasks. RTD is a
training-free method that focused on the decoding stage of large language models (LLMs),
as a alternation of LM_Head. It helps LLMs to adapt to different tasks with different demands
and provide trustable response.

• RTD has achieved performance comparable to, or even better than, ICL and PEFT across
different benches, while maintaining the desirable properties of training free and not intro-
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Figure 2: The pipeline of LLM inference and the focus of different methods: ICL focuses on the
prompt stage, emphasizing the optimization of the model’s input. Fine-tuning methods optimize the
model itself by adjusting its parameters. In contrast, our proposed RTD method targets the decoding
stage of the language model. By constructing a reference datastore, RTD optimizes the final output
distribution without requiring additional training.

ducing additional input lengths. This demonstrates the potential of RTD as a new paradigm
for LLMs to adapt to downstream tasks. Furthermore, RTD can be seamlessly integrated with
other existing methods, such as in-context learning (ICL) and fine-tuning. The combination
of RTD, ICL, and fine-tuning has the potential to achieve even higher performance.

2 Background and Related Work

In the field of NLPs, Transformer models have gained influence rapidly after it get original proposed
in 2017. As larger scaled model been introduced, especially giant ones like GPT3 which has 175
Billion of parameters [9], the training process is getting more and more expensive, hence to fit the
LLMs for downstream tasks.

2.1 Fine-tuning

Full Parameter Fine-tuning Full parameter fine-tuning refers to fully optimizing all the parameters
of the model during the fine-tuning process. Full parameter fine-tuning has the advantage of allowing
the model to adapt more closely to the specific task at hand, as well as injecting more information into
the model. However, it also has the disadvantage of being the most computationally expensive and
time-consuming, as it requires to manipulate all parameters of the model, with the modern optimizer
like Adam [19], 8 to 15 times of more extra GPU memory is demanded comparing to inference
empirically, resulting a must of multi-GPU server or even cross sever training.

Parameter Efficient Fine-tuning Parameter Efficient Fine-tune (PEFT), for example, LoRA [16]
and P-tuning [27], is introduced to make fine-tune more reachable. By freezing most of the model pa-
rameters and only let a small amount of them accumulate gradient, the GPU memory and computation
resource can be cut down by a large margin [14].

However, as fine-tuning introduce many tricky hyper-parameters like learning rate, the process is
heavily task related and empirical, even experienced fine-tuner need some trials and error when
tuning them. Moreover, even if the number of parameters trained is not large, processes such as
backpropagation still need to be carried out. The computation graph generated on long sequences
will also occupy a large amount of memory, making the threshold for computing power and memory
still high, which any method that relies on gradient descent is difficult to avoid.

2.2 In-Context Learning

Few-Shot Learning Few-shot Learning is proved to be a great way for LLMs to gain capability.
By appending the true task that LLMs are expecting to response after a couple of existing correct
examples, LLMs can gain its reasoning ability [6; 31].

Retrieval Augmented Generation Retrieval Augmented Generation (RAG) [24] is an AI frame-
work for retrieving facts from an external knowledge source to LLMs, which helps LLMs correct its
hallucination and use latest fact [35]. RAG is to cut external knowledge source into multiple chunks,
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then embed and store them in a database, then retrieve them at the process of generation to let LLMs
get the knowledge in it. This technique allowed LLM to use extra information while maintaining
their parameters untouched. RAG have been used on multiple fields, like coding [26] and question
answering [29]. And it can be combined with few-shot [18].

The main drawback of ICL methods lies in their growth of the input sequence. Under the quadratic
complexity of the Transformer architecture, this implies a longer KV-Cache, which not only increases
the latency during the pre-fill stage but also adds delay each time a token is generated [45]. Moreover,
unlike model parameters, each instance needs to save its dedicated portion of KV-Cache, leading
to memory I/O bottlenecks and computational power waste. Finally, on some smaller models, the
irrelevant information that ICL might contain can confuse the model, resulting in performance loss.

3 Reference Trustable Decoding

In this section, we begin by presenting the fundamental formulas and concepts to elucidate the
workings of Reference Trustable Decoding, followed by an exploration of the multi-head Reference
Trustable Decoding method.

3.1 Preliminary

Given an input sentence c = {t1, t2, ..., tn}, where ti represents the i-th token and n denotes the
sentence length, the last token’s output of the last Transformer block in the language model can be
represented as:

h(l) = LM(c) (1)

In this equation, h(l) ∈ Rdm is the output of the last token from the final, or the l-th, Transformer
block of the language model, where dm denotes the hidden size of the model.

Traditionally, a standard decoder-only architecture Transformer usually employs LM_Head, which
is, a fully connected layer, usually includes a learnable weight matrix W and no bias, followed by a
softmax function Softmax(·) to predict the output probability distribution p of the next token from
the last hidden states:

p = LM_Head(h(l)) = Softmax(W · h(l)) (2)

where v is the vocabulary size and W ∈ Rv×dm .

However, traditional next token prediction does not support incorporating external information and
therefore, we introduce reference trustable decoding where we build a bypass around the LM_Head,
showcased in Figure 3, as the entrance of additional knowledge or guidance.

3.2 Reference Trustable Decoding

3.2.1 Generation of Reference Datastore

In reference trustable decoding, we first build the reference datastore L, which stores key-value pairs
(k, v) ∈ (K,V). Here, the key k = LM(c) represents the last hidden states of the token generated by
the LMs from the context c, and the value v is the corresponding label y. Mathematically, we have:

L = {(k, v)|(k, v) ∈ (K,V)} = {(LM (c) , y) | (c, y) ∈ D} (3)

where D = (C,Y) is the task dataset with input context set C and label set Y , and |Y| refers the
number of possible labels. This process is depicted in Figure 3. It’s obvious that the computational
requirement is same as performing a forward pass to every content in the task dataset, which
aligned with the minimal requirement of the inference stage, denotes the superiority of RTD as a
gradient-free method.

3.2.2 Decoding Stage

At each decoding round, given the input context c, we first compute h(l) = LM(c), which is the
input to RTD and LM_Head. Then we use a three stage approach to get the RTD output, Fetch,
Normalization, and Aggregation, depicted in Figure 4.
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Figure 4: Three stages of reference trustable decoding.

Fetch First, we calculate the distance d′ between h(l) and all the k in the reference datastore L.
Otherwise stated, we use the Euclidean distance d′i = ||h(l) − ki||2. We then select the top K
instances from L which have the smallest distance, and for the j-th (1 ≤ j ≤ K) closest (ki, vi), we
define oj = i. Then we create a set Lh, storing the top K distances and values:

Lh = {(d′oj , voj )} = {(||h(l) − koj ||2, voj )}, oj = i for j−th closest (ki, vi) (4)

Normalization We first scale the d′ we got from the previous stage by temperature T , as d′′j =
d′oj/T . The scale operation is introduced to prevent overflow in the following Softmax operation. We
take the Softmax of −d′′ as d, guaranteed d as a valid possibility distribution.

d = Softmax(−d′′), dj =
exp{−d′′j }∑K
ι=1 exp{−d′′ι }

=
exp{−d′oj/T}∑K
ι=1 exp{−d′oι/T}

(5)

Aggregation We calculate the final reference possibility distribution r = [r1, r2, ..., r|Y|] ∈ R|Y|

by aggregating all dj that satisfies voj = yi, where yi ∈ Y .

ri =
∑

voj
=yi

dj (6)

We denote R(·,L) : Rdm → R|Y| as the function represents all three stages of querying the datastore
L and building the corresponding reference possibility distribution r. Therefore, we have

r = R(h(l),L) (7)

Additionally, when |Y| = v, we can merge the distribution p given by LM_Head(·) and r given by
R(·,L) with a hyper-parameter λ:

d′ = λ · r+ (1− λ) · p (8)

which is a common fusion method for mixing two distributions [34; 23; 12; 10].
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Table 1: Comparison of RTD and MH-RTD on Open Book QA.
Method RTD MH-RTD

MPT-7B 27.4 30.9
LLaMA2-7B 47.1 52.4
LLaMA2-70B 63.3 65.6

3.3 Multi-head Reference Trustable Decoding

Large language models like LLaMA2-70B [39] or Mistral-7B [1] utilized MHA and GQA mecha-
nism [2], implies the potential of splitting a large attention vector into smaller ones. So we adapt
this method into our RTD process. We define nh of the head count of the LM model, and dh the
dimension of the each attention head where dm = nh · dh. with this in mind, we split the reference
datastore into nh sub-datastore by head. When decoding, we first split h(l) in to heads, then query
each sub-datastore and merge the result, showcased in Figure 5. Mathematically,

k(i) = k [dh × (i− 1) : dh × i] , h(l,i) = h(l) [dh × (i− 1) : dh × i]

L(i) = {(k(i), v)|(k, v) ∈ (K,V)}
(9)

And we denote RMH(·,L) as the function of the multi-head RTD query process, we have:

r = RMH(h
(l),L) = 1

nh

nh∑
i=1

R(h(l,i),L(i)) (10)

3.4 Time and Memory Consumption

Time Consumption The time consuming is largely depended on the vector datastore used. For
a brute force searching datastore, the time complexity will be O (sL · dm) where sL = |L| is the
size of the datastore. However, for those more powerful database like faiss [20] by Meta, with extra
training after the generation of reference datastore, the process which have to be done again if the
datastore changes, the time consumption can be cut to O (k · dm), where k is a constant related the
parameters used to train the database.

For multi-head reference trustable decoding, the performance cost remains the same. The time
complexity of each attention-head wise query is O (dh · sL), the overall query time complexity is
O (n · dh · sL) = O (d · sL), which is the time complexity of convention reference trustable decoding
processing. The calculation remains the same for a trained database, the overall time complexity is
O (n · k · dh) = O (k · dm).

Memory Consumption The use of time can be optimized by utilizing vector database, however
the memory consumption cannot shrink easily. We further define b as the bit cost of the models’
dtype, where bfloat32 = 4, bfloat16 = bbfloat16 = 2, bint8 = 1, bint4 =

1
2 . The overall memory cost

is dm · b · sL. Due to the lack of lower precision dtype support on CPU, even the base model utilized
popular half precision dtype like bfloat16, it still need to be converted into larger ones to be stored.
Since all the hidden states have to be saved to calculate precise distanced when rescalled, the memory
cost can’t be reduced significantly by making it irrelevant with sL.
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On the Multi-head RTD side, the memory cost remains the same as the regular RTD takes. The proof
is same as the Section 3.4. For instance, reference datastore and head-wise reference datastore with
20, 480 entries with dm = 4096, n = 32 and dh = 128, stored in float32, takes 320MB of memory
and hard disk space.

MH-RTD for Resource Saving As MH-RTD splits long vectors into multiple smaller ones, it
gives us the opportunity to cut time and memory cost by merging different heads together, or directly
evict some of them. If on average, p heads are merged into one head, then we expect a 1

p resource
consumption. The time and memory improvement and corresponding performance impact can be
find in the tuning Section 4.3.

4 Settings and Experiment

We categorize the common downstream tasks of language models into two types: language under-
standing and language generation. The former focuses on understanding the input information, based
on the context and the information stored within the model, and then outputs the answer in the form
of a few tokens, usually in a very simple form. The latter focuses on generating new sentences with
complete semantics. We explored the potential of RTD compared to other methods on these two types
of tasks. We first compared the effects of RTD and MH-RTD. As shown in Table 1, we found that
MH-RTD effectively enhances the capabilities of RTD. Therefore, we default to using the MH-RTD
method in the following tests.

4.1 Language Understanding

We tested the language understanding capabilities of RTD on multiple benchmarks. When testing,
question without answer be shown to the LLM, then we will gather it’s baseline output by LLMs’
first output token and our RTD result through searching our reference datastore. λ is set to 1 in this
task. How the reference datastore is generated can be fount at appendix B.1.

Models we used are: LLaMA2-7B and 70B [39], LLaMA3-8B [8], MPT-7B [37], GLM3-6B [47]
[7], Yi-34B. Includes model size from 6B to 70B, as most of the major current models are. We use
the base version of the model by default. Testing benchmarks are: Massive Multitask Language
Understanding (MMLU) [15], AI2 Reasoning Challenge (ARC, both Easy (E) and Challenge (C)
parts) [4], Reasoning about Physical Commonsense in Natural Language (PIQA) [5], Open Book
Question Answering (OBQA) [30], and Massive Multitask Language Understanding in Chinese
(CMMLU) [25]. C-MMLU is a Chinese benchmark, so only Chinese models, GLM3 and Yi,
participated in this benchmark.

The multiple-choice benchmarks we chose is challenging enough in itself and requires strong
reasoning ability from the model; moreover, the answer format is fixed, which can simultaneously
detect the ability to follow instructions. Since that most tasks in the traditional NLP field can be
quickly converted into tasks of choosing one from several categories, even some generative tasks, so
the results on the multiple-choice test can also represent many other tasks.

The performance boost can be found both with or without ICL. Results are in table 2. Besides
testing scores, we also record the confused rate of baseline, the proportion of the questions that
failed to be answered properly, including output irrelevant text or can’t give a certain answer, in
table 3. Meanwhile RTD is designed to given the LLMs’ decision in a trustable and controllable
way. In comparison with fine-tuning methods in table 4, we can notice that RTD can achieve
approximate performance improvements as using PEFT methods like LoRA. Although it is still
insufficient compared to full-parameter fine-tuning, the latter has a higher cost and has undergone
knowledge injection (which is not considered in this part of the experiment). The dataset used for
full-parameter fine-tuning is MMLU-Recall [32; 33], and the hyper-parameters of LoRA can be
found in Appendix D. Moreover, we’ve tested obqa score with different source of reference library,
testing the generalization ability of RTD, as shown in Table 5, RTD yields satisfactory results. We’ve
also tested the performance of RTD with different λ for language understanding, shown in Table 6.
Lastly, we’ve tested the iteration speed of these benchmarks, as shown in Table 7, the efficiency
impact of RTD is minimized comparing to ICL.
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Model Benchmark Baseline 5-shot ICL RTD (∆) 5-shot RTD (∆)

LLaMA2-7B MMLU 43.8 45.8 45.1 (1.3↑) 47.2 (2.1↑)
ARC (E & C) 30.1 65.0 41.4 (11.3↑) 67.3 (2.3↑)
PIQA 56.5 62.1 71.4 (14.9↑) 73.2 (11.1↑)
Openbook QA 27.8 51.0 30.4 (2.6↑) 53.6 (2.6↑)

LLaMA2-70B MMLU 56.7 67.9 56.9 (0.2↑) 68.5 (0.6↑)
ARC (E & C) 67.4 91.6 86.1 (19.7↑) 91.7 (0.1↑)
PIQA 72.3 85.3 81.9 (9.6↑) 86.6 (1.3↑)
OpenbookQA 53.7 84.4 68.2 (14.5↑) 85.4 (1.0↑)

LLaMA3-8B MMLU 47.5 63.9 57.2 (9.7↑) 61.9 (2.0↓)
ARC (E & C) 71.2 87.3 83.7 (12.5↑) 87.1 (0.2↓)
PIQA 69.9 78.9 76.3 (6.4↑) 80.0 (1.1↑)
OpenbookQA 53.3 77.5 71.4(18.1↑) 78.6 (1.1↑)

MPT-7B MMLU 27.4 29.6 30.4 (3.0↑) 29.8 (0.2↑)
ARC (E & C) 27.5 failed 27.6 (0.1↑) 30.1
OpenbookQA 29.4 failed 27.2 (2.2↓) 30.4

GLM3-6B MMLU 41.9 48.6 47.6 (5.7↑) 49.8 (1.2↑)
ARC (E & C) 59.1 75.3 75.0 (15.9↑) 76.5 (1.2↑)
PIQA 66.8 73.6 75.9 (9.1↑) 74.5 (0.9↑)
OpenbookQA 55.1 67.1 64.0 (8.9↑) 68.8 (1.7↑)
C-MMLU 48.8 54.5 53.3 (4.5↑) 54.7 (0.2↑)

Yi-34B MMLU 68.6 74.3 70.3 (1.7↑) 73.3 (1.0↓)
ARC (E & C) 93.3 94.0 90.7 (2.6↓) 94.6 (0.6↑)
PIQA 88.3 83.5 88.4 (0.1↑) 87.7 (4.2↑)
OpenbookQA 83.5 89.8 88.4 (0.9↑) 88.8 (1.0↓)
C-MMLU 70.3 81.0 73.9 (3.6↑) 81.8 (0.8↑)

Avg - 56.41 65.28 63.31 68.88

Table 2: RTD on language understanding benches. Baseline refers to zero-shot performance. ICL
exceeds MPT-7B’s 2048 context window, with a 0 score result, recorded as failed in the table.

Table 3: Confused rate.
Model Llama2-7B GLM3-6B Yi-34B

Rate 8.6% 11.81% 0.44%

Table 4: RTD comparing with fine-tune methods.
Methods baseline LoRA FT RTD

Score 41.9 42.5 46.31 42.8

4.2 Language Generation

Reasoning with Context Generative tasks are generally subjective and difficult to test. We
constructed a benchmark based on Retrieval-Augmented Generation (RAG) and Open Book Question
Answering [30] to test the potential of RTD in areas requires advance reasoning such as knowledge
injection. Chain-of-Thought [42] is a method that encourage the model to provide a step-by-step
analysis before giving the final answer, thereby enhancing the model’s capabilities. We compared the
performance of the model when introducing references through the ICL method and the RTD method,
to determine the effectiveness of the RTD method. The extra knowledge source was Wikipedia. The
generation of the datastore can be found in detailed in Appendix B.2. With the results of table 8,
it can be seen that RTD was indeed helpful in knowledge injection. Besides, the context length is
shrunk by a lot, thus saves reasoning GPU time and memory consumption. A detailed exploration of
why RAG score is lower than baseline can be find in Appendix C.

Style transfer To explore whether the RTD method can be used to modify the language style of the
model, we designed a style transfer experiment. We used a moderately scaled and strongly styled
dataset, Tiny-Shakespeare [21; 40], and compared the perplexity (PPL) of the model on the test set
after LoRA and RTD, to measure whether our method can help the model change the output style.
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Table 5: Generalization of RTD.
Source OBQA ARC MMLU

OBQA 71.4 71.4 71.2

Table 6: Different λ in Language Understanding
λ 1 0.8 0.6 0.4 0.2 0

OBQA 71.4 68.0 67.0 66.8 66.6 53.3

Table 7: Efficiency of RTD.
Methods baseline RTD ICL ICL + RTD

Speed(it/s) 25.1 23.6 7.90 7.85
Extra Memory Usage (MB) 0 1̃6 3̃7 5̃2

The results in Table 9 prove that our RTD method can reduce the perplexity of the model, enabling the
model to adapt to the style of different datasets. The hyperparameters of LoRA are in Appendix D.

4.3 Influence of Hyper-parameters in RTD

Although our method is quick and efficient, it still introduces several hyper-parameters. We hope
to explore the relationship between these hyper-parameters and the final performance of RTD. We
conducted a series of ablation experiments on LLaMA2-7B [39] and OBQA [30] to explore the
impact of different hyper-parameters on performance and how to quickly determine the optimal
hyper-parameters. The overall result can be found in Figure 6. If not tuned, we set k = 1024,
sL = 19, 828, λ = 1 and T = 750 by default.

Depicted in Figure 6 (a), RTD’s performance improves initially with increasing sL but eventually
maxed out and starts oscillating when sL reaches 4096. Generally, a larger sL gives a better
performance, but it do get maxed out depends on the specific task. Figure 6 (b) showcased us how
RTD’s performance consistently improves as k increases initially, but eventually reaches a plateau,
similiar with the sL. To be denoted is that a larger k could harm efficiency. Figure 6 (c) implies
that RTD can only reach it’s best performance when T is large enough. Empirically, due to the
characteristics of the exponential function, as long as the range of scaled distances d′′ is kept between
1-2, a sufficiently good effect can be achieved. In RTD, λ is an important variable, especially in
generation tasks. However, λ does not require high precision, and the range is relatively limited, so a
good enough effect can be achieved quickly through a few attempts. Empirically speaking, 0.4-0.7 is
a suitable range for λ. Previous studies indicated that by pruning the dimension of attention won’t
hurt knn algorithm’s performance [13]. In the case of RTD, showcased in Figure 6 (d), it can be
found that the performance won’t drop with at least 1

4 heads remained, and the generation speed was
boosted as more heads are dropped.

5 Conclusions

In this paper, we introduce Reference Trustable Decoding, a novel training-free method designed
to augment Large Language Models in downstream tasks. RTD refines the output distribution
by leveraging references retrieved from a specially curated datastore, as a bypass of conventional
LM_Head. Our experimental results demonstrate RTD achieved superior performance compared to
the In-Context Learning baseline in 21 out of 25 different dataset and model configurations as well as
fine-tune based methods. This result highlights the effectiveness of RTD across a diverse range of
scenarios, underscoring its potential as a robust solution for enhancing language model capabilities in
downstream tasks.

Limitations & Future Work

RTD is an efficient and quick method to augment the capabilities of models on specific downstream
tasks. However, for some tasks, especially generative tasks, the large reference datastores that are
difficult to directly compress may pose challenges for applications. Nevertheless, we believe that
there is likely inherent redundancy in such large datastores. We hope to enable machines to identify
these redundancies while maintaining a gradient-free method, in order to achieve efficient fine-tuning.
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Table 8: Comparison of RTD and RAG using
Wikipedia on LLaMA2-7B-Chat.

LLaMA2-7B-Chat Acc Latency (ms)

Baseline 39.0 42.5
Wiki RAG 29.0 > 200
Wiki RTD 44.4 46.5

Table 9: PPL of the fitted model on domain
datasets.

Dataset Baseline LoRA RTD

Tiny-S 1.6982 1.3710 1.4501
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Figure 6: Hyper-parameters’ influence on RTD’s performance

How to make RTD accomplish tasks with high quality while being space-efficient is our following
research direction.
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Appendix

A Testing Environments

All testing are done on a server with 8*A100 80G SXM. For models with less than 15B parameters, 2
of 8 GPUs are used. For models with more than 15B parameters, 4 of 8 GPUs are used. All testing
are carried out under HuggingFace Transformers library [43].

B Generation of Reference Datastore

B.1 Benchmark Testing

To generate reference datastores, LLMs are shown to the questions and options in the training split of
the benchmarks and we store the attention output. For each question this process is repeated four
times cycling through A, B, C, D as the correct value. 3, 500 to 5, 000 question is shown to the LLMs
and about 20, 000 (k, v) entries are generated. To be noted is that the reference datastore of CMMLU
is generated from validation set of C-eval [17], split zho_Hans of belebele [3] and testing set of
ACLUE [49] since there is no training split for the benchmark.

B.2 Wikipedia Fact Retrieval

For our reference datastore, we encoded all of the Wikipedia sentences using the Jina [11] model,
which is smaller in both it’s parameter count and hidden size, resulting in a faster generation speed
and smaller space cost for encoded vector datastore. Every usable sentence in Wikipedia is encoded,
meanwhile the sentences from the same page share a same value, which is the no. of this page. When
testing, we use the same model to encode the question, then we search the most relevant pages in the
datastore, be the metric of cosine similarity, to retrieve the most relevant pages. In this section, sL is
same as the sentences count of Wikipedia, around 73M. k = 1024. T and λ are not applicable here.

With retrieved pages, we generate a reference datastore with every sentence in the pages. We first
calculate attention representations for every token, whose corresponding value is the id of next token,
eos for the last token. Then we use this dynamically generated reference datastore for following RTD.
In this section, sL is the same as the length of tokenized sequence, 6200 on average, and we use
T = 750, k = 1024, λ = 0.4.

C RAG’s Deficiency in Testing

RAG method’s shows a decline in performance in Table 8. To explain this, we can further examine the
average length of the tokenized sequences of the retrieved context, which is around 6200, showcased
in Table 10. This length will hardly increase any inference cost for the RTD method, due to the small
sL, but it exceeds the pre-training sequence length of LLaMA2-7B-Chat, which is 4096. That is to
say, the naive RAG method here will cause sequence length overflow, thereby significantly affecting
performance. If the overflow happened, then the model’s ability is cut down significantly.

D LoRA Hyperparamters

See Table 11. For LoRA tuning on MMLU, any question whoes tokenized length exceed 4096 was
evicted from both training and testing. The maximum tokenized length of the Tiny-Shakespeare
dataset is 900.

Table 10: Average length by token in OBQA question answering process, split by sections.
Section Average Length

Wikipedia Context 6192
Question 84
Response 231
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Table 11: LoRA Hyper-parameters
Hyper-parameter Value

Batch Size 4
Epochs 2
Max Seq. Len. 4096

LoRA Target {Q, K, V, O, Up, Down, Gate}_proj
LoRA Rank 16
LoRA α 32
LoRA dropout 0.01

Learning Rate 1e-5
Optimizer AdamW
Adma RMS ϵ 2e-4
Adam β (0.9, 0.999)
Adam Weight Decay 0.01
Scheduler Constant LR

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 3 and section 4 reflects our main claim.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Our main theoretical result is about efficiencies in section 3.4, in which they
were proved.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed description of our experiments and hyper-parameters can be
found in section 4 and appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our main codes can be found in Supplementary Material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Discussions of hyper-parameters of our methods can be found in section 4.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experimental results are definitive and do not involve any random factors.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All information above are given in section 4 and with specific experiment
focused on some of them.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [NA]
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Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

20



Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All models and datasets we’ve used have been cited properly in section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our main codes, as assets, are updated in Supplementary Material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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