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ABSTRACT

To deduce new facts on a knowledge graph (KG), a link predictor learns from the
graph structure and collects local evidence to find the answer to a given query.
However, existing methods suffer from a severe scalability problem due to the
utilization of the whole KG for prediction, which hinders their promise on large-
scale KGs and cannot be directly addressed by vanilla sampling methods. In this
work, we propose the one-shot-subgraph link prediction to achieve efficient and
adaptive prediction. The design principle is that, instead of directly acting on the
whole KG, the prediction procedure is decoupled into two steps, i.e., (i) extracting
only one subgraph according to the query and (ii) predicting on this single, query-
dependent subgraph. We reveal that the non-parametric and computation-efficient
heuristics Personalized PageRank (PPR) can effectively identify the potential
answers and supporting evidence. With efficient subgraph-based prediction, we
further introduce the automated searching of the optimal configurations in both
data and model spaces. Empirically, we achieve promoted efficiency and leading
performances on five large-scale benchmarks. The code is publicly available at:
https://github.com/tmlr-group/one-shot-subgraph.

1 INTRODUCTION

A knowledge graph (KG) is graph-structural data with relational facts (Battaglia et al., 2018; Ji et al.,
2020; Chen et al., 2020), based on which, one can conduct link prediction to deduce new facts from
existing ones. The typical problem is to find the answer entity for the specific query, e.g., to find the
answer Los Angeles to the query (LeBron, lives_in, ?). With continuous advances in recent years, the
link prediction on KG has been widely applied in recommendation systems (Cao et al., 2019; Wang
et al., 2019), online question answering (Huang et al., 2019), and drug discovery (Yu et al., 2021).

The prediction system learns from the local structure of a KG, where existing methods can be generally
summarized as two categories: (1) semantic models that implicitly capture the local evidence through
learning the low-dimensional embeddings of entities and relations (Bordes et al., 2013; Dettmers
et al., 2017; Zhang et al., 2019; Wang et al., 2017); and (2) structural models that explicitly explore
the KG’s structure based on relational paths or graphs with recurrent neural networks (RNNs) or
graph neural networks (GNNs) (Das et al., 2017; Schlichtkrull et al., 2018; Sadeghian et al., 2019;
Vashishth et al., 2019; Teru et al., 2020; Qu et al., 2021; Zhu et al., 2021; Zhang & Yao, 2022).

Although achieving leading performances, these structural models suffer from a severe scalability
problem as the entire KG has been potentially or progressively taken for prediction. This inefficient
manner hinders their application and optimization on large-scale KGs, e.g., OGB (Hu et al., 2020).
Thus, it raises an open question: Is all the information necessary for prediction on knowledge graphs?
Intuitively, only partial knowledge stored in the human brain is relevant to a given question, which
is extracted by recalling and then utilized in the careful thinking procedure. Similarly, generating
candidates and then ranking promising ones are common practices in large-scale recommendation
systems with millions even billions of users (Cheng et al., 2016; Covington et al., 2016). These facts
motivate us to conduct efficient link prediction with an effective sampling mechanism for KGs.

†Correspondence to Bo Han (bhanml@comp.hkbu.edu.hk).
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In this work, we propose the novel one-shot-subgraph link prediction on a knowledge graph. This
idea paves a new way to alleviate the scalability problem of existing KG methods from a data-centric
perspective: decoupling the prediction procedure into two steps with a corresponding sampler and
a predictor. Thereby, the prediction of a specific query is conducted by (i) fast sampling of one
query-dependent subgraph with the sampler and (ii) slow prediction on the subgraph with predictor.

Nevertheless, it is non-trivial to achieve efficient and effective link prediction on large-scale KGs
due to the two major challenges. (1) Sampling speed and quality: The fast sampling of the one-shot
sampler should be capable of covering the essential evidence and potential answers to support the
query. (2) Joint optimization: The sampler and predictor should be optimized jointly to avoid trivial
solutions and to guarantee the expressiveness and adaptivity of the overall model to a specific KG.

To solve these challenges technically, we first implement the one-shot-subgraph link prediction by
the non-parametric and computation-efficient Personalized PageRank (PPR), which is capable of
effectively identifying the potential answers without requiring learning. With the efficient subgraph-
based prediction, we further propose to search the data-adaptive configurations in both data and model
spaces. We show it unnecessary to utilize the whole KG in inference; meanwhile, only a relatively
small proportion of information (e.g., 10% of entities) is sufficient. Our main contributions are:
• We conceptually formalize the new manner of one-shot-subgraph link prediction on KGs (Sec. 3)

and technically instantiate it with efficient heuristic samplers and powerful KG predictors (Sec. 4.1).

• We solve a non-trivial and bi-level optimization problem of searching the optimal configurations in
both data and model spaces (Sec. 4.2) and theoretically analyze the extrapolation power (Sec. 4.3).

• We conduct extensive experiments on five large-scale datasets and achieve an average of 94.4%
improvement in efficiency of prediction and 6.9% promotion in effectiveness of prediction (Sec. 5).

2 PRELIMINARIES

Notations. A knowledge graph is denoted as G = (V,R, E), where the entity set V , the relation
set R, and factual edge set E = {(x, r, v) : x, v∈V, r∈R}. Here, a fact is formed as a triplet and
denoted as (x, r, v). Besides, a sampled subgraph of G is denoted as Gs=(Vs,Rs, Es), satisfying
that Vs⊆V,Rs⊆R, Es⊆E . The atomic problem of link prediction is denoted as a query (u, q, ?),
i.e., given the query entity u and query relation q, to find the answer entity v, making (u, q, v) valid.

Semantic models encode entities and relations to low-dimensional entity embeddings HV ∈R|V|×Dv

and relation embeddings HR∈R|R|×Dr , where Dv,Dr are dimensions. A scoring function fθ, e.g.,
TransE (Bordes et al., 2013) or QuatE (Zhang et al., 2019), is necessary here to quantify the plausibility
of a query triplet (u, q, v) with the learned embeddings (hu,hq,hv) as fθ : (RDv ,RDr ,RDv ) 7→R.

Efficient semantic models aim to reduce the size of entity embeddings. NodePiece (Galkin et al.,

2022) proposes an anchor-based approach that obtains fixed-size embeddings as G fθ7−→ĤV ∈RN×Dv

and inference as (Ĥ,G) fθ,(u,q)7−−−−−→ Ŷ , where Ŷ are the scores of candidate answers, and N≪|V|.
Designed to reduce the embedding size, NodePiece cannot reduce the graph size for structural models.

Structural models are based on relational paths or graphs for link prediction. Wherein the path-based
models, e.g., MINERVA (Das et al., 2017), DRUM (Sadeghian et al., 2019), and RNNLogic (Qu
et al., 2021), aim to learn probabilistic and logical rules and well capture the sequential patterns in
KGs. The graph-based models such as R-GCN (Schlichtkrull et al., 2018) and CompGCN (Vashishth
et al., 2019) propagate the low-level entity embeddings among the neighboring entities to obtain
high-level embeddings. Recent methods NBFNet (Zhu et al., 2021) and RED-GNN (Zhang & Yao,
2022) progressively propagate from u to its neighborhood in a breadth-first-searching (BFS) manner.

Sampling-based structural models adopt graph sampling approaches to decrease the computation
complexity, which can be categorized into two-fold as follows. First, subgraph-wise methods
such as GraIL (Teru et al., 2020) and CoMPILE (Mai et al., 2021) extract enclosing subgraphs
between query entity u and each candidate answer v. Second, layer-wise sampling methods extract a
subgraph for message propagation in each layer of a model. Wherein designed for node-level tasks on
homogeneous graphs, GraphSAGE (Hamilton et al., 2017) and FastGCN (Chen et al., 2018) randomly
sample neighbors around the query entity. While the KG sampling methods, e.g., DPMPN (Xu et al.,
2019), AdaProp (Zhang et al., 2023c), and AStarNet (Zhu et al., 2023), extract a learnable subgraph
in ℓ-th layer by the GNN model in ℓ-th layer, coupling the procedures of sampling and prediction.
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3 One-shot-subgraph LINK PREDICTION ON KNOWLEDGE GRAPHS

To achieve efficient link prediction, we conceptually design the one-shot-subgraph manner that avoids
directly predicting with the entire KG. We formalize this new manner in the following Def. 1.
Definition 1 (One-shot-subgraph Link Prediction on Knowledge Graphs). Instead of directly predict-
ing on the original graph G, the prediction procedure is decoupled to two-fold: (1) one-shot sampling
of a query-dependent subgraph and (2) prediction on this subgraph. The prediction pipeline becomes

G gϕ,(u,q)7−−−−−→ Gs
fθ7−→ Ŷ , (1)

where the sampler gϕ generates only one subgraph Gs (satisfies |Vs|≪|V|, |Es|≪|E|) conditioned
on the given query (u, q, ?). Based on subgraph Gs, the predictor fθ outputs the final predictions Ŷ .

Comparison with existing manners of prediction. In brief, semantic models follow the manner of
encoding the entire G to the embeddings H=(HV ,HR) and prediction (inference) without G, i.e.,

H
fθ,(u,q)7−−−−−→ Ŷ , s.t. G fθ7−→H,

which is parameter-expensive, especially when encountering a large-scale graph with a large entity
set. On the other hand, structural models adopt the way of learning and prediction with G, i.e.,

G fθ,(u,q)7−−−−−→ Ŷ ,

that directly or progressively conduct prediction with the entire graph G. Namely, all the entities and
edges can be potentially taken in the prediction of one query, which is computation-expensive. By
contrast, our proposed one-shot prediction manner (Def. 1) enjoys the advantages 1 & 2 as follows.
Advantage 1 (Low complexity of computation and parameter). The one-shot-subgraph model is (1)
computation-efficient: the extracted subgraph is much smaller than the original graph, i.e., |Vs|≪|V|
and |Es|≪|E|; and (2) parameter-efficient: it avoids learning the expensive entities’ embeddings.
Advantage 2 (Flexible propagation scope). The scope here refers to the range of message propagation
starting from the query entity u. Normally, an L-layer structural method will propagate to the full
L-hop neighbors of u. By contrast, the adopted one-shot sampling enables the bound of propagation
scope within the extracted subgraph, where the scope is decoupled from the model’s depth L.

Comparison with existing sampling methods. Although promising to the scalability issue, existing
sampling methods for structural models are not efficient or effective enough for learning and prediction
on large-scale KGs. To be specific, the random layer-wise sampling methods cannot guarantee the
coverage of answer entities, i.e., 1(v∈Vu). By contrast, the learnable layer-wise sampling methods
extract the query-dependent subgraph G(ℓ)s in ℓ-th layer via the GNN model f (ℓ)

θ in ℓ-th layer as

G
f
(1)
θ ,(u,q)
7−−−−−−→ G(1)s

f
(2)
θ ,(u,q)
7−−−−−−→ G(2)s 7→ · · · 7→ G(L−1)

s

f
(L)
θ ,(u,q)
7−−−−−−→ Ŷ ,

coupling the sampling and prediction procedures that (1) are bundled with specific architectures and
(2) with extra computation cost in the layer-wise sampling operation. Besides, the subgraph-wise
sampling methods extract the enclosing subgraphs between query entity u and each candidate answer
v∈V , and then independently reason on each of these subgraphs to obtain the final prediction Ŷ as{

Ŷv : G (u,v)7−−−→ G(u,v)s

fθ,(u,q,v)7−−−−−−→ Ŷv

}
v∈V 7→ Ŷ .

Note these approaches are extremely expensive on large-scale graphs, as each candidate (u, v) corre-
sponds to a subgraph to be scored. By contrast, one-shot sampling manner enjoys the advantage 3.
Advantage 3 (High efficiency in subgraph sampling). Our proposed prediction manner requires
only one subgraph for answering one query, which is expected to cover all the potential answers
and supporting facts. Notably, this query-specific subgraph is extracted in a one-shot and decoupled
manner that does not involve the predictor, reducing the computation cost in subgraph sampling.

4 INSTANTIATING THE ONE-SHOT-SUBGRAPH LINK PREDICTION

Note that it is non-trivial to achieve Def. 1, wherein (i) the implementation of sampler, (ii) the
architecture of predictor, and (iii) the method to optimize these two modules need to be figured out.
Here, the major challenge lies in the sampler, which is required to be efficient, query-dependent, and
local-structure-preserving. In this section, we elaborate on the detailed implementation (Sec. 4.1), set
up a bi-level problem for optimization (Sec. 4.2), and investigate the extrapolation power (Sec. 4.3).
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Figure 1: The proposed framework of one-shot-subgraph link prediction. Specifically, (1) the sampler
gϕ extracts a subgraph Gs from the whole graph G with regard to the given query, and (2) the predictor
fθ conducts deliberative prediction on the extracted subgraph Gs and obtains the final predictions Ŷ .

4.1 REALIZATION: THREE-STEP PREDICTION WITH PERSONALIZED PAGERANK

Overview. As illustrated in Fig. 1, the three key steps of our method are (1) generating the sampling
distribution PG by sampler gϕ, (2) sampling a subgraph from the distribution as Gs∼PG with top-K
entities and edges, and (3) predicting on the subgraph Gs and acquiring the final prediction Ŷ by
predictor fθ. The three-step procedure is summarized in Algorithm 1 and elaborated on as follows.

Step-1. Generate sampling distribution. Previous studies show that v is generally near to u (Zhu
et al., 2021; Zhang & Yao, 2022), and the relational paths connecting u and v that support the query
also lie close to u (Das et al., 2017; Sadeghian et al., 2019). To efficiently capture the local evidence
of u, we choose the heuristic Personalized PageRank (PPR) (Page et al., 1999; Jeh & Widom, 2003)
as the sampling indicator. Note that PPR is not only efficient for its non-parametric nature but also
query-dependent and local-structure-preserving for its single-source scoring that starts from u.

Specifically, PPR starts propagation from u to evaluate the importance of each neighbor of u and
generates the PageRank scores as the sampling probability that encodes the local neighborhood of the
query entity u. Besides, it can also preserve the locality and connectivity of subgraphs by leveraging
the information from a large neighborhood. Given a query entity u, we obtain the probability p∈R|V|

Non-parametric indicator : p(k+1) ← α · s+ (1− α) ·D−1A · p(k), (2)
by iteratively updating the scores up to K=100 steps to approximate the converged scores efficiently.
Here, the initial score p(0)=s=1(u)∈{0, 1}|V| indicates the query entity u to be explored. The
two-dimensional degree matrix D∈R|V|×|V| and adjacency matrix A∈{0, 1}|V|×|V| together work
as the transition matrix, wherein Aij =1 means an edge (i, r, j)∈E and Dij =degree(vi) if i= j
else Dij=0. The damping coefficient α (= 0.85 by default) controls the differentiation degree.

Step-2. Extract a subgraph. Based on the PPR scores p (Eqn. 2), the subgraph Gs=(Vs, Es,Rs)
(whereRs=R) is extracted with the most important entities and edges. Denoting the sampling ratios
of entities and edges as rqV , r

q
E ∈(0, 1] that depend on the query relation q, we sample |Vs|=rqV×|V|

entities and |Es|=rqE×|E| edges from the full graph G. With the TopK(D,P,K) operation that picks
up top-K elements from candidate D w.r.t. probability P , the entities Vs and edges Es are given as

Entity Sampling: Vs ← TopK
(
V, p, K=rqV×|V|

)
,

Edge Sampling: Es ← TopK
(
E , {px ·po : x, o∈Vs, (x, r, o)∈E}, K=rqE×|E|

)
.

(3)

Step-3. Reason on the subgraph. From the model’s perspective, we build the configuration space
of the predictor and further utilize the advantages of existing structural models introduced in Sec. 2.
Three query-dependent message functions MESS(·) are considered, including DRUM, NBFNet, and
RED-GNN, which are elaborated in Appendix. B. Note the effective message is propagated from u to
the sampled entities o ∈ Vs. Generally, the layer-wise updating of representations is formulated as
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Indicating:h(0)
o ←1(o = u),

Propagation:h(ℓ+1)
o ←DROPOUT

(
ACT

(
AGG

{
MESS(h(ℓ)

x ,h(ℓ)
r ,h(ℓ)

o ) : (x, r, o)∈Es
}))

,
(4)

where 1(o = u) is the indicator function that only labels the query entity u in a query-dependent
manner. After a L-layer propagation, the predictor outputs the final score ŷo of each entity o∈Vs
based on their representations h

(L)
o as ŷo = Readout(h(L)

o ,h
(L)
u ) ∈ R. The loss function Lcls

adopted in the training phase is the commonly-used binary cross-entropy loss on all the sampled
entities. Namely, Lcls=−

∑
o∈Vs

yo log(ŷo)+(1− yo) log(1−ŷo), where yo=1 if o=v else yo=0.

Algorithm 1 One-shot-subgraph Link Prediction on Knowledge Graphs

Require: KG G = (V,R, E), degree matrix D ∈ R|V|×|V|, adjacency matrix A ∈ {0, 1}|V|×|V|,
damping coefficient α, maximun PPR iterations K , query (u, q, ?), sampler gϕ, predictor fθ.

1: # Step-1. Generate sampling distribution
2: initialize s← 1(u), p(0) ← 1(u).
3: for k = 1 . . .K do
4: p(k+1) ← α · s+ (1− α) ·D−1A · p(k).
5: end for
6: # Step-2. Extract a subgraph Gs
7: Vs ← TopK(V, p, K=rqV×|V|).
8: Es ← TopK(E , {pu ·pv : u, v∈Vs, (u, r, v)∈E}, K=rqE×|E|).
9: # Step-3. Reason on the subgraph

10: initialize representations h(0)
o ← 1(o = u).

11: for ℓ = 1 . . . L do
12: h

(ℓ)
o ←DROPOUT(ACT(AGG{MESS(h(ℓ−1)

x ,h
(ℓ−1)
r ,h

(ℓ−1)
o ) : (x, r, o)∈Es})).

13: end for
14: return Prediction ŷo=Readout(h(L)

o ,h
(L)
u ) for each entity o ∈ Vs.

4.2 OPTIMIZATION: EFFICIENT SEARCHING FOR DATA-ADAPTIVE CONFIGURATIONS

Search space. Note that hyperparameters (rqV , r
q
E) and L play important roles in Algorithm 1.

Analytically, a larger subgraph with larger rqV , r
q
E does not indicate a better performance, as more

irrelevant information is also covered. Besides, a deeper model with a larger L can capture more
complex patterns but is more likely to suffer from the over-smoothing problem (Oono & Suzuki,
2019). Overall, the (rqV , r

q
E) are for sampler’s hyper-parameters ϕhyper. In addition to L, predictor’s

hyper-parameters θhyper contain several intra-layer or inter-layer designs, as illustrated in Fig. 2(a).

Search problem. Next, we propose the bi-level optimization problem to adaptively search for the
optimal configuration (ϕ∗

hyper,θ
∗
hyper) of design choices on a specific KG, namely,

ϕ∗
hyper =argmax

ϕhyper
M(f(θ∗

hyper,θ
∗
learn)

, gϕhyper , Eval),

s.t. θ∗
hyper =argmax

θhyper
M(f(θhyper,θ∗

learn)
, gϕ̄hyper

, Eval),
(5)

where the performance measurementM can be Mean Reciprocal Ranking (MRR) or Hits@k. Note
the non-parametric sampler gϕ only contains hyper-parameters ϕhyper. As for predictor fθ, its θ=
(θhyper,θlearn) also includes learnable θlearn that θ∗

learn=argminθlearn Lcls(f(θhyper,θlearn), gϕ̄hyper
, E train).

Search algorithm. Directly searching on both data and model spaces is expensive due to the large
space size and data scale. Hence, we split the search into two sub-processes as Fig. 2(b), i.e.,

• First, we freeze the sampler gϕ̄ (with constant ϕhyper) to search for the optimal predictor fθ∗ with
(1) the hyper-parameters optimization for θ∗

hyper and (2) the stochastic gradient descent for θ∗
learn.

• Then, we freeze the predictor fθ∗ and search for the optimal sampler gϕ∗ , simplifying to pure hyper-
parameters optimization for ϕ∗

hyper in a zero-gradient manner with low computation complexity.

Specifically, we follow the sequential model-based Bayesian Optimization (BO) (Bergstra et al.,
2013; Hutter et al., 2011) to obtain ϕ∗

hyper and θ∗
hyper. Random forest (RF) (Breiman, 2001) is chosen

as the surrogate model because it has a stronger power for approximating the complex and discrete
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Figure 2: Illustrations of the optimization procedure. Note the predictor in (a) is with hyper-parameters
and learnable parameters in each layer’s propagation, and the H(L) indicates the representations in
L-th layer. By contrast, the sampler only contains hyper-parameters as it does not require learning.

curvature (Grinsztajn et al., 2022), compared with other common surrogates, e.g., Gaussian Process
(GP) (Williams & Rasmussen, 1995) or Multi-layer Perceptron (MLP) (Gardner & Dorling, 1998).

Acceleration in searching. We adopt a data split trick that balances observations and predictions.
It saves time as the training does not necessarily traverse all the training facts. Specifically, partial
training facts are sampled as training queries while the others are treated as observations, i.e., we
randomly separate the training facts into two parts as E train=Eobs∪Equery, where the overall prediction
system fθ ◦ gϕ takes Eobs as input and then predicts Equery (see Fig. 2(c)). Here, the split ratio rsplit

is to balance the sizes of these two parts as rsplit = |Eobs|/|Equery|. Thus, the training becomes θ∗ =
argminθ Σ(u,q,v)∈EqueryLcls

(
fθ(Gs), v

)
with the split query edges Equery, where Gs= gϕ(Eobs, u, q)

with the split observation edges Eobs. More technical details can be found in the Appendix. B.

4.3 THEORY: THE EXTRAPOLATION POWER OF ONE-SHOT-SUBGRAPH LINK PREDICTION

Further, we investigate the extrapolation power of link prediction across graph scales, i.e., training
and inference on different scales of graphs. For example, training on small subgraphs G train

s and
testing on large subgraphs G test

s , where the ratio of entities |V test
s |/|V train

s |≫1. This scenario is practical
for recommendation systems on social networks that can encounter much larger graphs in the testing
phase. Intuitively, training on smaller G train

s can save time for its faster convergence on subgraphs (Shi
et al., 2023), while predicting on larger G test

s might gain promotion for more support of facts in G test
s .

Nonetheless, the Theorem 1 below proves that link prediction can become unreliable as the test graph
grows. That is, if we use a small subgraph for training and a large subgraph for testing, the predictor
will struggle to give different predictions within and across sampling distributions by g, even when
these probabilities are arbitrarily different in the underlying graph model. Our empirical results in
Fig. 4 support this theoretical finding. Hence, it is necessary to strike a balance of subgraphs’ scale.
Theorem 1. Let G train

s ∼ PG and G test
s ∼ PG be the training and testing graphs that are sampled

from distribution PG . Consider any two test entities u, v∈V test
s , for which we can make a prediction

decision of fact (u, q, v) with the predictor fθ, i.e., ŷv=fθ(G test
s )v ̸=τ . Let G test be large enough to

satisfy
√

|V test
s |/
√

log(2|V test
s |/p) ≥ 4

√
2/dmin, where dmin is the constant of graphon degree (Diaconis &

Janson, 2007). Then, for an arbitrary threshold τ ∈ [0, 1], the testing subgraph G test
s satisfies that√

|V test
s |√

log(2|V test
s |/p)

≥ 2(C1 + C2∥g∥∞)

|fθ(G test
s )v − τ |/L(M train)

. (6)

where the underlying generative function of graph signal g∈L∞ is with the essential supreme norm
as in (Maskey et al., 2022; Zhou et al., 2022). The p, C1, C2 are constants and depend on M train

where min(supp(|V test
s |))≫M train =max(supp(|V train

s |)). It means any test graph can be much
larger than the largest possible training graph, and supp indicates the support of a distribution.
Then, if u and v are isomorphic in topology and with the same representations, we have a probability
at least 1−

∑L
ℓ=1 2(|h(ℓ)|+1)p with hidden size |h(ℓ)| that the same predictions can be obtained

whether u, v are generated by the same or distinct g. The detailed proof can be found in Appendix. A.
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Table 1: Empirical results of WN18RR, NELL-995, YAGO3-10 datasets. Best performance is
indicated by the bold face numbers, and the underline means the second best. “–” means unavailable
results. “H@1” and “H@10” are short for Hit@1 and Hit@10 (in percentage), respectively.

type models WN18RR NELL-995 YAGO3-10
MRR↑ H@1↑ H@10↑ MRR↑ H@1↑ H@10↑ MRR↑ H@1↑ H@10↑

Semantic Models
ConvE 0.427 39.2 49.8 0.511 44.6 61.9 0.520 45.0 66.0
QuatE 0.480 44.0 55.1 0.533 46.6 64.3 0.379 30.1 53.4
RotatE 0.477 42.8 57.1 0.508 44.8 60.8 0.495 40.2 67.0

Structural Models

MINERVA 0.448 41.3 51.3 0.513 41.3 63.7 – – –
DRUM 0.486 42.5 58.6 0.532 46.0 66.2 0.531 45.3 67.6

RNNLogic 0.483 44.6 55.8 0.416 36.3 47.8 0.554 50.9 62.2
CompGCN 0.479 44.3 54.6 0.463 38.3 59.6 0.489 39.5 58.2

DPMPN 0.482 44.4 55.8 0.513 45.2 61.5 0.553 48.4 67.9
NBFNet 0.551 49.7 66.6 0.525 45.1 63.9 0.550 47.9 68.3

RED-GNN 0.533 48.5 62.4 0.543 47.6 65.1 0.559 48.3 68.9

one-shot-subgraph 0.567 51.4 66.6 0.547 48.5 65.1 0.606 54.0 72.1

Table 2: Empirical results of two OGB datasets (Hu et al., 2020) with regard to official leaderboards.

type models OGBL-BIOKG OGBL-WIKIKG2
Test MRR↑ Valid MRR↑ #Params↓ Test MRR↑ Valid MRR↑ #Params↓

Semantic Models

TripleRE 0.8348 0.8360 469,630,002 0.5794 0.6045 500,763,337
AutoSF 0.8309 0.8317 93,824,000 0.5458 0.5510 500,227,800
PairRE 0.8164 0.8172 187,750,000 0.5208 0.5423 500,334,800

ComplEx 0.8095 0.8105 187,648,000 0.4027 0.3759 1,250,569,500
DistMult 0.8043 0.8055 187,648,000 0.3729 0.3506 1,250,569,500
RotatE 0.7989 0.7997 187,597,000 0.4332 0.4353 1,250,435,750
TransE 0.7452 0.7456 187,648,000 0.4256 0.4272 1,250,569,500

Structural Models one-shot-subgraph 0.8430 0.8435 976,801 0.6755 0.7080 6,831,201

Table 3: Coverage Ratio of different heuristics. Bold face numbers indicate the best results in column.

heuristics WN18RR NELL-995 YAGO3-10
rqV =0.1 rqV =0.2 rqV =0.5 rqV =0.1 rqV =0.2 rqV =0.5 rqV =0.1 rqV =0.2 rqV =0.5

Random Sampling (RAND) 0.100 0.200 0.500 0.100 0.200 0.500 0.100 0.200 0.500
PageRank (PR) 0.278 0.407 0.633 0.405 0.454 0.603 0.340 0.432 0.694

Random Walk (RW) 0.315 0.447 0.694 0.522 0.552 0.710 0.449 0.510 0.681
Breadth-first-searching (BFS) 0.818 0.858 0.898 0.872 0.935 0.982 0.728 0.760 0.848
Personalized PageRank (PPR) 0.876 0.896 0.929 0.965 0.977 0.987 0.943 0.957 0.973

5 EXPERIMENTS

In this section, we empirically verify the effectiveness of the proposed framework. The major
experiments are conducted with PyTorch (Paszke et al., 2017) and one NVIDIA RTX 3090 GPU. The
OGB datasets are run with one NVIDIA A100 GPU. We use five benchmarks with more than ten
thousand entities (see Tab. 11), including WN18RR (Dettmers et al., 2017), NELL-995 (Xiong et al.,
2017), YAGO3-10 (Suchanek et al., 2007), OGBL-BIOKG, and OGBL-WIKIKG2 (Hu et al., 2020).

Metrics. We adopt the filtered ranking-based metrics for evaluation, i.e., mean reciprocal ranking
(MRR) and Hit@k (i.e., both Hit@1 and Hit@10), following (Bordes et al., 2013; Teru et al., 2020;
Wang et al., 2017; Zhu et al., 2021). For both metrics, a higher value indicates a better performance.

Main Results. As results shown in Tab. 1 and Tab. 2, our one-shot-subgraph link prediction method
achieves leading performances on all five large-scale benchmarks over all the baselines. Especially
on the largest OGBL-WIKIKG2 dataset, a 16.6% improvement in Test MRR can be achieved. Note
the results attribute to a deep GNN (high expressiveness) and small subgraphs (essential information)
extracted by sampling 10% of entities on average for answering specific queries. Which means, it
is unnecessary to utilize the whole KG in link prediction; meanwhile, only a small proportion of
entities and facts are essential for answering specific queries that can be quickly identified by the PPR
heuristics. In what follows, we conduct an in-depth analysis of the properties of the proposed method.

The Sampling Distribution. We empirically evaluate to what extent the entities relevant to a specific
query can be identified by heuristics, e.g., BFS, RW, and PPR. We quantify their power of identifying
potential answers via the metric of Coverage Ratio CR=1/|E test|

∑
(u,q,v)∈E test I{v∈Vs}, i.e., the ratio

of covered answer entities that remain in the set of sampled entities Vs. As shown in Tab. 3 and Fig. 3,
PPR gets a much higher CR and notably outperforms other heuristics in identifying potential answers.
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Figure 3: Coverage Ratio (CR) of different heuristics (CR=1/|E test|
∑

(u,q,v)∈E test I{v∈Vs}).
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Figure 4: Heatmaps of validate MRR (the higher, the better) w.r.t. rqV and rqE on three benchmarks.
Table 4: Comparison of effectiveness with regard to subgraph sampling.

#layers (L) rqV rqE
WN18RR NELL-995 YAGO3-10

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

8 1.0 1.0 Out of memory Out of memory Out of memory
8 0.1 1.0 0.567 51.4 66.6 0.547 48.5 65.1 0.606 54.0 72.1

6 1.0 1.0 0.543 49.2 64.3 0.519 45.3 62.7 0.538 46.9 66.0
6 0.1 1.0 0.566 51.2 66.5 0.540 48.0 63.8 0.599 53.1 71.8

4 1.0 1.0 0.513 46.6 59.8 0.518 45.4 61.5 0.542 47.6 66.1
4 0.1 1.0 0.523 47.7 60.5 0.538 47.4 63.4 0.589 52.2 70.4

Ablation Study. (1) Training with varying scales and layers: We train the predictor from scratch
with various scales of subgraphs and the number of layers. As can be seen from Tab. 4, involving
all the entities with rqV =1.0 degenerates the prediction, as too many irrelevant entities are covered.
Besides, a deeper predictor with a larger L consistently brings better results. These observations
enlighten us to learn a deeper predictor with small subgraphs. (2) Training with different heuristics:
We replace the PPR sampling module with four other common heuristics. However, as shown in
Tab. 5, their final prediction performances are outperformed by PPR. (3) Test-time extrapolation
power across scales: As in Theorem. 1, we evaluate the extrapolation power by generalizing to
various scales of subgraphs that are different from the scale of training graphs, e.g., the whole graph
rqV =rqE =1.0. As shown in Fig. 4, the predictor also suffers when prediction with more irrelevant
entities, especially with larger rqV , while the generally good cases are a lower rqV to focus on the
relevant entities and a high rqE to preserve the local structure (of head u) within the sampled entities.

Training and Inference Efficiency. Next, we conduct an efficiency study to investigate the im-
provement of efficiency brought by the proposed one-shot-subgraph link prediction framework. The
running time and GPU memory of an 8-layer GNN are summarized in Tab. 7. As can be seen, a
notable advantage of decoupling is that it has less computing cost in both terms of less running time
and also less memory cost. Particularly, on the YAGO3-10 dataset, the existing GNN-based methods
will run out of memory with a deep architecture. However, with the subgraph sampling of lower
ratios of rqV and rqE , the learning and prediction of GNNs become feasible that is with less memory
cost and achieving state-of-the-art performance. Hence, we show that our method is effective and also
efficient that it supports the learning and prediction of deep GNNs on large-scale knowledge graphs.

Besides, we provide a detailed efficiency comparison between our method (with 10% entities) and the
original implementation (with 100% entities) on two SOTA methods, NBFNet and RED-GNN. Tab. 6
shows that the training time is significantly reduced when learning with our method. Notably, on
the YAGO3-10 dataset, 94.3% and 94.5% of training time (for one epoch) can be saved for NBFNet
and RED-GNN, respectively. Besides, our method boosts the performance as advantage 2, where the
performance improvement can come from a deeper GNN and a smaller observation graph (detailed
analysis in Appendix. D.3). Full evaluations and more discussions are elaborated in the Appendix. C.
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Figure 5: Exemplar subgraphs sampled from WN18RR (left) and YAGO3-10 (right). The red and
green nodes indicate the query entity and answer entity. The colors of the edges indicate relation types.
The bottom distributions of degree and distance show the statistical properties of each subgraph.

Table 5: Comparison of prediction performance with different sampling heuristics.

heuristics WN18RR YAGO3-10
MRR H@1 H@10 MRR H@1 H@10

Random Sampling (RAND) 0.03 43.4 3.5 0.057 5.1 6.5
PageRank (PR) 0.124 11.5 14.2 0.315 28.9 35.9

Random Walk (RW) 0.507 45.8 59.8 0.538 46.3 67.2
Breadth-first-searching (BFS) 0.543 49.6 63.0 0.562 49.4 69.0

Personalized PageRank (PPR) 0.567 51.4 66.6 0.606 54.0 72.1

Table 6: Comparison of prediction performance with two recent GNN methods.

methods WN18RR YAGO3-10
MRR H@1 H@10 Time MRR H@1 H@10 Time

NBFNet (100% entities) 0.551 49.7 66.6 32.3 min 0.550 47.9 68.3 493.8 min
NBFNet + one-shot-subgraph (10% entities) 0.554 50.5 66.3 2.6 min 0.565 49.6 69.2 28.2 min

RED-GNN (100% entities) 0.533 48.5 62.4 68.7 min 0.559 48.3 68.9 1382.9 min
RED-GNN + one-shot-subgraph (10% entities) 0.567 51.4 66.6 4.5 min 0.606 54.0 72.1 76.3 min

Table 7: Comparison of efficiency with an 8-layer predictor and different rqV , r
q
E .

phase rqV rqE
WN18RR NELL-995 YAGO3-10

Time Memory Time Memory Time Memory

Training

1.0 1.0 Out of memory Out of memory Out of memory
0.5 0.5 26.3m 20.3GB 1.6h 20.1GB Out of memory

0.2 1.0 12.8m 20.2GB 1.2h 18.5GB Out of memory
0.2 0.2 6.7m 6.4GB 0.6h 8.9GB 2.1h 23.1GB

0.1 1.0 7.2m 9.8GB 0.8h 12.1GB 1.3h 13.9GB
0.1 0.1 6.6m 5.1GB 0.3h 5.3GB 0.9h 10.2GB

Inference

1.0 1.0 7.3m 6.7GB 17.5m 12.8GB 1.6h 15.0GB
0.5 0.5 6.0m 4.3GB 8.3m 4.5GB 1.1h 10.1GB

0.2 1.0 3.2m 5.8GB 4.2m 12.1GB 0.7h 14.7GB
0.2 0.2 2.8m 1.9GB 3.6m 2.5GB 0.6h 3.7GB

0.1 1.0 2.7m 2.7GB 3.1m 9.4GB 0.4h 9.7GB
0.1 0.1 2.3m 1.7GB 2.9m 1.9GB 0.4h 3.1GB

Case Study. We visualize the sampled subgraph in Fig. 5 with the histograms of degree and distance
distributions. As can be seen, the local structure of query entity u is well preserved, while the true
answers v are also covered in the subgraphs. More cases and analyses can be found in Appendix. E.

6 CONCLUSION

In this paper, we propose the one-shot-subgraph link prediction to alleviate the scalability problem
of structural methods and achieve efficient as well as adaptive learning on large-scale KGs. We
discover that the non-parametric and computation-efficient heuristics PPR can effectively identify
the potential answers and support to the prediction. We further introduce the automated searching
for adaptive configurations in both data space and model space. Extensive experiments on five
large-scale benchmarks verify the effectiveness and efficiency of our method. Importantly, we show
it unnecessary to utilize the whole KG for answering specific queries; meanwhile, only a small
proportion of information is essential and can be identified by the PPR heuristics without learning.
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A THEORETICAL ANALYSIS

A.1 NOTATIONS

We summarize the frequently used notations in Tab. 8.

Table 8: The most frequently used notations in this paper.

notations meanings

V,R, E the set of entities, relations, facts (edges) of the original KG

G = (V,R, E) the original KG

Vs,Rs, Es the set of entities, relations, facts (edges) of the sampled KG

Gs = (Vs,Rs, Es) the sampled KG generated by the sampler gϕ
(x, r, o) a fact triplet in E with subject entity x, relation r and object entity o

(u, q, v) a query triple with query entity u, query relation q and answer entity v

L the total number of propagation steps

ℓ the ℓ-th propagation step and ℓ ∈ {0 . . . L}
K the maximum steps of updating the PPR scores

k the k-th propagation step and k ∈ {0 . . .K}

h
(ℓ)
o the representation of entity o at step ℓ

gϕ the sampler of the one-shot-subgraph link prediction framework

fθ the predictor of the one-shot-subgraph link prediction framework

rqV , r
q
E the sampling ratios of entities and edges

A.2 COMPLEXITY ANALYSIS

Next, we compare three different manners from perspectives of computation and parameter.

In a nutshell, semantic models are computation-efficient but parameter-expensive, while structural
models are parameter-efficient but computation-expensive. Here, we aim to make the best of the both
worlds by designing a framework that is parameter-efficient and computation-efficient. The proposed
one-shot-subgraph link prediction models, as will be elaborated in Sec. 3, is with the new prediction

manner that G gϕ,(uq,rq)7−−−−−−→ Gs
fθ7−→ Ŷ . The key difference here is that, instead of the original G, the

predictor fθ is acting on the query-dependent subgraph Gs extracted by the sampler gϕ.

By contrast, we show that the proposed subgraph models make the best of both worlds: (1) subgraph
models are computation-efficient, as the extracted subgraph is much smaller than the original graph,
i.e., |Vs|≪|V| and |Es|≪|E|; (2) inherits from Sadeghian et al. (2019); Zhu et al. (2021); Zhang &
Yao (2022), subgraph models are also parameter-efficient: only requires the relations’ embeddings
but not the expensive entities’ embeddings. By contrast, the semantic models need to learn entities’s
embeddings, which are parameter-expensive and only applicable in transductive settings.

A detailed comparison of parameter and computation complexity is summarized in Tab. 9.

Table 9: The comparison of related works with parameter complexity and computation complexity.

Category Parameter complexity Computation complexity

semantic models O(|V|·DV)+O(|R|·DR) O(|R|·DV)
structural models O(|R|·DR) O(|E|·DR ·L)
subgraph models O(|R|·DR) O(|E|·K)+O(|Es|·DR ·L)
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(a) semantic model (b) structural model (c) one-shot-subgraph model (d) complexity comparison

Figure 6: Illustrations of prediction manners. Semantic and structure models implicitly or explicitly
take the whole graph G for prediction. Our one-shot-subgraph model only requires one subgraph Gs
for the prediction of one query that decreases computation complexity via decoupling fθ and G.

(a) layer-wise sampling (b) subgraph-wise sampling

Figure 7: Illustrations of sampling methods. Detailed analysis is corresponding to Sec. 3.

A.3 PROOF FOR THEOREM 1

Proof. Here, let G train
s ∼ PG and G test

s ∼ PG be the training and testing graphs that are sampled
distribution PG . Let G test be large enough to satisfy

√
|V test

s |/
√

log(2|V test
s |/p) ≥ 4

√
2/dmin, where dmin is

the constant of graphon degree (Diaconis & Janson, 2007).

In this part, we follow Maskey et al. (2022); Zhou et al. (2022) with the definitions of graph
message-passing neural network Φ and continuous message passing neural network Ψ. Note that Φ is
equivalent to the message passing function of the predictor fw that generates the entity representation
h
(ℓ)
v in each layer ℓ = 1, 2, · · · , L. Besides, Ψ is the continuous counterpart of Φ. It uses the

continuous aggregation instead of the discrete one w.r.t. the discrete graph topology in Φ.

With the two above functions, ∥Φ∥∞, ∥Ψ∥∞ can be trained and determined by the original graph
G train and hyperparameters rqV , r

q
E and L. Following Maskey et al. (2022); Zhou et al. (2022), let

p ∈ (0, 1/
∑L

ℓ=1 2|h(ℓ)|+1) we with probability at least 1−
∑L

ℓ=1 2(|h(ℓ)|+1)p, the difference δ between
∥Φ∥∞ and ∥Ψ∥∞ is bounded by

δ := max
i=1,2,··· ,|V test

s |
∥Φi −Ψi∥∞

≤
L∑

ℓ=1

L
(ℓ)
Ψ (M train)

(
2
√
2
(L

(ℓ)
Φ (M train)∥g∥∞+∥Φ(ℓ)∥∞)

√
log(2|V

test
s |/p)√

|V test
s |

)
×

L∏
ℓ′=ℓ+1

(
(L

(ℓ′)
Ψ (M train))2 + 2(L

(ℓ′)
Φ (M train))2(L

(ℓ′)
Ψ (M train))2

)
.

Then, based on the proof for Lemma B.9 in (Maskey et al., 2022), we can derive ∥g∥∞≤ B
(ℓ)
1 +

B
(ℓ)
2 ∥g∥∞, where B

(ℓ)
1 , B

(ℓ)
2 are independent of g. Specifically,

B
(ℓ)
1 =

ℓ∑
k=1

(
L
(k)
Ψ (M train)∥Φ(k)∥∞+∥Ψ(k)∥∞

)
×

ℓ∏
k′=k+1

(
L
(k′)
Ψ (M train)(1 + L

(k′)
Ψ (M train))

)
,

B
(ℓ)
2 =

ℓ∏
k=1

L
(k)
Ψ (M train)

(
1 + L

(k)
Φ (M train)

)
.
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Then, we define constants C1, C2 as follows.

C1 =

L∑
ℓ=1

L
(ℓ)
Ψ (M train)

(
2
√
2(L

(ℓ)
Φ (M train)B

(ℓ)
1 + ∥Φ(ℓ+1)∥∞)

)
×

L∏
ℓ′=ℓ+1

(
(L

(ℓ′)
Ψ (M train))2 + 2(L

(ℓ′)
Φ (M train))2(L

(ℓ′)
Ψ (M train))2

)
,

C2 =

L∑
ℓ=1

L
(ℓ)
Ψ (M train)

(
2
√
2L

(ℓ)
Φ (M train)B

(ℓ)
2

)
×

L∏
ℓ′=ℓ+1

(
(L

(ℓ′)
Ψ (M train))2 + 2(L

(ℓ′)
Φ (M train))2(L

(ℓ′)
Ψ (M train))2

)
.

This, we can derive the difference δ as

δ := max
i=1,2,··· ,|V test

s |
∥Φi −Ψi∥∞ ≤ (C1 + C2∥g∥∞)

√
log(2|V

test
s |/p)√

|V test
s |

,

where C1, C2 depends on {L(ℓ)
Φ (M train)}Lℓ=1 and {L(ℓ)

Ψ (M train)}Lℓ=1 that

min(supp(|V test
s |))≫M train = max(supp(|V train

s |)).

Then, consider any two test entities u, v∈V test
s , for which we can make a prediction decision of fact

(u, q, v), we have

∥Φu − Φv∥∞ ≤∥Φu −Ψu∥∞ + ∥Ψu − Φv∥∞

=∥Φu −Ψu∥∞ + ∥Ψv − Φv∥∞ ≤ (C1 + C2∥g∥∞)

√
log(2|V

test
s |/p)√

|V test
s |

.

The first inequality holds by the triangle inequality. In contrast, the second inequality holds since
Ψu=Ψv . Note that u and v are isomorphic in the topology of the test graph (Zhou et al., 2022) and
thus with the same representations.

Next, with probability at least 1−
∑L

ℓ=1 2(|h(ℓ)|+1)p, for arbitrary entity v′ ∈ V test
s , we have

∥Φv − Φ′
v∥∞ ≤ (C1 + C2∥g∥∞)

√
log(2|V

test
s |/p)√

|V test
s |

.

Then, when the size of the test graph is satisfied and puv = fw(G test
s )uv = READOUT(h(L)

u ,h
(L)
v ),

we have

∥puv − puv′∥∞ ≤ L(M train)∥Φv − Φ′
v∥∞ ≤ ∥puv − τ∥∞.

Specifically, if puv ≥ τ , we have

puv′ ≥ puv − |puv − puv′ | ≥ puv − |puv − τ | = puv − puv + τ = τ.

if puv ≤ τ , we have

puv′ ≤ puv + |puv − puv′ | ≤ puv + |puv − τ | = puv + τ − puv = τ.

Thus, whether u, v are generated by the same or distinct g, where the underlying generative function of
graph signal g∈L∞ is with the essential supreme norm as in Maskey et al. (2022); Zhou et al. (2022),
we have a probability at least 1−

∑L
ℓ=1 2(|h(ℓ)|+1)p that the same predictions are obtained.
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B IMPLEMENTATION DETAILS

MESS(·) and AGG(·) for GNN-based methods. The two functions of the GNN-based methods
are summarized in Tab.10. The main differences between different methods are the combinators for
entity and relation representations on the edges, the operators on the different representations, and
the attention weights. Recent works (Vashishth et al., 2019; Zhu et al., 2021) have shown that the
different combinators and operators only have a slight influence on the performance. Compared with
GraIL and RED-GNN, even though the message functions and aggregation functions are similar,
their empirical performances are quite different, with different propagation patterns.

Table 10: Summary of the GNN functions for message propagation. The values in {} represent
different operation choices that are tuned as hyper-parameters for different datasets.

method m
(ℓ)

(es,r,eo)
:= MESS(·) h

(ℓ)
eo := AGG(·)

R-GCN (Schlichtkrull et al., 2018) W
(ℓ)
r h

(ℓ−1)
es , where Wr depends on the

relation r
W

(ℓ)
o h

(ℓ−1)
eo +

∑
eo∈N (es)

1
co,r

m
(ℓ)

(es,r,eo)

CompGCN (Vashishth et al., 2019) W
(ℓ)

λ(r){−, ∗, ⋆}(h(ℓ−1)
es ,h

(ℓ)
r ), where W

(ℓ)

λ(r)

depends on the direction of r
∑

eo∈N (es)
m

(ℓ)

(es,r,eo)

GraIL (Teru et al., 2020)
α
(ℓ)

(es,r,eo)|rq (W
(ℓ)
1 h

(ℓ−1)
es +W

(ℓ)
2 h

(ℓ−1)
eo ),

where α
(ℓ)

(es,r,eo)|rq is the attention weight.
W

(ℓ)
o h

(ℓ−1)
eo +

∑
eo∈N (es)

1
co,r

m
(ℓ)

(es,r,eo)

NBFNet (Zhu et al., 2021) W (ℓ){+, ∗, ◦}(h(ℓ−1)
es ,wq(r, rq)), where

wq(r, rq) is a query-dependent weight vector {Sum,Mean,Max,PNA}eo∈N (es)m
(ℓ)

(es,r,eo)

RED-GNN (Zhang & Yao, 2022)
α
(ℓ)

(es,r,eo)|rq (h
(ℓ−1)
es + h

(ℓ)
r ), where

α
(ℓ)

(es,r,eo)|rq is the attention weight

∑
eo∈N (es)

m
(ℓ)

(es,r,eo)

Design space of the predictor. From the model’s perspective, we build the configuration space of the
predictor and further utilize the advantages of existing structural models introduced in Sec. 2. Three
query-dependent message functions MESS(·) are considered here, including DRUM (Sadeghian
et al., 2019) (denoted as MDRUM), NBFNet (Zhu et al., 2021) (MNBFNet), and RED-GNN (Zhang &
Yao, 2022) (MREDGNN). The effective message is propagated from uq to the entities in subgraph Gs.

Generally, the message propagation can be formulated as

Predictor fθ : h(ℓ+1)
o = DROPOUT

(
ACT

(
AGG

{
MESS(h(ℓ)

x ,h(ℓ)
r ,h(ℓ)

o ) : (x, r, o)∈Es
}))

.

Note the effective message is propagated from u to the entities in subgraph Gs. The ranges for design
dimensions of the configuration space are shown below, where the upper is intra-layer design while
the lower is inter-layer design.

DROPOUT(·) ACT(·) AGG(·) MESS(·) Dimension

(0, 0.5) Identity, Relu, Tanh Max, Mean, Sum MDRUM,MNBFNet,MREDGNN 16, 32, 64, 128

No. layers (L) Repre. initialization Layer-wise shortcut Repre. concatenation READOUT(·)
{4, 6, 8, 10} Binary, Relational True, False True, False Linear, Dot product

Head and tail prediction. Note that predicting a missing head in KG can also be formulated as tail
prediction by adding inverse relations. For example, predicting a missing head in KG (?, q, v) can
also be formulated to tail prediction by adding inverse relations as (v, qinverse, ?). This formulation
involves augmenting the original KG with inverse relations, following the approach adopted in other
KG methods (Zhu et al., 2021; Zhang & Yao, 2022; Zhang et al., 2023c; Zhu et al., 2023; Zhang
et al., 2023b; Galkin et al., 2023).
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C FULL EVALUATIONS

C.1 SETUP

Datasets. We use five benchmarks with more than ten-thousand entities, including
WN18RR (Dettmers et al., 2017), NELL-995 (Xiong et al., 2017), YAGO3-10 (Suchanek et al., 2007),
OGBL-BIOKG and OGBL-WIKIKG2 (Hu et al., 2020). The statistics are summarized in Tab. 11.

Table 11: Statistics of the five KG datasets with more than ten-thousand entities. Fact triplets in E are
used to build the graph, and E train, Eval, E test are edge sets of training, validation, and test set.

dataset |V| |R| |E| |E train| |Eval| |E test|
WN18RR 40.9k 11 65.1k 59.0k 3.0k 3.1k
NELL-995 74.5k 200 112.2k 108.9k 0.5k 2.8k
YAGO3-10 123.1k 37 1089.0k 1079.0k 5.0k 5.0k

OGBL-BIOKG 93.7k 51 5088.4k 4762.7k 162.9k 162.9k
OGBL-WIKIKG2 2500.6k 535 17137.1k 16109.2k 429.5k 598.5k

Baselines. We compare our method with general link prediction methods, including (i) semantics
models: ConvE (Dettmers et al., 2017), QuatE (Zhang et al., 2019), and RotatE (Sun et al., 2019); and
(ii) structural models: MINERVA (Das et al., 2017), DRUM (Sadeghian et al., 2019), RNNLogic (Qu
et al., 2021), CompGCN (Vashishth et al., 2019), DPMPN (Xu et al., 2019), NBFNet (Zhu et al.,
2021), and RED-GNN (Zhang & Yao, 2022). The results of these baseline are taken from their papers
or reproduced by their official codes.

C.2 COMPARISON WITH OTHER EFFICIENT METHODS

To reduce entity vocabulary to be much smaller than full entities, NodePiece (Galkin et al., 2022)
represents an anchor-based approach that facilitates the acquisition of a fixed-size entity vocabulary.
Note that NodePiece was originally designed for semantic models, which diverges from the primary
focus of our investigation centered around structural models.

As shown below, our one-shot-subgraph link prediction method outperforms semantic models,
NodePiece, and original RED-GNN in the MRR metric. Additionally, it’s worth noting that NodePiece
can lead to substantial performance degradation when tasked with reducing unique embeddings for a
sizable number of entities. The table below illustrates this phenomenon. In contrast, the RED-GNN,
when augmented with our one-shot-subgraph method, showcases an ability to enhance performance
even while learning and predicting with only 10% of entities. Furthermore, the parameter count
for our structural models remains significantly lower than that of semantic models, even with the
incorporation of NodePiece improvements.

Table 12: Comparison with NodePiece.
WN18RR YAGO3-10

MRR H@10 #Params MRR H@10 #Params

RotatE (100% entities) 0.476 57.1 41M 0.495 67.0 123M
RotatE + NodePiece (10% entities) 0.403 51.5 4.4M 0.247 48.8 4.1M

RED-GNN (100% entities) 0.533 62.4 0.02M 0.559 68.9 0.06M
RED-GNN + one-shot-subgraph (10% entities) 0.567 66.6 0.03M 0.606 72.1 0.09M

Besides, the other efficient link prediction method, DPMPN (Xu et al., 2019), contains two GNNs,
one is a full-graph GNN that is similar to CompGCN, and the other one is pruned. DPMPN is
a mixture of GNN methods, where the pruned GNN already knows the global information and
adopts a layer-wise sampling manner. DPMPN requires several propagation steps to prune the
message passing and sample the subgraph, while our PPR sampler can efficiently extract the subgraph
without learning. In comparison, our method is simpler but much more effective that it observably
outperforms DPMPN. Hence, considering the differences, one-shot-subgraph link prediction is still a
novel subgraph sampling-based method for link prediction and achieves state-of-the-art prediction
performance.

As for other sampling-based methods, the extracted subgraph by Yasunaga et al. (2021) is equivalent
to the Breadth-first-searching (BFS) that is compared in our work. As it comprises all entities on the
k-hop neighbors in its subgraph, the number of sampled entities could be quite large. For example,
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on the WN18RR dataset, the full 5-hop neighbors of the query entity take up 9.4% of entities and
13.5% of edges, while the full 8-hop neighbors can even take up 69.8% of entities and 89.7% of
edges. As for the YAGO3-10 dataset, the full 5-hop neighbors take up 98.1% of entities and 95.6%
of edges, almost equal to the entire KG. It could still be expensive for prediction and thus not suitable
for prediction on large KGs like YAGO3-10.

The sampling method of Mohamed et al. (2023) aims to extract an enclosing subgraph to answer one
given query (u, q, ?), which is consistent with the previous work GraIL (Teru et al., 2020). Note the
extracted subgraphs are different for different given triples. That is, for answering one query (u, q, ?),
this method requires sampling subgraphs and predicting the score of N potential links on each
individual subgraph, where N is the number of all entities. Hence, this method is extremely expensive
and also not suitable for large KGs. By contrast, our one-shot-subgraph link prediction method only
requires extracting one subgraph to answer one query rather than N subgraphs. Meanwhile, the
extracted subgraph is much smaller than the full k-hop neighbor. Thus, our method is more efficient
and more suitable for learning and prediction on large KGs.

C.3 THE EDGE SPLIT SCHEME

The edge split can be seen as a masking operation on KG, i.e., removing the query edges from the
observation edges (the inputs of a prediction model). It is necessary for KG learning; otherwise,
the query edges for training can be found in the observation graph, which is not practical and not
reasonable. We further clarify the edge split scheme in the following three folds.

A general perspective of KG incompleteness. Note that the KG datasets are generally and naturally
incomplete, and the link prediction tasks aim to predict the missing links among entities. An ideal
link prediction model should be robust to the intrinsic incompleteness of a KG, and the local evidence
to be utilized for the prediction of a specific query is also generally incomplete. In this view, the edge
split can be seen as a data augmentation method.

Training details about edge split. Edge split indeed influences the local connectivity of a KG, where
a lower split ratio of fact:train can lead to a sparser observation graph for training. However, we
afresh split the query and observation edges in each epoch, and thus, all the edges in the train set can
be recursively used as the query edges for training. Besides, all these fact/train edges can be used in
the test phase as factual observations. Hence, all the edges in the training set are recursively used in
training and explicitly used in testing.

The influence of edge split on training. We conduct a further experiment with different split ratios
and constrain the experiments using the same amount of training time. As the data shown below,
the split ratios greatly impact the training time for one epoch, and a higher fact:train ratio leads to
short training time. Besides, various split ratios only slightly influence the converged result; however,
they greatly influence the speed of convergence. Specifically, a higher split ratio brings a faster
convergence speed, especially on the YAGO3-10.

Table 13: Comparison of different split ratios.
WN18RR YAGO3-10

MRR H@1 H@10 Time MRR H@1 H@10 Time

Fact:Train = 0.70 0.566 51.1 66.7 22.9min 0.552 46.9 69.9 55.6h
Fact:Train = 0.80 0.561 50.8 66.0 16.2min 0.563 48.4 70.7 42.0h
Fact:Train = 0.90 0.562 51.1 66.1 8.7min 0.586 51.4 71.8 23.2h
Fact:Train = 0.95 0.567 51.4 66.6 4.5min 0.587 51.7 71.1 12.1h
Fact:Train = 0.99 0.563 51.2 66.3 0.9min 0.598 52.9 71.9 2.5h

Table 14: Comparison of effectiveness with regard to subgraph sampling.

rqV rqE
WN18RR NELL-995 YAGO3-10

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

1.0 1.0 0.549 50.2 63.5 0.507 43.8 61.9 0.598 53.3 71.2
0.5 0.5 0.555 50.6 64.4 0.537 47.3 64.2 0.599 53.4 71.4
0.2 0.2 0.563 51.0 66.0 0.541 47.9 63.9 0.603 53.8 71.8
0.1 0.1 0.567 51.4 66.4 0.539 48.0 63.0 0.599 53.6 70.8
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Figure 8: Illustrations of structural models (a) and decoupled subgraph models (b).

C.4 ROBUSTNESS AGAINST DATA PERTURBATIONS

Randomly adding noise. We generate a noisy dataset by randomly adding noisy edges that are not
observed from the dataset. Specifically, the entity set and relation set are kept the same. The noise
ratio is computed as ϵ = |Enoise|/|E train|. The Eval and E test are clean to guarantee the accurate evaluation.

As the results shown in Tab. 15, such noise does not significantly influence the prediction performance.
Even in the high-noise scenario (ϵ = 50%), the MRR result is nearly identical to that on the clean
dataset. This result shows the preliminary robustness of adding noise, and a further investigation
should be conducted with more complex noise patterns, e.g., by adopting adversarial techniques.

Table 15: Model performance (MRR) with randomly added noise.
Dataset ϵ = 0% (clean) ϵ = 10% ϵ = 20% ϵ = 30% ϵ = 40% ϵ = 50%

WN18RR 0.567 0.567 0.566 0.566 0.564 0.564
NELL-995 0.547 0.547 0.547 0.547 0.546 0.547
YAGO3-10 0.606 0.605 0.603 0.601 0.602 0.601

Randomly deleting facts. We create a more incomplete KG by randomly deleting the facts in the
training set. The delete ratio is computed as r = |Edelete|/|E train|. The Eval and E test are kept the same
as the original dataset. As shown in Tab. 16, this kind of input perturbation greatly degenerates the
performance, as the link prediction could rely heavily on the correct edges in the original dataset.
Here, a sparser graph with more deleted edges can not sufficiently support the prediction, and the
message propagation from the query entity is also hindered. Hence, combating graph incompleteness,
data heterogeneity (Tang et al., 2022b;a), noisy annotations (Zhou et al., 2023a), or adversarial
attacks (Zhang et al., 2022a; Chen et al., 2022; Zhou et al., 2023b; Zhang et al., 2023a; Li et al.,
2023), would be a valuable direction.

Table 16: Model performance (MRR) with randomly added noise.
Dataset r = 0% (full) r = 10% r = 20% r = 30% r = 40% r = 50%

WN18RR 0.567 0.507 0.451 0.394 0.338 0.278
NELL-995 0.547 0.515 0.483 0.446 0.412 0.365
YAGO3-10 0.606 0.553 0.489 0.434 0.385 0.329

D FURTHER DISCUSSION

D.1 DESIGN PRINCIPLES

Note that it is non-trivial to achieve the one-shot-subgraph link prediction, where three-fold questions
are required to be answered: (i) From the data’s perspective, what kind of sampler is suitable here?
(ii) from the model’s perspective, how to build up the predictor’s architecture to be expressive on
subgraphs? (iii) from the optimization’s perspective, how to optimize the sampler and predictor
jointly and efficiently?
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The major technical challenge lies in the design and implementation of an efficient and query-
dependent sampler. Given a query (u, q, ?), the sampler should not only preserve the local neighbors
of u that contain the potential answers and supporting facts, but also be able to distinguish different q
as the essential information could be different. Accordingly, the two design principles are as follows.

Principle-1: Local-structure-preserving. Since the target entity v is unknown, freely sampling
from all the entities in original G will inevitably discard the structural connection between u and
promising v. This manner of existing node-wise or layer-wise sampling methods can deteriorate
the message flow started from u, and thus degenerate the whole prediction process. Here, the local
structure of u is expected to be preserved in Gs, and each sampled entity should be reachable from u.

Principle-2: Query-relation-aware. The objective of learning relation-aware sampling here is to
sample the promising targets v according to the query relation q. Note that, in common homogeneous
graphs, the relation may be unnecessary, as all relations between nodes share the same semantics.
However, the relation here does matter, as it presents the distinct characteristics of a KG. Thus, in our
design, the sampler is expected to be query-relation-aware in order to adapt to KGs efficiently.

D.2 CONTRIBUTIONS

Here, we further explain the novelty and contributions in the following three folds.

A valuable research problem. Our investigation delves into the limitations of structural models,
which confront a pronounced scalability challenge. These models rely on prediction over the entire
Knowledge Graph, encompassing all entities and edges, with the additional burden of scoring
all entities as potential answers. This approach proves to be highly inefficient, impeding their
optimization when applied to large-scale KGs. As a consequence, we present an open question,
pondering how to conduct prediction on knowledge graphs efficiently and effectively, seeking avenues
to overcome this hindrance.

A conceptual framework with several practical instantiations. In response to the prevalent
scalability challenges faced by existing KG methods, we present a conceptual solution, i.e., the
one-shot-subgraph link prediction manner. This novel approach promises enhanced flexibility and
efficacy in design. Specifically, instead of conducting direct prediction on the complete original
KG, we advocate a two-step prediction process involving subgraph sampling and subgraph-based
prediction. In this regard, our proposed prediction manner comprises a sampler and a predictor.
Leveraging the efficiency gains derived from subgraph-based prediction, we introduce an optimization
technique for subgraph-based searching, incorporating several well-crafted technical designs. These
innovations aim to strike a balance between prediction efficiency and the complexity associated with
identifying optimal configurations within both data and model spaces.

Several important discoveries from experiments. Through comprehensive experimentation on three
prevalent KGs, we demonstrate that our framework achieves state-of-the-art performance. Particularly
noteworthy are the substantial advancements we achieve in both efficiency and effectiveness, a trend
that is particularly evident in the case of the large-scale dataset YAGO3-10. Our quest for optimal
configurations leads us to the intriguing revelation that utilizing the entire KG for prediction is
unnecessary. Instead, simple heuristics can efficiently identify a small proportion of entities and facts
essential for answering specific queries without the need for additional learning. These compelling
findings hold significant meaning and are poised to pique the interest of the KG community.

D.3 EXPLANATION FOR THE IMPROVEMENT IN PERFORMANCE

Here, we provide a two-fold explanation for better performance as follows.

Data perspective: Extracting subgraphs can remove irrelevant information for link prediction.
Conventional structural models explicitly take all the entities and edges into prediction, ignoring the
correlation between the entities and the query relation. As delineated in Sec. 5 of this paper, our
one-shot-subgraph link prediction approach effectively discerns and excludes irrelevant entities while
retaining the proper answers. This strategic refinement, in turn, contributes to simplifying the learning
problem, thereby amplifying prediction performance. Our findings demonstrate that a mere fraction
(i.e., 10%) of entities suffices for answering specific queries, i.e., a subset efficiently identified by the
heuristic Personalized PageRank mechanism without the need for learnable sampling.
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Another supporting material is that only relying on a subgraph for prediction can also boost the
test-time performance (Miao et al., 2022). The proposed GAST method (Miao et al., 2022), aims
to extract a subgraph Gs as the interpretation of a GNN. It inherits the same spirit of information
bottleneck in building its optimization objective, i.e., min−I(Gs;Y ) + β · I(Gs;G). The integrated
subgraph sampler can explicitly remove the spurious correlation or noisy information in the entire
graph G, which is similar to our one-shot-subgraph link prediction framework.

Model perspective: The higher learning efficiency on subgraphs can further boost hyper-parameter
optimization (Zhang et al., 2022b). Generally, the task of hyperparameter optimization on extensive
graph datasets poses substantial challenges due to the inherent inefficiencies in model training.
However, the implementation of our subgraph-based method results in a substantial improvement in
training efficiency.

Consequently, we can rapidly obtain evaluation feedback for configurations sampled from the
hyperparameter space. Sec. 4.2 introduces an optimization technique for subgraph-based searching
that features meticulously crafted technical designs. The searched configuration usually leads to a
deeper GNN (i.e., 8 layers, while previous studies are usually limited to 5 or 6 layers) that increases
the expressiveness of prediction. These innovations aim to balance prediction efficiency and the
complexity associated with identifying optimal configurations within data and model spaces, which
also contributes to improved prediction performance.

D.4 EXTENSION

Note that KG learning usually focuses more on link-level tasks, e.g., link prediction. However, we
firmly believe that one-shot-subgraph link prediction has the potential to be extended and adapted for
various graph learning tasks. One general direction is to adapt the one-shot-subgraph link prediction
framework to other kinds of graph learning tasks, e.g., the node-level or graph-level tasks.

For instance, with the PPR sampler, one can sample a single-source "local" subgraph for node
classification or a multi-source "global" subgraph for graph classification, where the rationale of first
sampling and then prediction remains applicable. Besides, enhancing the one-shot-subgraph link
prediction with instance-wise adaptation is also a promising direction. That is, sampling a subgraph
of suitable scale for each given query, which can potentially improve the upper limit of prediction.

Furthermore, conducting link prediction with new relations or new entities is also a frontier topic.
Improving the generalization or extrapolation power of GNN can be vital in practice. Considering the
significant few-shot in-context learning of the large language model (LLM), an appropriate synergy
between the latest LLM and current GNN will be a promising direction. Improving the efficiency and
scalability of predicting with large graphs is also of great importance here.

In addition, from a broader perspective of trustworthy machine learning, one should also consider
the intrinsic interpretability and the robustness problem. These trustworthy properties can help users
understand the model better and also keep it in a safe and controllable way.
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E CASE STUDY

In this section, we show the sampled subgraph of different scales on three datasets as follows.
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Figure 9: Subgraphs (0.1% and 1%) from WN18RR: u=1, q=12, v={5305}.
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Figure 10: Subgraphs (0.1% and 1%) from WN18RR: u=9, q=20, v={38116}.
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Figure 11: Subgraphs (0.1% and 1%) from WN18RR: u=29, q=1, v={11186}.
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Figure 12: Subgraphs (0.1% and 1%) from WN18RR: u=29, q=12, v={6226}.
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Figure 13: Subgraphs (0.1% and 1%) from WN18RR: u=44, q=12, v={45}.
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Figure 14: Subgraphs (0.1% and 1%) from WN18RR: u=45, q=1, v={44}.
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Figure 15: Subgraphs (0.1% and 1%) from WN18RR: u=60, q=2, v={6577}.
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Figure 16: Subgraphs (0.1% and 1%) from WN18RR: u=78, q=5, v={172}.
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Figure 17: Subgraphs (0.1% and 1%) from WN18RR: u=88, q=12, v={4621}.

0 200 400 600
Degree of sampled entities

0.000

0.025

0.050

0.075

De
ns

ity

0 2 4 6 8 10
Distance to the query entity

0.00

0.25

0.50

0.75

De
ns

ity

0 200 400
Degree of sampled entities

0.00

0.02

0.04

0.06

De
ns

ity

0 2 4 6 8 10
Distance to the query entity

0.0

0.5

1.0

1.5

De
ns

ity

Figure 18: Subgraphs (0.1% and 1%) from WN18RR: u=155, q=19, v={785}.
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Figure 19: Subgraphs (0.1% and 1%) from WN18RR: u=3297, q=1, v={2037}.
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Figure 20: Subgraphs (0.1% and 1%) from NELL-995: u=4, q=238, v={22677}.
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Figure 21: Subgraphs (0.1% and 1%) from NELL-995: u=17, q=274, v={57735, 61381, 63044}.
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Figure 22: Subgraphs (0.1% and 1%) from NELL-995: u=29, q=260, v={27725, 73985}.
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Figure 23: Subgraphs (0.1% and 1%) from NELL-995: u=44, q=222, v={11669}.
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Figure 24: Subgraphs (0.1% and 1%) from NELL-995: u=60, q=74, v={164}.

0 1000 2000 3000
Degree of sampled entities

0.0000

0.0025

0.0050

0.0075

De
ns

ity

0 2 4 6 8 10
Distance to the query entity

0.0

0.5

1.0

De
ns

ity

0 1000 2000
Degree of sampled entities

0.000

0.005

0.010

De
ns

ity

0 2 4 6 8 10
Distance to the query entity

0

1

2

3

De
ns

ity

Figure 25: Subgraphs (0.1% and 1%) from NELL-995: u=166, q=260, v={6364}.
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Figure 26: Subgraphs (0.1% and 1%) from NELL-995: u=202, q=101, v={399}.
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Figure 27: Subgraphs (0.1% and 1%) from NELL-995: u=255, q=232, v={1631, 9925, 11229}.
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Figure 28: Subgraphs (0.1% and 1%) from NELL-995: u=1371, q=260, v={24193, 50385, 60718}.
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Figure 29: Subgraphs (0.1% and 1%) from NELL-995: u=11200, q=38, v={5737, 7292, 11199}.
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Figure 30: Subgraphs (0.1% and 1%) from YAGO3-10: u=17, q=39, v={54968}.
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Figure 31: Subgraphs (0.1% and 1%) from YAGO3-10: u=20, q=2, v={34580}.
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Figure 32: Subgraphs (0.1% and 1%) from YAGO3-10: u=25, q=37, v={40490}.
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Figure 33: Subgraphs (0.1% and 1%) from YAGO3-10: u=27, q=39, v={3801}.
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Figure 34: Subgraphs (0.1% and 1%) from YAGO3-10: u=29, q=38, v={33723, 82573}.
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Figure 35: Subgraphs (0.1% and 1%) from YAGO3-10: u=55, q=38, v={14834, 67740}.
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Figure 36: Subgraphs (0.1% and 1%) from YAGO3-10: u=102, q=12, v={15823}.
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Figure 37: Subgraphs (0.1% and 1%) from YAGO3-10: u=108, q=39, v={7271}.
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Figure 38: Subgraphs (0.1% and 1%) from YAGO3-10: u=135, q=38, v={51096}.
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Figure 39: Subgraphs (0.1% and 1%) from YAGO3-10: u=137, q=39, v={26722}.
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Figure 40: Subgraphs (0.1% and 1%) from YAGO3-10: u=446, q=38, v={104297}.
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Figure 41: Subgraphs (0.1% and 1%) from YAGO3-10: u=1072, q=1, v={23394}.
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Figure 42: Subgraphs (0.1% and 1%) from YAGO3-10: u=1255, q=38, v={12418, 28138, 71366}.
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Figure 43: Subgraphs (0.1% and 1%) from YAGO3-10: u=2252, q=39, v={9476, 77502}.
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