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ABSTRACT

In this paper, we aim to boost performance of knowledge distillation without the
ground-truth labels. Hence, a student can only rely on the response generated
by its teacher. Many existing approaches under this setting rely on some form
of feature/embedding queue to capture teacher’s knowledge. These queues can
be as large as over 100k samples. Also, these methods rely on multitude of
operations which as a result increases the memory requirement for training many
folds. In this work, we show that merely working with the input batch (often
of size 256) it is possible to not only incorporate neighbourhood information
but also obtain strong unsupervised distillation performance. We achieve this by
introducing a simple space similarity loss component which works alongside the
well known normalized cosine similarity computed on the final features. In this
loss, we motivate each dimension of a student’s feature space to be similar to the
corresponding dimension of its teacher. With this seemingly simple addition, we
are able to compete against many contemporary methods which either rely on
large number of queued features or heavy pre-processing. We perform extensive
experiments comparing our proposed approach to other state of the art methods
on various computer vision tasks for established architectures. We will be sharing
the official implementations to replicate our results and weights for the pre-trained
models.

1 INTRODUCTION

Figure 1: Resources required to distill a ResNet-18
from a ResNet-50 teacher. We report the runtime per it-
eration in seconds and the total training resources (TTR)
required in GB hours. The evaluations were performed
on a single DGX-A100 (80GB) GPU. Text annotations
with the methods highlight the k-nearest classification
accuracy (k=10) on ImageNet

Deep learning has achieved remarkable empiri-
cal success with the ever-increasing model sizes
(Radford et al., 2019; Dai et al., 2021). However,
these memory-intensive models pose a chal-
lenge when migrating their empirical success
to smaller devices, which require lightweight
and fast solutions. Furthermore, training a large
network under a budget that requires signifi-
cant computation may be infeasible for a wider
audience. Nevertheless, larger networks have
the advantage of being more capable of extract-
ing meaningful information from data than their
lightweight counterparts.

As a solution to the above mentioned scenario,
knowledge distillation is proposed to transfer
this rich knowledge from the larger network,
referred to as “teacher”, to a much smaller net-
work, the “student” (Hinton et al., 2015; Bu-
ciluǎ et al., 2006). Hinton et al. (2015) extends
the idea of model compression by Buciluǎ et al.
(2006) for distilling knowledge of deep neural
networks. The approach is task-specific and de-
scribed for a supervised setting which relied on
the task-specific output probability distribution over the target classes. Many methods since then
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Figure 2: The proposed CoSS distillation framework. In the graphic, we demonstrate similarity of one pair of
corresponding feature dimension being maximised. We perform this maximisation for every corresponding pair
for the teacher and student.

have introduced different novelties to transfer knowledge via some form of divergence minimisation
or similarity maximisation (Romero et al., 2014; Tung & Mori, 2019; Zagoruyko & Komodakis,
2017; Chen et al., 2021a). However, most of these methods require ground-truth labels during the
distillation process.

In recent years, the development of self-supervised learning (SSL) has allowed networks to be trained
on larger datasets without labels, leading to generic representations that are task agnostic and superior
downstream performances once fine-tuned (Doersch et al., 2015; Misra & Maaten, 2020; Jing & Tian,
2021). As a result, SSL is an active area of reasearch. However, smaller networks do not readily
benefit from SSL due to the smaller number of parameters, leading to the failure of these models in
learning underlying discriminative representations (Fang et al., 2021). To address this issue, Fang
et al. (2021) proposes an unsupervised knowledge distillation framework called SEED that allows
smaller networks to take advantage of the large amount of data for pre-training. Since the introduction
of SEED, many other approaches have followed suite (Xu et al., 2022; Koohpayegani et al., 2020).

A common theme amongst existing unsupervised knowledge distillation methods is that they

1. Employ contrastive loss, which aims to minimise the deviation between the student and
teacher embeddings.

2. Utilize a large common embedding queue(s) against which similarity is computed for a
training sample.

3. Batch sampling or pair generation to focus on ‘important’ samples.

Though these operations have proven to be beneficial, we found that they often require extensive
amount of resources to function. From figure 1, it can be observed that the recent approaches of
unsupervised distillation require a significantly large amount of computing. Moreover, as many
approaches require multiple steps of processing and sample gathering, the training also becomes
significantly slower. We found training these methods to be challenging, even with modest configura-
tions. In comparison, our proposed method CoSS, consumes the least amount of GPU resources while
also being considerably faster than its peers. This efficiency in distillation does not compromise the
quality of the student, as is evident from the corresponding classification performance. CoSS requires
roughly similar GPU to SEED but achieves +5% in accuracy. Moreover, compared to BINGO, CoSS
is roughly 3× faster and requires 3× less GPU memory while providing comparable accuracy.

In this paper, we aim to perform unsupervised knowledge distillation while also keeping the required
resources to a minimum. We believe that for distilling a small network, we should not require
drastically large amount of resources. We hypothesize that, if the unnormalized embedding manifold
of the student is similar to its teacher, the student has learnt its teacher’s knowledge adequately.
This would imply that student has learnt to map inputs in the ‘same’ way as the teacher onto the
latent space. This will indirectly preserve various properties such as locality preservation, relative
similarities which is often employed by existing distillation approaches. For this purpose, we propose
a simple space similarity objective which works in conjunction with a traditional cosine similarity
loss. In this loss, for each feature dimension of a student, we aim to maximise its similarity to the
corresponding feature dimension of the teacher. Since this is processed over a training batch and only
matching dimensions are considered, we manage to restrict the memory requirement for distillation
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while also ensuring faster training. Figure 2 highlights our proposed loss component. Our main
contributions are as follows:

• We introduce CoSS, a space similarity inclusive objective which motivates the student to
mimic its teacher’s embedding structure.

• Our simple method performs more efficient unsupervised distillation than other state-of-the-
art methods.

• The simplicity of our approach does not impede the final performance of trained students.
We report competitive results on standard distillation metrics.

• We evaluate various downstream tasks and find that the trained students with CoSS are more
robust, transfers well, and are overall well-rounded.

The structure of the paper is as follows. In the subsequent section 2, we delve deeper into prior work.
In section 3, we provide the details of our simple yet effective method. In section 4, utilizing a toy
experiment, we demonstrate the importance of space alignment. In section 5, we report results on
various benchmarks. We discuss the implications of our work and findings in section 6. Lastly, we
conclude with final remarks in section 7.

2 RELATED WORK

Our study in this paper focuses on unsupervised distillation. Before we detail related works in the
unsupervised regime, we first provide an introduction to the supervised distillation regime, which has
a longer history, to better contextualize our proposed method.

2.1 SUPERVISED DISTILLATION

Early solutions for distillation have been designed for a fully supervised environment. Soft-label
distillation (Hinton et al., 2015) is amongst the first work towards training smaller networks with
guidance from larger teacher networks. Apart from supervised loss from the ground-truth labels, it
minimises cross-entropy between the teacher’s and the student’s output distribution. The method
relies on the teacher to be trained on a specific task and hence is dependent on a teacher’s training
methodology. Many subsequent approaches since then have incorporated internal layers, attention
mechanisms etc. to match various novel objectives between student and the teacher (Romero et al.,
2014; Zagoruyko & Komodakis, 2017; Yim et al., 2017; Huang & Wang, 2017; Kim et al., 2018;
Koratana et al., 2019; Tung & Mori, 2019; Ahn et al., 2019). However, as most of these approaches
require careful selection of an appropriate statistic, it can be a drawback in practice for defining the
distillation procedure for newer architectures.

Another set of methods exploit local and global relationships (Yu et al., 2019; Peng et al., 2019; Park
et al., 2019). They mostly differ in the relationships for optimisation: PKT (Passalis & Tefas, 2018)
models the interactions between the data samples in the feature space as a probability distribution.
RKD (Park et al., 2019) enforces the student to learn similar distances and angles between the
training samples to that of its teacher. DarkRank (Chen et al., 2018) employes learning to rank
framework (Cao et al., 2007; Xia et al., 2008) for distillation with a focus on metric learning. LP
(Chen et al., 2021a) further develops the idea of FitNets and introduces locality-preserving loss, which
relies on identifying K-nearest neighbours within the training batch. Huang et al. (2022) introduces
a correlation based formulation which is very similar to ours. The key difference apart from the
problem setting (supervised vs. unsupervised) is that they normalise the predictions (via. softmax)
and then compute inter and intra-class similarities afterwards. Whereas, we independently normalize
spatial and feature dimensions. From the perspective of computing intra-class similarity, it is logical
to apply the softmax beforehand for generating class-wise scores, however, when operating on the
embedding space, any normalisation on the features alters the space information as well.

There are also methods which utilize self-supervision for knowledge distillation. CRD (Tian et al.,
2020), WKD (Chen et al., 2021b) and SSKD (Xu et al., 2020) fall into this category. Specific to
the vision transformers, DeiT (Touvron et al., 2021) is a fully supervised distillation method that
uses distillation tokens. Distillation token plays a similar role as a class token, except that it aims at
reproducing the label estimated by the teacher. Other approaches such as Coadvice(Ren et al., 2022)
and DeadKD (Chen et al., 2022) focus on the data inefficiency aspect of supervised distillation. Lastly,
there are also approaches which perform softmax regression (Yang et al., 2021), neural architecture
search(Dong et al., 2023), and two stage training with novel modules(Liu et al., 2023).
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2.2 UNSUPERVISED DISTILLATION

SEED (Fang et al., 2021) is the first work, to the best of our knowledge, that attempts to distill knowl-
edge in a purely unsupervised fashion. They perform knowledge distillation of a self-supervised
teacher by minimizing the divergence between the similarity response of teacher and student on a
common embedding queue. This approach is similar to the supervised method of SSKD (Xu et al.,
2020), but instead of the mini-batch, a much larger queue is used. CompRes (Koohpayegani et al.,
2020) introduces two features queues for each teacher and student. DisCo (Gao et al., 2022) performs
a consistency regularization between augmented versions of the input in addition to unsupervised
distillation. BINGO (Xu et al., 2022) is a two-stage method for performing unsupervised distilla-
tion, and both stages are resource intensive in terms of memory and time. Also, like many other
approaches, it also relies on a large feature queue with a relatively heavier augmentation in the form
of CutMix(Yun et al., 2019). SMD (Liu & Ye, 2022) focuses on mining hard positive and negative
pairs rather than operating on all pairs for distillation. To counter the influence of wrongly assigning
positive and negative labels, they utilized a weighting strategy. Though they did not use a feature
queue, the costly operations of finding hard samples and learning the weighting strategy added to the
resource overhead.

2.3 KEY DIFFERENCES

Our proposed method is designed for unsupervised distillation, but we believe it stands out from
existing methods in both supervised and unsupervised regimes, despite its simplicity. In particular,
our approach focuses on directly motivating the student to learn its teacher’s latent manifold.. As
a quantitative summary, CoSS differs from existing methods in the absence of (i) feature queues,
(ii) contrastive objectives, (iii) heavy augmentations, and (iv) and custom batch composition (sampling
strategy).

3 METHOD

We first introduce notations and then explain the CoSS objective. Let ft and fs be the teacher and
student deep neural networks respectively. Since, we are working in an unsupervised setting, the
labels are not known. We consider a dataset D = {x0, x1 . . . xn} consisting of n data points. The
embeddings ft(x) ∈ Rdt and fs(x) ∈ Rds is the response gathered at the penultimate layer of a
network (typically after global average pooling (Lin et al., 2014a)). The scenario where ds ̸= dt,
we can use a small projection head for the student which can then be discarded after the distillation
process (Fang et al., 2021; Xu et al., 2022). We thus simply replace dt and ds by d. Let B be the
current mini-batch in training of size b. We can denote the embedding representations of all inputs in
B generated by the teacher and student as matrices At and As ∈ Rb×d respectively. Here, Ai

∗ is the
embedding output f∗(xi).

Let, .̂ denote a L2 normalized vector. We can then compose a matrix of normalized feature vectors
Â∗ = [Â0

∗, Â
1
∗, . . . Â

b
∗]

T . The widely known normalized cosine similarity loss on features is defined
as:

Lco = −1

b

b∑
i=0

cosine(Âi
s, Â

i
t) (1)

The loss computes the cosine similarity between corresponding embeddings of the teacher and student.
Similarly, we can also compute similarity for each feature dimension. We define transpose matrix of
features Z∗ = AT

∗ and its normalized version as Ẑ∗. The space similarity component of our final loss
is

Lss = −1

d

d∑
i=0

cosine(Ẑi
s, Ẑ

i
t). (2)

It is very simple to implement and only requires one to transpose the feature matrices prior to the
similarity computation. Our final objective is composed of weighted combination of Cosine similarity
and Space Similarity:

LCoSS = Lco + λLss (3)
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(a) Training Samples (b) Teacher (c) SEED (d) CoSS

Figure 3: Plots comparing the latent space of the teacher with SEED and CoSS students. Eventhough the
SEED student is able to learn a viable solution (achieving comparable downstream accuracy), the latent space
learnt is significantly different from its teacher. CoSS, on the other hand, is able to faithfully model it’s teacher’s
embedding space better.

Figure 2 provides a pictorial representation of our approach. Feature similarity compares the features
being extracted for a single sample by the teacher and student whereas, space similarity compares
features from different input samples together.

CoSS only performs pairwise comparison which is one of the main differences from existing unsuper-
vised distillation methods which leverage a contrastive learning framework and perform one-to-many
comparisons. This pair is formed only of “positive” samples, i.e. the output embeddings for the same
input for teacher and student for Lco and corresponding spatial dimensions of teacher and student for
Lss. Pairwise alignment or considering only positives has been explored successfully in the setting of
self-supervised learning (Grill et al., 2020; Chen & He, 2021) which we have applied to the problem
of unsupervised distillation.

4 IMPORTANCE OF SPACE SIMILARITY

In deep learning, it is generally accepted that neural networks learn a mapping from high dimensional
space to a low dimensional manifold. However, explicit statements about the assumption of a
locally euclidean manifold in the context of unsupervised learning can be relatively rare, as this
assumption is often fundamental to the underlying methods without being explicitly articulated in
the papers. For example, many unsupervised learning methods employ manifold learning based
data visualisations(Oord et al., 2018; Zhuang et al., 2021). These manifold learning approaches in
their workings assume the embedding manifold to be locally eucldiean(Cayton et al., 2008; Van der
Maaten & Hinton, 2008). This assumption of the manifold being locally euclidean, allows us to treat
the embedded manifold as a topological manifold. Here, we present a simple argument to show that
methods only relying on an embedding queue cannot learn the teacher’s embedding structure reliably.
Definition 4.1. Two topological spaces X , Y are homeomorphic if there exists a mapping f : X → Y
s.t. f is continuous, bijective and its inverse function f−1 is also continuous.
Homeomorphism(Poincaré, 2010) defines the concept of similarity (equivalence) between the two
topological spaces. For SEED (Fang et al., 2021) and similar others, which only rely on normalized
cosine similarity, the student’s normalized manifold and the original teacher’s manifold are not
homeomorphic. This is because the operation of L2 normalisation is not a homeomorphism. It is not
continuous, bijective, and lacks a continuous inverse. A straight forward example to support it is that,
all points lying on the ray starting from the origin will result in multiple points being mapped onto the
same point on a d−dimensional hyper-sphere. Hence, minimisation of an objective operating on the
normalized space will not preserve the original un-normalized structure. With space similarity, for a
point, dimension-wise normalization (or scaling down) is a bijective and continuous mapping with a
differentiable inverse. This implies that dimension normalisation preserves the similarity between
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unnormalized and normalized manifolds. With this added objective, we aim to approximate the
normalized embedding space of a teacher thereby, also approximating the original un-normalized
space.

With figure 3, we demonstrate our argument with a set of toy experiments (training details in section
A.1). Using simple datasets, we first train the teacher for a classification task. It can be observed that
the teacher’s embedding manifold has a non-trivial structure associated with it. Next, using SEED and
CoSS’ objectives, we perform the unsupervised knowledge distillation. SEED, though able to produce
linearly separable latent embeddings, fails to adequately replicate teacher’s manifold. However, with
CoSS, we are able to replicate finer structures in the teacher’s latent space. In Appendix A.3, we
quantitatively measure goodness of CoSS’ learnt latent embedding space. Specifically, we measure
the similarity of local neighbourhood between a student and its teacher.

5 EXPERIMENTS

5.1 UNSUPERVISED DISTILLATION

We follow SEED’s protocols for training and distilling the student networks. For SMD, however, we
followed the authors’ reported training recipe which was different to that of SEED. We compare our
work with existing unsupervised distillation approaches of SEED, BINGO, DisCo, and SMD. We
also include the extension of standard KD objective (Hinton et al., 2015) to the feature space and
denote is as SKD. Previously, this extension has been applied for self-supervised learning (Caron
et al., 2021).Further implementation details are provided in the Appendix (section A.1).

Linear evaluation: We train the classification layer while freezing the remainder of the student
network. In table 1, we report the top-1 accuracy computed over the ImageNet validation set. CoSS
consistently outperforms SEED while providing competing performance to resource hungry BINGO
and DisCo on ResNet-18 and Efficientnet-b0. SKD, where we applied the standard KD in the
feature space performs well on the unsupervised distillation task. It is also interesting to note that
for ViT, there is a significant drop in performance of baselines. Often, a drop in performance is
observed during the cross-architecture distillation (Tian et al., 2020). The reason given for such an
observation is the difference in the inductive biases of the networks. We suspect that in addition to
this, our alignment based objective is less constraining than the contrastive loss based objectives of
the baselines.

KNN classification: Linear evaluation introduces additional parameters to the benchmarking. It
often requires extensive hyper-parameter tuning to find optimal parameters. K-nearest classification
on the other hand, allows us to evaluate the methods directly without the need of tuning parameters
(Xu et al., 2022; Fang et al., 2021). As a result, we believe KNN is a fairer evaluation strategy for
comparing different distillation methods.

We choose 10 nearest neighbours from the training samples and assign the majority class as the
prediction (ablation in section A.2 provides results on different neighbourhood size). As shown in
table 1, CoSS achieves state of the art performance for this metric. Also, it is interesting to note that
even though for scenarios where CoSS performed lower in top-1, we achieved better KNN accuracy.
We believe that this is due to the better modelling of the manifold which the space similarity objective
provides.

5.2 EFFICIENCY

A main goal for distillation is to train a smaller netowork which is on par with its teacher. We believe
in-order to distill onto a small student the resources required should not be drastically large. Here, we
show that our approach requires the least amount of resources to perform unsupervised distillation.
Mainly, we measure and report training time per iteration (in seconds) computed over 1000 iterations
and Total-training-resources (TTR) required to train the student model. We compute TTR as the
product of total number of training iterations, mean peak GPU memory usage per iteration and total
training time of the distillation process. It captures the total amount of memory consumed for the
entirety of training (reported in GB Hours). For a fair comparison, we computed each method on
identical machines (Nvidia-A100 80GB) with auto-mixed precision disabled where necessary and set
the batch size as 256.
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Table 1: Unsupervised distillation of a (self-supervised) teacher on ImageNet-1K. The teacher and student
correspond to models trained using Moco-v2. Values with * are reported directly from the original paper. DisCo
training fails for the ViT and hence the missing entry. We highlight the best student performance in bold

Methods
ResNet-50 (67.40)

ResNet-18 ResNet-34 Eff-b0 ViT-Ti

Top-1 KNN-10 Top-1 KNN-10 Top-1 KNN-10 Top-1 KNN-10

Student 51.38 41.99 57.40 41.50 41.81 31.10 27.70 23.27

SKD (Hinton et al., 2015) 58.16 54.31 – – 61.49 56.10 – –
SEED (Fang et al., 2021) 57.96 50.12 58.50* 45.20* 61.44 53.11 51.93 42.15
BINGO (Xu et al., 2022) 60.10 54.28 63.50* × 62.01 54.75 48.67 51.14
DisCo (Gao et al., 2022) 60.01 52.27 61.74 53.65 63.95 54.78 – –
SMD (Liu & Ye, 2022) 59.56 49.69 – – – – – –

CoSS (ours) 59.24 55.04 60.95 55.61 63.55 58.32 61.75 57.96

We present our findings in table 2. SEED, SKD, and CoSS, which rely on simpler objectives require
the least amount of resources for training. The higher TTR for SEED is the result of extra memory
consumed in form of a feature queue. BINGO, consumes the most amount of resources owing to
its bagging datasets and sampling strategies. TTR on SMD is relatively lower even though it is
comparable to DisCo on runtime is because it is trained for 100 epochs instead of the 200 which was
used for DisCo.

Table 2: Comparison of run-time efficiencies of different methods. We report the mean time (seconds) per
iteration and total-training resources. Lower is better

Method Runtime (seconds) TTR (GB Hours)

ResNet-18 Eff-b0 ResNet-18 Eff-b0

SKD 0.19 0.41 322.26 2745.18
SEED 0.19 0.41 463.32 3035.89

BINGO 0.59 1.26 3461.51 26,195.66
DisCo 0.47 0.82 1945.91 11,174.55
SMD 0.42 0.98 685.51 6492.18

CoSS 0.19 0.41 322.26 2745.18

5.3 TRANSFER LEARNING

To understand the transferability of the learnt students, we perform the benchmark using the public
implementation of Ericsson et al. (2021). Under this evaluation, we freeze the backbone and only
learn the classification layer on top of the network. To make the evaluation fair, we perform a
hyper-parameter sweep across numerous values to identify the best set of values for each model for
every dataset. We report the top-1 classification from the identified best setting.

As it can be observed from table 14, the classification accuracy is highest for CoSS across various
datasets. Previously, we had noticed that baseline methods performed well on linear evaluation
for ImageNet. However, we now observe that under a fairer hyper-parameter search based linear
evaluation, CoSS achieves higher performance for ResNet-18 and Efficientnet-b0 reflecting the good
quality of learnt features.

Table 3: Transfer learning evaluation of distilled ResNet-18 and Efficientnet-b0. Here, we report the top-1
accuracy. In the appendix, we report the KNN accuracy of the models.

Method CIFAR-10 CIFAR-100 STL-10 Caltech-101 Pets Flowers DTD

ResNet-18 Eff-b0 ResNet-18 Eff-b0 ResNet-18 Eff-b0 ResNet-18 Eff-b0 ResNet-18 Eff-b0 ResNet-18 Eff-b0 ResNet-18 Eff-b0

SKD 88.97 – 70.12 – 93.80 – 86.90 – 78.31 – 88.60 – 72.34 –
SEED 85.27 88.85 62.75 69.87 93.99 94.90 80.26 84.98 76.18 78.81 75.10 88.44 67.34 69.79
BINGO 87.67 89.74 66.14 70.25 94.99 94.75 83.84 86.48 79.24 80.80 83.62 90.35 70.00 70.85
DisCo 88.11 91.63 67.50 73.97 95.04 95.78 84.65 86.44 77.86 81.20 83.69 89.52 69.89 71.91
SMD 86.47 – 64.42 – 94.24 – 80.59 – 74.59 – 78.97 – 69.31 –

CoSS (ours) 89.84 92.51 70.03 76.72 95.31 95.41 87.06 89.26 80.31 82.42 87.04 92.57 71.54 74.84
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5.4 ROBUSTNESS

Various studies have indicated that deep learning systems often break down when encountered with
data outside the training distribution(Hendrycks & Dietterich, 2019; Geirhos et al., 2019; Wang et al.,
2019). Due to the wide spread applicability of deep learning systems in the real world, it becomes
important to ensure a high degree of robustness of such systems. In this experiment we explore the
robustness of trained students under different kinds of shifts in the input data. ImageNet-v2 is a
natural image dataset which closely resembles the sampling process of the original ImageNet dataset.
It has been employed by various studies to understand the robustness of models under natural data
shift (Taori et al., 2020; Ovadia et al., 2019). ImageNet-S consists of sketch images for ImageNet
classes. It is a stronger deviation from the types of images present in the training set. ImageNet-C
is a synthetically generated dataset for evaluating a model’s performance under various forms of
corruptions. We utilised corruption=1 for our evaluation.

Results reported in table 4 demonstrate that CoSS is robust across various input distribution shifts. It
even outperforms BINGO which employs stronger data augmentations in the form of CutMix. Strong
data augmentations such as CutMix have been shown to improve the robustness.

Table 4: Robustness evaluation of ImageNet distilled ResNet18s. To emphasize on the quality of embeddings
learnt, we report the KNN-10 accuracy. We highlight the best performance in bold. We report the robustness
evaluation of efficientnet-b0 in the appendix

Method ImageNet-v2 ImageNet-S ImageNet-C
MF Tr Top brightness contrast defocus elastic fog frost gaussian glass impulse jpeg motion pixelate shot snow zoom

SEED 37.58 45.11 51.20 10.41 47.32 42.38 32.20 43.01 32.47 34.98 35.26 30.58 20.35 34.51 35.34 41.35 33.26 27.73 24.68
BINGO 41.01 48.99 55.03 12.78 51.40 47.02 36.16 47.17 37.20 39.44 37.57 33.67 20.25 40.60 37.46 46.14 36.29 31.28 27.02
DisCo 39.49 46.96 53.18 12.37 49.89 45.61 35.54 45.60 35.69 38.11 37.37 33.90 21.98 38.39 38.79 45.06 36.28 30.31 26.77
SMD 37.86 44.45 50.83 10.27 47.06 42.78 32.89 42.92 32.46 34.04 33.17 30.39 17.87 35.48 34.69 41.64 31.67 26.68 24.74

CoSS (ours) 41.74 49.10 55.44 12.85 52.65 49.03 39.02 48.12 38.40 39.57 40.27 35.94 23.56 43.49 40.82 48.52 37.98 31.12 28.68

5.5 IMAGE SEGMENTATION

We evaluate trained students under two settings (more details in A.1) 1. Traditional image semgenta-
tion, where we train a FCN(Long et al., 2015) head on top of the student. We evaluate this model
on CityScapes(Cordts et al., 2016) and CamVid(Brostow et al., 2009) datasets. 2. Following Caron
et al. (2021), we employ the self attention maps and threshold it to obtain segmentation masks. We
evaluate the maps on the PascalVOC dataset(Everingham et al., 2015), MSRA(Liu et al., 2007; Hou
et al., 2019) and ECSSD(Yan et al., 2013).

For traditional image segmentation, as reported in 5, we can observe that the CoSS trained student
serves as an improved backbone over the baselines. For the segmentation evaluation using the
attention maps, we found that BINGO ignores [CLS] token after a certain depth (6 in this case). Our
probing indicated that towards the end of the network, BINGO distilled ViT-tiny gave equal attention
to all input patches which resulted in poor image segmentation performance. We report the [CLS]
self-attention maps evaluated prior to the degradation using +. The results indicate that the quality of
attention maps generated by CoSS is superior to those from the baselines. We’d like to emphasize that
for this evaluation, no additional training is performed. We provide visualisations of the self-attention
maps in figure 5.

Table 5: Image segmentation evaluation. Higher is
better.

Method CamVid Cityscapes VOC MSR ECSSD
Accp IoUm Accp IoUm IoUm IoUm IoUm

SEED 86.17 0.2573 82.53 0.2867 34.01 34.30 29.96
BINGO 87.43 0.2761 83.64 0.3099 37.31+ 41.34+ 43.11+

DisCo 86.91 0.2791 82.85 0.2933 – – –
SMD 75.67 0.1620 82.38 0.2774 – – –
CoSS 88.00 0.2855 84.39 0.3115 42.28 47.71 49.84

Table 6: DAVIS 2017 Video object segmentation.
Higher is better

Method Jm Jr Fm Fr (J&F)m
SEED 50.74 58.37 54.61 64.29 52.68
BINGO+ 53.78 65.35 57.80 70.65 55.79

CoSS 56.07 66.98 59.07 71.32 57.58

5.6 VIDEO INSTANCE SEGMENTATION

This evaluation accesses the quality of frozen features on video instance tracking for imagenet
distilled ViT-tiny networks. In table 6, following the experiment protocols of Jabri et al. (2020),
we evaluate the self-attention maps on the DAVIS-2017 video instance segmentation task. In this
evaluation, a scene is segmented by directly computing the nearest neighbours between consecutive

8
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SEED BINGO+ CoSS

Figure 4: Self-attention maps of [CLS] token from the 3 ViT-tiny heads. We follow Caron et al. (2021) to
visualize the attention maps. The images are randomly selected from COCO validation set, and are not used
during training Lin et al. (2014b). The bright regions denote the patches of interest to the model. SEED’s
generated maps are relatively noisier and often deviate from the primary subject in the image. More visualisations
are provided in the appendix

Table 7: Top-1 accuracy of supervised methods adapted for unsupervised distillation. We report the
distillation performance of the methods without the contribution from the supervised losses. We also report the
supervised performance as a baseline measure for both the student and the teacher

Methods ResNet56(0.86M) VGG-13(9.45M) ResNext32x4(7.43M) WRN-40-2(2.25M) ConvMixer-256/12(0.95M) ViT-384/12/7(6.26M)

ResNet20(0.27M) VGG-8(3.96M) ResNext8x4(1.23M) WRN-16-2(0.7M) ConvMixer-256/4(0.19M) ViT-384/4/3(2.7M)

Teacher 72.41 74.64 79.42 75.61 73.45 66.70
Student 69.10 70.31 71.79 73.01 68.02 63.52

ATT (Zagoruyko & Komodakis, 2017) 49.00 56.22 43.11 – – –
SP (Tung & Mori, 2019) 63.14 71.62 62.51 – – –
VID (Ahn et al., 2019) 68.61 73.65 69.60 – – –
RKD (Park et al., 2019) 56.28 44.50 32.33 52.38 46.41 28.17
PKT (Passalis & Tefas, 2018) 61.58 71.81 64.53 70.75 53.82 29.64
Factor (Kim et al., 2018) 46.63 39.71 36.64 – – –
NST (Huang & Wang, 2017) 25.62 42.78 41.27 – – –
CRD (Tian et al., 2020) 65.03 69.73 65.78 70.62 61.89 48.70
SRRL (Yang et al., 2021) 69.31 72.85 69.19 73.44 – –
DIST (Huang et al., 2022) 67.13 73.40 67.67 72.85 – –
SKD 68.69 73.33 72.52 73.01 – –

CoSS (Ours) 71.11 74.58 73.90 74.65 72.73 63.31

frames utilizing the features from different depths of the frozen network. We report mean region
similarity Jm, region similarity recall Jr, mean contour-based accuracy Fm and contour-based recall
Fr. As the results indicate, the features learnt by CoSS are able to retain better spatial information
than the baselines.

5.7 (UN)SUPERVISED DISTILLATION

In previous experiments we have compared CoSS against methods designed for unsupervised distil-
lation. In section 2, we discussed about supervised distillation methods. A key point to note about
majority of supervised methods is that even though they were proposed for a supervised setting, often,
the key novelty lied in an unsupervised component. In this section, we adapt and benchmark existing
supervised distillation methods for the task of unsupervised distillation.

Methodology: Apart from using the batch size of 256, we strictly follow the benchmark evaluation
protocol of CRD(Tian et al., 2020) on CIFAR-100 for this task. The teachers are trained with
supervision and for the process of distillation we remove the final classification layer to simulate an
unsupervised setting. In recent architectures, for methods which rely on intermediate layer, we select
the layers midway across the depth of a network.

Results: As shown in table 7, many supervised methods don’t readily adapt to the unsupervised
scenario. They either fail completely or they fail to provide any adequate performance. CoSS due to
its simplicity can be employed by any teacher-student pair.

9
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6 DISCUSSION

Unsupervised knowledge distillation is an important problem that we have addressed in this work.
Existing solutions to this problem require significant computing and training time. For smaller
networks that can be conventionally trained on smaller GPUs, it becomes hard to justify the need of
deploying GPU clusters to perform distillation. CoSS provides the benefit of faster and more efficient
distillation without compromising on the final performance.

Objective of CoSS only relies on positive pairs of samples, this is a prominent difference from
contrastive learning baselines. Tian et al. (2021) study various factors which impact training with only
positive samples in the context of SSL. We observed that unlike in an SSL training, for an unsupervised
distillation, predictor/projection was not a hard requirement. CIFAR-100 experiments were performed
in the absence of a predictor head and the distillation concluded without any difficulties. This leads
us to believe that observations which hold true for an online SSL approach may not hold true for its
adaptation for an unsupervised distillation. Subsequently, this direction warrants further investigation
in the future to elucidate any potential relationships.

Furthermore, rather than distilling only similarity assisted by feature queues, we directly focused
on approximating the learnt manifold using space similarity. Toy experiments and analysis of
common embedding neighbours supports our intuition. The local neighbourhood is preserved even
in comparison to BINGO, which applies an explicit KNN over the entire training data. In section
B, we demonstrate that, in theory we can utilise BatchNorm (Ioffe & Szegedy, 2015) to model
teacher’s embedding manifold. We believe better approaches to latent space modelling will improve
the distillation performance further.

For large-scale datasets like ImageNet, we found that CoSS often performed competitively compared
to GPU-intensive methods. However, a KNN-based evaluation showed that embeddings learnt by
CoSS are indeed meaningful and better. This performance is also maintained across a wide range of
nearest neighbour sizes. Recent studies have also advocated reliance on KNN accuracy for drawing
meaningful conclusions (Fang et al., 2021; Caron et al., 2021). Furthermore, qualitative analysis of
the tasks of transfer learning and robustness further strengthens our argument.

We also reported cross-architecture distillation results on ViT-tiny. We observed difficulty in utilising
existing methods for ViT. For DisCo, the training fails arbitrarily as the loss value becomes undefined.
For BINGO, the distillation process ignored the [CLS] token in the model after a certain depth.
Compared to the baselines, CoSS operates as intended and is able to produce a fully functional
student ViT-tiny.

We found that applying existing (supervised) methods to newer architectures in an unsupervised
setting does not extend well. They either fail to train or underperform. This hints towards high
dependency on data labels for these methods to work effectively. Moreover, many of these methods
rely on defining correspondences between intermediate layers. Defining such a mapping is non-trivial
and requires a number of trials and errors. Recalling that in a supervised setting, the novelty often
lies in an unsupervised component and due to the simplicity of CoSS, we believe that our approach
can easily be extended to a supervised setting.

Lastly, due to the simplicity of our approach, we believe that it can also be extended into the problem
settings of cross domain distillation (Zhang et al., 2021), distillation of joint vision-language models,
cross lingual distillation(Reimers & Gurevych, 2020; Gupta et al., 2023). We aim to explore these
avenues in the future.

7 CONCLUSION

In this paper, inspired by the need that large models trained with self-supervised learning will also be
considered to distilled into smaller models, but the labels used to train these large models are usually
not available, we investigated the knowledge distillation in a pure unsupervised setting.

In this setting, we showed that unsupervised feature distillation can be performed without storing
a feature queue. To enable this, we proposed CoSS, a feature and space similarity loss. We
demonstrated that the proposed method is able to retain the local neighbourhood similar to that of
its teacher. Moreover, across various benchmarks, it achieves better performance than the existing
state-of-the-art methods. Focusing on Vision Transformers, we demonstrated the high quality of
attention maps being learnt through our approach with an added benefit of a stable training.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Teacher model: Following SEED, we utilize the Moco v2 trained ResNet-50 as the teacher in
our experiments. We discard the projection head of the teacher and work directly with the 2048
dimensional features from ResNet-50. We utilized their official implementation in our ImageNet
based experiments.

Student models: We employ a mix of established and recent architectures in our study. We perform
distillation on ResNet-18(He et al., 2016a), Efficientnet-b0(Tan & Le, 2019), ViT-tiny(Dosovitskiy
et al., 2021). The student models are trained from scratch. To match the final representation sizes,
similar to DisCo, we add a 2-layered MLP on top of the student network which is discarded after
distillation. For training on CIFAR-100, ResNet56/20, ResNet32x4/ResNet8x4, VGG13/8 and
WRN 40 2/WRN 16 2 are detailed in CRD. For the Convmixer, we set it embedding dimension as
256, depth 12 for teacher and 4 for the student, and kernel size of 7 and patch size of 1. For ViT, we
set the embedding dimension as 384, num heads=12 for teacher and 4 for the student, and number of
layers 7 for the teacher and 3 for the student. We would like to note that architectures for convmixer
and ViT maybe not be optimal for CIFAR-100 and there may exist better configurations.

Training: For training, we use the configuration of SEED. Under this setting, the distillation process
is performed for 200 epochs with a batch size of 256. The starting learning rate is 0.03 which is
slowly reduced to 0 using a cosine scheduler over the course of training. SGD is used as the optimizer
with momentum (0.9) and weight decay (0.0001). For CoSS, we set λ = 0.5. For the baselines, we
utilize their corresponding official implementations. For more detail please refer SEED(Fang et al.,
2021). We reproduced SMD’s results using their official source code and hyper-parameters. For
SKD, we used the temperature scaling parameters for student and teacher as τs = 0.1 and τt = 0.07
respectively as per Caron et al. (2021). For SKD, we also used a loss scaling parameter β = 100.0.

Datasets: We utilize a large collection of datasets in our work. We primarily use ImageNet (Deng
et al., 2009) for performing unsupervised distillation. To evaluate the quality of representations
learnt, we perform transfer learning on CIFARs(Krizhevsky, 2009), STL-10 (Coates et al., 2011),
Caltech-101 (Fei-Fei et al., 2006), Oxford-IIIT Pets (Parkhi et al., 2012), Flowers (Nilsback &
Zisserman, 2006) and DTD (Cimpoi et al., 2014). We also utilize various ImageNet variants namely,
ImageNet-v2 (Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019) and ImageNet-C (Hendrycks
& Dietterich, 2019) to understand robustness of distilled networks. For visualization of attention
maps and their quantitative analysis, we utilize COCO (Lin et al., 2014b), PascalVOC (Everingham
et al., 2015), MSRA(Liu et al., 2007; Hou et al., 2019), ECSSDYan et al. (2013) DAVIS (Pont-Tuset
et al., 2017).

Toy Experiment: For the toy experiment we use a 5 layered MLP with [4, 8, 4, 2, 2] neurons at each
depth for both teacher and student. We also utilised batch normalisation for internal layers and relu
non-activation. We generate 2500 samples from moons and circles dataset from scikit-learn1 with
noise=0.125. The teacher is trained on a classification task and the student is trained via. unsupervised
distillation.

Image Segmentation: We trained FCN on top of the frozen backbones using the Pytorch implemen-
tation2. We trained a FCN32 head, for 200 epochs with a learning rate of 1e− 4 and batch size of 20.
The learning rate wa halved every 25 epochs. CIFAR-100: For a fair evaluation, we scaled the β
parameter of the adapted supervised distillation methods by a factor of 0.5, 1.0, 2.0, 4.0, 8.0, 16.0.
We report below the optimal values we identified for each of the baseline methods.

A.2 ABLATION STUDY

A.2.1 IMPACT OF LOSS COMPONENTS

We perform this study to understand the importance of feature similarity and space similarity in our
distillation framework. We provide results on CIFAR-100. In table 10, we report the unsupervised
distillation performances from individual loss components. Lco corresponds to the training with

1scikit-learn
2https://github.com/pochih/FCN-pytorch
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Table 8: Variation in performance for different λ.
We report top-1 accuracy

Student/Teacher λ = 0 λ = 0.25 λ = 0.5 λ = 1

ResNet8x4/32x4 72.05 73.44 73.90 73.91
ResNet20/56 70.58 71. 34 71.11 70.68

Table 9: Variation in performance for different
nearest neighbourhood size

Methods KNN-1 KNN-51 KNN-101

SEED 44.80 49.95 49.05
BINGO 48.90 53.92 53.19
DisCo 47.08 52.01 50.96

CoSS (ours) 49.41 54.68 53.70

Table 10: Unsupervised distillation with individual
CoSS components.

Models Lco Lss Lcoss

Resnet8x4/32x4 72.05 73.53 73.90
ResNet20/56 70.58 70.42 71.11

Table 11: Values for the loss scaling

Method β

ATT 1000
SP 3000
VID 2.0
RKD 1.0
PKT 30000
Factor 200
NST 100
CRD 1.0
SRRL 1.0
SKD 100.0
CoSS 140

only feature similarity. This training is similar to BYOL(Grill et al., 2020), a SSL method. Lss

corresponds to the results obtained by only relying on the space similarity loss. We observe that
combining both both the losses performs better and thus is valuable for the process of distillation.

A.2.2 VALUES OF λ

In table, we report the performance of CoSS for different values of λ. We perform this ablation on
the CIFAR-100 dataset following the CRD training protocol. We observe that different architectures
respond to different strength of the space-similrity component. Though other values of λ provide
better results, we selected λ = 0.5 in our experiments.

For ImageNet, using only λ = 0 degrades the performance by 0.8% and 0.9% for ResNet-18 and
Efficientnet-b0 respectively.

A.2.3 K-NEAREST NEIGHBOURS

In table 11, we report the KNN performance for different values of the nearest neighbourhoods.
For the ImageNet distilled ResNet-18, we report KNN performance for sizes 1, 51 and 101. CoSS
maintains better performance for a wide range of neighbourhood sizes.

A.3 GOODNESS OF SPACE ALIGNMENT

To ascertain tthe quality of learnt embedding space after training, we compute the intersection-
over-union of the nearest neighbours for both the student and the teacher. Formally, we report
iouk = 1

|Dtest|
∑

x∈Dtest
K(fs,x,Dtrain,k)

⋂
K(ft,x,Dtrain,k)

K(fs,x,Dtrain,k)
⋃

K(ft,x,Dtrain,k) . Where, K returns a set of k nearest
samples to x in the training data for the model f(.).

In table 12, we report the mean intersection-over-union of the neighbourhood for each input sample.
It illustrates that student when trained with CoSS (our method) is able to learn the mapping which
preserves the local neighbourhood in the latent space better than its peers. Also, as the neighbourhood
size is increased we observe the trend of diminishing differences between the iou between different
approaches. This indicates that baselines are only able to capture the local relationship at a much
coarser level.
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Table 12: Comparison of common nearest neighbours for a student Resnet-18 with its teacher. We report
the Intersection-over-Union of the local neighbourhood for the ImageNet validation set. For each sample of
the validation set, the nearest neighbours are searched in the training set. We observe that CoSS is better at
modelling the local neighbourhood of its teacher than the other methods which rely on feature queues

Methods IoU1 IoU5 IoU11 IoU21

SEED 0.286 0.364 0.405 0.439
BINGO 0.289 0.360 0.397 0.427
DisCo 0.316 0.388 0.424 0.454

CoSS (ours) 0.338 0.399 0.430 0.454

B BATCH NORMALISATION FOR SPACE & SIMILARITY

Batch Normalisation (BN) was proposed to reduce the covariate shift which occurs during the
mapping of inputs from one layer to another (Ioffe & Szegedy, 2015). Since its introduction, BN has
found place in numerous deep learning architectures(He et al., 2016a;b; Xie et al., 2016). Here, we
show how one can directly aim the distillation process to match student and network’s embeddings
and subsequently compare its performance with our formulation.

BN operates on a batch of input data, X ∈ Rb×d where batch size is b and d is the feature dimension.
It first performs standardisation X̂:,i =

X:,i−µi

σi
where, : denotes all the entries in the batch dimension

and µi, σi are the mean and variances respectively for the ith feature dimension. The normalized
values are then scaled by trainable parameters γi and βi as:

Z:,i = γX̂:,i + β (4)

here, γi and βi can be interpreted as affine transformations which operate independently for different
spatial dimensions. We can utilise it to map the standardised student embeddings to the teacher’s
unnormalized embedding space. The corresponding loss can be defined as follows:

Lcoss =
1

b

i<b∑
i=0

D(Zs
i , X

t
i )

where, Xt
i is the teacher’s embedding for the ith sample and Zs

i corresponds to the BatchNormalized
student’s embeddings. In table 13, we report the results using this approach on CIFAR-100 distillation
task. We utilised mean-squared-error for the metric D.

Table 13: CIFAR-100 unsupervised distillation with BN.

Methods VGG13 Resnet32x/8x WRN-40/16

BN 74.01 72.22 73.42
CoSS 74.58 73.90 74.65

C TRANSFER LEARNING

The transfer learning experiment performed in the main paper consisted of fine-tuning a classification
layer after extensive hyper-parameter tuning. In this section, we report the KNN10 accuracies obtained
by the distilled ResNet-18s and Efficientnet-b0s. This way, we avoid the variability introduced by the
final classification layer and can gauge the quality of embedding spaces of different networks.

From table 14 it can be observed that CoSS provides significant improvements over the baselines.
This trend is similar to the top-1 results reported in the main paper.
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Table 14: Transfer learning evaluation of distilled ResNet-18 and Efficientnet-b0. We report the
KNN-10 accuracy

Method CIFAR-10(Krizhevsky, 2009) CIFAR-100 STL-10(Coates et al., 2011) Caltech-101(Fei-Fei et al., 2006) Pets(Parkhi et al., 2012) Flowers(Nilsback & Zisserman, 2006) DTD(Cimpoi et al., 2014)

ResNet-18 Eff-b0 ResNet-18 Eff-b0 ResNet-18 Eff-b0 ResNet-18 Eff-b0 ResNet-18 Eff-b0 ResNet-18 Eff-b0 ResNet-18 Eff-b0

SEED 80.86 84.96 52.09 60.38 91.20 92.97 73.60 76.78 60.40 66.53 47.18 65.54 56.91 61.38
BINGO 84.01 85.61 58.09 60.43 93.31 92.71 77.02 76.92 66.50 67.76 58.79 68.78 60.00 61.97
DisCo 84.45 86.80 56.80 62.68 92.46 92.00 77.05 76.58 64.95 65.69 59.85 64.94 61.28 62.18

CoSS (ours) 85.92 87.61 60.14 66.06 92.33 93.56 77.13 79.19 67.27 68.79 64.87 72.82 62.39 64.26

D ROBUSTNESS

In table 15, we provide the results of KNN10 evaluation of the Efficient-b0 on the robustness
benchmarks. Similar to the ResNet-18, Efficientnet-b0 distilled using CoSS is significantly more
robust.

Table 15: Robustness evaluation of ImageNet distilled Efficientnet-b0. To emphasize on the
quality of embeddings learnt, we report the KNN-10 accuracy. We highlight the best performance in
bold

Method ImageNet-v2(Recht et al., 2019) ImageNet-S(Wang et al., 2019) ImageNet-C(Hendrycks & Dietterich, 2019)
MF Tr Top brightness contrast defocus elastic fog frost gaussian glass impulse jpeg motion pixelate shot snow zoom

SEED 40.60 48.17 53.72 12.72 50.58 45.69 35.52 46.82 36.48 39.81 37.32 34.15 26.41 39.78 39.60 45.04 36.14 33.49 27.54
BINGO 41.47 49.15 54.65 13.15 51.45 46.62 35.83 47.47 38.29 40.73 37.69 34.73 27.30 40.51 40.22 44.31 36.37 33.84 26.81
DisCo 41.10 48.49 54.32 11.17 52.05 47.22 37.55 47.42 33.94 37.71 37.09 33.82 24.26 41.55 38.54 46.61 35.34 29.22 23.37

CoSS (ours) 44.40 52.07 58.13 13.50 55.68 51.71 42.04 51.90 41.33 43.66 41.49 39.59 28.62 45.77 43.74 50.87 40.30 36.69 32.19

E VISUALISATIONS

In figure 5, we provide the visualisations of the self-attention maps generated by the CoSS student on
randomly selected images from the MSRA10K dataset. It is interesting to note that each head focuses
on different aspects of an input image such as the foreground, background, or discriminating features.
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Image GT Self-attention maps

Figure 5: Self-attention maps of [CLS] token from the 3 ViT-tiny heads. The bright regions denote the patches of interest to the model
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