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ABSTRACT

Human learners have ability to adopt appropriate learning approaches depending
on constraints such as prior on the hypothesis and urgency of decision. However,
existing learning models are typically considered individually rather than in re-
lation to one and other. To build agents that have the ability to move between
different modes of learning over time, it is important to understand how learning
models are related as points in a broader space of possibilities. We introduce a
mathematical framework, Generalized Belief Transport (GBT), that unifies and
generalizes prior models, including Bayesian inference, cooperative communica-
tion and classification, as parameterizations of three learning constraints within
Unbalanced Optimal Transport (UOT). We visualize the space of learning models
encoded by GBT as a cube which includes classic learning models as special
points. We derive critical properties of this parameterized space including proving
continuity and differentiability which is the basis for model interpolation, and study
limiting behavior of the parameters, which allows attaching learning models on
the boundaries. Moreover, we investigate the long-run behavior of GBT, explore
convergence properties of models in GBT mathematical and computationally, and
formulate conjectures about general behavior. We conclude with open questions
and implications for more unified models of learning.

1 INTRODUCTION

Learning and inference are subject to internal and external constraints. Internal constraints include
the availability of relevant prior knowledge, which may be brought to bear on inferences based on
data. External constraints include the availability of time to accumulate evidence or make the best
decision now. Human learners appear to be capable of moving between these constraints as necessary.
However, standard models of machine learning tend to view constraints as different problems, which
impedes development of unified view of learning agents.

Indeed, internal and external constraints on learning map onto classic dichotomies in machine learning.
Internal constraints such as the availability of prior knowledge maps onto the Frequentist-Bayesian
dichotomy in which the latter uses prior knowledge as a constraint on posterior beliefs, while the
former does not. Within Bayesian theory, a classic debate pertains to uninformative, or minimally
informative, settings of priors (Jeffreys, 1946; Robert et al., 2009). External constraints such as
availability of time to accumulate evidence versus the need to make the best possible decision now
informs the use of generative versus discriminative approaches (Ng and Jordan, 2001). Despite the
fundamental nature of these debates, and the usefulness of all approaches in the appropriate contexts,
we are unaware of prior efforts to unify these perspectives and study the full space of possible models.

We introduce Generalized Belief Transport (GBT), based on Unbalanced Optimal Transport (Sec. 2),
which paramterizes and interpolates between known reasoning modes (Sec. 3.2), with four major
contributions. First, we prove continuity in the parameterization and differentiability on the interior
of the parameter space (Sec. 3.1). Second, we analyze the behavior under variations in the parameter
space (Sec. 3.3). Third, we consider sequential learning, where learners may (not) track the empirically
observed data frequencies. And finally we state our theoretical results, simulations and conjectures
about the sequential behaviors for various parameters for generic costs and priors (Sec. 4.2).

Notations. R≥0 denotes the non-negative reals. Vector 1 = (1, . . . , 1). The i-th component of vector
v is v(i). P(A) is the set of probability distributions over A. For a matrix M , Mij represents its
(i, j)-th entry, M(i,_) denotes its i-th row, and M(_,j) denotes its j-th column. Probability is P( · ).
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2 LEARNING AS A PROBLEM OF UNBALANCED OPTIMAL TRANSPORT

Consider a general learning setting: an agent, which we call a learner, updates their belief about the
world based on observed data subject to constraints. There is a finite set D = {d1, . . . , dn} of all
possible data, that defines the interface between the learner and the world. The world is defined by a
true hypothesis h∗, whose meaning is captured by a probability mapping P(d|h∗) onto observable
data. For instance, the world can either be the environment in classic Bayesian inference (Murphy,
2012) or a teacher in cooperative communication (Wang et al., 2020b).

A learner is equipped with a set of hypotheses H = {h1, . . . , hm} which may not contain h∗;
an initial belief on the hypotheses set, denoted by θ0 ∈ P(H); and a non-negative cost matrix
C = (Cij)m×n, where Cij measures the underlying cost of mapping di into hj 1. The cost matrix
can be derived from other matrices that record the relation between D and H, such as likelihood
matrices in classic Bayesian inference or consistency matrices in cooperative communication (see
details in Section 3.2).This setting reflects an agent’s learning constraints: pre-selected hypotheses,
and the relations between them and the communication interface (data set).

A learner observes data in sequence. At round k, the learner observes a data dk that is sampled from
D by the world according to P(d|h∗). Then the learner updates their beliefs over H from θk−1 to
θk through a learning scheme, where θk−1, θk ∈ P(H). For instance, in Bayesian inference, the
learning scheme is defined by Bayes rule; while in discriminative models, the learning scheme is
prescribed by a code book.

The learner transforms the observed data into a belief on hypotheses h ∈ H with a minimal cost,
subject to appropriate constraints, with the goal of learning the exact map P(d|h∗). We can naturally
cast this learning problem as Unbalanced Optimal Transport.

2.1 UNBALANCED OPTIMAL TRANSPORT

Unbalanced optimal transport is a generalization of (entropic) Optimal Transport. Optimal trans-
port infers a coupling that minimizes the cost of transporting between two marginal probability
distributions (Monge, 1781; Kantorovich, 2006; Villani, 2008). Entropic Optimal Transport adds a
regularization term based on the entropy of the inferred coupling, which has desirable computational
consequences (Cuturi, 2013; Peyré and Cuturi, 2019). Unbalanced OT further relaxes the problem by
allowing one to approximately match marginal probability distributions.

Let η = (η(1), . . . , η(n)) and θ = (θ(1), . . . , θ(m)) be two probability distributions. A joint
distribution matrix P = (Pij)n×m is called a transport plan or coupling between η and θ
if P has η and θ as its marginals. Given a cost matrix C = (Cij)n×m ∈ (R≥0)

m×n, En-
tropy regularized optimal transport (EOT) (Cuturi, 2013) solves the optimal transport plan P ϵP

that minimizes the entropy regularized cost of transporting η into θ. Thus for a parameter
ϵP > 0: P ϵP = argminP∈U(η,θ) ⟨C,P ⟩ − ϵPH(P ), where U(η, θ) is the set of all trans-
port plans between η and θ, ⟨C,P ⟩ =

∑
i,j CijPij is the inner product between C and P , and

H(P ) = −
∑

ij Pij logPij + Pij is the entropy of P .

Unbalanced Optimal Transport (UOT), introduced by Liero et al. (2018), is a generalization of
EOT that relaxes the marginal constraints. The degree of relaxation is controlled by two regularization
terms. Formally, for non-negative scalar parameters ϵ = (ϵP , ϵη, ϵθ), the UOT plan is,

P ϵ(C, η, θ) = argmin
P∈(R≥0)n×m

{⟨C,P ⟩ − ϵPH(P ) + ϵηKL(P1|η) + ϵθKL(PT1|θ)}. (1)

Here KL(a|b) :=
∑

i ai log(ai/bi)− ai + bi is the Kullback–Leibler divergence between vectors.
UOT differs from EOT in relaxing the hard constraint that P satisfy the given marginals η and θ, to
soft constraints that penalize the marginals being far from η or θ 2. In particular, as ϵη and ϵθ →∞,
we recover the EOT problem.

1To guarantee the hypotheses are distinguishable, we assume that C does not contain two columns that are
only differ by an additive scalar.

2UOT also generalizes to measures of arbitrary mass, i.e. the total mass of η does not need to equal to θ.
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Proposition 1. The UOT problem with cost matrix C, marginals θ, η and parameters ϵ = (ϵP , ϵη, ϵθ)
generates the same UOT plan as the UOT problem with tC, θ, η, tϵ = (tϵP , tϵη, tϵθ) for any
t ∈ (0,∞). Therefore, the analysis on ϵ and tϵ are the same for general cost C.

The objective function in Eq. (1) is linear on C, ϵP , ϵη, ϵθ, so a positive common factor does not
affect the solution. In the discussion under general cost matrix C, properties that hold for ϵ are also
valid for all tϵ (t > 0).

UOT plans can be solved efficiently via a Sinkhorn-style algorithm (Sinkhorn and Knopp, 1967).
Roughly speaking, (η, θ, ϵ)-unbalanced Sinkhorn scaling of a matrix M is iterated alternation of row
and column normalizations of M with respect to (η, θ, ϵ) (see Algorithm 2). Chizat et al. (2018) shows
that: given a cost C, the UOT plan P ϵ can be obtained by applying (η, θ, ϵ)-unbalanced Sinkhorn
scaling on Kϵ := e

− 1
ϵP

C
= (e

− 1
ϵP

Cij )m×n, with convergence rate Õ(mn
ϵP

) (Pham et al., 2020).

Generalized Belief Transport. Learning, efficiently transport one’s belief with constraints, is
naturally a UOT problem. Each round, a learner, defined by a choice of ϵ = (ϵP , ϵη, ϵθ), updates
their beliefs as follows. Let ηk−1, θk−1 be the learner’s estimations of the data distribution and the
belief over hypothesesH after round k − 1, respectively. At round k, the learner first improves their
estimation of the mapping between D andH, denoted by Mk, through solving the UOT plan Eq. (1)
with (C, ηk−1, θk−1), i.e. Mk = P ϵ(C, ηk−1, θk−1). Then with data observation dk, the learner
updates their beliefs overH using corresponding row of Mk, i.e. suppose dk = di for some di ∈ D,
the learner’s belief θk is defined to be the row normalization of the i-th row of Mk. Finally, the learner
updates their data distribution to ηk by increment of the i-th element of ηk−1, see Algorithm 1.

Algorithm 1 Generalized Belief Transport

input: C, θ0, η0, h∗, N , data sampler τ
based on P(d|h∗), stopping condition ω
output: M , θ
initialize: k ← 1
while k < N and not ω(θ) do
M ← P ϵ(C, ηk−1, θk−1)

get data di sampled from τ
ηk ← update(ηk−1, d

i) via update rule
v←M(i,_)
θk ← v/

∑
h∈H v(h)

k ← k + 1
end while

Algorithm 2 Unbalanced Sinkhorn Scaling

input: C, θ, η, ϵ = (ϵP , ϵη, ϵθ), N stopping
condition ω
output: P ϵ(C, η, θ)
initialize: K = exp(−ϵPC), v(0) = 1m

while k < N and not ω do

u(k) ←
( η

Kv(k−1)

) ϵη
ϵη+ϵP ,

v(k) ←
(

θ

KTu(k)

) ϵθ
ϵθ+ϵP

end while
P ϵ(C, η, θ) = diag(u)Kdiag(v)

3 GENERALIZED BELIEF TRANSPORT (GBT)

Many learning models with different constraints—including Bayesian inference, Frequentist inference,
Cooperative learning, and Discriminative learning—are unified under our GBT framework by varying
the choice of ϵ. In this section, we focus on the single-round behavior of the GBT model, i.e., given a
pair of marginals (θ, η), how different learners update beliefs. We first visualize the entire learner set
as a cube (in terms of parameters), see Figure 1. Then, we study the topological properties of the
learner set through continuous deformations of parameters ϵ. In particular, we show that existing
models including Bayesian inference, cooperative inference and discriminative learning are learners
with parameters (1, 0,∞), (1,∞,∞) and (0,∞,∞) respectively in our UOT framework.

3.1 THE PARAMETER SPACE OF GBT MODEL

The space of constrained belief-updating learners in GBT are parameterized by three regularizers
for the underlying UOT problem (1): ϵP , ϵη and ϵθ, each ranges in [0,∞). Therefore, the constraint
space for GBT is R3

≥0, with the standard topology. When C, θ and η are fixed (assume η ∈ Rm
+ ), the

map ϵ = (ϵP , ϵη, ϵθ) 7→ (P ϵ) bears continuous properties:
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Proposition 2. 3 The UOT plan P in Equation (1), as a function of ϵ, is continuous in (0,∞)×[0,∞)2.
Furthermore, P is differentiable with respect to ϵ in the interior.

Continuity on ϵ provides the basis for interpolation between different learning agents. The proof of
Proposition 2 also implies the continuity on η and θ. Further, towards the boundaries of the parameter
space (where theories like Bayesian, Cooperative Communication live in), we show:
Proposition 3. For any finite sP , sη, sθ ≥ 0, the limit of P ϵ exists as ϵ approaches (∞, sη, sθ). In
fact, limϵ→(∞,sη,sθ) P

ϵ
ij = 1 for all i, j. Moreover, P ϵ converges to the solution to

min⟨C,P ⟩ − sPH(P ) + sθKL(PT1|θ), with constraint P1 = η,

as ϵ→ (sP ,∞, sθ). Similarly, P ϵ converges to the solution to

min⟨C,P ⟩ − sPH(P ) + sηKL(P1|η), with constraint PT1 = θ,

as ϵ→ (sP , sη,∞). And when ϵ→ (sP ,∞,∞), the matrix P ϵ converges to the EOT solution:

min⟨C,P ⟩ − sPH(P ), with constraints PT1 = θ and P1 = η.

When ϵ→ (∞,∞, sθ), (∞, sη,∞) or (∞,∞,∞), the limit does not exist, but the directional limits
can be calculated.

Figure 1: The parameter space S of GBT. Parameters ϵ = (ϵP , ϵη, ϵθ) can take the value ∞, rendering the
corresponding regularization to a strict constraint. The two dashed edges with ϵP = ∞ are not generally
well-defined since the limits do not exist. The vertices corresponding to θ ⊗ η, Frequentist (η ⊗ 1) and 1⊗ θ
are the limits taken along the vertical edges. Given (C, θ, η) as shown in the left corner, each colored map plots
each GBT learner (differ by constraints)’s estimation of the mapping between hypotheses and data (UOT plan).

The generalized parameter space for UOT with its boundaries can be visualized in Fig. 1. Function
sigmoid(log(x)) maps segment [0,∞) to [0, 1) smoothly. Then we can add boundaries to the image
cube [0, 1)3. The dashed lines in the figure indicates limits that do not exist. The parameter space
is then S = [0,∞]3\({(∞,∞, x) : x ∈ [0,∞]} ∪ {(∞, x,∞) : x ∈ [0,∞]}). Later, we may still
mention (∞,∞, ϵθ) and (∞, ϵη,∞), only for case where the direction is vertical (along axis of ϵP ).

3.2 SOME SPECIAL POINTS IN THE PARAMETER SPACE

Bayesian Inference. Given a data observation, a Bayesian learner (BI) (Murphy, 2012) derives
posterior belief P(h|d) based on prior belief P(h) and likelihood matrix P(d|h), according to the
Bayes rule. Intuitively, due to soft time constraint (ϵP = 1), a Bayesian learner is a generative agent
who puts a hard internal constraint on their prior belief (ϵθ = ∞), and omits the estimated data
distribution η in the learning process, (ϵη = 0). As a direct application of Prop 3, we show:
Corollary 4. Consider a UOT problem with cost C = − logP(d|h), marginals θ = P(h), η ∈ P(D).
The optimal UOT plan P (1,ϵη,ϵθ) converges to the posterior P(h|d) as ϵη → 0 and ϵθ →∞. Bayesian
inference is a special case of GBT with ϵ = (1, 0,∞).

Moreover, by relaxing the constraint on the prior (i.e., 0 < ϵθ < ∞), one obtains a parameterized
family of less informative priors.

3Proofs of all claims are included in the Appendices.
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Frequentist Inference. A frequentist updates their belief from data observations by increasing the
corresponding frequencies of datum. Intuitively, a frequentist is an agent who puts a hard constraint
on the data distribution η (ϵη = ∞), and omits prior knowledge θ (ϵθ = 0) in a learning process
without time constraint (ϵP =∞). Formally we show:

Corollary 5. Consider a UOT problem with θ ∈ P(H), η = P(d). The optimal UOT plan P (ϵP ,∞,0)

converges to η ⊗ 1 as ϵP →∞. Frequentist Inference is a special case of GBT with ϵ = (∞,∞, 0).

Cooperative Communication. Two cooperative agents, a teacher and a learner, are considered
in Yang et al. (2018); Wang et al. (2020b); Shafto et al. (2021). Cooperative learners (CI) draw
inferences about hypotheses based on which data would be most effective for the teacher to choose
(see a brief model summary in the Appendix A). Given a data observation, a cooperative learner
derives an optimal plan L = P(H,D) based on a prior belief P(h), a shared data distribution P(d)
and a matrix M specifies the consistency between data and hypotheses (such as Mij records the
co-occurrence of di and hj). Intuitively, a cooperative learner is also a generative agent who puts
hard constraints on both data and hypotheses (ϵη = ∞, ϵθ = ∞), and aims to align with the true
belief asymptotically, (ϵP = 1). Thus as a direct application of Proposition 3 we show:
Corollary 6. Let cost C = − logM , marginals θ = P(h) and η = P(d). The optimal UOT plan
P (1,ϵη,ϵθ) converges to the optimal plan L as ϵη → ∞ and ϵθ → ∞. Cooperative Inference is a
special case of GBT with ϵ = (1,∞,∞), which is exactly entropic Optimal Transport (Cuturi, 2013).

Discriminative learning. A discriminative learner decodes an uncertain, possibly noise corrupted,
encoded message, which is a natural bridge to information theory (Cover, 1999; Wang et al., 2020b).
A discriminative learner builds an optimal map to hypothesesH conditioned on observed dataD. The
map is perfect when, for all messages, encodings are uniquely and correctly decoded. Intuitively, a
discriminative learner aims to quickly build a deterministic code book (implies ϵP = 0) that matches
the marginals onH and D. Thus, discriminative learner is GBT with ϵ = (0,∞,∞):
Corollary 7. Consider a UOT problem with cost C = − logP(d, h), m = n, and marginals θ = η
are uniform. The optimal UOT plan P (ϵP ,ϵη,ϵθ) approaches to a diagonal matrix as ϵη, ϵθ →∞ and
ϵP → 0. In particular, discriminative learner is a special case of GBT with ϵ = (0,∞,∞), which is
exactly classical Optimal Transport (Villani, 2008).

Many other interesting models are unified under GBT framework as well. GBT with ϵ = (0,∞, 0)
denotes Row Greedy learner which is widely used in Reinforcement learning community (Sutton
and Barto, 2018); ϵ = (∞,∞,∞) yields η ⊗ θ which is independent coupling used in χ2 (Fienberg
et al., 1970); ϵ = (ϵP , ϵθ,∞) is used for adaptive color transfer studied in (Rabin et al., 2014); and
ϵ = (0, ϵθ, ϵη) is UOT without entropy regularizer developed in (Chapel et al., 2021). Other points in
the GBT parameter space are also of likely interest, past or future.

3.3 GENERAL PROPERTIES ON THE TRANSPORTATION PLANS

The general GBT framework builds a connection between the above theories, and the behavior of
theory varies according to the change of parameters. In particular, each factor of ϵ = (ϵP , ϵη, ϵθ)
expresses different constraints of the learner. Given (C, θ, η) as shown in the top-left corner of Fig. 1,
we plot each learner’s UOT plan with darker color representing larger elements.

ϵP controls a learner’s learning horizon. When ϵP → 0, agents are under the time pressure of
making immediate decision, hence GBT converges a discriminative learner, or Row Greedy learner
on the bottom of the cube (Fig. 1). Their UOT plans have a clear leading diagonal which allows
them to make fast decisions. Most of the time, one datum is enough to identify the true hypothesis
and convergence is achieved within every data observation. When ϵP → ∞, GBT converges to a
reticent learner, such as learners on the top of the cube. Data do not constrain the true hypothesis,
and learners draw their conclusions independent of the data. In between, GBT provides a generative
(probabilistic) learner. When ϵP = 1, we have Bayesian learner and Cooperative learner, for whom
data accumulate to identify the true hypothesis in a manner broadly consistent with probabilistic
inference, and consistency is asymptotic.

ϵη controls a learner’s knowledge on the data distribution η. When ϵη → ∞, GBT converges to
a learner who is aware of the data distribution and reasons about the observed data according to
the probabilities/costs of possible outcomes. Examples include the Discriminative and Cooperative
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learners on the front of the cube. When ϵη → 0, GBT converges to a learner who updates their belief
without taking η into consideration, such as Bayesian learners on the back of the cube, and the Tyrant
who does not care about data nor cost and is impossible to be changed by anybody.

ϵθ controls the strength of availability of prior knowledge for the learner. When ϵθ → ∞, GBT
converges to a learner who enforces a prior over the hypotheses, such as Bayesian, Cooperative and
Discriminative learners on the right of the cube. Actually, BGT follows Bayes rule when ϵθ =∞
(Prop 8). When ϵθ → 0, GBT converges to learners who utilizes no prior knowledge. Hence they do
NOT maintain beliefs overH, and draws their conclusions purely on the data distribution, such as a
Frequentist learner η ⊗ 1 on the left of the cube.
Proposition 8. In GBT with ϵθ =∞, cost C and current belief θ. The learner updates θ with UOT
plan in the same way as applying Bayes rule with likelihood from P ϵ(C, η, θ), and prior θ.

4 SEQUENTIAL GBT: ASYMPTOTIC BEHAVIOR

One interesting difference between the one-shot case considered above and the sequential case is the
possibility of observing many data points. In addition to the learning models in the GBT parameter
space, in this section, we consider whether the learner’s marginal on the data is fixed a priori, or
accumulates evidence based on experience.

4.1 BASICS

The sequential GBT model consists of a teacher and a learner. The teacher samples data from a
probability distribution η (not necessarily related to some h ∈ H), and the learner follows GBT with
cost C, and parameter ϵ. The learner starts with a prior θ0, and applies in each round k GBT with
ηk−1 and θk−1 to generate θk through the UOT solution Mk. In the Preliminary sequential model
(PS), we assume ηk = η for all k. However, in practice, a learner does not have access η = P(d|h∗).
Instead, in each round the learner may choose to use the current statistical distribution in data as an
estimation of η, i.e., ηk(d) ∝ |{i : i < k, di = d}|+ n0(d) according to the observed data sequence,
where n0(d) > 0 (e.g., 1 as in add-one smoothing (Murphy, 2012)) is the prior counts to avoid
zero in η. Thus we have the Real sequential model (RS) where ηk

a.s−−→ η. It is easy to see that the
sequence of posteriors form a time-homogeneous Markov chain on P(H).
In statistics, a model is said to be consistent (strongly-consistent) when, for every fixed hypothesis
h ∈ H, the model’s belief θ over the hypotheses set H converges to δh in probability (almost
surely) as more and more data are sampled from η = P(d|h), when θ’s are considered random
variables. The consistency has been well studied for Bayesian Inference since Bernstein and von
Mises and Doob (Doob, 1949), and recently demonstrated for Cooperative Communication (Wang
et al., 2020a). The challenging problem arises when one tries to learn a h∗ that is not contained in the
pre-selected hypothesis space H. It is not clear which h ∈ H is the ‘correct’ target to converge to.
Thus consistency does not fit the situation in sequential GBT.

For sequential GBT models, we state the properties directly in the language of posterior sequence
(Θk)

∞
k=1 as random variables, and name them if necessary. We focus on whether the sequence

converges (and in which sense), and how conclusive (how likely to provide a stable, fixed h ∈ H as
the result) the sequence is. We provide some theoretical conclusions, and fill the gaps with empirical
results and conjectures.

4.2 RESULTS AND CONJECTURES

Results in this section are stated on different ϵθ values. According to Prop. 1, we could focus
on ϵP = 1 for generic cost matrix C, and general result of (ϵP , ϵη, ϵθ) becomes the same as the
(1, ϵη/ϵP , ϵθ/ϵP ) case. So we choose ϵP = 1 in simulations.

ϵθ =∞: Conclusive and Bayesian-style. These are located on the right side of Fig. 1, and contain
many well-studied learners: Bayesian, Cooperative, Discriminative, Row Greedy etc. According to
Prop 8, learners in this class perform “Bayesian” style learning.

There are two theoretical results: ϵη = 0 (Bayesian) and ϵη =∞ (SCBI learner (Wang et al., 2020a)).
Others are explored in simulations.
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Theorem 9 ((Doob, 1949),(Wang et al., 2020a)). In GBT sequential model (both (PS) and (RS)) with
ϵ = (ϵP , 0,∞) where ϵP ∈ (0,∞), the sequence Θk converges to some δh almost surely, h is the
closest column of e−C/ϵP to η in the sense of KL-divergence, when θ is positive (on each entry).

When ϵη = ϵθ =∞, the models (PS) and (RS) have slightly different behaviors.
Lemma 10. For ϵ = (ϵP ,∞,∞), ϵP ∈ (0,∞), given cost C with initial belief θ0 ∈ P(H) and fixed
teaching and learning distribution ηk = η ∈ P(D) for all k, i.e., model (PS), then the belief random
variables (Θk)k∈N have the same expectation on h: EΘk

[θ(h)] = θ0(h).

Figure 2: Evidence of general consistency: we plot the percentage of episodes that reaches a threshold (0.999)
by round number (in colors of the bars). Each bar represents a size of matrix, for each bar 100 matrices were
randomly sampled, and 1000 rounds were simulated per matrix. “exact” means learner uses ηk = η, (PS),
“update” means learner uses statistics on current data in the episode (RS). “uot” takes ϵ = (1, 40, 40) and “ot”
comes with exact and ϵ = (1,∞,∞).

Theorem 11 (PS). Consider a learning problem with initial belief θ0 ∈ P(H), and the true hypothesis
h∗ defined by η ∈ P(D). If the learner’s data distribution ηk = η, then belief random variables
(Θk)k∈N converge to the random variable Y in probability, where Y =

∑
h∈H θ0(h)δh and Y is

supported on {δh}h∈H with P(Y = δh) = θ0(h) for ϵη = ϵθ =∞ and ϵP ∈ (0,∞).
Corollary 12. Given a fixed data sequence di sampled from η, if θk converges to δhj , then the j-th
column of Mk converges to η.

Thus a GBT learner, with access to the data distribution and using strict marginal constraints,
converges to a distribution on D same as η with probability 1. Moreover, the probability of which
column h is shaped into η is determined by their prior θ0. That is, GBT learners converge to the truth
by changing one of their original hypotheses into the true hypothesis.

For the (RS) model, the result is similar, but Lemma 10 fails to hold:
Proposition 13. Consider a learning problem with cost C, initial belief θ0 ∈ P(H), the true
hypothesis h∗ defined by η ∈ P(D). For the (RS) problem, the belief random variables (Θk)k∈N
satisfies that for any s > 0, lim

k→∞

∑
h∈H

P(Θ(h) > 1− s) = 1. As a consequence, Mk as the transport

plan has a dominant column (hj) with total weights > 1− s, and |(Mk)ij − ηk(i)| < s.

In fact, as long as the sequence of ηk as random variables converges to η in probability, the above
proposition holds. The limit lim

k→∞

∑
h∈H

P(Θ(h) > 1− s) measures how conclusive the model is.

In contrast with standard Bayesian or other inductive learners, Proposition 13 shows that a GBT learner
is able to learn any hypothesis mapping η = P(d|h∗) up to a given threshold s with probability 1.
In addition to unifying disparate models of learning, GBT enables a fundamentally more powerful
approach to learning by empirically monitoring the data marginal.

Fig. 2 illustrates convergence over learning problems and episodes. In each bar, we sample 100
learning problem (C, θ0, h

∗) from Dirichlet distribution with hyperparameters the vector 1. Then
we sample 1000 data sequences (episodes) of maximal length N = 10000. The learner learns with
Algorithm 1 where the stopping condition ω is set to be maxh∈H θ(h) > 1− s with s = 0.001. The
y-axis in the plots represents the percentage of total episode converged. The color indicates in how
many rounds the episode converges. For instance, in the bar corresponding to ‘10× 10_update_uot’,
with 10 data points (yellow portion), about 50% episodes satisfy the stopping condition.
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In Figure 2, the first plot shows results for 10 × 10 and 5 × 3 matrices. The second plot shows
results for rectangular matrices of dimension m × 10 with m ranges in [5, 10, 25, 50, 100]. The
third plot shows results for square matrices of dimension m×m with m ranges in [10, 25, 50, 100].
Here ‘exact’ and ‘update’ indicate the problem is (PS) or (RS), respectively. For parameters, uot
represents the parameter choice (ϵP = 1, ϵθ = ϵη = 40) vs. ot represents the parameter choice
(ϵP = 1, ϵθ = ϵη = ∞). The first plot illustrates that learners that do not have access to the true
hypothesis (empirically builds estimation of η) learn faster than learners who have full access. The
second plot indicates with a fixed number of hypotheses, learning is faster when the dimension of D
increases. The third plot shows that the GBT learner scales well with the dimension of the problem.

Figure 3: Left: Behavior of models spanning the line segment between BI and CI. With ϵP = 1 and ϵθ = ∞,
when ϵη varies from 0 to ∞, the theory changes from BI to CI. Each bar graphs the Monte-Carlo result of 400,000
teaching sequences, we empirically observe that the coefficients a(h) of the limit in terms of

∑
h∈H a(h)δh

changes from BI to CI continuously from δ(h3) by Bernstein-von Mises to θ0(h) by Theorem 11. Right: the
Euclidean distances of each coefficient a(h) to BI result (blue crosses), and to CI result (orange dots).

Then we study the learners that interpolate between Bayesian and Cooperative learners (located on
the line connecting CI and BI in Fig 1). Consider a fixed learning problem (C, θ0, h

∗). Consistency
of Bayesian inference states that asymptotically, the learner Bayesian converges to a particular
hypothesis hb ∈ H almost surely where hb is the hypothesis closest to h∗ under KL divergence.
Theorem 11 indicates that a GBT cooperative learner modifies one of the hypotheses into h∗ in
probability 1. The probability of hj converges to h∗ is determined by θ0(h

j).

In Fig. 3, we study the asymptotic behavior of the learners corresponding to ϵ = (1, ϵη,∞), with
ϵη ∈ {0, 0.02, 0.2, 0.5, 1, 2, 5, 50,∞}. We sample a learning problem with a dimension 5× 5 from
Dirichlet distribution with hyperparameters the vector 1. Each learner ϵ = (1, ϵη,∞) is equipped
with a fixed C, θ0 and ηk = η for all k. We run 400, 000 learning episodes per learner, and plot
their convergence summary in the bar graph. A continuous transition from a Bayesian learner to
a cooperative learner can be empirically observed: the coefficients a(h) of the limit in terms of∑

h∈H a(h)δh changes from δ(h3) by Bernstein-von Mises to θ0(h) by Theorem 11.

From the previous empirical results, we conclude the following conjecture:

Conjecture 14. When ϵ = (ϵP , ϵη,∞), where ϵP ∈ (0,∞), the sequence of posteriors Θk from
generic C, η, θ and ϵ as random variables satisfy lim

k→∞

∑
h∈H

P(|Θk(h)− 1|<e) = 1 for any e > 0.

We further report an empirical property observed in simulation, which suggests a possible rate of
convergence. For given C, θ0 and η, fix ϵP = 1 and ϵθ = ∞, as ϵη changes from 0 to∞, we pick
out those episodes with θN (h) > 0.95 and plot the values EθN (h)>0.95[ln θk(h) − ln(1 − θk(h))]
for each h against k (Fig. 4 bottom). Near linear relations are observed away from the first several
rounds and before the values reaches the precision threshold. These are empirical estimates of the
rate of convergence.

There is a special case on the boundary, the Independent Coupling (∞,∞,∞), whose limit is
taken vertically along ϵP -axis, see Sec. 3.1. Independent Coupling has a fixed posterior, where
Law(Θk) = δθ0 , as the normalization of each row of P (∞,∞,∞) is θ0.

ϵθ = 0: Inconclusive and independent. The following holds for both (PS) and (RS):

Proposition 15. For ϵ = (ϵP , ϵη, 0) with ϵP ∈ (0,∞), as ηk → η almost surely, the sequence
Θk of posteriors as a sequence of random variables converges in probability to variable Θ, where
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Figure 4: Top: For a learning problem C, behaviors of 9 different learners with ϵP = 1, ϵθ = ∞ and various ϵη
(denoted in figure) on conclusion distributions, a(h) in bar graph, plots below bars are estimated convergence
rates E ln(θk(h)/(1− θk(h))) averaged on episodes converging to h, one curve per hypothesis.

P(Θ = vi) = η(i) and vi = P(i,_)/
(∑m

j=1 Pij

)
and P = P ϵ(C, η, θ). Therefore, for any s > 0,

limk→∞
∑

h∈H P(|Θk(h)− 1| < s) = 0 for generic (for all but in a closed subset) cost C and η, θ.

With ϵθ = 0, the constraint on column-sum (ϵη-term) fails to affect the transport plan, thus the Θk’s
in the sequence are independent from each other, in contrast that in all other cases the adjacent ones
are correlated via a nondegenerate transition distribution. The independence makes the sequence
of posterior-samples in one episode behave totally random, thus rarely converge as points in P(H).
Furthermore, when consider the natural coupling (Θk−1,Θk) from Markov transition measure for
ϵθ = 0 (which is independent), E

(
|Θk−1 −Θk|2

)
converges to the variance V ar(η). In contrast, for

ϵθ =∞, E
(
|Θk−1 −Θk|2

)
converges to 0 if Conj. 14 holds.

ϵθ ∈ (0,∞): partially conclusive. From Conj. 14 and Prop. 15, together with the continuity of
the transition distribution on ϵ, we conjecture the following continuity on conclusiveness when
ϵP ∈ (0,∞).

Conjecture 16. For both (PS) and (RS) models, when ϵ = (ϵP , ϵη, ϵθ) with ϵP , ϵθ ∈ (0,∞), the pos-
terior sequence Θk from generated from generic C, η, θ and ϵ satisfy that limk→∞

∑
h∈H P(|Θk(h)−

1| < s) = L exists, and L ∈ (0, 1), for any s > 0.

5 RELATED WORK

Prior work defines and outlines basic properties of Unbalanced Optimal Transport (Liero et al., 2018;
Chizat et al., 2018; Pham et al., 2020). Bayesian approaches are prominent in machine learning
(Murphy, 2012) and beyond (Jaynes, 2003; Gelman et al., 1995). There is also research on cooperative
learning (Wang et al., 2019; 2020b;a) see also (Liu et al., 2021; Yuan et al., 2021; Zhu, 2015; Liu
et al., 2017; Shafto and Goodman, 2008; Shafto et al., 2014; Frank and Goodman, 2012; Goodman
and Frank, 2016; Fisac et al., 2017; Ho et al., 2018; Laskey et al., 2017). Discriminative learning is
the reciprocal problem in which one sees data and asks which hypothesis best explains it (Ng and
Jordan, 2001; Mandler, 1980). We are unaware of any work that attempts to unify and analyze the
general problem of learning in which each of these are instances.

6 CONCLUSIONS

We have introduced Generalized Belief Transport (GBT), which unifies and parameterizes classic
instances of learning including Bayesian inference, Cooperative Inference, and Discrimination,
as Unbalanced Optimal Transport (UOT). We show that each instance is a point in a continuous,
differentiable on the interior, 3-dimensional space defined by the regularization parameters of UOT.
In addition to supporting generalized learning, we prove and illustrate asymptotic consistency and
estimate rates of convergence, including convergence to hypotheses with zero prior support. In
summary, GBT unifies very different modes of learning, yielding a powerful, general framework for
modeling learning agents.
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A ADDITIONAL MATERIALS

Algorithm 3 Unbalanced Sinkhorn Scaling

input: C, θ, η, ϵ = (ϵP , ϵη, ϵθ), N stopping condition ω

initialize: K = exp(−ϵPC), v(0) = 1m

while k < N and not ω do
u(k) ← ( η

Kv(k−1) )
ϵη

ϵη+ϵP , v(k) ← ( θ
KTu(k) )

ϵθ
ϵθ+ϵP

end while
output: M = diag(u)Kdiag(v)

Cooperative Communication. Cooperative communication formalizes a single problem com-
prised of interactions between two processes: teaching and learning. The teacher and learner have
beliefs about hypotheses, which are represented as probability distributions. The process of teaching
is to select data that move the learner’s beliefs from some initial state, to a final desired state. The
process of learning is then, given the data selected by the teacher, infer the beliefs of the teacher. The
teacher’s selection and learner’s inference incur costs. The agents minimize the cost to achieve their
goals. Communication is successful when the learner’s belief, given the teacher’s data, is moved to
the target distribution.

Formally, denote the common ground between agents: the shared priors on H and D by P(h) and
P(d), the shared initial matrix over D andH by M of size |D| × |H|. In general, up to normalization,
M is simply a non-negative matrix which also specifies the consistency between data and hypotheses4

In cooperative communication, a learner’s goal is to minimize the cost of transforming the observed
data distribution P(D) to the shared prior over hypotheses P(H). A learner’s cost matrix CL =
(CL

ij)|M|×|H| is defined as CL
ij = − logM . A learning plan is a joint distribution L = (Lij), where

Lij = PL(di, hj) represents the probability of the learner inferring hj given di. It is proved in (Wang
et al., 2019) that:

Proposition 17. Optimal cooperative communication plans, L, is the EOT plan with cost CL and
marginals being η = P(d) and θ = P(h).

B PROOFS

Proposition 1. The UOT problem with cost matrix C, marginals θ, η and parameters ϵ = (ϵP , ϵη, ϵθ)
generates the same UOT plan as the UOT problem with tC, θ, η, tϵ = (tϵP , tϵη, tϵθ) for any
t ∈ (0,∞).

Proof. Consider that the UOT problem solution is

P ϵ(C, η, θ) = argmin
P∈(R≥0)n×m

{⟨C,P ⟩ − ϵPH(P ) + ϵηKL(P1|η) + ϵθKL(PT1|θ)}. (2)

where the objective function is linear on C and ϵ.

P tϵ(tC, η, θ) = argmin
P∈(R≥0)n×m

{⟨tC, P ⟩ − tϵPH(P ) + tϵηKL(P1|η) + tϵθKL(PT1|θ)}

= argmin
P∈(R≥0)n×m

t · {⟨C,P ⟩ − ϵPH(P ) + ϵηKL(P1|η) + ϵθKL(PT1|θ)}

= P ϵ(C, η, θ). (3)

Proposition 2. The UOT plan P in Equation (1), as a function of ϵ, is continuous in (0,∞)× [0,∞)2.
Furthermore, P is differentiable with respect to ϵ in the interior.

4Data, di, are consistent with a hypothesis, hj , when Mij > 0.
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Proof. For simplicity, in this proof, for a vector v, we use both vi and v(i) to represent a component
of v.

By definition, the UOT plan P minimizes the objective function Ω(P ; ϵ) = ⟨C,P ⟩ − ϵPH(P ) +
ϵηKL(P1|η) + ϵθKL(PT1|θ). Since Ω is a strict convex function on P , there is only one minimal
P . So the UOT plan P is the solution to∇PΩ = 0. From a direct calculation,

(∇PΩ)ij = Cij + ϵP lnPij + ϵη(ln(

m∑
k=1

Pik)− ln η(i)) + ϵθ(ln(

n∑
k=1

Pkj)− ln θ(j))

and

(∇2
PΩ)ijkl =

ϵP δikδjl
Pij

+
ϵηδik∑m
t=1 Pit

+
ϵθδjl∑n
t=1 Ptj

.

As we assume that Pij > 0 for all i, j, all the terms above are well-defined. Besides, ∇PΩ is C1 on
η, θ and ϵ. Therefore, we can show P ϵ(C, η, θ) is continuous not only on ϵ but also on η and θ after
checking Hessian. From implicit function theorem, if we show the above Hessian is invertible for
ϵP > 0, then the results of the proposition are true. Equivalently, it suffices to show that detH ̸= 0
where matrix H is the flattened∇2

PΩ by mapping (i, j, k, l) 7→ (im+ j, km+ l).

Invertibility of H . Let r be the vector of reciprocals of row sums of P , i.e., ri = 1/
(∑

j Pij

)
,

and similarly, let c be the vector of reciprocals of column sums of P , i.e., cj = 1/ (
∑

i Pij). Then

(∇2
PΩ)ijkl =

ϵP δikδjl
Pij

+ ϵηδikri + ϵθδjlcj .

Let ϕ be the map (i, j) 7→ (im+ j), then ϕ induces a reshaping of P to a vector of size mn, denoted
by Pϕ. When there is no ambiguity, we may omit the ϕ superscript.

Further define pϕ as a vector of dimension mn where pϕk = ϵP /P
ϕ
k . By definition, Hϕ =

ϵP (diag(p
ϕ)) + ϵη1m ⊗ (diag(r)) + ϵθ(diag(c)) ⊗ 1n where 1k is the k × k matrix of ones,

and A ⊗ B is Kronecker product (tensor product of matrices). Decompose H = D + G where
D = ϵP (diag(p

ϕ)) and G = ϵη1m ⊗ (diag(r)) + ϵθ(diag(c))⊗ 1n.

From now on, we may use P -row, P -column to represent i, j style indices, and G-row, G-column
or simply row/column to represent those of G, or the ones in range [1,mn]. D is diagonal, and
detG = 0. Furthermore,

(∗) any row or column of G with index k can be represented by an entry position
(i, j) of P by inverse of ϕ, and any rows of indices k1, k2, k3, k4 corresponding to
(i1, j1), (i1, j2), (i2, j1), (i2, j2) (i.e., determined as intersections of two P -rows and two
P -columns) is linearly dependent: G(k1,_) +G(k4,_) −G(k2,_) −G(k3,_) = 0, we denote
this property as (∗).

Structure of detH: Let D = diag(p1, p2, . . . , pmn), then detH is a polynomial on pk’s with
constant term 0. Each term in detH is of form f(I)

(∏
k/∈I pk

)
for each subset I ⊆ {1, 2, . . . ,mn},

and the coefficient f(I) = detG(I,I) where G(I,I) is the submatrix with lines of indices not in I,
i.e., the entries of G(I,I) are of the form Gij with i ∈ I and j ∈ I.

Next we show that f(I) is nonnegative for all I, then with pk > 0 for all k, we can conclude
that detH > 0. Since I ⊆ {1, 2, . . . ,mn}, ϕ−1(I) ⊆ {1, 2, . . . , n} × {1, 2, . . . ,m}, and ϕ is a
bijection, we may not distinguish I from ϕ−1(I), in order to make the statement neater.

1. [Operation-(∗) on I]: We want to investigate the operations on I producing a subset J such
that f(I) = f(J ). By the properties of determinant, (∗) induces one operation: when I con-
taining 4 integer pairs which can form the vertices of a rectangle, f(I) = 0. Moreover, for any
k1, k2, k3, k4 such indices in (∗), we can generate row G(k4,_) by G(k4,_) = G(k2,_)+G(k3,_)−G(k1,_),
then if {k1, k2, k3} ⊆ I, we can build G(k4,_) on any G(ki,_), thus the determinant detGrow

(I,I) =

±detG(I,I) (positive for k2 and k3, negative for k1 ). Similarly, if we follow the same operation
on columns, we have detGcol

(I,I) = ±detG(I,I). And when doing both, detGcol·row
(I,I) = detG(I,I).
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Therefore, we know that if k1, k2, k3 ∈ I, and J = {k4} ∪ I\{ki} for any i = 1, 2, 3, then
f(I) = f(J ). Such operations changing I to J is denoted by operation-∗. In short, an operation-∗
moves an end of a small “L-shaped” set of 3 pairs along a P -row or a P -column, producing another
L-shaped set of 3 pairs.

2. [Regularized form of I, and decomposition of nondegenerate regularized form I♯ into L-shaped
subsets]: Once I or any J equivalent to I via operations-∗ contains 4 pairs satisfying condition (∗),
f(I) = 0, then we call I degenerate. In decomposing I, when we find it degenerate, we stop since
f(I) is known.

We decompose I as set of pairs inductively in the following way before stopping. Start with any
(i, j) ∈ I, we look for pairs of form (i, l) and (k, j) in I, adding them into the subset A(i,j)

containing (i, j). Then check the degeneracy, by looking for whether I contains a point (k, l) with
(i, l), (j, k) ∈ A(i,j), whenever I is degenerate, we stop since f(I) = 0. Next we enlarge A(i,j) by
changing the set I to a regularized form using operation-∗’s. For each (k, l) with (i, l) ∈ A(i,j), then
(k, j) can be constructed on (k, l) via an operation-∗ with (i, j) and (i, l). Thus we modify I into
J = (i, l) ∪ I\(k, l) that f(I) = f(J ), and adding (i, l) into set A(i,j). Similar process can be
done for those (k, l) ∈ I with (k, j) ∈ A(i,j).

After regularizing I and enlarging A(i,j) to maximum about (i, j), we get a regularized form J of
I, with f(I) = f(J ), and a component A(i,j) of L-shape. The set of J \A(i,j) has no elements of
form (k, l) with (i, l) ∈ A(i,j) or (k, j) ∈ A(i,j), as they are already moved to A(i,j) by operation-
∗. Therefore, J \A(i,j) is supported on a rectangular region by deleting all P -rows (k, _)’s and
P -columns (_, l)’s where k, l’s occur in A(i,j).

Repeating the L-shaped component construction above for J \A(i,j), we can transform I into a
regularized form (not unique or standard) I♯ and we have a decomposition I♯ =

⋃
A(it,jt) into

L-shaped components, which do not intersect with each other. The name “regularized form” is
given to the transformed set with a L-shaped decomposition, and since only operation-∗ is applied,
f(I) = f(I♯).
3. [Properties between the L-shaped subsets:] For each I which we did not conclude f(I) = 0 in the
last step, we get I♯ and a decomposition I♯ =

⋃
t∈T At into L-shaped subsets.

The construction of components At induces such a property: for two distinct components At there
is no elements (i, j) ∈ At and (k, l) ∈ As, in normal words, the At occupies certain P -rows and
P -columns which is distinct from those of As.

For (i, j) and (k, l) with i ̸= k and j ̸= l, Gim+j,km+l = 0 from the formula that Gim+j,km+l =
ϵηriδik + ϵθcjδjl. Therefore, the decomposition I♯ =

⋃
t∈T At induces a decomposition of matrix

G(I♯,I♯) into blockwise diagonal matrix
GA1,A1 0 . . . 0

0 GA2,A2
. . . 0

...
. . .

...
0 0 . . . GAt,At

 (4)

So for a decomposition I♯ =
⋃

t∈T At, we haves f(I♯) =
∏

t∈T f(At)

4. [f(A) for an L-shaped component]: The last part is to show f(A) > 0 for all L-shaped components.
Recall that Gim+j,km+l = ϵηriδik + ϵθcjδjl, so for A an L-shaped component with s P -rows and t
P -columns, G(A,A) in general is of form

G(A,A) =



r1 + c1 . . . r1 r1 0 . . . 0
...

. . .
...

...
...

. . .
...

r1 . . . r1 + ct−1 r1 0 . . . 0
r1 . . . r1 r1 + ct ct . . . ct
0 . . . 0 ct ct + r2 . . . ct
...

. . .
...

...
...

. . .
...

0 . . . 0 ct ct . . . ct + rs


(5)
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Recall the formula det
[

E B
C D

]
= det(E) det(D − CE−1B) and the matrix determinant lemma

det(diag(c) + r11T ) = (1 + r1T diag(c)−11) det(diag(c)) =
∏

ci(1 +
∑

(r/ci)).

If s = 1 or t = 1, the determinant of G(A,A) can be calculated directly by the matrix determinant
lemma above.

If s > 1 and t > 1, we cut Eq. (5) into 4 blocks
[

E B
C D

]
where E contains the upper left t× t

part, B is zero but the last row, C is zero but the last column, D is a matrix in a similar form as E.

According to the characters of B,C stated above, it can be found that CE−1B =
c2t1E

−1
t,t 1

T which is an s × s-matrix. The entry E−1
t,t = detE(1:t−1,1:t−1)/ detE where

E(1:t−1,1:t−1) is the matrix E without the last row and last column, moreover, E−1
t,t =(∏t−1

1 ci(1 +
∑t−1

1 (r1/ci))
)
/
(∏t

1 ci(1 +
∑t

1(r1/ci))
)
=

1 +
∑t−1

1 (r1/ci)

ct(1 +
∑t

1(r1/ci))
< 1/ct. There-

fore, CE−1B = λ11T with λ < ct and D − CE−1B = diag(r2:s) + (ct − λ)11T , whose
determinant is positive according to the matrix determinant lemma.

As a consequence, detG(A,A) > 0 for each L-shaped components A. So combining the discussions
in [1-4], we have detH = det(D +G) > 0.

Then the implicit function theorem implies the differentiability of P ϵ on ϵ.

Proposition 3. For any finite sP , sη, sθ ≥ 0, the limit of P ϵ exists as ϵ approaches to (∞, sη, sθ).
In fact, limϵ→(∞,sη,sθ) P

ϵ
ij = 1 for all i, j (Limit 1). Moreover, P ϵ converges to the solution to

min⟨C,P ⟩ − sPH(P ) + sθKL(PT1|θ), with constraint P1 = η, (6)

as ϵ→ (sP ,∞, sθ) (Limit 2). Similarly, P ϵ converges to the solution to

min⟨C,P ⟩ − sPH(P ) + sηKL(P1|η), with constraint PT1 = θ, (7)

as ϵ → (sP , sη,∞) (Limit 3). And in the case when ϵ → (sP ,∞,∞), the matrix P ϵ converges to
the EOT solution (Limit 4):

min⟨C,P ⟩ − sPH(P ), with constraints PT1 = θ and P1 = η. (8)

When ϵ→ (∞,∞, sθ), (∞, sη,∞) or (∞,∞,∞), the limit does not exist, but the directional limits
can be calculated..

Proof. Recall that H(P ) = −
∑

ij(Pij lnPij − Pij), (∇PH)ij = − lnPij , and H(P ) is strictly
concave, therefore H has a unique maximum mn at Pij = 1, denoted by 1. Similarly, KL(a|b) =∑

i(ai(ln ai − ln bi)− ai + bi), ∇aKL(a|b)i = ln ai − ln bi, KL is strictly convex, therefore KL
has a minimum 0 at ai = bi for all i.

Limit 1. Shown by contradiction: When ϵ→ (∞, sη, sθ), suppose the limit limϵ→(∞,sη,sθ) P
ϵ
ij for

some (i, j) does not exist, or is not 1. Thus there is e > 0 that, for any δ > 0 and N > 0, there
exists a parameter ϵ1 = (ϵP , ϵη, ϵθ) such that ϵP > N , |ϵη − sη| < δ and |ϵθ − sθ| < δ, satisfying
|P ϵ

ij − 1| > e.

However, for any 0 < e < 1/2, let δ = 1, let E = (1+e) ln(1+e)−(1+e)+1 > 0, minΩ(P ; ϵ) ≤
Ω(1; ϵ) < C for some G > 0 where (1)ij = 1 for all (i, j), and any ϵ ∈ {(ϵP , ϵη, ϵθ) : sη/2 < ϵη <
3sη/2, sθ/2 < ϵθ < 3sθ/2, }. So there is a N > 0 such that NE > G + maxij Cij + mn + L
where L = − inf{ϵηKL(P1|η) + ϵθKL(P t1|θ)}, meaning those P with |Pij − 1| > e for some
(i, j) is not minimizing Ω.

The contradiction indicates that limϵ→(∞,sη,sθ) P
ϵ
ij = 1 for all i, j.

Limit 2 & 3: The situation of ϵθ →∞ and ϵη →∞ are similar, so we only prove for ϵθ →∞ case.
Let P̂ denote the solution to Eq. (7).
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Let P̂ be the solution to the optimization with constraints. We first show that
limϵ→(sP ,sη,∞)

∑n
k=1 P

ϵ
kj = θj .

This is similar to limit 1. Suppose the limit either does not exist or is not θj , then there exists an e > 0
such that for any N > 0, δ > 0, there exists ϵθ > N , |ϵη − sη| < δ and |ϵP − sP | < δ, such that∣∣∣∣∣

n∑
k=1

P ϵ
kj − θj

∣∣∣∣∣ > e (9)

for some j. Thus KL((P ϵ)T1|θ) > E for some E > 0. Consider that ⟨C,P ⟩ ≥ 0, H(P ) ≥ −mn
and KL(P1|η) ≥ 0 are lower bounded, we can take sufficiently large N such that the P ϵ satisfying
Eq. (9) satisfy Ω(P ϵ; ϵ) > Ω(P̂ ; ϵ), making P ϵ fail to optimize Ω(·; ϵ), which is a contradiction.
Thus we have limϵ→(sP ,sη,∞)

∑n
k=1 P

ϵ
kj = θj .

For each ϵ = (ϵP , ϵη, ϵθ), let θϵ denote the (P ϵ)T1, then for any ϵ, the solution P ϵ is also the solution
to

min
P
⟨C,P ⟩+ ϵPH(P ) + ϵηKL(P1|η), with constraint PT1 = θϵ. (10)

Denote Φ(P, ϵP , ϵη) := ⟨C,P ⟩+ ϵPH(P ) + ϵηKL(P1|η) When ϵP ∈ (0,∞), the new objective
function Φ(P, ϵP , ϵη) is continuous on P and ϵP ,ϵη, and each minimization problem gets a unique
solution since the objective function is strictly convex. Therefore, the limit limϵ→(sP ,sη,∞)P ϵ = P̂ .
We show this via contradiction:

Suppose the opposite, there exists some ξ > 0 such that ||P ϵ − P̂ ||2 > ξ for ϵ arbitrarily close to
(sP , sη,∞). Let

α := inf
PT e=θ,||P−P̂ ||2>ξ

Φ(P, sP , sη)− Φ(P̂ , sP , sη),

α > 0 since the minimum P̂ is unique and the objective is strictly convex. The sets PT e = θϵ is
compact since it is closed and bounded, so there exists bounds b = (b1, b2, b3) for ϵ = (ϵP , ϵη, ϵθ)
such that in the bound where |ϵP − sP | < b1, |ϵη − sη| < b2 and ϵθ > b3, maxΦ(P, sP , sη) −
Φ(P ♯, ϵP , ϵη) < α/3 for P with PT e = θ and P ♯ its Euclidean projection to {PT e = θϵ}, and
maxΦ(P, ϵP , ϵη)− Φ(P ♭, sP , sη) < α/3 for P with PT e = θϵ and P ♭ its Euclidean projection to
{PT e = θ}.
Let ϵ be a parameter in the above bound b to (sP , sη,∞), where P = argminPT e=θϵΦ(P, ϵP , ϵη) is
ξ far from P̂ . Then Φ(P, ϵP , ϵη) > Φ(P ♭, sP , sη)−α/3 > Φ(P̂ , sP , sη)+2/3α > Φ(P̂ ♯, ϵP , ϵη)+

α/3 > Φ(P̂ ♯, ϵP , ϵη), which is a contradiction to the assumption that P is the argmin.

Limit 4: Similar to the previous two limits, we can say that limϵ→(sP ,∞,∞)

∑n
k=1 P

ϵ
kj = θj and

limϵ→(sP ,∞,∞)

∑m
k=1 P

ϵ
ik = ηi. Then the problem becomes the EOT problem, which has a unique

solution.

Boundaries at ϵη = 0 or ϵθ = 0: It is simple to check the continuity when ϵη → 0 or ϵθ → 0. From
Prop. 2, the continuity and differentiability hold for ϵη → 0 or ϵθ → 0 when ϵP > 0.

Nonexistence of the limits when ϵP , ϵη →∞, and directional limits: Let a sequence ϵ1, ϵ2, . . .
where ϵi = (ϵiP , ϵ

i
η, ϵ

i
θ) satisfy lim ϵiP = lim ϵiη = ∞ and lim(ϵiη/ϵ

i
P ) = t, then the limit P of P ϵ

satisfy Pij = t(ln cj − lnn)/(t+ 1), since the limit minimizes the following objective function

H(P ) + tKL(P1|η).

The reason is, as
∑

ηi = 1, H(P ) and KL(P1|η) cannot vanish for the same P , thus the minima of
objective function approaches to infinity, therefore the finite terms ⟨C,P ⟩ and ϵθKL(PT1|θ) tend to
have no effect on the minimal point P as ϵP , ϵη increases to infinity.

A direct consequence of the above discussion is, when t changes, the limits P of those sequences
changes, which indicates that the limit of P ϵ as ϵ→ (∞,∞, sθ) fails to exist. And similar situation
happens when ϵ→ (∞, sη,∞)
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Nonexistence of the limits when ϵP , ϵη, ϵθ →∞, and directional limits : Similar to the discus-
sions above, let the sequence ϵ1, ϵ2, . . . where ϵi = (ϵiP , ϵ

i
η, ϵ

i
θ) satisfy limi→∞ ϵi = (∞,∞,∞).

Further let lim(ϵiη/ϵ
i
P ) = u, lim(ϵiθ/ϵ

i
P ) = w, then P ϵi converges to the solution to the problem

H(P ) + uKL(P1|η) + wKL(PT 1|θ),

which could be considered as another UOT problem with cost function constantly 0.

Corollary 4. Consider a UOT problem with cost C = − logP(d|h), marginals θ = P(h), η ∈ P(D).
The optimal UOT plan P (1,ϵη,ϵθ) converges to the posterior P(h|d) as ϵη → 0 and ϵθ →∞. Bayesian
inference is a special case of GBT with ϵ = (1, 0,∞).

Proof. As direct application of Limit 3 of Proposition 3, we only need to show that the optimal plan
P (1,0,∞) is propositional to the posterior P (h|d).

P (1,0,∞) = argmin
P∈U(θ)

K(P ) := argmin
P∈U(θ)

{⟨C,P ⟩ −H(P )}. (11)

where U(θ) = {P ∈M(D ×H)|PT1 = θ}.

Let λ ∈ R+m, consider the corresponding Lagrangian problem:

L(P,λ) := ⟨C,P ⟩ −H(P ) + ⟨λ, (PT1− θ)⟩

Partial derivatives ∂Pij
= 0 and ∂λj

L = 0 result the following system of equations:

logPij − logP (di|hj) + λj = 0
∑
i

Pij − P (hj) = 0 (12)

Calculation shows that the solution to Equation 12 is Pij =
P (di|hj)P (hj)∑

i P (di|hj)
= P (di|hj)P (hj) ∝

P (hj |di). Hence the proof is completed.

Corollary 5. Consider a UOT problem with θ ∈ P(H), η = P(d). The optimal UOT plan P (ϵP ,∞,0)

converges to η ⊗ 1 as ϵP →∞. Frequentist Inference is a special case of GBT with ϵ = (∞,∞, 0).

Proof. As direct application of Proposition 3, we only need to show that P (∞,∞,0) = η ⊗ 1. Notice
that Eq 1 is equivalent to

P (∞,∞,0) = argmin
P∈(R≥0)n×m

H(P ), with constraint P1 = η (13)

Hence P (∞,∞,0) = η ⊗ 1.

Corollary 6. Let cost C = − logM , marginals θ = P(h) and η = P(d). The optimal UOT plan
P (1,ϵη,ϵθ) converges to the optimal plan L as ϵη → ∞ and ϵθ → ∞. Cooperative Inference is a
special case of GBT with ϵ = (1,∞,∞), which is exactly entropic Optimal Transport (Cuturi, 2013).

Proof. According to proposition 17, L = P (1,∞,∞), and the convergence result is a direct application
of Limit 4 of Proposition 3

Corollary 7. Consider a UOT problem with cost C = − logP(d, h), m = n, and marginals θ = η
are uniform. The optimal UOT plan P (ϵP ,ϵη,ϵθ) approaches to a diagonal matrix as ϵη, ϵθ →∞ and
ϵP → 0. In particular, discriminative learner is a special case of GBT with ϵ = (0,∞,∞), which is
exactly classical Optimal Transport (Villani, 2008).
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Proof. Limit 4 of Proposition 3 implies the convergence of P (ϵP ,ϵη,ϵθ) → P (0,∞,∞) as ϵη, ϵθ →
∞ and ϵP → 0. When m = n, P (0,∞,∞) is a permutation matrix is the result of Wang et al.
(2020b)[Proposition 8].

Proposition 8. In GBT with ϵθ =∞, cost C and current belief θ. The learner updates θ with UOT
plan in the same way as applying Bayes rule with likelihood from P ϵ(C, η, θ), and prior θ.

Proof. From Algorithm 1, for a general data point di chosen, the GBT takes the vector normalization
of some row P ϵ, i.e., θ′ = P ϵ

(i,_)/(
∑

j P
ϵ
ij).

On the other hand, when we apply Bayes rule to P ϵ, prior is θ = P(h), likelihood P(d|h) is the
column normalization of P ϵ, satisfying P(di|hj) = P ϵ

ij/(
∑

i P
ϵ
ij) = P ϵ

ij/θj . The last equality is
because θ(i) =

∑
j P

ϵ
ij when ϵθ = ∞. So the posterior P(h|di) is the vector normalization of

P(di|h)P(h), by P(di|hj)P(hj) = P ϵ
ij/θj ∗ θj = P ϵ

ij . Therefore, P(hj |di) = θ′(hj).

Now, we introduce some notations will be used in the following proofs.

Notations. Denote the set of all possible belief by ∆ = P(H). Distribution of Θk is denoted by µk.
We only consider the case where no two hypotheses are the same inH. Hence we make the following
assumption that columns of exp(−ϵPC) are not differ by a multiplicative scalar, i.e. columns of C
are not differ by an additive scalar.

Lemma 10. For ϵ = (ϵP ,∞,∞), ϵP ∈ (0,∞), given cost C with initial belief θ0 ∈ P(H) and
fixed teaching and learning distribution ηk = η ∈ P(D) for all k, then the belief random variables
(Θk)k∈N have the same expectation on h: EΘk

[θ(h)] = θ0(h).

Proof. We start the proof by showing EΘk
[θ(h)] = EΘk−1

[θ(h)] for k ≥ 1. Notice that given cost C
and data marginal η, an observed data d ∈ D and UOT planning uniquely determines a map from a
learner’s initial belief θk−1 to one’s posterior belief θk. Denote this map by Td : θk−1 7→ θk. Let the
distribution of Θk−1 over P(H) be µk−1, denote its support by Sk−1. Then the following holds:

EΘk
[θ(hj)] =

∑
θ∈Sk−1

µk−1(θ)
∑
di∈D

ηiTdi(θ)(hj) =
∑

θ∈Sk−1

µk−1(θ)
∑
di∈D

ηi
Mk(i, j)

ηi

=
∑

θ∈Sk−1

µk−1(θ)
∑
di∈D

Mk(i, j) =
∑

θ∈Sk−1

µk−1(θ)θ(h
j) = EΘk−1

[θ(h)]

Hence EΘk
[θ(h)] = EΘk−1

[θ(h)] = · · · = EΘ0 [θ(h)] = θ0(h).

Theorem 11. Consider a learning problem with initial belief θ0 ∈ P(H), and the true hypothesis
h∗ defined by η ∈ P(D). If the learner’s data distribution ηk = η, then belief random variables
(Θk)k∈N converge to the random variable Y in probability, where Y =

∑
h∈H θ0(h)δh and Y is

supported on {δh}h∈H with P (Y = δh) = θ0(h) for ϵη = ϵθ =∞ and ϵP ∈ (0,∞).

Proof. Step 1: First, we show the following claim inspired the proof proposition 5.1 in Wang et al.
(2020a)

Claim: limk→∞ µk(∆ϵ) = 0, for any ϵ > 0, where ∆ϵ := {θ ∈ ∆ : θ(h) ≤ 1− ϵ,∀h ∈ H}.
Assume the claim does not hold, then there exists α > 0 and a subsequence (µki

)i∈N such that
µki

(∆ϵ) > α for all i.

Let the center of ∆ be u, we define L(µ) := Eµf(θ), where f(θ) = ∥θ−u∥22, (f may also be chosen
as entropy H(θ)). Then L(µk+1) = Eµk

(Ed∼ηf(Td(θ))).
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Notice that f is strictly convex, by Jensen’s inequality,

Ed∼ηf(Td(θ))
(a)

≥ f(Ed∼ηTd(θ))
(b)
= f(θ) (14)

Here (b) holds because:

Ed∼ηTd(θ)
(c)
=

∑
di∈D

ηi · (Mk(i, _)\ηi) =
∑
di∈D

Mk(i, _)
(d)
= θ (15)

(c), (d) hold since Mk has marginals η, θ.

Moreover, equality holds in (a) if and only if Td(θ) = θ for all d ∈ D. Thus rows of Mk are the
same up to a scalar. This implies either (1) only one column of Mk is none zero, thus Θk ≡ δh for
some h or (2)Mk has at least two columns are differed by a scalar.

In the case of (1), if θ0 ̸= δh, Θk ≡ δh is contradict to Lemma 10. Otherwise, Y = δh, the result
holds. In the case of (2), according to Wang et al. (2019), Mk is cross-ratio equivalent to exp(−ϵPC),
hence exp(−ϵPC) has two columns differ by a multiplicative scalar, contradict to the assumption.

Thus for any θ ∈ ∆ϵ, Ed∼ηf(Td(θ)) > f(θ). Therefore L(µk+1) > L(µk) for any k.

Moreover, notice that ∆ϵ is compact, there is a lower bound β > 0, such that Ed∼ηf(Td(θ))−f(θ) >
β for all θ ∈ ∆ϵ. Therefore:

L(µki+1) = Eθki+1∈∆ϵ
(Ed∼ηf(Td(θ))) + Eθki+1∈∆\∆ϵ

(Ed∼ηf(Td(θ)))

> Eθki
∈∆ϵ

(f(θ)) + Eθki
∈∆\∆ϵ

(f(θ)) + α ∗ β
= L(µki) + α ∗ β.

(16)

Thus L(µki+s) > L(µki
) + s ∗ α ∗ β → ∞ as s → ∞. On the other hand, by definition, f(θ) is

bounded above by the diameter of ∆ under l2 norm, so L(µ) is also bounded above. Contradiction!
Therefore, the Claim holds.

Step 2. We show limk→∞ P (Θk ∈ ∆h
1−ϵ) = limk→∞ µk(∆

h
1−ϵ) = θ0(h), for all h ∈ H where

∆h
1−ϵ := {θ ∈ ∆ : θ(h) > 1− ϵ}.

For a fixed h ∈ H, we have:

θ0(h)
(a)
= EΘk

(θ(h))
(b)
= Eθk∈∆h

1−ϵ
(θ(hj)) + Eθk∈∆u

1−ϵ
(θ(h)) + Eθk∈∆ϵ

(θ(h))

(c)

≤ µk(∆
h
1−ϵ) · 1 + µk(∆

u
1−ϵ) · ϵ+ µk(∆ϵ) · 1

= µk(∆
h
1−ϵ) + ϵ+ µk(∆ϵ)

where ∆u
1−ϵ denotes the union of all the other corners of ∆, i.e. ∆u

1−ϵ := ∪h′∈H\h∆
h′

1−ϵ. Here (a) is
direct application of Lemma 10; (b) holds since ∆ = ∆h

1−ϵ∪∆u
1−ϵ∪∆ϵ. (c) holds because in general

θ(hj) < 1, and θ(hj) < ϵ for any θ ∈ ∆u
1−ϵ. Therefore, 0 ≤ θ0(h)−µk(∆

h
1−ϵ) ≤ ϵ+µk(∆ϵ)→ ϵ as

k →∞ hold for any choice of ϵ. Pick a sequence of ϵ→ 0, we have that limk→∞ µk(∆
h
1−ϵ) = θ0(h).

Hence combining results from Step 1 and Step 2, we have shown Θk converges to Y in probability:
P (|Θk − Y | > ϵ) ≤ µk(∆ϵ) +

∑
h∈H(θ0(h) − µk(∆

h
1−ϵ)) → 0 as k → ∞. Hence the proof is

completed.

Corollary 12. Given a fixed data sequence di sampled from η, if θk converges to δhj , then the j-th
column of Mk converges to η.

Proof. For ϵ > 0, there exists N > 0 such that θk(hj) > 1−ϵ for any k > N . So
∑

j′ ̸=j Mk(i, j
′) <

ϵ for any di ∈ D, on the other hand
∑

j′ Mk(i, j
′) = ηi. This implies that ηi − ϵ < Mk(i, j) < ηi,

so Mk(i, j)→ ηi as ϵ→ 0. Therefore the j-th column of Mk converges to η.
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Proposition 13. Consider a learning problem with cost C, initial belief θ0 ∈ P(H), the true
hypothesis h∗ defined by η ∈ P(D). If the learner updates the estimation ηk with observed data
(sampled from η) as stated above, then belief random variables (Θk)k∈N satisfies that for any s > 0,
limk→∞

∑
h∈H P (Θ(h) > 1− s) = 1. As a consequence, Mk as the transport plan has a dominant

column (hj) with total weights > 1− s, and |(Mk)ij − ηk(i)| < s. In fact, as long as the sequence
of ηk as random variables converges to η in probability, the above proposition holds.

Proof. The proof is similar to Step 1 of Theorem 11. The major difference is that data are sampled
from η in each step, whereas the learner only has an estimation ηk at round k. Therefore, under
current condition, equality (b) of Eq 14 need to be modified as following:

Ed∼ηTd(θk) =
∑
di∈D

ηi · (Mk(i, _)\ηik) =
∑
di∈D

Mk(i, _) · η
i

ηik
= θk ⊙ vk. (17)

where vk = ( η
i

ηi
k

) is a vector of the size of the data set D, and ⊙ represents element-wise product.
Hence Ed∼ηf(Td(θk)) = f(θk ⊙ vk) holds for all θk ∈ ∆. Since ηk → η as k → ∞. For any

α∗β > 0, there exists N > 0 such that for k > N , |1− ηi

ηi
k

| <
√

α∗β
2n . Hence: |f(θk⊙vk)−f(θk)| ≤

α∗β
2 . Then corresponding to Eq 16, for ki > N , we have:

L(µki+1) = Eθki+1∈∆ϵ
(Ed∼ηf(Td(θ))) + Eθki+1∈∆\∆ϵ

(Ed∼ηf(Td(θ)))

> Eθki
∈∆ϵ(f(θk ⊙ vk)) + Eθki

∈∆\∆ϵ
(f(θk ⊙ vk)) + α ∗ β

> Eθki
∈∆ϵ

(f(θk)) + Eθki
∈∆\∆ϵ

(f(θk))−
α ∗ β
2

+ α ∗ β

= L(µki
) +

α ∗ β
2

.

Hence the contradiction on the upper bound of L(µki+1) still holds, which shows the claim that:
limk→∞ µk(∆ϵ) = 0. So limk→∞

∑
h∈H P (Θ(h) > 1− s) = 1. The proof for the second part of

the proposition follows exactly as Corollary 12.

Proposition 15. For ϵ = (ϵP , ϵη, 0) with ϵP ∈ (0,∞), as ηk → η almost surely, the sequence
Θk of posteriors as a sequence of random variables converges in probability to variable Θ, where
P(Θ = vi) = η(i) and vi = P(i,_)/

(∑m
j=1 Pij

)
and P = P ϵ(C, η, θ). Therefore, for any s > 0,

limk→∞
∑

h∈H P(|Θk(h)− 1| < s) = 0 for generic (for all but in a closed subset) cost C and η, θ.

Proof. First, ϵθ = 0 means that P ϵ(C, η, θ) is independent of θ. Therefore, Mk = P ϵ(C, ηk, θ)
and has a limit P ϵ(C, η, θ), regardless of the concrete posterior θk. From construction of GBT, the
posterior Θk is determined by P(Θk = wi

k) = η(i) where wi
k = (Mk)(i,_)/

∑m
j=1(Mk)ij . Given

the coupling (Θk,Θ) by setting only P(Θk = wi
k,Θ = vi) = η(i) for each i, we may calculate

P(|Θk −Θ| < s) converge to 1 as Mk converge to P ϵ(C, η, θ).

For generic C, η, θ, the probability of P ϵ(C, η, θ) having a row with only one nonzero entry is 0.

Remark: As ηk → η almost surely, for any e > 0, there exists N > 0, such that, when k > N , the
probability of having ηk e-close to η is 1. Thus in almost all episodes, with generic C, η, θ, when e is
small enough, for any ||η′ − η|| < e (using p−∞ norm, same for below), the row-normalized (to
1n) UOT plans

max
i
||P ϵ

r (C, η
′, θ)(i,_) − P ϵ

r (C, η
′, θ)(i,_)|| <

1

4
min
i,j
||P ϵ

r (C, η, θ)(i,_) − P ϵ
r (C, η, θ)(j,_)||

where P ϵ
r is the row normalization of P ϵ.
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Therefore, for such e, we may find an N > 0 such that for any k, k′ > N , P ϵ
r (C, ηk, θ) ̸=

P ϵ
r (C, η

′
k, θ). However, for generic η, say, no entry of η is 0, ||θk − θ′k|| < when k, k′ > N and

dk ̸= dk′ . Thus the posterior sequence of almost every episode fails to converge.

C ADDITIONAL SIMULATIONS

Interpolation between learning models can be investigated properly under GBT. Human learners
appear to be capable of moving between different learning models gradually. Consider an individual
at a carnival who is playing a game. At each of 10 trials, a bit of information is provided, but
the available reward decreases. The individual has a pool of tickets with which they can bet on
the outcome at each trial. The question is how the individual should update their beliefs in order
to maximize their rewards. On the first trial, their belief update, in order to accurately reflect the
evidence, should follow Bayes rule. However, for the last trial, one should focus bets on the most
probable outcome in order to maximize chances for rewards, that is, their beliefs should be optimized
for discriminating among the possible outcomes. GBT offers a coherent way of interpolating between
these two approaches to provide candidate strategies on the intermediate steps. Such situations
are common where there is an explicit constraint on the time horizon after which point no further
evidence can be obtained, and there are incentives to act early, rather than to wait until evidence has
fully accumulated; for example, identifying dangerous situations (tiger or not? poisonous or not?).

We now demonstrate how continuity of GBT (section 3.1) allows one to gradually interpolate between
Bayesian and discriminative learning over steps (rather than a sharp switch).

C.1 SIMULATION SETUP

Suppose a learner who observes data sampled from a true hypothesis P(d|h∗), and needs to make a
conclusion on whether h∗ is one of the hypotheses inH within a fixed number N of observations.

Here we compare a baseline learner who utilizes Bayesian inference (ϵ = (1, 0,∞)) on the first
N − 1 observations, and switch to discriminative learning (ϵ = (0,∞,∞)) on the last observation,
against learners who interpolate from Bayesian to discriminative learning gradually along a sequence
of models on curves in GBT. Two curves along with intermediate models are shown red and orange
in Figure 5.

We take a random sampled M of shape 4× 4 as an example,

M =

 0.225779 0.014886 0.433787 0.050735
0.613779 0.322347 0.172658 0.109262
0.069799 0.620178 0.29083 0.243635
0.090643 0.042588 0.102725 0.596368

 .

Thus |H| = |D| = 4. Set N = 10 and start from uniform θ = (0.25, 0.25, 0.25, 0.25).

Simulation details: We perform 40000 trials in total. For each trial s (or say each episode), we
uniformly sample Xs ∈ P(H), and let the true hypothesis h∗ be the covex combination of elements in
H with coefficients given by Xs. While teaching the episode, in each round, we sample a hypothesis
h ∈ H following Xs, then sample a data d following the column of M corresponding to d. During
inference, we set ηk by counting the frequency of each d ∈ D (starting from 1 to avoid 0 in ηk) and
then normalize, as stated in (RS) model in Sec. 4.1.

C.2 RESULTS

Following paths shown in Fig. 5, for baseline (blue, left), path 1 (orange, middle), and path 2 (red,
right), the distribution of maximal component of each posterior at round 10 are shown in histograms
of 30, and the entropy of these posteriors are plotted in the lower three figures.

In the upper figures, comparing to the baseline (blue), weights are concentrated more on the right
bars for the gradual interpolations (orange and red). Thus learning tends to be more conclusive along
these paths. Here conclusiveness means that the ability of getting a conclusion (one component of the
posterior eventually becoming dominant). Furthermore, the entropy distributions shown in the lower
figures also illustrate this point, as compare to baseline, gradual interpolations have lower entropy.
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Figure 5: Baseline (sharp change) and two paths we follow on the parameter space of GBT.

Numerical results: entropy of baseline: mean 0.1888, standard deviation 0.2858, entropy along path
1: mean 0.0097, standard deviation 0.0686 entropy along path 2: mean 0.0571, standard deviation
0.1584.

It is necessary to consider that, the two paths and interpolations are chosen for demonstration purpose,
by no means they are optimal. However, we believe GBT is capable of facilitating exploration of
such optimization.

Figure 6: Results. Upper: distribution of maximal component of posterior. Lower: Entropy distribution of
posteriors. Left: baseline. Middle: along path 1. Right, along path 2.
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